8961 SPA load/import should tell us why it failed
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob656008bf9e2bb0eac732777f079cfb2866941ab7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
54 * Virtual device management.
57 static vdev_ops_t *vdev_ops_table[] = {
58 &vdev_root_ops,
59 &vdev_raidz_ops,
60 &vdev_mirror_ops,
61 &vdev_replacing_ops,
62 &vdev_spare_ops,
63 &vdev_disk_ops,
64 &vdev_file_ops,
65 &vdev_missing_ops,
66 &vdev_hole_ops,
67 &vdev_indirect_ops,
68 NULL
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
75 * When a vdev is added, it will be divided into approximately (but no
76 * more than) this number of metaslabs.
78 int metaslabs_per_vdev = 200;
80 /*PRINTFLIKE2*/
81 void
82 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
84 va_list adx;
85 char buf[256];
87 va_start(adx, fmt);
88 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
89 va_end(adx);
91 if (vd->vdev_path != NULL) {
92 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
93 vd->vdev_path, buf);
94 } else {
95 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
96 vd->vdev_ops->vdev_op_type,
97 (u_longlong_t)vd->vdev_id,
98 (u_longlong_t)vd->vdev_guid, buf);
103 * Given a vdev type, return the appropriate ops vector.
105 static vdev_ops_t *
106 vdev_getops(const char *type)
108 vdev_ops_t *ops, **opspp;
110 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
111 if (strcmp(ops->vdev_op_type, type) == 0)
112 break;
114 return (ops);
118 * Default asize function: return the MAX of psize with the asize of
119 * all children. This is what's used by anything other than RAID-Z.
121 uint64_t
122 vdev_default_asize(vdev_t *vd, uint64_t psize)
124 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
125 uint64_t csize;
127 for (int c = 0; c < vd->vdev_children; c++) {
128 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
129 asize = MAX(asize, csize);
132 return (asize);
136 * Get the minimum allocatable size. We define the allocatable size as
137 * the vdev's asize rounded to the nearest metaslab. This allows us to
138 * replace or attach devices which don't have the same physical size but
139 * can still satisfy the same number of allocations.
141 uint64_t
142 vdev_get_min_asize(vdev_t *vd)
144 vdev_t *pvd = vd->vdev_parent;
147 * If our parent is NULL (inactive spare or cache) or is the root,
148 * just return our own asize.
150 if (pvd == NULL)
151 return (vd->vdev_asize);
154 * The top-level vdev just returns the allocatable size rounded
155 * to the nearest metaslab.
157 if (vd == vd->vdev_top)
158 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
161 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
162 * so each child must provide at least 1/Nth of its asize.
164 if (pvd->vdev_ops == &vdev_raidz_ops)
165 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
166 pvd->vdev_children);
168 return (pvd->vdev_min_asize);
171 void
172 vdev_set_min_asize(vdev_t *vd)
174 vd->vdev_min_asize = vdev_get_min_asize(vd);
176 for (int c = 0; c < vd->vdev_children; c++)
177 vdev_set_min_asize(vd->vdev_child[c]);
180 vdev_t *
181 vdev_lookup_top(spa_t *spa, uint64_t vdev)
183 vdev_t *rvd = spa->spa_root_vdev;
185 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
187 if (vdev < rvd->vdev_children) {
188 ASSERT(rvd->vdev_child[vdev] != NULL);
189 return (rvd->vdev_child[vdev]);
192 return (NULL);
195 vdev_t *
196 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
198 vdev_t *mvd;
200 if (vd->vdev_guid == guid)
201 return (vd);
203 for (int c = 0; c < vd->vdev_children; c++)
204 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
205 NULL)
206 return (mvd);
208 return (NULL);
211 static int
212 vdev_count_leaves_impl(vdev_t *vd)
214 int n = 0;
216 if (vd->vdev_ops->vdev_op_leaf)
217 return (1);
219 for (int c = 0; c < vd->vdev_children; c++)
220 n += vdev_count_leaves_impl(vd->vdev_child[c]);
222 return (n);
226 vdev_count_leaves(spa_t *spa)
228 return (vdev_count_leaves_impl(spa->spa_root_vdev));
231 void
232 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
234 size_t oldsize, newsize;
235 uint64_t id = cvd->vdev_id;
236 vdev_t **newchild;
237 spa_t *spa = cvd->vdev_spa;
239 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
240 ASSERT(cvd->vdev_parent == NULL);
242 cvd->vdev_parent = pvd;
244 if (pvd == NULL)
245 return;
247 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
249 oldsize = pvd->vdev_children * sizeof (vdev_t *);
250 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
251 newsize = pvd->vdev_children * sizeof (vdev_t *);
253 newchild = kmem_zalloc(newsize, KM_SLEEP);
254 if (pvd->vdev_child != NULL) {
255 bcopy(pvd->vdev_child, newchild, oldsize);
256 kmem_free(pvd->vdev_child, oldsize);
259 pvd->vdev_child = newchild;
260 pvd->vdev_child[id] = cvd;
262 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
263 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
266 * Walk up all ancestors to update guid sum.
