8628 nvme: use a semaphore to guard submission queue
[unleashed.git] / usr / src / uts / common / io / nvme / nvme.c
blobbcbe672041f300b0dc314192eeb1fe34c7d97750
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 * Copyright 2017 Joyent, Inc.
20 * blkdev driver for NVMe compliant storage devices
22 * This driver was written to conform to version 1.2.1 of the NVMe
23 * specification. It may work with newer versions, but that is completely
24 * untested and disabled by default.
26 * The driver has only been tested on x86 systems and will not work on big-
27 * endian systems without changes to the code accessing registers and data
28 * structures used by the hardware.
31 * Interrupt Usage:
33 * The driver will use a single interrupt while configuring the device as the
34 * specification requires, but contrary to the specification it will try to use
35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 * have one interrupt vector per CPU, but it will work correctly if less are
38 * available. Interrupts can be shared by queues, the interrupt handler will
39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 * handler will retrieve completed commands from all queues sharing an interrupt
42 * vector and will post them to a taskq for completion processing.
45 * Command Processing:
47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 * available interrupt vector, with the queue length usually much smaller than
50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 * interrupt vectors will be used.
53 * Additionally the hardware provides a single special admin queue pair that can
54 * hold up to 4096 admin commands.
56 * From the hardware perspective both queues of a queue pair are independent,
57 * but they share some driver state: the command array (holding pointers to
58 * commands currently being processed by the hardware) and the active command
59 * counter. Access to the submission side of a queue pair and the shared state
60 * is protected by nq_mutex. The completion side of a queue pair does not need
61 * that protection apart from its access to the shared state; it is called only
62 * in the interrupt handler which does not run concurrently for the same
63 * interrupt vector.
65 * When a command is submitted to a queue pair the active command counter is
66 * incremented and a pointer to the command is stored in the command array. The
67 * array index is used as command identifier (CID) in the submission queue
68 * entry. Some commands may take a very long time to complete, and if the queue
69 * wraps around in that time a submission may find the next array slot to still
70 * be used by a long-running command. In this case the array is sequentially
71 * searched for the next free slot. The length of the command array is the same
72 * as the configured queue length. Queue overrun is prevented by the semaphore,
73 * so a command submission may block if the queue is full.
76 * Polled I/O Support:
78 * For kernel core dump support the driver can do polled I/O. As interrupts are
79 * turned off while dumping the driver will just submit a command in the regular
80 * way, and then repeatedly attempt a command retrieval until it gets the
81 * command back.
84 * Namespace Support:
86 * NVMe devices can have multiple namespaces, each being a independent data
87 * store. The driver supports multiple namespaces and creates a blkdev interface
88 * for each namespace found. Namespaces can have various attributes to support
89 * thin provisioning and protection information. This driver does not support
90 * any of this and ignores namespaces that have these attributes.
92 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
93 * (EUI64). This driver uses the EUI64 if present to generate the devid and
94 * passes it to blkdev to use it in the device node names. As this is currently
95 * untested namespaces with EUI64 are ignored by default.
97 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
98 * single controller. This is an artificial limit imposed by the driver to be
99 * able to address a reasonable number of controllers and namespaces using a
100 * 32bit minor node number.
103 * Minor nodes:
105 * For each NVMe device the driver exposes one minor node for the controller and
106 * one minor node for each namespace. The only operations supported by those
107 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
108 * interface for the nvmeadm(1M) utility.
111 * Blkdev Interface:
113 * This driver uses blkdev to do all the heavy lifting involved with presenting
114 * a disk device to the system. As a result, the processing of I/O requests is
115 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
116 * setup, and splitting of transfers into manageable chunks.
118 * I/O requests coming in from blkdev are turned into NVM commands and posted to
119 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
120 * queues. There is currently no timeout handling of I/O commands.
122 * Blkdev also supports querying device/media information and generating a
123 * devid. The driver reports the best block size as determined by the namespace
124 * format back to blkdev as physical block size to support partition and block
125 * alignment. The devid is either based on the namespace EUI64, if present, or
126 * composed using the device vendor ID, model number, serial number, and the
127 * namespace ID.
130 * Error Handling:
132 * Error handling is currently limited to detecting fatal hardware errors,
133 * either by asynchronous events, or synchronously through command status or
134 * admin command timeouts. In case of severe errors the device is fenced off,
135 * all further requests will return EIO. FMA is then called to fault the device.
137 * The hardware has a limit for outstanding asynchronous event requests. Before
138 * this limit is known the driver assumes it is at least 1 and posts a single
139 * asynchronous request. Later when the limit is known more asynchronous event
140 * requests are posted to allow quicker reception of error information. When an
141 * asynchronous event is posted by the hardware the driver will parse the error
142 * status fields and log information or fault the device, depending on the
143 * severity of the asynchronous event. The asynchronous event request is then
144 * reused and posted to the admin queue again.
146 * On command completion the command status is checked for errors. In case of
147 * errors indicating a driver bug the driver panics. Almost all other error
148 * status values just cause EIO to be returned.
150 * Command timeouts are currently detected for all admin commands except
151 * asynchronous event requests. If a command times out and the hardware appears
152 * to be healthy the driver attempts to abort the command. If this fails the
153 * driver assumes the device to be dead, fences it off, and calls FMA to retire
154 * it. In general admin commands are issued at attach time only. No timeout
155 * handling of normal I/O commands is presently done.
157 * In some cases it may be possible that the ABORT command times out, too. In
158 * that case the device is also declared dead and fenced off.
161 * Quiesce / Fast Reboot:
163 * The driver currently does not support fast reboot. A quiesce(9E) entry point
164 * is still provided which is used to send a shutdown notification to the
165 * device.
168 * Driver Configuration:
170 * The following driver properties can be changed to control some aspects of the
171 * drivers operation:
172 * - strict-version: can be set to 0 to allow devices conforming to newer
173 * versions or namespaces with EUI64 to be used
174 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
175 * specific command status as a fatal error leading device faulting
176 * - admin-queue-len: the maximum length of the admin queue (16-4096)
177 * - io-queue-len: the maximum length of the I/O queues (16-65536)
178 * - async-event-limit: the maximum number of asynchronous event requests to be
179 * posted by the driver
180 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
181 * cache
182 * - min-phys-block-size: the minimum physical block size to report to blkdev,
183 * which is among other things the basis for ZFS vdev ashift
186 * TODO:
187 * - figure out sane default for I/O queue depth reported to blkdev
188 * - FMA handling of media errors
189 * - support for devices supporting very large I/O requests using chained PRPs
190 * - support for configuring hardware parameters like interrupt coalescing
191 * - support for media formatting and hard partitioning into namespaces
192 * - support for big-endian systems
193 * - support for fast reboot
194 * - support for firmware updates
195 * - support for NVMe Subsystem Reset (1.1)
196 * - support for Scatter/Gather lists (1.1)
197 * - support for Reservations (1.1)
198 * - support for power management
201 #include <sys/byteorder.h>
202 #ifdef _BIG_ENDIAN
203 #error nvme driver needs porting for big-endian platforms
204 #endif
206 #include <sys/modctl.h>
207 #include <sys/conf.h>
208 #include <sys/devops.h>
209 #include <sys/ddi.h>
210 #include <sys/sunddi.h>
211 #include <sys/sunndi.h>
212 #include <sys/bitmap.h>
213 #include <sys/sysmacros.h>
214 #include <sys/param.h>
215 #include <sys/varargs.h>
216 #include <sys/cpuvar.h>
217 #include <sys/disp.h>
218 #include <sys/blkdev.h>
219 #include <sys/atomic.h>
220 #include <sys/archsystm.h>
221 #include <sys/sata/sata_hba.h>
222 #include <sys/stat.h>
223 #include <sys/policy.h>
225 #include <sys/nvme.h>
227 #ifdef __x86
228 #include <sys/x86_archext.h>
229 #endif
231 #include "nvme_reg.h"
232 #include "nvme_var.h"
235 /* NVMe spec version supported */
236 static const int nvme_version_major = 1;
237 static const int nvme_version_minor = 2;
239 /* tunable for admin command timeout in seconds, default is 1s */
240 int nvme_admin_cmd_timeout = 1;
242 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
243 int nvme_format_cmd_timeout = 600;
245 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
246 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
247 static int nvme_quiesce(dev_info_t *);
248 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
249 static int nvme_setup_interrupts(nvme_t *, int, int);
250 static void nvme_release_interrupts(nvme_t *);
251 static uint_t nvme_intr(caddr_t, caddr_t);
253 static void nvme_shutdown(nvme_t *, int, boolean_t);
254 static boolean_t nvme_reset(nvme_t *, boolean_t);
255 static int nvme_init(nvme_t *);
256 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
257 static void nvme_free_cmd(nvme_cmd_t *);
258 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
259 bd_xfer_t *);
260 static int nvme_admin_cmd(nvme_cmd_t *, int);
261 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
262 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
263 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
264 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
265 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
266 static void nvme_wakeup_cmd(void *);
267 static void nvme_async_event_task(void *);
269 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
270 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
271 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
272 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
273 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
274 static inline int nvme_check_cmd_status(nvme_cmd_t *);
276 static void nvme_abort_cmd(nvme_cmd_t *);
277 static void nvme_async_event(nvme_t *);
278 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
279 boolean_t, uint8_t);
280 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
281 static void *nvme_identify(nvme_t *, uint32_t);
282 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
283 uint32_t *);
284 static boolean_t nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
285 void **, size_t *);
286 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
287 static int nvme_set_nqueues(nvme_t *, uint16_t);
289 static void nvme_free_dma(nvme_dma_t *);
290 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
291 nvme_dma_t **);
292 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
293 nvme_dma_t **);
294 static void nvme_free_qpair(nvme_qpair_t *);
295 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
296 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
298 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
299 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
300 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
301 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
303 static boolean_t nvme_check_regs_hdl(nvme_t *);
304 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
306 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
308 static void nvme_bd_xfer_done(void *);
309 static void nvme_bd_driveinfo(void *, bd_drive_t *);
310 static int nvme_bd_mediainfo(void *, bd_media_t *);
311 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
312 static int nvme_bd_read(void *, bd_xfer_t *);
313 static int nvme_bd_write(void *, bd_xfer_t *);
314 static int nvme_bd_sync(void *, bd_xfer_t *);
315 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
317 static int nvme_prp_dma_constructor(void *, void *, int);
318 static void nvme_prp_dma_destructor(void *, void *);
320 static void nvme_prepare_devid(nvme_t *, uint32_t);
322 static int nvme_open(dev_t *, int, int, cred_t *);
323 static int nvme_close(dev_t, int, int, cred_t *);
324 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
326 #define NVME_MINOR_INST_SHIFT 9
327 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
328 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
329 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
330 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
332 static void *nvme_state;
333 static kmem_cache_t *nvme_cmd_cache;
336 * DMA attributes for queue DMA memory
338 * Queue DMA memory must be page aligned. The maximum length of a queue is
339 * 65536 entries, and an entry can be 64 bytes long.
341 static ddi_dma_attr_t nvme_queue_dma_attr = {
342 .dma_attr_version = DMA_ATTR_V0,
343 .dma_attr_addr_lo = 0,
344 .dma_attr_addr_hi = 0xffffffffffffffffULL,
345 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
346 .dma_attr_align = 0x1000,
347 .dma_attr_burstsizes = 0x7ff,
348 .dma_attr_minxfer = 0x1000,
349 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
350 .dma_attr_seg = 0xffffffffffffffffULL,
351 .dma_attr_sgllen = 1,
352 .dma_attr_granular = 1,
353 .dma_attr_flags = 0,
357 * DMA attributes for transfers using Physical Region Page (PRP) entries
359 * A PRP entry describes one page of DMA memory using the page size specified
360 * in the controller configuration's memory page size register (CC.MPS). It uses
361 * a 64bit base address aligned to this page size. There is no limitation on
362 * chaining PRPs together for arbitrarily large DMA transfers.
364 static ddi_dma_attr_t nvme_prp_dma_attr = {
365 .dma_attr_version = DMA_ATTR_V0,
366 .dma_attr_addr_lo = 0,
367 .dma_attr_addr_hi = 0xffffffffffffffffULL,
368 .dma_attr_count_max = 0xfff,
369 .dma_attr_align = 0x1000,
370 .dma_attr_burstsizes = 0x7ff,
371 .dma_attr_minxfer = 0x1000,
372 .dma_attr_maxxfer = 0x1000,
373 .dma_attr_seg = 0xfff,
374 .dma_attr_sgllen = -1,
375 .dma_attr_granular = 1,
376 .dma_attr_flags = 0,
380 * DMA attributes for transfers using scatter/gather lists
382 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
383 * 32bit length field. SGL Segment and SGL Last Segment entries require the
384 * length to be a multiple of 16 bytes.
386 static ddi_dma_attr_t nvme_sgl_dma_attr = {
387 .dma_attr_version = DMA_ATTR_V0,
388 .dma_attr_addr_lo = 0,
389 .dma_attr_addr_hi = 0xffffffffffffffffULL,
390 .dma_attr_count_max = 0xffffffffUL,
391 .dma_attr_align = 1,
392 .dma_attr_burstsizes = 0x7ff,
393 .dma_attr_minxfer = 0x10,
394 .dma_attr_maxxfer = 0xfffffffffULL,
395 .dma_attr_seg = 0xffffffffffffffffULL,
396 .dma_attr_sgllen = -1,
397 .dma_attr_granular = 0x10,
398 .dma_attr_flags = 0
401 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
402 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
403 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
404 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
407 static struct cb_ops nvme_cb_ops = {
408 .cb_open = nvme_open,
409 .cb_close = nvme_close,
410 .cb_strategy = nodev,
411 .cb_print = nodev,
412 .cb_dump = nodev,
413 .cb_read = nodev,
414 .cb_write = nodev,
415 .cb_ioctl = nvme_ioctl,
416 .cb_devmap = nodev,
417 .cb_mmap = nodev,
418 .cb_segmap = nodev,
419 .cb_chpoll = nochpoll,
420 .cb_prop_op = ddi_prop_op,
421 .cb_str = 0,
422 .cb_flag = D_NEW | D_MP,
423 .cb_rev = CB_REV,
424 .cb_aread = nodev,
425 .cb_awrite = nodev
428 static struct dev_ops nvme_dev_ops = {
429 .devo_rev = DEVO_REV,
430 .devo_refcnt = 0,
431 .devo_getinfo = ddi_no_info,
432 .devo_identify = nulldev,
433 .devo_probe = nulldev,
434 .devo_attach = nvme_attach,
435 .devo_detach = nvme_detach,
436 .devo_reset = nodev,
437 .devo_cb_ops = &nvme_cb_ops,
438 .devo_bus_ops = NULL,
439 .devo_power = NULL,
440 .devo_quiesce = nvme_quiesce,
443 static struct modldrv nvme_modldrv = {
444 .drv_modops = &mod_driverops,
445 .drv_linkinfo = "NVMe v1.1b",
446 .drv_dev_ops = &nvme_dev_ops
449 static struct modlinkage nvme_modlinkage = {
450 .ml_rev = MODREV_1,
451 .ml_linkage = { &nvme_modldrv, NULL }
454 static bd_ops_t nvme_bd_ops = {
455 .o_version = BD_OPS_VERSION_0,
456 .o_drive_info = nvme_bd_driveinfo,
457 .o_media_info = nvme_bd_mediainfo,
458 .o_devid_init = nvme_bd_devid,
459 .o_sync_cache = nvme_bd_sync,
460 .o_read = nvme_bd_read,
461 .o_write = nvme_bd_write,
465 _init(void)
467 int error;
469 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
470 if (error != DDI_SUCCESS)
471 return (error);
473 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
474 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
476 bd_mod_init(&nvme_dev_ops);
478 error = mod_install(&nvme_modlinkage);
479 if (error != DDI_SUCCESS) {
480 ddi_soft_state_fini(&nvme_state);
481 bd_mod_fini(&nvme_dev_ops);
484 return (error);
488 _fini(void)
490 int error;
492 error = mod_remove(&nvme_modlinkage);
493 if (error == DDI_SUCCESS) {
494 ddi_soft_state_fini(&nvme_state);
495 kmem_cache_destroy(nvme_cmd_cache);
496 bd_mod_fini(&nvme_dev_ops);
499 return (error);
503 _info(struct modinfo *modinfop)
505 return (mod_info(&nvme_modlinkage, modinfop));
508 static inline void
509 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
511 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
513 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
514 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
517 static inline void
518 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
520 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
522 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
523 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
526 static inline uint64_t
527 nvme_get64(nvme_t *nvme, uintptr_t reg)
529 uint64_t val;
531 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
533 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
534 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
536 return (val);
539 static inline uint32_t
540 nvme_get32(nvme_t *nvme, uintptr_t reg)
542 uint32_t val;
544 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
546 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
547 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
549 return (val);
552 static boolean_t
553 nvme_check_regs_hdl(nvme_t *nvme)
555 ddi_fm_error_t error;
557 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
559 if (error.fme_status != DDI_FM_OK)
560 return (B_TRUE);
562 return (B_FALSE);
565 static boolean_t
566 nvme_check_dma_hdl(nvme_dma_t *dma)
568 ddi_fm_error_t error;
570 if (dma == NULL)
571 return (B_FALSE);
573 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
575 if (error.fme_status != DDI_FM_OK)
576 return (B_TRUE);
578 return (B_FALSE);
581 static void
582 nvme_free_dma_common(nvme_dma_t *dma)
584 if (dma->nd_dmah != NULL)
585 (void) ddi_dma_unbind_handle(dma->nd_dmah);
586 if (dma->nd_acch != NULL)
587 ddi_dma_mem_free(&dma->nd_acch);
588 if (dma->nd_dmah != NULL)
589 ddi_dma_free_handle(&dma->nd_dmah);
592 static void
593 nvme_free_dma(nvme_dma_t *dma)
595 nvme_free_dma_common(dma);
596 kmem_free(dma, sizeof (*dma));
599 /* ARGSUSED */
600 static void
601 nvme_prp_dma_destructor(void *buf, void *private)
603 nvme_dma_t *dma = (nvme_dma_t *)buf;
605 nvme_free_dma_common(dma);
608 static int
609 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
610 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
612 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
613 &dma->nd_dmah) != DDI_SUCCESS) {
615 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
616 * the only other possible error is DDI_DMA_BADATTR which
617 * indicates a driver bug which should cause a panic.
619 dev_err(nvme->n_dip, CE_PANIC,
620 "!failed to get DMA handle, check DMA attributes");
621 return (DDI_FAILURE);
625 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
626 * or the flags are conflicting, which isn't the case here.
628 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
629 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
630 &dma->nd_len, &dma->nd_acch);
632 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
633 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
634 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
635 dev_err(nvme->n_dip, CE_WARN,
636 "!failed to bind DMA memory");
637 atomic_inc_32(&nvme->n_dma_bind_err);
638 nvme_free_dma_common(dma);
639 return (DDI_FAILURE);
642 return (DDI_SUCCESS);
645 static int
646 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
647 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
649 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
651 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
652 DDI_SUCCESS) {
653 *ret = NULL;
654 kmem_free(dma, sizeof (nvme_dma_t));
655 return (DDI_FAILURE);
658 bzero(dma->nd_memp, dma->nd_len);
660 *ret = dma;
661 return (DDI_SUCCESS);
664 /* ARGSUSED */
665 static int
666 nvme_prp_dma_constructor(void *buf, void *private, int flags)
668 nvme_dma_t *dma = (nvme_dma_t *)buf;
669 nvme_t *nvme = (nvme_t *)private;
671 dma->nd_dmah = NULL;
672 dma->nd_acch = NULL;
674 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
675 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
676 return (-1);
679 ASSERT(dma->nd_ncookie == 1);
681 dma->nd_cached = B_TRUE;
683 return (0);
686 static int
687 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
688 uint_t flags, nvme_dma_t **dma)
690 uint32_t len = nentry * qe_len;
691 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
693 len = roundup(len, nvme->n_pagesize);
695 q_dma_attr.dma_attr_minxfer = len;
697 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
698 != DDI_SUCCESS) {
699 dev_err(nvme->n_dip, CE_WARN,
700 "!failed to get DMA memory for queue");
701 goto fail;
704 if ((*dma)->nd_ncookie != 1) {
705 dev_err(nvme->n_dip, CE_WARN,
706 "!got too many cookies for queue DMA");
707 goto fail;
710 return (DDI_SUCCESS);
712 fail:
713 if (*dma) {
714 nvme_free_dma(*dma);
715 *dma = NULL;
718 return (DDI_FAILURE);
721 static void
722 nvme_free_qpair(nvme_qpair_t *qp)
724 int i;
726 mutex_destroy(&qp->nq_mutex);
727 sema_destroy(&qp->nq_sema);
729 if (qp->nq_sqdma != NULL)
730 nvme_free_dma(qp->nq_sqdma);
731 if (qp->nq_cqdma != NULL)
732 nvme_free_dma(qp->nq_cqdma);
734 if (qp->nq_active_cmds > 0)
735 for (i = 0; i != qp->nq_nentry; i++)
736 if (qp->nq_cmd[i] != NULL)
737 nvme_free_cmd(qp->nq_cmd[i]);
739 if (qp->nq_cmd != NULL)
740 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
742 kmem_free(qp, sizeof (nvme_qpair_t));
745 static int
746 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
747 int idx)
749 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
751 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
752 DDI_INTR_PRI(nvme->n_intr_pri));
753 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
755 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
756 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
757 goto fail;
759 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
760 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
761 goto fail;
763 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
764 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
765 qp->nq_nentry = nentry;
767 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
768 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
770 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
771 qp->nq_next_cmd = 0;
773 *nqp = qp;
774 return (DDI_SUCCESS);
776 fail:
777 nvme_free_qpair(qp);
778 *nqp = NULL;
780 return (DDI_FAILURE);
783 static nvme_cmd_t *
784 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
786 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
788 if (cmd == NULL)
789 return (cmd);
791 bzero(cmd, sizeof (nvme_cmd_t));
793 cmd->nc_nvme = nvme;
795 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
796 DDI_INTR_PRI(nvme->n_intr_pri));
797 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
799 return (cmd);
802 static void
803 nvme_free_cmd(nvme_cmd_t *cmd)
805 if (cmd->nc_dma) {
806 if (cmd->nc_dma->nd_cached)
807 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
808 cmd->nc_dma);
809 else
810 nvme_free_dma(cmd->nc_dma);
811 cmd->nc_dma = NULL;
814 cv_destroy(&cmd->nc_cv);
815 mutex_destroy(&cmd->nc_mutex);
817 kmem_cache_free(nvme_cmd_cache, cmd);
820 static void
821 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
823 sema_p(&qp->nq_sema);
824 nvme_submit_cmd_common(qp, cmd);
827 static int
828 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
830 if (sema_tryp(&qp->nq_sema) == 0)
831 return (EAGAIN);
833 nvme_submit_cmd_common(qp, cmd);
834 return (0);
837 static void
838 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
840 nvme_reg_sqtdbl_t tail = { 0 };
842 mutex_enter(&qp->nq_mutex);
843 cmd->nc_completed = B_FALSE;
846 * Try to insert the cmd into the active cmd array at the nq_next_cmd
847 * slot. If the slot is already occupied advance to the next slot and
848 * try again. This can happen for long running commands like async event
849 * requests.