268 for (; pvd != NULL; pvd = pvd->vdev_parent)
269 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
272 void
273 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
275 int c;
276 uint_t id = cvd->vdev_id;
278 ASSERT(cvd->vdev_parent == pvd);
280 if (pvd == NULL)
281 return;
283 ASSERT(id < pvd->vdev_children);
284 ASSERT(pvd->vdev_child[id] == cvd);
286 pvd->vdev_child[id] = NULL;
287 cvd->vdev_parent = NULL;
289 for (c = 0; c < pvd->vdev_children; c++)
290 if (pvd->vdev_child[c])
291 break;
293 if (c == pvd->vdev_children) {
294 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
295 pvd->vdev_child = NULL;
296 pvd->vdev_children = 0;
300 * Walk up all ancestors to update guid sum.
302 for (; pvd != NULL; pvd = pvd->vdev_parent)
303 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
307 * Remove any holes in the child array.
309 void
310 vdev_compact_children(vdev_t *pvd)
312 vdev_t **newchild, *cvd;
313 int oldc = pvd->vdev_children;
314 int newc;
316 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
318 for (int c = newc = 0; c < oldc; c++)
319 if (pvd->vdev_child[c])
320 newc++;
322 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
324 for (int c = newc = 0; c < oldc; c++) {
325 if ((cvd = pvd->vdev_child[c]) != NULL) {
326 newchild[newc] = cvd;
327 cvd->vdev_id = newc++;
331 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
332 pvd->vdev_child = newchild;
333 pvd->vdev_children = newc;
337 * Allocate and minimally initialize a vdev_t.
339 vdev_t *
340 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
342 vdev_t *vd;
343 vdev_indirect_config_t *vic;
345 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
346 vic = &vd->vdev_indirect_config;
348 if (spa->spa_root_vdev == NULL) {
349 ASSERT(ops == &vdev_root_ops);
350 spa->spa_root_vdev = vd;
351 spa->spa_load_guid = spa_generate_guid(NULL);
354 if (guid == 0 && ops != &vdev_hole_ops) {
355 if (spa->spa_root_vdev == vd) {
357 * The root vdev's guid will also be the pool guid,
358 * which must be unique among all pools.
360 guid = spa_generate_guid(NULL);
361 } else {
363 * Any other vdev's guid must be unique within the pool.
365 guid = spa_generate_guid(spa);
367 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
370 vd->vdev_spa = spa;
371 vd->vdev_id = id;
372 vd->vdev_guid = guid;
373 vd->vdev_guid_sum = guid;
374 vd->vdev_ops = ops;
375 vd->vdev_state = VDEV_STATE_CLOSED;
376 vd->vdev_ishole = (ops == &vdev_hole_ops);
377 vic->vic_prev_indirect_vdev = UINT64_MAX;
379 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
380 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
381 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
383 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
384 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
385 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
386 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
387 for (int t = 0; t < DTL_TYPES; t++) {
388 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
390 txg_list_create(&vd->vdev_ms_list, spa,
391 offsetof(struct metaslab, ms_txg_node));
392 txg_list_create(&vd->vdev_dtl_list, spa,
393 offsetof(struct vdev, vdev_dtl_node));
394 vd->vdev_stat.vs_timestamp = gethrtime();
395 vdev_queue_init(vd);
396 vdev_cache_init(vd);
398 return (vd);
402 * Allocate a new vdev. The 'alloctype' is used to control whether we are
403 * creating a new vdev or loading an existing one - the behavior is slightly
404 * different for each case.
407 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
408 int alloctype)
410 vdev_ops_t *ops;
411 char *type;
412 uint64_t guid = 0, islog, nparity;
413 vdev_t *vd;
414 vdev_indirect_config_t *vic;
416 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
418 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
419 return (SET_ERROR(EINVAL));
421 if ((ops = vdev_getops(type)) == NULL)
422 return (SET_ERROR(EINVAL));
425 * If this is a load, get the vdev guid from the nvlist.