851 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
852 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
853 qp->nq_cmd[qp->nq_next_cmd] = cmd;
855 qp->nq_active_cmds++;
857 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
858 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
859 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
860 sizeof (nvme_sqe_t) * qp->nq_sqtail,
861 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
862 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
864 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
865 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
867 mutex_exit(&qp->nq_mutex);
870 static nvme_cmd_t *
871 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
873 nvme_reg_cqhdbl_t head = { 0 };
875 nvme_cqe_t *cqe;
876 nvme_cmd_t *cmd;
878 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
879 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
881 mutex_enter(&qp->nq_mutex);
882 cqe = &qp->nq_cq[qp->nq_cqhead];
884 /* Check phase tag of CQE. Hardware inverts it for new entries. */
885 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
886 mutex_exit(&qp->nq_mutex);
887 return (NULL);
890 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
891 ASSERT(cqe->cqe_cid < qp->nq_nentry);
893 cmd = qp->nq_cmd[cqe->cqe_cid];
894 qp->nq_cmd[cqe->cqe_cid] = NULL;
895 qp->nq_active_cmds--;
897 ASSERT(cmd != NULL);
898 ASSERT(cmd->nc_nvme == nvme);
899 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
900 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
901 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
903 qp->nq_sqhead = cqe->cqe_sqhd;
905 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
907 /* Toggle phase on wrap-around. */
908 if (qp->nq_cqhead == 0)
909 qp->nq_phase = qp->nq_phase ? 0 : 1;
911 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
912 mutex_exit(&qp->nq_mutex);
913 sema_v(&qp->nq_sema);
915 return (cmd);
918 static int
919 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
921 nvme_cqe_t *cqe = &cmd->nc_cqe;
923 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
924 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
925 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
926 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
927 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
929 if (cmd->nc_xfer != NULL)
930 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
932 if (cmd->nc_nvme->n_strict_version) {
933 cmd->nc_nvme->n_dead = B_TRUE;
934 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
937 return (EIO);
940 static int
941 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
943 nvme_cqe_t *cqe = &cmd->nc_cqe;
945 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
946 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
947 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
948 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
949 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
950 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
951 cmd->nc_nvme->n_dead = B_TRUE;
952 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
955 return (EIO);
958 static int
959 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
961 nvme_cqe_t *cqe = &cmd->nc_cqe;
963 switch (cqe->cqe_sf.sf_sc) {
964 case NVME_CQE_SC_INT_NVM_WRITE:
965 /* write fail */
966 /* TODO: post ereport */
967 if (cmd->nc_xfer != NULL)
968 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
969 return (EIO);
971 case NVME_CQE_SC_INT_NVM_READ:
972 /* read fail */
973 /* TODO: post ereport */
974 if (cmd->nc_xfer != NULL)
975 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
976 return (EIO);
978 default:
979 return (nvme_check_unknown_cmd_status(cmd));
983 static int
984 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
986 nvme_cqe_t *cqe = &cmd->nc_cqe;
988 switch (cqe->cqe_sf.sf_sc) {
989 case NVME_CQE_SC_GEN_SUCCESS:
990 return (0);
993 * Errors indicating a bug in the driver should cause a panic.
995 case NVME_CQE_SC_GEN_INV_OPC:
996 /* Invalid Command Opcode */
997 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
998 "invalid opcode in cmd %p", (void *)cmd);
999 return (0);
1001 case NVME_CQE_SC_GEN_INV_FLD:
1002 /* Invalid Field in Command */
1003 if (!cmd->nc_dontpanic)
1004 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1005 "programming error: invalid field in cmd %p",
1006 (void *)cmd);
1007 return (EIO);
1009 case NVME_CQE_SC_GEN_ID_CNFL:
1010 /* Command ID Conflict */
1011 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1012 "cmd ID conflict in cmd %p", (void *)cmd);
1013 return (0);
1015 case NVME_CQE_SC_GEN_INV_NS:
1016 /* Invalid Namespace or Format */
1017 if (!cmd->nc_dontpanic)
1018 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1019 "programming error: " "invalid NS/format in cmd %p",
1020 (void *)cmd);
1021 return (EINVAL);
1023 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1024 /* LBA Out Of Range */
1025 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1026 "LBA out of range in cmd %p", (void *)cmd);
1027 return (0);
1030 * Non-fatal errors, handle gracefully.
1032 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1033 /* Data Transfer Error (DMA) */
1034 /* TODO: post ereport */
1035 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1036 if (cmd->nc_xfer != NULL)
1037 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1038 return (EIO);
1040 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1042 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1043 * detailed error information is returned as async event,
1044 * so we pretty much ignore the error here and handle it
1045 * in the async event handler.
1047 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1048 if (cmd->nc_xfer != NULL)
1049 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1050 return (EIO);
1052 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1054 * Command Abort Requested. This normally happens only when a
1055 * command times out.
1057 /* TODO: post ereport or change blkdev to handle this? */
1058 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1059 return (ECANCELED);
1061 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1062 /* Command Aborted due to Power Loss Notification */
1063 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1064 cmd->nc_nvme->n_dead = B_TRUE;
1065 return (EIO);
1067 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1068 /* Command Aborted due to SQ Deletion */
1069 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1070 return (EIO);
1072 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1073 /* Capacity Exceeded */
1074 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1075 if (cmd->nc_xfer != NULL)
1076 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1077 return (EIO);
1079 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1080 /* Namespace Not Ready */
1081 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1082 if (cmd->nc_xfer != NULL)
1083 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1084 return (EIO);
1086 default:
1087 return (nvme_check_unknown_cmd_status(cmd));
1091 static int
1092 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1094 nvme_cqe_t *cqe = &cmd->nc_cqe;
1096 switch (cqe->cqe_sf.sf_sc) {
1097 case NVME_CQE_SC_SPC_INV_CQ:
1098 /* Completion Queue Invalid */
1099 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1100 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1101 return (EINVAL);
1103 case NVME_CQE_SC_SPC_INV_QID:
1104 /* Invalid Queue Identifier */
1105 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1106 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1107 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1108 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1109 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1110 return (EINVAL);
1112 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1113 /* Max Queue Size Exceeded */
1114 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1115 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1116 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1117 return (EINVAL);
1119 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1120 /* Abort Command Limit Exceeded */
1121 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1122 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1123 "abort command limit exceeded in cmd %p", (void *)cmd);
1124 return (0);
1126 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1127 /* Async Event Request Limit Exceeded */
1128 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1129 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1130 "async event request limit exceeded in cmd %p",
1131 (void *)cmd);
1132 return (0);
1134 case NVME_CQE_SC_SPC_INV_INT_VECT:
1135 /* Invalid Interrupt Vector */
1136 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1137 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1138 return (EINVAL);
1140 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1141 /* Invalid Log Page */
1142 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1143 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1144 return (EINVAL);
1146 case NVME_CQE_SC_SPC_INV_FORMAT:
1147 /* Invalid Format */
1148 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1149 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1150 if (cmd->nc_xfer != NULL)
1151 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1152 return (EINVAL);
1154 case NVME_CQE_SC_SPC_INV_Q_DEL:
1155 /* Invalid Queue Deletion */
1156 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1157 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1158 return (EINVAL);
1160 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1161 /* Conflicting Attributes */
1162 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1163 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1164 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1165 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1166 if (cmd->nc_xfer != NULL)
1167 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1168 return (EINVAL);
1170 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1171 /* Invalid Protection Information */
1172 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1173 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1174 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1175 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1176 if (cmd->nc_xfer != NULL)
1177 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1178 return (EINVAL);
1180 case NVME_CQE_SC_SPC_NVM_READONLY:
1181 /* Write to Read Only Range */
1182 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1183 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1184 if (cmd->nc_xfer != NULL)
1185 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1186 return (EROFS);
1188 default:
1189 return (nvme_check_unknown_cmd_status(cmd));
1193 static inline int
1194 nvme_check_cmd_status(nvme_cmd_t *cmd)
1196 nvme_cqe_t *cqe = &cmd->nc_cqe;
1198 /* take a shortcut if everything is alright */
1199 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1200 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1201 return (0);
1203 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1204 return (nvme_check_generic_cmd_status(cmd));
1205 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1206 return (nvme_check_specific_cmd_status(cmd));
1207 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1208 return (nvme_check_integrity_cmd_status(cmd));
1209 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1210 return (nvme_check_vendor_cmd_status(cmd));
1212 return (nvme_check_unknown_cmd_status(cmd));
1216 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1218 * This functions takes care of cleaning up aborted commands. The command
1219 * status is checked to catch any fatal errors.
1221 static void
1222 nvme_abort_cmd_cb(void *arg)
1224 nvme_cmd_t *cmd = arg;
1227 * Grab the command mutex. Once we have it we hold the last reference
1228 * to the command and can safely free it.
1230 mutex_enter(&cmd->nc_mutex);
1231 (void) nvme_check_cmd_status(cmd);
1232 mutex_exit(&cmd->nc_mutex);
1234 nvme_free_cmd(cmd);
1237 static void
1238 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1240 nvme_t *nvme = abort_cmd->nc_nvme;
1241 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1242 nvme_abort_cmd_t ac = { 0 };
1244 sema_p(&nvme->n_abort_sema);
1246 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1247 ac.b.ac_sqid = abort_cmd->nc_sqid;
1250 * Drop the mutex of the aborted command. From this point on
1251 * we must assume that the abort callback has freed the command.
1253 mutex_exit(&abort_cmd->nc_mutex);
1255 cmd->nc_sqid = 0;
1256 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1257 cmd->nc_callback = nvme_wakeup_cmd;
1258 cmd->nc_sqe.sqe_cdw10 = ac.r;
1261 * Send the ABORT to the hardware. The ABORT command will return _after_
1262 * the aborted command has completed (aborted or otherwise).
1264 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1265 sema_v(&nvme->n_abort_sema);
1266 dev_err(nvme->n_dip, CE_WARN,
1267 "!nvme_admin_cmd failed for ABORT");
1268 atomic_inc_32(&nvme->n_abort_failed);
1269 return;
1271 sema_v(&nvme->n_abort_sema);
1273 if (nvme_check_cmd_status(cmd)) {
1274 dev_err(nvme->n_dip, CE_WARN,
1275 "!ABORT failed with sct = %x, sc = %x",
1276 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1277 atomic_inc_32(&nvme->n_abort_failed);
1278 } else {
1279 atomic_inc_32(&nvme->n_cmd_aborted);
1282 nvme_free_cmd(cmd);
1286 * nvme_wait_cmd -- wait for command completion or timeout
1288 * Returns B_TRUE if the command completed normally.
1290 * Returns B_FALSE if the command timed out and an abort was attempted. The
1291 * command mutex will be dropped and the command must be considered freed. The
1292 * freeing of the command is normally done by the abort command callback.
1294 * In case of a serious error or a timeout of the abort command the hardware
1295 * will be declared dead and FMA will be notified.
1297 static boolean_t
1298 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1300 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1301 nvme_t *nvme = cmd->nc_nvme;
1302 nvme_reg_csts_t csts;
1304 ASSERT(mutex_owned(&cmd->nc_mutex));
1306 while (!cmd->nc_completed) {
1307 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1308 break;
1311 if (cmd->nc_completed)
1312 return (B_TRUE);
1315 * The command timed out. Change the callback to the cleanup function.
1317 cmd->nc_callback = nvme_abort_cmd_cb;
1320 * Check controller for fatal status, any errors associated with the
1321 * register or DMA handle, or for a double timeout (abort command timed
1322 * out). If necessary log a warning and call FMA.
1324 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1325 dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1326 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1327 atomic_inc_32(&nvme->n_cmd_timeout);
1329 if (csts.b.csts_cfs ||
1330 nvme_check_regs_hdl(nvme) ||
1331 nvme_check_dma_hdl(cmd->nc_dma) ||
1332 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1333 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1334 nvme->n_dead = B_TRUE;
1335 mutex_exit(&cmd->nc_mutex);
1336 } else {
1338 * Try to abort the command. The command mutex is released by
1339 * nvme_abort_cmd().
1340 * If the abort succeeds it will have freed the aborted command.
1341 * If the abort fails for other reasons we must assume that the
1342 * command may complete at any time, and the callback will free
1343 * it for us.
1345 nvme_abort_cmd(cmd);
1348 return (B_FALSE);
1351 static void
1352 nvme_wakeup_cmd(void *arg)
1354 nvme_cmd_t *cmd = arg;
1356 mutex_enter(&cmd->nc_mutex);
1358 * There is a slight chance that this command completed shortly after
1359 * the timeout was hit in nvme_wait_cmd() but before the callback was
1360 * changed. Catch that case here and clean up accordingly.
1362 if (cmd->nc_callback == nvme_abort_cmd_cb) {
1363 mutex_exit(&cmd->nc_mutex);
1364 nvme_abort_cmd_cb(cmd);
1365 return;
1368 cmd->nc_completed = B_TRUE;
1369 cv_signal(&cmd->nc_cv);
1370 mutex_exit(&cmd->nc_mutex);
1373 static void
1374 nvme_async_event_task(void *arg)
1376 nvme_cmd_t *cmd = arg;
1377 nvme_t *nvme = cmd->nc_nvme;
1378 nvme_error_log_entry_t *error_log = NULL;
1379 nvme_health_log_t *health_log = NULL;
1380 size_t logsize = 0;
1381 nvme_async_event_t event;
1384 * Check for errors associated with the async request itself. The only
1385 * command-specific error is "async event limit exceeded", which
1386 * indicates a programming error in the driver and causes a panic in
1387 * nvme_check_cmd_status().
1389 * Other possible errors are various scenarios where the async request
1390 * was aborted, or internal errors in the device. Internal errors are
1391 * reported to FMA, the command aborts need no special handling here.
1393 if (nvme_check_cmd_status(cmd)) {
1394 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1395 "!async event request returned failure, sct = %x, "
1396 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1397 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1398 cmd->nc_cqe.cqe_sf.sf_m);
1400 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1401 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1402 cmd->nc_nvme->n_dead = B_TRUE;
1403 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1404 DDI_SERVICE_LOST);
1406 nvme_free_cmd(cmd);
1407 return;
1411 event.r = cmd->nc_cqe.cqe_dw0;
1413 /* Clear CQE and re-submit the async request. */
1414 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1415 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1417 switch (event.b.ae_type) {
1418 case NVME_ASYNC_TYPE_ERROR:
1419 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1420 (void) nvme_get_logpage(nvme, (void **)&error_log,
1421 &logsize, event.b.ae_logpage);
1422 } else {
1423 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1424 "async event reply: %d", event.b.ae_logpage);
1425 atomic_inc_32(&nvme->n_wrong_logpage);
1428 switch (event.b.ae_info) {
1429 case NVME_ASYNC_ERROR_INV_SQ:
1430 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1431 "invalid submission queue");
1432 return;
1434 case NVME_ASYNC_ERROR_INV_DBL:
1435 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1436 "invalid doorbell write value");
1437 return;
1439 case NVME_ASYNC_ERROR_DIAGFAIL:
1440 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1441 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1442 nvme->n_dead = B_TRUE;
1443 atomic_inc_32(&nvme->n_diagfail_event);
1444 break;
1446 case NVME_ASYNC_ERROR_PERSISTENT:
1447 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1448 "device error");
1449 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1450 nvme->n_dead = B_TRUE;
1451 atomic_inc_32(&nvme->n_persistent_event);
1452 break;
1454 case NVME_ASYNC_ERROR_TRANSIENT:
1455 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1456 "device error");
1457 /* TODO: send ereport */
1458 atomic_inc_32(&nvme->n_transient_event);
1459 break;
1461 case NVME_ASYNC_ERROR_FW_LOAD:
1462 dev_err(nvme->n_dip, CE_WARN,
1463 "!firmware image load error");
1464 atomic_inc_32(&nvme->n_fw_load_event);
1465 break;
1467 break;
1469 case NVME_ASYNC_TYPE_HEALTH:
1470 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1471 (void) nvme_get_logpage(nvme, (void **)&health_log,
1472 &logsize, event.b.ae_logpage, -1);
1473 } else {
1474 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1475 "async event reply: %d", event.b.ae_logpage);
1476 atomic_inc_32(&nvme->n_wrong_logpage);
1479 switch (event.b.ae_info) {
1480 case NVME_ASYNC_HEALTH_RELIABILITY:
1481 dev_err(nvme->n_dip, CE_WARN,
1482 "!device reliability compromised");
1483 /* TODO: send ereport */
1484 atomic_inc_32(&nvme->n_reliability_event);
1485 break;
1487 case NVME_ASYNC_HEALTH_TEMPERATURE:
1488 dev_err(nvme->n_dip, CE_WARN,
1489 "!temperature above threshold");
1490 /* TODO: send ereport */
1491 atomic_inc_32(&nvme->n_temperature_event);
1492 break;
1494 case NVME_ASYNC_HEALTH_SPARE:
1495 dev_err(nvme->n_dip, CE_WARN,
1496 "!spare space below threshold");
1497 /* TODO: send ereport */
1498 atomic_inc_32(&nvme->n_spare_event);
1499 break;
1501 break;
1503 case NVME_ASYNC_TYPE_VENDOR:
1504 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1505 "received, info = %x, logpage = %x", event.b.ae_info,
1506 event.b.ae_logpage);
1507 atomic_inc_32(&nvme->n_vendor_event);
1508 break;
1510 default:
1511 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1512 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1513 event.b.ae_info, event.b.ae_logpage);
1514 atomic_inc_32(&nvme->n_unknown_event);
1515 break;
1518 if (error_log)
1519 kmem_free(error_log, logsize);
1521 if (health_log)
1522 kmem_free(health_log, logsize);
1525 static int
1526 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1528 mutex_enter(&cmd->nc_mutex);
1529 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1531 if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1533 * The command timed out. An abort command was posted that
1534 * will take care of the cleanup.
1536 return (DDI_FAILURE);
1538 mutex_exit(&cmd->nc_mutex);
1540 return (DDI_SUCCESS);
1543 static void
1544 nvme_async_event(nvme_t *nvme)
1546 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1548 cmd->nc_sqid = 0;
1549 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1550 cmd->nc_callback = nvme_async_event_task;
1552 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1555 static int
1556 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1557 uint8_t pi, boolean_t pil, uint8_t ses)
1559 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1560 nvme_format_nvm_t format_nvm = { 0 };
1561 int ret;
1563 format_nvm.b.fm_lbaf = lbaf & 0xf;
1564 format_nvm.b.fm_ms = ms ? 1 : 0;
1565 format_nvm.b.fm_pi = pi & 0x7;
1566 format_nvm.b.fm_pil = pil ? 1 : 0;
1567 format_nvm.b.fm_ses = ses & 0x7;
1569 cmd->nc_sqid = 0;
1570 cmd->nc_callback = nvme_wakeup_cmd;
1571 cmd->nc_sqe.sqe_nsid = nsid;
1572 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1573 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1576 * Some devices like Samsung SM951 don't allow formatting of all
1577 * namespaces in one command. Handle that gracefully.
1579 if (nsid == (uint32_t)-1)
1580 cmd->nc_dontpanic = B_TRUE;
1582 if ((ret = nvme_admin_cmd(cmd, nvme_format_cmd_timeout))
1583 != DDI_SUCCESS) {
1584 dev_err(nvme->n_dip, CE_WARN,
1585 "!nvme_admin_cmd failed for FORMAT NVM");
1586 return (EIO);
1589 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1590 dev_err(nvme->n_dip, CE_WARN,
1591 "!FORMAT failed with sct = %x, sc = %x",
1592 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1595 nvme_free_cmd(cmd);
1596 return (ret);
1599 static int
1600 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1601 ...)
1603 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1604 nvme_getlogpage_t getlogpage = { 0 };
1605 va_list ap;
1606 int ret = DDI_FAILURE;
1608 va_start(ap, logpage);
1610 cmd->nc_sqid = 0;
1611 cmd->nc_callback = nvme_wakeup_cmd;
1612 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1614 getlogpage.b.lp_lid = logpage;
1616 switch (logpage) {
1617 case NVME_LOGPAGE_ERROR:
1618 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1620 * The GET LOG PAGE command can use at most 2 pages to return
1621 * data, PRP lists are not supported.
1623 *bufsize = MIN(2 * nvme->n_pagesize,
1624 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1625 break;
1627 case NVME_LOGPAGE_HEALTH:
1628 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1629 *bufsize = sizeof (nvme_health_log_t);
1630 break;
1632 case NVME_LOGPAGE_FWSLOT:
1633 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1634 *bufsize = sizeof (nvme_fwslot_log_t);
1635 break;
1637 default:
1638 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1639 logpage);
1640 atomic_inc_32(&nvme->n_unknown_logpage);
1641 goto fail;
1644 va_end(ap);
1646 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1648 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1650 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1651 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1652 dev_err(nvme->n_dip, CE_WARN,
1653 "!nvme_zalloc_dma failed for GET LOG PAGE");
1654 goto fail;
1657 if (cmd->nc_dma->nd_ncookie > 2) {
1658 dev_err(nvme->n_dip, CE_WARN,
1659 "!too many DMA cookies for GET LOG PAGE");
1660 atomic_inc_32(&nvme->n_too_many_cookies);
1661 goto fail;
1664 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1665 if (cmd->nc_dma->nd_ncookie > 1) {
1666 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1667 &cmd->nc_dma->nd_cookie);
1668 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1669 cmd->nc_dma->nd_cookie.dmac_laddress;
1672 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1673 dev_err(nvme->n_dip, CE_WARN,
1674 "!nvme_admin_cmd failed for GET LOG PAGE");
1675 return (ret);
1678 if (nvme_check_cmd_status(cmd)) {
1679 dev_err(nvme->n_dip, CE_WARN,
1680 "!GET LOG PAGE failed with sct = %x, sc = %x",
1681 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1682 goto fail;
1685 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1686 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1688 ret = DDI_SUCCESS;
1690 fail:
1691 nvme_free_cmd(cmd);
1693 return (ret);
1696 static void *
1697 nvme_identify(nvme_t *nvme, uint32_t nsid)
1699 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1700 void *buf = NULL;
1702 cmd->nc_sqid = 0;
1703 cmd->nc_callback = nvme_wakeup_cmd;
1704 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1705 cmd->nc_sqe.sqe_nsid = nsid;
1706 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1708 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1709 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1710 dev_err(nvme->n_dip, CE_WARN,
1711 "!nvme_zalloc_dma failed for IDENTIFY");
1712 goto fail;
1715 if (cmd->nc_dma->nd_ncookie > 2) {
1716 dev_err(nvme->n_dip, CE_WARN,
1717 "!too many DMA cookies for IDENTIFY");
1718 atomic_inc_32(&nvme->n_too_many_cookies);
1719 goto fail;
1722 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1723 if (cmd->nc_dma->nd_ncookie > 1) {
1724 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1725 &cmd->nc_dma->nd_cookie);
1726 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1727 cmd->nc_dma->nd_cookie.dmac_laddress;
1730 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1731 dev_err(nvme->n_dip, CE_WARN,
1732 "!nvme_admin_cmd failed for IDENTIFY");
1733 return (NULL);
1736 if (nvme_check_cmd_status(cmd)) {
1737 dev_err(nvme->n_dip, CE_WARN,
1738 "!IDENTIFY failed with sct = %x, sc = %x",
1739 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1740 goto fail;
1743 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1744 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1746 fail:
1747 nvme_free_cmd(cmd);
1749 return (buf);
1752 static boolean_t
1753 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1754 uint32_t *res)
1756 _NOTE(ARGUNUSED(nsid));
1757 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1758 boolean_t ret = B_FALSE;
1760 ASSERT(res != NULL);
1762 cmd->nc_sqid = 0;
1763 cmd->nc_callback = nvme_wakeup_cmd;
1764 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1765 cmd->nc_sqe.sqe_cdw10 = feature;
1766 cmd->nc_sqe.sqe_cdw11 = val;
1768 switch (feature) {
1769 case NVME_FEAT_WRITE_CACHE:
1770 if (!nvme->n_write_cache_present)
1771 goto fail;
1772 break;
1774 case NVME_FEAT_NQUEUES:
1775 break;
1777 default:
1778 goto fail;
1781 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1782 dev_err(nvme->n_dip, CE_WARN,
1783 "!nvme_admin_cmd failed for SET FEATURES");
1784 return (ret);
1787 if (nvme_check_cmd_status(cmd)) {
1788 dev_err(nvme->n_dip, CE_WARN,
1789 "!SET FEATURES %d failed with sct = %x, sc = %x",
1790 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1791 cmd->nc_cqe.cqe_sf.sf_sc);
1792 goto fail;
1795 *res = cmd->nc_cqe.cqe_dw0;
1796 ret = B_TRUE;
1798 fail:
1799 nvme_free_cmd(cmd);
1800 return (ret);
1803 static boolean_t
1804 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1805 void **buf, size_t *bufsize)
1807 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1808 boolean_t ret = B_FALSE;
1810 ASSERT(res != NULL);
1812 if (bufsize != NULL)
1813 *bufsize = 0;
1815 cmd->nc_sqid = 0;
1816 cmd->nc_callback = nvme_wakeup_cmd;
1817 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1818 cmd->nc_sqe.sqe_cdw10 = feature;
1819 cmd->nc_sqe.sqe_cdw11 = *res;
1821 switch (feature) {
1822 case NVME_FEAT_ARBITRATION:
1823 case NVME_FEAT_POWER_MGMT:
1824 case NVME_FEAT_TEMPERATURE:
1825 case NVME_FEAT_ERROR:
1826 case NVME_FEAT_NQUEUES:
1827 case NVME_FEAT_INTR_COAL:
1828 case NVME_FEAT_INTR_VECT:
1829 case NVME_FEAT_WRITE_ATOM:
1830 case NVME_FEAT_ASYNC_EVENT:
1831 case NVME_FEAT_PROGRESS:
1832 break;
1834 case NVME_FEAT_WRITE_CACHE:
1835 if (!nvme->n_write_cache_present)
1836 goto fail;
1837 break;
1839 case NVME_FEAT_LBA_RANGE:
1840 if (!nvme->n_lba_range_supported)
1841 goto fail;
1844 * The LBA Range Type feature is optional. There doesn't seem
1845 * be a method of detecting whether it is supported other than
1846 * using it. This will cause a "invalid field in command" error,
1847 * which is normally considered a programming error and causes
1848 * panic in nvme_check_generic_cmd_status().