426 * Otherwise, vdev_alloc_common() will generate one for us.
428 if (alloctype == VDEV_ALLOC_LOAD) {
429 uint64_t label_id;
431 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
432 label_id != id)
433 return (SET_ERROR(EINVAL));
435 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
436 return (SET_ERROR(EINVAL));
437 } else if (alloctype == VDEV_ALLOC_SPARE) {
438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
439 return (SET_ERROR(EINVAL));
440 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
441 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
442 return (SET_ERROR(EINVAL));
443 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
444 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
445 return (SET_ERROR(EINVAL));
449 * The first allocated vdev must be of type 'root'.
451 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
452 return (SET_ERROR(EINVAL));
455 * Determine whether we're a log vdev.
457 islog = 0;
458 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
459 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
460 return (SET_ERROR(ENOTSUP));
462 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
463 return (SET_ERROR(ENOTSUP));
466 * Set the nparity property for RAID-Z vdevs.
468 nparity = -1ULL;
469 if (ops == &vdev_raidz_ops) {
470 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
471 &nparity) == 0) {
472 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
473 return (SET_ERROR(EINVAL));
475 * Previous versions could only support 1 or 2 parity
476 * device.
478 if (nparity > 1 &&
479 spa_version(spa) < SPA_VERSION_RAIDZ2)
480 return (SET_ERROR(ENOTSUP));
481 if (nparity > 2 &&
482 spa_version(spa) < SPA_VERSION_RAIDZ3)
483 return (SET_ERROR(ENOTSUP));
484 } else {
486 * We require the parity to be specified for SPAs that
487 * support multiple parity levels.
489 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
490 return (SET_ERROR(EINVAL));
492 * Otherwise, we default to 1 parity device for RAID-Z.
494 nparity = 1;
496 } else {
497 nparity = 0;
499 ASSERT(nparity != -1ULL);
501 vd = vdev_alloc_common(spa, id, guid, ops);
502 vic = &vd->vdev_indirect_config;
504 vd->vdev_islog = islog;
505 vd->vdev_nparity = nparity;
507 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
508 vd->vdev_path = spa_strdup(vd->vdev_path);
509 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
510 vd->vdev_devid = spa_strdup(vd->vdev_devid);
511 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
512 &vd->vdev_physpath) == 0)
513 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
514 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
515 vd->vdev_fru = spa_strdup(vd->vdev_fru);
518 * Set the whole_disk property. If it's not specified, leave the value
519 * as -1.
521 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
522 &vd->vdev_wholedisk) != 0)
523 vd->vdev_wholedisk = -1ULL;
525 ASSERT0(vic->vic_mapping_object);
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
527 &vic->vic_mapping_object);
528 ASSERT0(vic->vic_births_object);
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
530 &vic->vic_births_object);
531 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
533 &vic->vic_prev_indirect_vdev);
536 * Look for the 'not present' flag. This will only be set if the device
537 * was not present at the time of import.
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
540 &vd->vdev_not_present);
543 * Get the alignment requirement.
545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
548 * Retrieve the vdev creation time.
550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
551 &vd->vdev_crtxg);
554 * If we're a top-level vdev, try to load the allocation parameters.
556 if (parent && !parent->vdev_parent &&
557 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
558 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
559 &vd->vdev_ms_array);
560 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
561 &vd->vdev_ms_shift);
562 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
563 &vd->vdev_asize);
564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
565 &vd->vdev_removing);
566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
567 &vd->vdev_top_zap);
568 } else {
569 ASSERT0(vd->vdev_top_zap);
572 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
573 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
574 alloctype == VDEV_ALLOC_ADD ||
575 alloctype == VDEV_ALLOC_SPLIT ||
576 alloctype == VDEV_ALLOC_ROOTPOOL);
577 vd->vdev_mg = metaslab_group_create(islog ?
578 spa_log_class(spa) : spa_normal_class(spa), vd);
581 if (vd->vdev_ops->vdev_op_leaf &&
582 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
583 (void) nvlist_lookup_uint64(nv,
584 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
585 } else {
586 ASSERT0(vd->vdev_leaf_zap);
590 * If we're a leaf vdev, try to load the DTL object and other state.