1850 cmd->nc_dontpanic = B_TRUE;
1851 cmd->nc_sqe.sqe_nsid = nsid;
1852 ASSERT(bufsize != NULL);
1853 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1855 break;
1857 case NVME_FEAT_AUTO_PST:
1858 if (!nvme->n_auto_pst_supported)
1859 goto fail;
1861 ASSERT(bufsize != NULL);
1862 *bufsize = NVME_AUTO_PST_BUFSIZE;
1863 break;
1865 default:
1866 goto fail;
1869 if (bufsize != NULL && *bufsize != 0) {
1870 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1871 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1872 dev_err(nvme->n_dip, CE_WARN,
1873 "!nvme_zalloc_dma failed for GET FEATURES");
1874 goto fail;
1877 if (cmd->nc_dma->nd_ncookie > 2) {
1878 dev_err(nvme->n_dip, CE_WARN,
1879 "!too many DMA cookies for GET FEATURES");
1880 atomic_inc_32(&nvme->n_too_many_cookies);
1881 goto fail;
1884 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1885 cmd->nc_dma->nd_cookie.dmac_laddress;
1886 if (cmd->nc_dma->nd_ncookie > 1) {
1887 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1888 &cmd->nc_dma->nd_cookie);
1889 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1890 cmd->nc_dma->nd_cookie.dmac_laddress;
1894 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1895 dev_err(nvme->n_dip, CE_WARN,
1896 "!nvme_admin_cmd failed for GET FEATURES");
1897 return (ret);
1900 if (nvme_check_cmd_status(cmd)) {
1901 if (feature == NVME_FEAT_LBA_RANGE &&
1902 cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1903 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1904 nvme->n_lba_range_supported = B_FALSE;
1905 else
1906 dev_err(nvme->n_dip, CE_WARN,
1907 "!GET FEATURES %d failed with sct = %x, sc = %x",
1908 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1909 cmd->nc_cqe.cqe_sf.sf_sc);
1910 goto fail;
1913 if (bufsize != NULL && *bufsize != 0) {
1914 ASSERT(buf != NULL);
1915 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1916 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1919 *res = cmd->nc_cqe.cqe_dw0;
1920 ret = B_TRUE;
1922 fail:
1923 nvme_free_cmd(cmd);
1924 return (ret);
1927 static boolean_t
1928 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1930 nvme_write_cache_t nwc = { 0 };
1932 if (enable)
1933 nwc.b.wc_wce = 1;
1935 if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1936 return (B_FALSE);
1938 return (B_TRUE);
1941 static int
1942 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1944 nvme_nqueues_t nq = { 0 };
1946 nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1948 if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1949 return (0);
1953 * Always use the same number of submission and completion queues, and
1954 * never use more than the requested number of queues.
1956 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1959 static int
1960 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1962 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1963 nvme_create_queue_dw10_t dw10 = { 0 };
1964 nvme_create_cq_dw11_t c_dw11 = { 0 };
1965 nvme_create_sq_dw11_t s_dw11 = { 0 };
1967 dw10.b.q_qid = idx;
1968 dw10.b.q_qsize = qp->nq_nentry - 1;
1970 c_dw11.b.cq_pc = 1;
1971 c_dw11.b.cq_ien = 1;
1972 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1974 cmd->nc_sqid = 0;
1975 cmd->nc_callback = nvme_wakeup_cmd;
1976 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1977 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1978 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1979 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1981 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1982 dev_err(nvme->n_dip, CE_WARN,
1983 "!nvme_admin_cmd failed for CREATE CQUEUE");
1984 return (DDI_FAILURE);
1987 if (nvme_check_cmd_status(cmd)) {
1988 dev_err(nvme->n_dip, CE_WARN,
1989 "!CREATE CQUEUE failed with sct = %x, sc = %x",
1990 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1991 nvme_free_cmd(cmd);
1992 return (DDI_FAILURE);
1995 nvme_free_cmd(cmd);
1997 s_dw11.b.sq_pc = 1;
1998 s_dw11.b.sq_cqid = idx;
2000 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2001 cmd->nc_sqid = 0;
2002 cmd->nc_callback = nvme_wakeup_cmd;
2003 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2004 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2005 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2006 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2008 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
2009 dev_err(nvme->n_dip, CE_WARN,
2010 "!nvme_admin_cmd failed for CREATE SQUEUE");
2011 return (DDI_FAILURE);
2014 if (nvme_check_cmd_status(cmd)) {
2015 dev_err(nvme->n_dip, CE_WARN,
2016 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2017 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2018 nvme_free_cmd(cmd);
2019 return (DDI_FAILURE);
2022 nvme_free_cmd(cmd);
2024 return (DDI_SUCCESS);
2027 static boolean_t
2028 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2030 nvme_reg_csts_t csts;
2031 int i;
2033 nvme_put32(nvme, NVME_REG_CC, 0);
2035 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2036 if (csts.b.csts_rdy == 1) {
2037 nvme_put32(nvme, NVME_REG_CC, 0);
2038 for (i = 0; i != nvme->n_timeout * 10; i++) {
2039 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2040 if (csts.b.csts_rdy == 0)
2041 break;
2043 if (quiesce)
2044 drv_usecwait(50000);
2045 else
2046 delay(drv_usectohz(50000));
2050 nvme_put32(nvme, NVME_REG_AQA, 0);
2051 nvme_put32(nvme, NVME_REG_ASQ, 0);
2052 nvme_put32(nvme, NVME_REG_ACQ, 0);
2054 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2055 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2058 static void
2059 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2061 nvme_reg_cc_t cc;
2062 nvme_reg_csts_t csts;
2063 int i;
2065 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2067 cc.r = nvme_get32(nvme, NVME_REG_CC);
2068 cc.b.cc_shn = mode & 0x3;
2069 nvme_put32(nvme, NVME_REG_CC, cc.r);
2071 for (i = 0; i != 10; i++) {
2072 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2073 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2074 break;
2076 if (quiesce)
2077 drv_usecwait(100000);
2078 else
2079 delay(drv_usectohz(100000));
2084 static void
2085 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2088 * Section 7.7 of the spec describes how to get a unique ID for
2089 * the controller: the vendor ID, the model name and the serial
2090 * number shall be unique when combined.
2092 * If a namespace has no EUI64 we use the above and add the hex
2093 * namespace ID to get a unique ID for the namespace.
2095 char model[sizeof (nvme->n_idctl->id_model) + 1];
2096 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2098 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2099 bcopy(nvme->n_idctl->id_serial, serial,
2100 sizeof (nvme->n_idctl->id_serial));
2102 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2103 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2105 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2106 nvme->n_idctl->id_vid, model, serial, nsid);
2109 static int
2110 nvme_init_ns(nvme_t *nvme, int nsid)
2112 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2113 nvme_identify_nsid_t *idns;
2114 int last_rp;
2116 ns->ns_nvme = nvme;
2117 idns = nvme_identify(nvme, nsid);
2119 if (idns == NULL) {
2120 dev_err(nvme->n_dip, CE_WARN,
2121 "!failed to identify namespace %d", nsid);
2122 return (DDI_FAILURE);
2125 ns->ns_idns = idns;
2126 ns->ns_id = nsid;
2127 ns->ns_block_count = idns->id_nsize;
2128 ns->ns_block_size =
2129 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2130 ns->ns_best_block_size = ns->ns_block_size;
2133 * Get the EUI64 if present. Use it for devid and device node names.
2135 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2136 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2138 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2139 if (*(uint64_t *)ns->ns_eui64 != 0) {
2140 uint8_t *eui64 = ns->ns_eui64;
2142 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2143 "%02x%02x%02x%02x%02x%02x%02x%02x",
2144 eui64[0], eui64[1], eui64[2], eui64[3],
2145 eui64[4], eui64[5], eui64[6], eui64[7]);
2146 } else {
2147 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2148 ns->ns_id);
2150 nvme_prepare_devid(nvme, ns->ns_id);
2154 * Find the LBA format with no metadata and the best relative
2155 * performance. A value of 3 means "degraded", 0 is best.
2157 last_rp = 3;
2158 for (int j = 0; j <= idns->id_nlbaf; j++) {
2159 if (idns->id_lbaf[j].lbaf_lbads == 0)
2160 break;
2161 if (idns->id_lbaf[j].lbaf_ms != 0)
2162 continue;
2163 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2164 continue;
2165 last_rp = idns->id_lbaf[j].lbaf_rp;
2166 ns->ns_best_block_size =
2167 1 << idns->id_lbaf[j].lbaf_lbads;
2170 if (ns->ns_best_block_size < nvme->n_min_block_size)
2171 ns->ns_best_block_size = nvme->n_min_block_size;
2174 * We currently don't support namespaces that use either:
2175 * - thin provisioning
2176 * - protection information
2177 * - illegal block size (< 512)
2179 if (idns->id_nsfeat.f_thin ||
2180 idns->id_dps.dp_pinfo) {
2181 dev_err(nvme->n_dip, CE_WARN,
2182 "!ignoring namespace %d, unsupported features: "
2183 "thin = %d, pinfo = %d", nsid,
2184 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2185 ns->ns_ignore = B_TRUE;
2186 } else if (ns->ns_block_size < 512) {
2187 dev_err(nvme->n_dip, CE_WARN,
2188 "!ignoring namespace %d, unsupported block size %"PRIu64,
2189 nsid, (uint64_t)ns->ns_block_size);
2190 ns->ns_ignore = B_TRUE;
2191 } else {
2192 ns->ns_ignore = B_FALSE;
2195 return (DDI_SUCCESS);
2198 static int
2199 nvme_init(nvme_t *nvme)
2201 nvme_reg_cc_t cc = { 0 };
2202 nvme_reg_aqa_t aqa = { 0 };
2203 nvme_reg_asq_t asq = { 0 };
2204 nvme_reg_acq_t acq = { 0 };
2205 nvme_reg_cap_t cap;
2206 nvme_reg_vs_t vs;
2207 nvme_reg_csts_t csts;
2208 int i = 0;
2209 int nqueues;
2210 char model[sizeof (nvme->n_idctl->id_model) + 1];
2211 char *vendor, *product;
2213 /* Check controller version */
2214 vs.r = nvme_get32(nvme, NVME_REG_VS);
2215 nvme->n_version.v_major = vs.b.vs_mjr;
2216 nvme->n_version.v_minor = vs.b.vs_mnr;
2217 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2218 nvme->n_version.v_major, nvme->n_version.v_minor);
2220 if (NVME_VERSION_HIGHER(&nvme->n_version,
2221 nvme_version_major, nvme_version_minor)) {
2222 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2223 nvme_version_major, nvme_version_minor);
2224 if (nvme->n_strict_version)
2225 goto fail;
2228 /* retrieve controller configuration */
2229 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2231 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2232 dev_err(nvme->n_dip, CE_WARN,
2233 "!NVM command set not supported by hardware");
2234 goto fail;
2237 nvme->n_nssr_supported = cap.b.cap_nssrs;
2238 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2239 nvme->n_timeout = cap.b.cap_to;
2240 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2241 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2242 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2245 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2246 * the base page size of 4k (1<<12), so add 12 here to get the real
2247 * page size value.
2249 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2250 cap.b.cap_mpsmax + 12);
2251 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2254 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2256 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2257 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2260 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2261 * Maxxfer may be increased after we identified the controller limits.
2263 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2264 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2265 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2266 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2269 * Reset controller if it's still in ready state.
2271 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2272 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2273 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2274 nvme->n_dead = B_TRUE;
2275 goto fail;
2279 * Create the admin queue pair.