593 if (vd->vdev_ops->vdev_op_leaf &&
594 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
595 alloctype == VDEV_ALLOC_ROOTPOOL)) {
596 if (alloctype == VDEV_ALLOC_LOAD) {
597 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
598 &vd->vdev_dtl_object);
599 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
600 &vd->vdev_unspare);
603 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
604 uint64_t spare = 0;
606 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
607 &spare) == 0 && spare)
608 spa_spare_add(vd);
611 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
612 &vd->vdev_offline);
614 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
615 &vd->vdev_resilver_txg);
618 * When importing a pool, we want to ignore the persistent fault
619 * state, as the diagnosis made on another system may not be
620 * valid in the current context. Local vdevs will
621 * remain in the faulted state.
623 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
624 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
625 &vd->vdev_faulted);
626 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
627 &vd->vdev_degraded);
628 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
629 &vd->vdev_removed);
631 if (vd->vdev_faulted || vd->vdev_degraded) {
632 char *aux;
634 vd->vdev_label_aux =
635 VDEV_AUX_ERR_EXCEEDED;
636 if (nvlist_lookup_string(nv,
637 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
638 strcmp(aux, "external") == 0)
639 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
645 * Add ourselves to the parent's list of children.
647 vdev_add_child(parent, vd);
649 *vdp = vd;
651 return (0);
654 void
655 vdev_free(vdev_t *vd)
657 spa_t *spa = vd->vdev_spa;
660 * vdev_free() implies closing the vdev first. This is simpler than
661 * trying to ensure complicated semantics for all callers.
663 vdev_close(vd);
665 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
666 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
669 * Free all children.
671 for (int c = 0; c < vd->vdev_children; c++)
672 vdev_free(vd->vdev_child[c]);
674 ASSERT(vd->vdev_child == NULL);
675 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
678 * Discard allocation state.
680 if (vd->vdev_mg != NULL) {
681 vdev_metaslab_fini(vd);
682 metaslab_group_destroy(vd->vdev_mg);
685 ASSERT0(vd->vdev_stat.vs_space);
686 ASSERT0(vd->vdev_stat.vs_dspace);
687 ASSERT0(vd->vdev_stat.vs_alloc);
690 * Remove this vdev from its parent's child list.
692 vdev_remove_child(vd->vdev_parent, vd);
694 ASSERT(vd->vdev_parent == NULL);
697 * Clean up vdev structure.
699 vdev_queue_fini(vd);
700 vdev_cache_fini(vd);
702 if (vd->vdev_path)
703 spa_strfree(vd->vdev_path);
704 if (vd->vdev_devid)
705 spa_strfree(vd->vdev_devid);
706 if (vd->vdev_physpath)
707 spa_strfree(vd->vdev_physpath);
708 if (vd->vdev_fru)
709 spa_strfree(vd->vdev_fru);
711 if (vd->vdev_isspare)
712 spa_spare_remove(vd);
713 if (vd->vdev_isl2cache)
714 spa_l2cache_remove(vd);
716 txg_list_destroy(&vd->vdev_ms_list);
717 txg_list_destroy(&vd->vdev_dtl_list);
719 mutex_enter(&vd->vdev_dtl_lock);
720 space_map_close(vd->vdev_dtl_sm);
721 for (int t = 0; t < DTL_TYPES; t++) {
722 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
723 range_tree_destroy(vd->vdev_dtl[t]);
725 mutex_exit(&vd->vdev_dtl_lock);
727 EQUIV(vd->vdev_indirect_births != NULL,
728 vd->vdev_indirect_mapping != NULL);
729 if (vd->vdev_indirect_births != NULL) {
730 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
731 vdev_indirect_births_close(vd->vdev_indirect_births);
734 if (vd->vdev_obsolete_sm != NULL) {
735 ASSERT(vd->vdev_removing ||
736 vd->vdev_ops == &vdev_indirect_ops);
737 space_map_close(vd->vdev_obsolete_sm);
738 vd->vdev_obsolete_sm = NULL;
740 range_tree_destroy(vd->vdev_obsolete_segments);
741 rw_destroy(&vd->vdev_indirect_rwlock);
742 mutex_destroy(&vd->vdev_obsolete_lock);
744 mutex_destroy(&vd->vdev_queue_lock);
745 mutex_destroy(&vd->vdev_dtl_lock);
746 mutex_destroy(&vd->vdev_stat_lock);
747 mutex_destroy(&vd->vdev_probe_lock);
749 if (vd == spa->spa_root_vdev)
750 spa->spa_root_vdev = NULL;
752 kmem_free(vd, sizeof (vdev_t));
756 * Transfer top-level vdev state from svd to tvd.
758 static void
759 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
761 spa_t *spa = svd->vdev_spa;
762 metaslab_t *msp;
763 vdev_t *vd;
764 int t;
766 ASSERT(tvd == tvd->vdev_top);
768 tvd->vdev_ms_array = svd->vdev_ms_array;
769 tvd->vdev_ms_shift = svd->vdev_ms_shift;
770 tvd->vdev_ms_count = svd->vdev_ms_count;
771 tvd->vdev_top_zap = svd->vdev_top_zap;
773 svd->vdev_ms_array = 0;
774 svd->vdev_ms_shift = 0;
775 svd->vdev_ms_count = 0;
776 svd->vdev_top_zap = 0;
778 if (tvd->vdev_mg)
779 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
780 tvd->vdev_mg = svd->vdev_mg;
781 tvd->vdev_ms = svd->vdev_ms;
783 svd->vdev_mg = NULL;
784 svd->vdev_ms = NULL;
786 if (tvd->vdev_mg != NULL)
787 tvd->vdev_mg->mg_vd = tvd;
789 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
790 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
791 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
793 svd->vdev_stat.vs_alloc = 0;
794 svd->vdev_stat.vs_space = 0;
795 svd->vdev_stat.vs_dspace = 0;
797 for (t = 0; t < TXG_SIZE; t++) {
798 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
799 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
800 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
801 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
802 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
803 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
806 if (list_link_active(&svd->vdev_config_dirty_node)) {
807 vdev_config_clean(svd);
808 vdev_config_dirty(tvd);
811 if (list_link_active(&svd->vdev_state_dirty_node)) {
812 vdev_state_clean(svd);
813 vdev_state_dirty(tvd);
816 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
817 svd->vdev_deflate_ratio = 0;
819 tvd->vdev_islog = svd->vdev_islog;
820 svd->vdev_islog = 0;
823 static void
824 vdev_top_update(vdev_t *tvd, vdev_t *vd)
826 if (vd == NULL)
827 return;
829 vd->vdev_top = tvd;
831 for (int c = 0; c < vd->vdev_children; c++)
832 vdev_top_update(tvd, vd->vdev_child[c]);
836 * Add a mirror/replacing vdev above an existing vdev.
838 vdev_t *
839 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
841 spa_t *spa = cvd->vdev_spa;
842 vdev_t *pvd = cvd->vdev_parent;
843 vdev_t *mvd;
845 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
847 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
849 mvd->vdev_asize = cvd->vdev_asize;
850 mvd->vdev_min_asize = cvd->vdev_min_asize;
851 mvd->vdev_max_asize = cvd->vdev_max_asize;
852 mvd->vdev_psize = cvd->vdev_psize;
853 mvd->vdev_ashift = cvd->vdev_ashift;
854 mvd->vdev_state = cvd->vdev_state;
855 mvd->vdev_crtxg = cvd->vdev_crtxg;
857 vdev_remove_child(pvd, cvd);
858 vdev_add_child(pvd, mvd);
859 cvd->vdev_id = mvd->vdev_children;
860 vdev_add_child(mvd, cvd);
861 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
863 if (mvd == mvd->vdev_top)
864 vdev_top_transfer(cvd, mvd);
866 return (mvd);
870 * Remove a 1-way mirror/replacing vdev from the tree.
872 void
873 vdev_remove_parent(vdev_t *cvd)
875 vdev_t *mvd = cvd->vdev_parent;
876 vdev_t *pvd = mvd->vdev_parent;
878 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
880 ASSERT(mvd->vdev_children == 1);
881 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
882 mvd->vdev_ops == &vdev_replacing_ops ||
883 mvd->vdev_ops == &vdev_spare_ops);
884 cvd->vdev_ashift = mvd->vdev_ashift;
886 vdev_remove_child(mvd, cvd);
887 vdev_remove_child(pvd, mvd);
890 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
891 * Otherwise, we could have detached an offline device, and when we
892 * go to import the pool we'll think we have two top-level vdevs,
893 * instead of a different version of the same top-level vdev.
895 if (mvd->vdev_top == mvd) {
896 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
897 cvd->vdev_orig_guid = cvd->vdev_guid;
898 cvd->vdev_guid += guid_delta;
899 cvd->vdev_guid_sum += guid_delta;
901 cvd->vdev_id = mvd->vdev_id;
902 vdev_add_child(pvd, cvd);
903 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
905 if (cvd == cvd->vdev_top)
906 vdev_top_transfer(mvd, cvd);
908 ASSERT(mvd->vdev_children == 0);
909 vdev_free(mvd);
913 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
915 spa_t *spa = vd->vdev_spa;
916 objset_t *mos = spa->spa_meta_objset;
917 uint64_t m;
918 uint64_t oldc = vd->vdev_ms_count;
919 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
920 metaslab_t **mspp;
921 int error;
923 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
926 * This vdev is not being allocated from yet or is a hole.