2281 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2282 != DDI_SUCCESS) {
2283 dev_err(nvme->n_dip, CE_WARN,
2284 "!unable to allocate admin qpair");
2285 goto fail;
2287 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2288 nvme->n_ioq[0] = nvme->n_adminq;
2290 nvme->n_progress |= NVME_ADMIN_QUEUE;
2292 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2293 "admin-queue-len", nvme->n_admin_queue_len);
2295 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2296 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2297 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2299 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2300 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2302 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2303 nvme_put64(nvme, NVME_REG_ASQ, asq);
2304 nvme_put64(nvme, NVME_REG_ACQ, acq);
2306 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2307 cc.b.cc_css = 0; /* use NVM command set */
2308 cc.b.cc_mps = nvme->n_pageshift - 12;
2309 cc.b.cc_shn = 0; /* no shutdown in progress */
2310 cc.b.cc_en = 1; /* enable controller */
2311 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2312 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2314 nvme_put32(nvme, NVME_REG_CC, cc.r);
2317 * Wait for the controller to become ready.
2319 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2320 if (csts.b.csts_rdy == 0) {
2321 for (i = 0; i != nvme->n_timeout * 10; i++) {
2322 delay(drv_usectohz(50000));
2323 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2325 if (csts.b.csts_cfs == 1) {
2326 dev_err(nvme->n_dip, CE_WARN,
2327 "!controller fatal status at init");
2328 ddi_fm_service_impact(nvme->n_dip,
2329 DDI_SERVICE_LOST);
2330 nvme->n_dead = B_TRUE;
2331 goto fail;
2334 if (csts.b.csts_rdy == 1)
2335 break;
2339 if (csts.b.csts_rdy == 0) {
2340 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2341 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2342 nvme->n_dead = B_TRUE;
2343 goto fail;
2347 * Assume an abort command limit of 1. We'll destroy and re-init
2348 * that later when we know the true abort command limit.
2350 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2353 * Setup initial interrupt for admin queue.
2355 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2356 != DDI_SUCCESS) &&
2357 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2358 != DDI_SUCCESS) &&
2359 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2360 != DDI_SUCCESS)) {
2361 dev_err(nvme->n_dip, CE_WARN,
2362 "!failed to setup initial interrupt");
2363 goto fail;
2367 * Post an asynchronous event command to catch errors.
2369 nvme_async_event(nvme);
2372 * Identify Controller
2374 nvme->n_idctl = nvme_identify(nvme, 0);
2375 if (nvme->n_idctl == NULL) {
2376 dev_err(nvme->n_dip, CE_WARN,
2377 "!failed to identify controller");
2378 goto fail;
2382 * Get Vendor & Product ID
2384 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2385 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2386 sata_split_model(model, &vendor, &product);
2388 if (vendor == NULL)
2389 nvme->n_vendor = strdup("NVMe");
2390 else
2391 nvme->n_vendor = strdup(vendor);
2393 nvme->n_product = strdup(product);
2396 * Get controller limits.
2398 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2399 MIN(nvme->n_admin_queue_len / 10,
2400 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2402 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2403 "async-event-limit", nvme->n_async_event_limit);
2405 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2408 * Reinitialize the semaphore with the true abort command limit
2409 * supported by the hardware. It's not necessary to disable interrupts
2410 * as only command aborts use the semaphore, and no commands are
2411 * executed or aborted while we're here.
2413 sema_destroy(&nvme->n_abort_sema);
2414 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2415 SEMA_DRIVER, NULL);
2417 nvme->n_progress |= NVME_CTRL_LIMITS;
2419 if (nvme->n_idctl->id_mdts == 0)
2420 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2421 else
2422 nvme->n_max_data_transfer_size =
2423 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2425 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2428 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2429 * Chained PRPs are currently unsupported.
2431 * This is a no-op on hardware which doesn't support a transfer size
2432 * big enough to require chained PRPs.
2434 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2435 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2437 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2440 * Make sure the minimum/maximum queue entry sizes are not
2441 * larger/smaller than the default.
2444 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2445 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2446 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2447 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2448 goto fail;
2451 * Check for the presence of a Volatile Write Cache. If present,
2452 * enable or disable based on the value of the property
2453 * volatile-write-cache-enable (default is enabled).
2455 nvme->n_write_cache_present =
2456 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2458 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2459 "volatile-write-cache-present",
2460 nvme->n_write_cache_present ? 1 : 0);
2462 if (!nvme->n_write_cache_present) {
2463 nvme->n_write_cache_enabled = B_FALSE;
2464 } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2465 dev_err(nvme->n_dip, CE_WARN,
2466 "!failed to %sable volatile write cache",
2467 nvme->n_write_cache_enabled ? "en" : "dis");
2469 * Assume the cache is (still) enabled.
2471 nvme->n_write_cache_enabled = B_TRUE;
2474 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2475 "volatile-write-cache-enable",
2476 nvme->n_write_cache_enabled ? 1 : 0);
2479 * Assume LBA Range Type feature is supported. If it isn't this
2480 * will be set to B_FALSE by nvme_get_features().
2482 nvme->n_lba_range_supported = B_TRUE;
2485 * Check support for Autonomous Power State Transition.
2487 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2488 nvme->n_auto_pst_supported =
2489 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2492 * Identify Namespaces
2494 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2495 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2496 dev_err(nvme->n_dip, CE_WARN,
2497 "!too many namespaces: %d, limiting to %d\n",
2498 nvme->n_namespace_count, NVME_MINOR_MAX);
2499 nvme->n_namespace_count = NVME_MINOR_MAX;
2502 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2503 nvme->n_namespace_count, KM_SLEEP);
2505 for (i = 0; i != nvme->n_namespace_count; i++) {
2506 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2507 NULL);
2508 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2509 goto fail;
2513 * Try to set up MSI/MSI-X interrupts.
2515 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2516 != 0) {
2517 nvme_release_interrupts(nvme);
2519 nqueues = MIN(UINT16_MAX, ncpus);
2521 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2522 nqueues) != DDI_SUCCESS) &&
2523 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2524 nqueues) != DDI_SUCCESS)) {
2525 dev_err(nvme->n_dip, CE_WARN,
2526 "!failed to setup MSI/MSI-X interrupts");
2527 goto fail;
2531 nqueues = nvme->n_intr_cnt;
2534 * Create I/O queue pairs.
2536 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2537 if (nvme->n_ioq_count == 0) {
2538 dev_err(nvme->n_dip, CE_WARN,
2539 "!failed to set number of I/O queues to %d", nqueues);
2540 goto fail;
2544 * Reallocate I/O queue array
2546 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2547 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2548 (nvme->n_ioq_count + 1), KM_SLEEP);
2549 nvme->n_ioq[0] = nvme->n_adminq;
2552 * If we got less queues than we asked for we might as well give
2553 * some of the interrupt vectors back to the system.
2555 if (nvme->n_ioq_count < nqueues) {
2556 nvme_release_interrupts(nvme);
2558 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2559 nvme->n_ioq_count) != DDI_SUCCESS) {
2560 dev_err(nvme->n_dip, CE_WARN,
2561 "!failed to reduce number of interrupts");
2562 goto fail;
2567 * Alloc & register I/O queue pairs
2569 nvme->n_io_queue_len =
2570 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2571 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2572 nvme->n_io_queue_len);
2574 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2575 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2576 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2577 dev_err(nvme->n_dip, CE_WARN,
2578 "!unable to allocate I/O qpair %d", i);
2579 goto fail;
2582 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2583 != DDI_SUCCESS) {
2584 dev_err(nvme->n_dip, CE_WARN,
2585 "!unable to create I/O qpair %d", i);
2586 goto fail;
2591 * Post more asynchronous events commands to reduce event reporting
2592 * latency as suggested by the spec.
2594 for (i = 1; i != nvme->n_async_event_limit; i++)
2595 nvme_async_event(nvme);
2597 return (DDI_SUCCESS);
2599 fail:
2600 (void) nvme_reset(nvme, B_FALSE);
2601 return (DDI_FAILURE);
2604 static uint_t
2605 nvme_intr(caddr_t arg1, caddr_t arg2)
2607 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2608 nvme_t *nvme = (nvme_t *)arg1;
2609 int inum = (int)(uintptr_t)arg2;
2610 int ccnt = 0;
2611 int qnum;
2612 nvme_cmd_t *cmd;
2614 if (inum >= nvme->n_intr_cnt)
2615 return (DDI_INTR_UNCLAIMED);
2618 * The interrupt vector a queue uses is calculated as queue_idx %
2619 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2620 * in steps of n_intr_cnt to process all queues using this vector.
2622 for (qnum = inum;
2623 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2624 qnum += nvme->n_intr_cnt) {
2625 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2626 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2627 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2628 ccnt++;
2632 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2635 static void
2636 nvme_release_interrupts(nvme_t *nvme)
2638 int i;
2640 for (i = 0; i < nvme->n_intr_cnt; i++) {
2641 if (nvme->n_inth[i] == NULL)
2642 break;
2644 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2645 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2646 else
2647 (void) ddi_intr_disable(nvme->n_inth[i]);
2649 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2650 (void) ddi_intr_free(nvme->n_inth[i]);
2653 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2654 nvme->n_inth = NULL;
2655 nvme->n_inth_sz = 0;
2657 nvme->n_progress &= ~NVME_INTERRUPTS;
2660 static int
2661 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2663 int nintrs, navail, count;
2664 int ret;
2665 int i;
2667 if (nvme->n_intr_types == 0) {
2668 ret = ddi_intr_get_supported_types(nvme->n_dip,
2669 &nvme->n_intr_types);
2670 if (ret != DDI_SUCCESS) {
2671 dev_err(nvme->n_dip, CE_WARN,
2672 "!%s: ddi_intr_get_supported types failed",
2673 __func__);
2674 return (ret);
2676 #ifdef __x86
2677 if (get_hwenv() == HW_VMWARE)
2678 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2679 #endif
2682 if ((nvme->n_intr_types & intr_type) == 0)
2683 return (DDI_FAILURE);
2685 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2686 if (ret != DDI_SUCCESS) {
2687 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2688 __func__);
2689 return (ret);
2692 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2693 if (ret != DDI_SUCCESS) {
2694 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2695 __func__);
2696 return (ret);
2699 /* We want at most one interrupt per queue pair. */
2700 if (navail > nqpairs)
2701 navail = nqpairs;
2703 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2704 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2706 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2707 &count, 0);
2708 if (ret != DDI_SUCCESS) {
2709 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2710 __func__);
2711 goto fail;
2714 nvme->n_intr_cnt = count;
2716 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2717 if (ret != DDI_SUCCESS) {
2718 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2719 __func__);
2720 goto fail;
2723 for (i = 0; i < count; i++) {
2724 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2725 (void *)nvme, (void *)(uintptr_t)i);
2726 if (ret != DDI_SUCCESS) {
2727 dev_err(nvme->n_dip, CE_WARN,
2728 "!%s: ddi_intr_add_handler failed", __func__);
2729 goto fail;
2733 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2735 for (i = 0; i < count; i++) {
2736 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2737 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2738 else
2739 ret = ddi_intr_enable(nvme->n_inth[i]);
2741 if (ret != DDI_SUCCESS) {
2742 dev_err(nvme->n_dip, CE_WARN,
2743 "!%s: enabling interrupt %d failed", __func__, i);
2744 goto fail;
2748 nvme->n_intr_type = intr_type;
2750 nvme->n_progress |= NVME_INTERRUPTS;
2752 return (DDI_SUCCESS);
2754 fail:
2755 nvme_release_interrupts(nvme);
2757 return (ret);
2760 static int
2761 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2763 _NOTE(ARGUNUSED(arg));
2765 pci_ereport_post(dip, fm_error, NULL);
2766 return (fm_error->fme_status);
2769 static int
2770 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2772 nvme_t *nvme;
2773 int instance;
2774 int nregs;
2775 off_t regsize;
2776 int i;
2777 char name[32];
2779 if (cmd != DDI_ATTACH)
2780 return (DDI_FAILURE);
2782 instance = ddi_get_instance(dip);
2784 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2785 return (DDI_FAILURE);
2787 nvme = ddi_get_soft_state(nvme_state, instance);
2788 ddi_set_driver_private(dip, nvme);
2789 nvme->n_dip = dip;
2791 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2793 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2794 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2795 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2796 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2797 B_TRUE : B_FALSE;
2798 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2799 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2800 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2801 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2802 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2803 DDI_PROP_DONTPASS, "async-event-limit",
2804 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2805 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2806 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2807 B_TRUE : B_FALSE;
2808 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2809 DDI_PROP_DONTPASS, "min-phys-block-size",
2810 NVME_DEFAULT_MIN_BLOCK_SIZE);
2812 if (!ISP2(nvme->n_min_block_size) ||
2813 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2814 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2815 "using default %d", ISP2(nvme->n_min_block_size) ?