928 if (vd->vdev_ms_shift == 0)
929 return (0);
931 ASSERT(!vd->vdev_ishole);
933 ASSERT(oldc <= newc);
935 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
937 if (oldc != 0) {
938 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
939 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
942 vd->vdev_ms = mspp;
943 vd->vdev_ms_count = newc;
945 for (m = oldc; m < newc; m++) {
946 uint64_t object = 0;
949 * vdev_ms_array may be 0 if we are creating the "fake"
950 * metaslabs for an indirect vdev for zdb's leak detection.
951 * See zdb_leak_init().
953 if (txg == 0 && vd->vdev_ms_array != 0) {
954 error = dmu_read(mos, vd->vdev_ms_array,
955 m * sizeof (uint64_t), sizeof (uint64_t), &object,
956 DMU_READ_PREFETCH);
957 if (error != 0) {
958 vdev_dbgmsg(vd, "unable to read the metaslab "
959 "array [error=%d]", error);
960 return (error);
964 error = metaslab_init(vd->vdev_mg, m, object, txg,
965 &(vd->vdev_ms[m]));
966 if (error != 0) {
967 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
968 error);
969 return (error);
973 if (txg == 0)
974 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
977 * If the vdev is being removed we don't activate
978 * the metaslabs since we want to ensure that no new
979 * allocations are performed on this device.
981 if (oldc == 0 && !vd->vdev_removing)
982 metaslab_group_activate(vd->vdev_mg);
984 if (txg == 0)
985 spa_config_exit(spa, SCL_ALLOC, FTAG);
987 return (0);
990 void
991 vdev_metaslab_fini(vdev_t *vd)
993 if (vd->vdev_ms != NULL) {
994 uint64_t count = vd->vdev_ms_count;
996 metaslab_group_passivate(vd->vdev_mg);
997 for (uint64_t m = 0; m < count; m++) {
998 metaslab_t *msp = vd->vdev_ms[m];
1000 if (msp != NULL)
1001 metaslab_fini(msp);
1003 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1004 vd->vdev_ms = NULL;
1006 vd->vdev_ms_count = 0;
1008 ASSERT0(vd->vdev_ms_count);
1011 typedef struct vdev_probe_stats {
1012 boolean_t vps_readable;
1013 boolean_t vps_writeable;
1014 int vps_flags;
1015 } vdev_probe_stats_t;
1017 static void
1018 vdev_probe_done(zio_t *zio)
1020 spa_t *spa = zio->io_spa;
1021 vdev_t *vd = zio->io_vd;
1022 vdev_probe_stats_t *vps = zio->io_private;
1024 ASSERT(vd->vdev_probe_zio != NULL);
1026 if (zio->io_type == ZIO_TYPE_READ) {
1027 if (zio->io_error == 0)
1028 vps->vps_readable = 1;
1029 if (zio->io_error == 0 && spa_writeable(spa)) {
1030 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1031 zio->io_offset, zio->io_size, zio->io_abd,
1032 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1033 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1034 } else {
1035 abd_free(zio->io_abd);
1037 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1038 if (zio->io_error == 0)
1039 vps->vps_writeable = 1;
1040 abd_free(zio->io_abd);
1041 } else if (zio->io_type == ZIO_TYPE_NULL) {
1042 zio_t *pio;
1044 vd->vdev_cant_read |= !vps->vps_readable;
1045 vd->vdev_cant_write |= !vps->vps_writeable;
1047 if (vdev_readable(vd) &&
1048 (vdev_writeable(vd) || !spa_writeable(spa))) {
1049 zio->io_error = 0;
1050 } else {
1051 ASSERT(zio->io_error != 0);
1052 vdev_dbgmsg(vd, "failed probe");
1053 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1054 spa, vd, NULL, 0, 0);
1055 zio->io_error = SET_ERROR(ENXIO);
1058 mutex_enter(&vd->vdev_probe_lock);
1059 ASSERT(vd->vdev_probe_zio == zio);
1060 vd->vdev_probe_zio = NULL;
1061 mutex_exit(&vd->vdev_probe_lock);
1063 zio_link_t *zl = NULL;
1064 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1065 if (!vdev_accessible(vd, pio))
1066 pio->io_error = SET_ERROR(ENXIO);
1068 kmem_free(vps, sizeof (*vps));
1073 * Determine whether this device is accessible.
1075 * Read and write to several known locations: the pad regions of each
1076 * vdev label but the first, which we leave alone in case it contains
1077 * a VTOC.
1079 zio_t *
1080 vdev_probe(vdev_t *vd, zio_t *zio)
1082 spa_t *spa = vd->vdev_spa;
1083 vdev_probe_stats_t *vps = NULL;
1084 zio_t *pio;
1086 ASSERT(vd->vdev_ops->vdev_op_leaf);
1089 * Don't probe the probe.
1091 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1092 return (NULL);
1095 * To prevent 'probe storms' when a device fails, we create
1096 * just one probe i/o at a time. All zios that want to probe
1097 * this vdev will become parents of the probe io.
1099 mutex_enter(&vd->vdev_probe_lock);
1101 if ((pio = vd->vdev_probe_zio) == NULL) {
1102 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1104 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1105 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1106 ZIO_FLAG_TRYHARD;
1108 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1110 * vdev_cant_read and vdev_cant_write can only
1111 * transition from TRUE to FALSE when we have the
1112 * SCL_ZIO lock as writer; otherwise they can only
1113 * transition from FALSE to TRUE. This ensures that
1114 * any zio looking at these values can assume that
1115 * failures persist for the life of the I/O. That's
1116 * important because when a device has intermittent
1117 * connectivity problems, we want to ensure that
1118 * they're ascribed to the device (ENXIO) and not
1119 * the zio (EIO).
1121 * Since we hold SCL_ZIO as writer here, clear both
1122 * values so the probe can reevaluate from first
1123 * principles.
1125 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1126 vd->vdev_cant_read = B_FALSE;
1127 vd->vdev_cant_write = B_FALSE;
1130 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1131 vdev_probe_done, vps,
1132 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1135 * We can't change the vdev state in this context, so we
1136 * kick off an async task to do it on our behalf.
1138 if (zio != NULL) {
1139 vd->vdev_probe_wanted = B_TRUE;
1140 spa_async_request(spa, SPA_ASYNC_PROBE);
1144 if (zio != NULL)
1145 zio_add_child(zio, pio);
1147 mutex_exit(&vd->vdev_probe_lock);
1149 if (vps == NULL) {
1150 ASSERT(zio != NULL);
1151 return (NULL);
1154 for (int l = 1; l < VDEV_LABELS; l++) {
1155 zio_nowait(zio_read_phys(pio, vd,
1156 vdev_label_offset(vd->vdev_psize, l,
1157 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1158 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1159 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1160 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1163 if (zio == NULL)
1164 return (pio);
1166 zio_nowait(pio);
1167 return (NULL);
1170 static void
1171 vdev_open_child(void *arg)
1173 vdev_t *vd = arg;
1175 vd->vdev_open_thread = curthread;
1176 vd->vdev_open_error = vdev_open(vd);
1177 vd->vdev_open_thread = NULL;
1180 boolean_t
1181 vdev_uses_zvols(vdev_t *vd)
1183 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1184 strlen(ZVOL_DIR)) == 0)
1185 return (B_TRUE);
1186 for (int c = 0; c < vd->vdev_children; c++)
1187 if (vdev_uses_zvols(vd->vdev_child[c]))
1188 return (B_TRUE);
1189 return (B_FALSE);
1192 void
1193 vdev_open_children(vdev_t *vd)
1195 taskq_t *tq;
1196 int children = vd->vdev_children;
1199 * in order to handle pools on top of zvols, do the opens
1200 * in a single thread so that the same thread holds the
1201 * spa_namespace_lock
1203 if (vdev_uses_zvols(vd)) {
1204 for (int c = 0; c < children; c++)
1205 vd->vdev_child[c]->vdev_open_error =
1206 vdev_open(vd->vdev_child[c]);
1207 return;
1209 tq = taskq_create("vdev_open", children, minclsyspri,
1210 children, children, TASKQ_PREPOPULATE);
1212 for (int c = 0; c < children; c++)
1213 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1214 TQ_SLEEP) != NULL);
1216 taskq_destroy(tq);
1220 * Compute the raidz-deflation ratio. Note, we hard-code
1221 * in 128k (1 << 17) because it is the "typical" blocksize.
1222 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1223 * otherwise it would inconsistently account for existing bp's.
1225 static void
1226 vdev_set_deflate_ratio(vdev_t *vd)
1228 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1229 vd->vdev_deflate_ratio = (1 << 17) /
1230 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1235 * Prepare a virtual device for access.