2816 "too low" : "not a power of 2",
2817 NVME_DEFAULT_MIN_BLOCK_SIZE);
2818 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2821 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2822 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2823 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2824 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2826 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2827 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2829 if (nvme->n_async_event_limit < 1)
2830 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2832 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2833 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2834 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2835 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2838 * Setup FMA support.
2840 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2841 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2842 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2843 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2845 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2847 if (nvme->n_fm_cap) {
2848 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2849 nvme->n_reg_acc_attr.devacc_attr_access =
2850 DDI_FLAGERR_ACC;
2852 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2853 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2854 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2857 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2858 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2859 pci_ereport_setup(dip);
2861 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2862 ddi_fm_handler_register(dip, nvme_fm_errcb,
2863 (void *)nvme);
2866 nvme->n_progress |= NVME_FMA_INIT;
2869 * The spec defines several register sets. Only the controller
2870 * registers (set 1) are currently used.
2872 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2873 nregs < 2 ||
2874 ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2875 goto fail;
2877 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2878 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2879 dev_err(dip, CE_WARN, "!failed to map regset 1");
2880 goto fail;
2883 nvme->n_progress |= NVME_REGS_MAPPED;
2886 * Create taskq for command completion.
2888 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2889 ddi_driver_name(dip), ddi_get_instance(dip));
2890 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2891 TASKQ_DEFAULTPRI, 0);
2892 if (nvme->n_cmd_taskq == NULL) {
2893 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2894 goto fail;
2898 * Create PRP DMA cache
2900 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2901 ddi_driver_name(dip), ddi_get_instance(dip));
2902 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2903 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2904 NULL, (void *)nvme, NULL, 0);
2906 if (nvme_init(nvme) != DDI_SUCCESS)
2907 goto fail;
2910 * Attach the blkdev driver for each namespace.
2912 for (i = 0; i != nvme->n_namespace_count; i++) {
2913 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2914 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2915 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2916 dev_err(dip, CE_WARN,
2917 "!failed to create minor node for namespace %d", i);
2918 goto fail;
2921 if (nvme->n_ns[i].ns_ignore)
2922 continue;
2924 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2925 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2927 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2928 dev_err(dip, CE_WARN,
2929 "!failed to get blkdev handle for namespace %d", i);
2930 goto fail;
2933 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2934 != DDI_SUCCESS) {
2935 dev_err(dip, CE_WARN,
2936 "!failed to attach blkdev handle for namespace %d",
2938 goto fail;
2942 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2943 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2944 != DDI_SUCCESS) {
2945 dev_err(dip, CE_WARN, "nvme_attach: "
2946 "cannot create devctl minor node");
2947 goto fail;
2950 return (DDI_SUCCESS);
2952 fail:
2953 /* attach successful anyway so that FMA can retire the device */
2954 if (nvme->n_dead)
2955 return (DDI_SUCCESS);
2957 (void) nvme_detach(dip, DDI_DETACH);
2959 return (DDI_FAILURE);
2962 static int
2963 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2965 int instance, i;
2966 nvme_t *nvme;
2968 if (cmd != DDI_DETACH)
2969 return (DDI_FAILURE);
2971 instance = ddi_get_instance(dip);
2973 nvme = ddi_get_soft_state(nvme_state, instance);
2975 if (nvme == NULL)
2976 return (DDI_FAILURE);
2978 ddi_remove_minor_node(dip, "devctl");
2979 mutex_destroy(&nvme->n_minor.nm_mutex);
2981 if (nvme->n_ns) {
2982 for (i = 0; i != nvme->n_namespace_count; i++) {
2983 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
2984 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
2986 if (nvme->n_ns[i].ns_bd_hdl) {
2987 (void) bd_detach_handle(
2988 nvme->n_ns[i].ns_bd_hdl);
2989 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2992 if (nvme->n_ns[i].ns_idns)
2993 kmem_free(nvme->n_ns[i].ns_idns,
2994 sizeof (nvme_identify_nsid_t));
2995 if (nvme->n_ns[i].ns_devid)
2996 strfree(nvme->n_ns[i].ns_devid);
2999 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3000 nvme->n_namespace_count);
3003 if (nvme->n_progress & NVME_INTERRUPTS)
3004 nvme_release_interrupts(nvme);
3006 if (nvme->n_cmd_taskq)
3007 ddi_taskq_wait(nvme->n_cmd_taskq);
3009 if (nvme->n_ioq_count > 0) {
3010 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3011 if (nvme->n_ioq[i] != NULL) {
3012 /* TODO: send destroy queue commands */
3013 nvme_free_qpair(nvme->n_ioq[i]);
3017 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3018 (nvme->n_ioq_count + 1));
3021 if (nvme->n_prp_cache != NULL) {
3022 kmem_cache_destroy(nvme->n_prp_cache);
3025 if (nvme->n_progress & NVME_REGS_MAPPED) {
3026 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3027 (void) nvme_reset(nvme, B_FALSE);
3030 if (nvme->n_cmd_taskq)
3031 ddi_taskq_destroy(nvme->n_cmd_taskq);
3033 if (nvme->n_progress & NVME_CTRL_LIMITS)
3034 sema_destroy(&nvme->n_abort_sema);
3036 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3037 nvme_free_qpair(nvme->n_adminq);
3039 if (nvme->n_idctl)
3040 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3042 if (nvme->n_progress & NVME_REGS_MAPPED)
3043 ddi_regs_map_free(&nvme->n_regh);
3045 if (nvme->n_progress & NVME_FMA_INIT) {
3046 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3047 ddi_fm_handler_unregister(nvme->n_dip);
3049 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3050 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3051 pci_ereport_teardown(nvme->n_dip);
3053 ddi_fm_fini(nvme->n_dip);
3056 if (nvme->n_vendor != NULL)
3057 strfree(nvme->n_vendor);
3059 if (nvme->n_product != NULL)
3060 strfree(nvme->n_product);
3062 ddi_soft_state_free(nvme_state, instance);
3064 return (DDI_SUCCESS);
3067 static int
3068 nvme_quiesce(dev_info_t *dip)
3070 int instance;
3071 nvme_t *nvme;
3073 instance = ddi_get_instance(dip);
3075 nvme = ddi_get_soft_state(nvme_state, instance);
3077 if (nvme == NULL)
3078 return (DDI_FAILURE);
3080 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3082 (void) nvme_reset(nvme, B_TRUE);
3084 return (DDI_FAILURE);
3087 static int
3088 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3090 nvme_t *nvme = cmd->nc_nvme;
3091 int nprp_page, nprp;
3092 uint64_t *prp;
3094 if (xfer->x_ndmac == 0)
3095 return (DDI_FAILURE);
3097 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3098 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3100 if (xfer->x_ndmac == 1) {
3101 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3102 return (DDI_SUCCESS);
3103 } else if (xfer->x_ndmac == 2) {
3104 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3105 return (DDI_SUCCESS);
3108 xfer->x_ndmac--;
3110 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3111 ASSERT(nprp_page > 0);
3112 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3115 * We currently don't support chained PRPs and set up our DMA
3116 * attributes to reflect that. If we still get an I/O request
3117 * that needs a chained PRP something is very wrong.
3119 VERIFY(nprp == 1);
3121 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3122 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3124 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3126 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3127 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3128 xfer->x_ndmac > 0;
3129 prp++, xfer->x_ndmac--) {
3130 *prp = xfer->x_dmac.dmac_laddress;
3131 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3134 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3135 DDI_DMA_SYNC_FORDEV);
3136 return (DDI_SUCCESS);
3139 static nvme_cmd_t *
3140 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3142 nvme_t *nvme = ns->ns_nvme;
3143 nvme_cmd_t *cmd;
3146 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3148 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3149 KM_NOSLEEP : KM_SLEEP);
3151 if (cmd == NULL)
3152 return (NULL);
3154 cmd->nc_sqe.sqe_opc = opc;
3155 cmd->nc_callback = nvme_bd_xfer_done;
3156 cmd->nc_xfer = xfer;
3158 switch (opc) {
3159 case NVME_OPC_NVM_WRITE:
3160 case NVME_OPC_NVM_READ:
3161 VERIFY(xfer->x_nblks <= 0x10000);
3163 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3165 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3166 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3167 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3169 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3170 goto fail;
3171 break;
3173 case NVME_OPC_NVM_FLUSH:
3174 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3175 break;
3177 default:
3178 goto fail;
3181 return (cmd);
3183 fail:
3184 nvme_free_cmd(cmd);
3185 return (NULL);
3188 static void
3189 nvme_bd_xfer_done(void *arg)
3191 nvme_cmd_t *cmd = arg;
3192 bd_xfer_t *xfer = cmd->nc_xfer;
3193 int error = 0;
3195 error = nvme_check_cmd_status(cmd);
3196 nvme_free_cmd(cmd);
3198 bd_xfer_done(xfer, error);
3201 static void
3202 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3204 nvme_namespace_t *ns = arg;
3205 nvme_t *nvme = ns->ns_nvme;
3208 * blkdev maintains one queue size per instance (namespace),
3209 * but all namespace share the I/O queues.
3210 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3211 * or change blkdev to handle EAGAIN
3213 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3214 / nvme->n_namespace_count;
3217 * d_maxxfer is not set, which means the value is taken from the DMA
3218 * attributes specified to bd_alloc_handle.
3221 drive->d_removable = B_FALSE;
3222 drive->d_hotpluggable = B_FALSE;
3224 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3225 drive->d_target = ns->ns_id;
3226 drive->d_lun = 0;
3228 drive->d_model = nvme->n_idctl->id_model;
3229 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3230 drive->d_vendor = nvme->n_vendor;
3231 drive->d_vendor_len = strlen(nvme->n_vendor);
3232 drive->d_product = nvme->n_product;
3233 drive->d_product_len = strlen(nvme->n_product);
3234 drive->d_serial = nvme->n_idctl->id_serial;
3235 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3236 drive->d_revision = nvme->n_idctl->id_fwrev;
3237 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3240 static int
3241 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3243 nvme_namespace_t *ns = arg;
3245 media->m_nblks = ns->ns_block_count;
3246 media->m_blksize = ns->ns_block_size;
3247 media->m_readonly = B_FALSE;
3248 media->m_solidstate = B_TRUE;
3250 media->m_pblksize = ns->ns_best_block_size;
3252 return (0);
3255 static int
3256 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3258 nvme_t *nvme = ns->ns_nvme;
3259 nvme_cmd_t *cmd;
3260 nvme_qpair_t *ioq;
3261 boolean_t poll;
3262 int ret;
3264 if (nvme->n_dead)
3265 return (EIO);
3267 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3268 if (cmd == NULL)
3269 return (ENOMEM);
3271 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3272 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3273 ioq = nvme->n_ioq[cmd->nc_sqid];
3276 * Get the polling flag before submitting the command. The command may
3277 * complete immediately after it was submitted, which means we must
3278 * treat both cmd and xfer as if they have been freed already.
3280 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3282 ret = nvme_submit_io_cmd(ioq, cmd);
3284 if (ret != 0)
3285 return (ret);
3287 if (!poll)
3288 return (0);
3290 do {
3291 cmd = nvme_retrieve_cmd(nvme, ioq);
3292 if (cmd != NULL)
3293 nvme_bd_xfer_done(cmd);
3294 else
3295 drv_usecwait(10);
3296 } while (ioq->nq_active_cmds != 0);
3298 return (0);
3301 static int
3302 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3304 nvme_namespace_t *ns = arg;
3306 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3309 static int
3310 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3312 nvme_namespace_t *ns = arg;
3314 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3317 static int
3318 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3320 nvme_namespace_t *ns = arg;
3322 if (ns->ns_nvme->n_dead)
3323 return (EIO);
3326 * If the volatile write cache is not present or not enabled the FLUSH
3327 * command is a no-op, so we can take a shortcut here.
3329 if (!ns->ns_nvme->n_write_cache_present) {
3330 bd_xfer_done(xfer, ENOTSUP);
3331 return (0);
3334 if (!ns->ns_nvme->n_write_cache_enabled) {
3335 bd_xfer_done(xfer, 0);
3336 return (0);
3339 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3342 static int
3343 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3345 nvme_namespace_t *ns = arg;
3347 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3348 if (*(uint64_t *)ns->ns_eui64 != 0) {
3349 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3350 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3351 } else {
3352 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3353 strlen(ns->ns_devid), ns->ns_devid, devid));
3357 static int
3358 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3360 #ifndef __lock_lint
3361 _NOTE(ARGUNUSED(cred_p));
3362 #endif
3363 minor_t minor = getminor(*devp);
3364 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3365 int nsid = NVME_MINOR_NSID(minor);
3366 nvme_minor_state_t *nm;
3367 int rv = 0;
3369 if (otyp != OTYP_CHR)
3370 return (EINVAL);
3372 if (nvme == NULL)
3373 return (ENXIO);
3375 if (nsid > nvme->n_namespace_count)
3376 return (ENXIO);
3378 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3380 mutex_enter(&nm->nm_mutex);
3381 if (nm->nm_oexcl) {
3382 rv = EBUSY;
3383 goto out;
3386 if (flag & FEXCL) {
3387 if (nm->nm_ocnt != 0) {
3388 rv = EBUSY;
3389 goto out;
3391 nm->nm_oexcl = B_TRUE;
3394 nm->nm_ocnt++;
3396 out:
3397 mutex_exit(&nm->nm_mutex);
3398 return (rv);
3402 static int
3403 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3405 #ifndef __lock_lint
3406 _NOTE(ARGUNUSED(cred_p));
3407 _NOTE(ARGUNUSED(flag));
3408 #endif
3409 minor_t minor = getminor(dev);
3410 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3411 int nsid = NVME_MINOR_NSID(minor);
3412 nvme_minor_state_t *nm;
3414 if (otyp != OTYP_CHR)
3415 return (ENXIO);
3417 if (nvme == NULL)
3418 return (ENXIO);
3420 if (nsid > nvme->n_namespace_count)
3421 return (ENXIO);
3423 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3425 mutex_enter(&nm->nm_mutex);
3426 if (nm->nm_oexcl)
3427 nm->nm_oexcl = B_FALSE;
3429 ASSERT(nm->nm_ocnt > 0);
3430 nm->nm_ocnt--;
3431 mutex_exit(&nm->nm_mutex);
3433 return (0);
3436 static int
3437 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3438 cred_t *cred_p)
3440 _NOTE(ARGUNUSED(cred_p));
3441 int rv = 0;
3442 void *idctl;
3444 if ((mode & FREAD) == 0)
3445 return (EPERM);
3447 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3448 return (EINVAL);
3450 idctl = nvme_identify(nvme, nsid);
3451 if (idctl == NULL)
3452 return (EIO);
3454 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3455 != 0)
3456 rv = EFAULT;
3458 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3460 return (rv);
3463 static int
3464 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3465 int mode, cred_t *cred_p)
3467 _NOTE(ARGUNUSED(nsid, cred_p));
3468 int rv = 0;
3469 nvme_reg_cap_t cap = { 0 };
3470 nvme_capabilities_t nc;
3472 if ((mode & FREAD) == 0)
3473 return (EPERM);
3475 if (nioc->n_len < sizeof (nc))
3476 return (EINVAL);
3478 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3481 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3482 * specify the base page size of 4k (1<<12), so add 12 here to
3483 * get the real page size value.
3485 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3486 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3488 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3489 rv = EFAULT;
3491 return (rv);
3494 static int
3495 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3496 int mode, cred_t *cred_p)
3498 _NOTE(ARGUNUSED(cred_p));
3499 void *log = NULL;
3500 size_t bufsize = 0;
3501 int rv = 0;
3503 if ((mode & FREAD) == 0)
3504 return (EPERM);
3506 switch (nioc->n_arg) {
3507 case NVME_LOGPAGE_ERROR:
3508 if (nsid != 0)
3509 return (EINVAL);
3510 break;
3511 case NVME_LOGPAGE_HEALTH:
3512 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3513 return (EINVAL);
3515 if (nsid == 0)
3516 nsid = (uint32_t)-1;
3518 break;
3519 case NVME_LOGPAGE_FWSLOT:
3520 if (nsid != 0)
3521 return (EINVAL);
3522 break;
3523 default:
3524 return (EINVAL);
3527 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3528 != DDI_SUCCESS)
3529 return (EIO);
3531 if (nioc->n_len < bufsize) {
3532 kmem_free(log, bufsize);
3533 return (EINVAL);
3536 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3537 rv = EFAULT;
3539 nioc->n_len = bufsize;
3540 kmem_free(log, bufsize);
3542 return (rv);
3545 static int
3546 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3547 int mode, cred_t *cred_p)
3549 _NOTE(ARGUNUSED(cred_p));
3550 void *buf = NULL;
3551 size_t bufsize = 0;
3552 uint32_t res = 0;
3553 uint8_t feature;
3554 int rv = 0;
3556 if ((mode & FREAD) == 0)
3557 return (EPERM);
3559 if ((nioc->n_arg >> 32) > 0xff)
3560 return (EINVAL);
3562 feature = (uint8_t)(nioc->n_arg >> 32);
3564 switch (feature) {
3565 case NVME_FEAT_ARBITRATION:
3566 case NVME_FEAT_POWER_MGMT:
3567 case NVME_FEAT_TEMPERATURE:
3568 case NVME_FEAT_ERROR:
3569 case NVME_FEAT_NQUEUES:
3570 case NVME_FEAT_INTR_COAL:
3571 case NVME_FEAT_WRITE_ATOM:
3572 case NVME_FEAT_ASYNC_EVENT:
3573 case NVME_FEAT_PROGRESS:
3574 if (nsid != 0)
3575 return (EINVAL);
3576 break;
3578 case NVME_FEAT_INTR_VECT:
3579 if (nsid != 0)
3580 return (EINVAL);
3582 res = nioc->n_arg & 0xffffffffUL;
3583 if (res >= nvme->n_intr_cnt)
3584 return (EINVAL);
3585 break;
3587 case NVME_FEAT_LBA_RANGE:
3588 if (nvme->n_lba_range_supported == B_FALSE)
3589 return (EINVAL);
3591 if (nsid == 0 ||
3592 nsid > nvme->n_namespace_count)
3593 return (EINVAL);
3595 break;
3597 case NVME_FEAT_WRITE_CACHE:
3598 if (nsid != 0)
3599 return (EINVAL);
3601 if (!nvme->n_write_cache_present)
3602 return (EINVAL);
3604 break;
3606 case NVME_FEAT_AUTO_PST:
3607 if (nsid != 0)
3608 return (EINVAL);
3610 if (!nvme->n_auto_pst_supported)
3611 return (EINVAL);
3613 break;
3615 default:
3616 return (EINVAL);
3619 if (nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize) ==
3620 B_FALSE)
3621 return (EIO);
3623 if (nioc->n_len < bufsize) {
3624 kmem_free(buf, bufsize);
3625 return (EINVAL);
3628 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3629 rv = EFAULT;
3631 kmem_free(buf, bufsize);
3632 nioc->n_arg = res;
3633 nioc->n_len = bufsize;
3635 return (rv);
3638 static int
3639 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3640 cred_t *cred_p)
3642 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3644 if ((mode & FREAD) == 0)
3645 return (EPERM);
3647 nioc->n_arg = nvme->n_intr_cnt;
3648 return (0);
3651 static int
3652 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3653 cred_t *cred_p)
3655 _NOTE(ARGUNUSED(nsid, cred_p));
3656 int rv = 0;
3658 if ((mode & FREAD) == 0)
3659 return (EPERM);
3661 if (nioc->n_len < sizeof (nvme->n_version))
3662 return (ENOMEM);
3664 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3665 sizeof (nvme->n_version), mode) != 0)
3666 rv = EFAULT;
3668 return (rv);
3671 static int
3672 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3673 cred_t *cred_p)
3675 _NOTE(ARGUNUSED(mode));
3676 nvme_format_nvm_t frmt = { 0 };
3677 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3679 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3680 return (EPERM);
3682 frmt.r = nioc->n_arg & 0xffffffff;
3685 * Check whether the FORMAT NVM command is supported.
3687 if (nvme->n_idctl->id_oacs.oa_format == 0)
3688 return (EINVAL);
3691 * Don't allow format or secure erase of individual namespace if that
3692 * would cause a format or secure erase of all namespaces.
3694 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3695 return (EINVAL);
3697 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3698 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3699 return (EINVAL);
3702 * Don't allow formatting with Protection Information.
3704 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3705 return (EINVAL);
3708 * Don't allow formatting using an illegal LBA format, or any LBA format
3709 * that uses metadata.
3711 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3712 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3713 return (EINVAL);
3716 * Don't allow formatting using an illegal Secure Erase setting.
3718 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3719 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3720 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3721 return (EINVAL);
3723 if (nsid == 0)
3724 nsid = (uint32_t)-1;
3726 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3727 frmt.b.fm_ses));
3730 static int
3731 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3732 cred_t *cred_p)
3734 _NOTE(ARGUNUSED(nioc, mode));
3735 int rv = 0;
3737 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3738 return (EPERM);
3740 if (nsid == 0)
3741 return (EINVAL);
3743 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3744 if (rv != DDI_SUCCESS)
3745 rv = EBUSY;
3747 return (rv);
3750 static int
3751 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3752 cred_t *cred_p)
3754 _NOTE(ARGUNUSED(nioc, mode));
3755 nvme_identify_nsid_t *idns;
3756 int rv = 0;
3758 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3759 return (EPERM);
3761 if (nsid == 0)
3762 return (EINVAL);
3765 * Identify namespace again, free old identify data.
3767 idns = nvme->n_ns[nsid - 1].ns_idns;
3768 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3769 return (EIO);
3771 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3773 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3774 if (rv != DDI_SUCCESS)
3775 rv = EBUSY;
3777 return (rv);
3780 static int
3781 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3782 int *rval_p)
3784 #ifndef __lock_lint
3785 _NOTE(ARGUNUSED(rval_p));
3786 #endif
3787 minor_t minor = getminor(dev);
3788 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3789 int nsid = NVME_MINOR_NSID(minor);
3790 int rv = 0;
3791 nvme_ioctl_t nioc;
3793 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3794 NULL,
3795 nvme_ioctl_identify,
3796 nvme_ioctl_identify,
3797 nvme_ioctl_capabilities,
3798 nvme_ioctl_get_logpage,
3799 nvme_ioctl_get_features,
3800 nvme_ioctl_intr_cnt,
3801 nvme_ioctl_version,
3802 nvme_ioctl_format,
3803 nvme_ioctl_detach,
3804 nvme_ioctl_attach
3807 if (nvme == NULL)
3808 return (ENXIO);
3810 if (nsid > nvme->n_namespace_count)
3811 return (ENXIO);
3813 if (IS_DEVCTL(cmd))
3814 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3816 #ifdef _MULTI_DATAMODEL
3817 switch (ddi_model_convert_from(mode & FMODELS)) {
3818 case DDI_MODEL_ILP32: {
3819 nvme_ioctl32_t nioc32;
3820 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3821 mode) != 0)
3822 return (EFAULT);
3823 nioc.n_len = nioc32.n_len;
3824 nioc.n_buf = nioc32.n_buf;
3825 nioc.n_arg = nioc32.n_arg;
3826 break;
3828 case DDI_MODEL_NONE:
3829 #endif
3830 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3831 != 0)
3832 return (EFAULT);
3833 #ifdef _MULTI_DATAMODEL
3834 break;
3836 #endif
3838 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3840 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3841 * attachment point nodes.
3843 nsid = 0;
3844 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3846 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3847 * will always return identify data for namespace 1.
3849 nsid = 1;
3852 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3853 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3854 cred_p);
3855 else
3856 rv = EINVAL;
3858 #ifdef _MULTI_DATAMODEL
3859 switch (ddi_model_convert_from(mode & FMODELS)) {
3860 case DDI_MODEL_ILP32: {
3861 nvme_ioctl32_t nioc32;
3863 nioc32.n_len = (size32_t)nioc.n_len;
3864 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3865 nioc32.n_arg = nioc.n_arg;
3867 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3868 mode) != 0)
3869 return (EFAULT);
3870 break;
3872 case DDI_MODEL_NONE:
3873 #endif
3874 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3875 != 0)
3876 return (EFAULT);
3877 #ifdef _MULTI_DATAMODEL
3878 break;
3880 #endif
3882 return (rv);