1238 vdev_open(vdev_t *vd)
1240 spa_t *spa = vd->vdev_spa;
1241 int error;
1242 uint64_t osize = 0;
1243 uint64_t max_osize = 0;
1244 uint64_t asize, max_asize, psize;
1245 uint64_t ashift = 0;
1247 ASSERT(vd->vdev_open_thread == curthread ||
1248 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1249 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1250 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1251 vd->vdev_state == VDEV_STATE_OFFLINE);
1253 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1254 vd->vdev_cant_read = B_FALSE;
1255 vd->vdev_cant_write = B_FALSE;
1256 vd->vdev_min_asize = vdev_get_min_asize(vd);
1259 * If this vdev is not removed, check its fault status. If it's
1260 * faulted, bail out of the open.
1262 if (!vd->vdev_removed && vd->vdev_faulted) {
1263 ASSERT(vd->vdev_children == 0);
1264 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1265 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1267 vd->vdev_label_aux);
1268 return (SET_ERROR(ENXIO));
1269 } else if (vd->vdev_offline) {
1270 ASSERT(vd->vdev_children == 0);
1271 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1272 return (SET_ERROR(ENXIO));
1275 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1278 * Reset the vdev_reopening flag so that we actually close
1279 * the vdev on error.
1281 vd->vdev_reopening = B_FALSE;
1282 if (zio_injection_enabled && error == 0)
1283 error = zio_handle_device_injection(vd, NULL, ENXIO);
1285 if (error) {
1286 if (vd->vdev_removed &&
1287 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1288 vd->vdev_removed = B_FALSE;
1290 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1291 vd->vdev_stat.vs_aux);
1292 return (error);
1295 vd->vdev_removed = B_FALSE;
1298 * Recheck the faulted flag now that we have confirmed that
1299 * the vdev is accessible. If we're faulted, bail.
1301 if (vd->vdev_faulted) {
1302 ASSERT(vd->vdev_children == 0);
1303 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1304 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1306 vd->vdev_label_aux);
1307 return (SET_ERROR(ENXIO));
1310 if (vd->vdev_degraded) {
1311 ASSERT(vd->vdev_children == 0);
1312 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1313 VDEV_AUX_ERR_EXCEEDED);
1314 } else {
1315 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1319 * For hole or missing vdevs we just return success.
1321 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1322 return (0);
1324 for (int c = 0; c < vd->vdev_children; c++) {
1325 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1326 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1327 VDEV_AUX_NONE);
1328 break;
1332 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1333 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1335 if (vd->vdev_children == 0) {
1336 if (osize < SPA_MINDEVSIZE) {
1337 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338 VDEV_AUX_TOO_SMALL);
1339 return (SET_ERROR(EOVERFLOW));
1341 psize = osize;
1342 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1343 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1344 VDEV_LABEL_END_SIZE);
1345 } else {
1346 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1347 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1348 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349 VDEV_AUX_TOO_SMALL);
1350 return (SET_ERROR(EOVERFLOW));
1352 psize = 0;
1353 asize = osize;
1354 max_asize = max_osize;
1357 vd->vdev_psize = psize;
1360 * Make sure the allocatable size hasn't shrunk too much.
1362 if (asize < vd->vdev_min_asize) {
1363 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364 VDEV_AUX_BAD_LABEL);
1365 return (SET_ERROR(EINVAL));
1368 if (vd->vdev_asize == 0) {
1370 * This is the first-ever open, so use the computed values.
1371 * For testing purposes, a higher ashift can be requested.
1373 vd->vdev_asize = asize;
1374 vd->vdev_max_asize = max_asize;
1375 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1376 } else {
1378 * Detect if the alignment requirement has increased.
1379 * We don't want to make the pool unavailable, just
1380 * issue a warning instead.
1382 if (ashift > vd->vdev_top->vdev_ashift &&
1383 vd->vdev_ops->vdev_op_leaf) {
1384 cmn_err(CE_WARN,
1385 "Disk, '%s', has a block alignment that is "
1386 "larger than the pool's alignment\n",
1387 vd->vdev_path);
1389 vd->vdev_max_asize = max_asize;
1393 * If all children are healthy we update asize if either:
1394 * The asize has increased, due to a device expansion caused by dynamic
1395 * LUN growth or vdev replacement, and automatic expansion is enabled;
1396 * making the additional space available.
1398 * The asize has decreased, due to a device shrink usually caused by a
1399 * vdev replace with a smaller device. This ensures that calculations
1400 * based of max_asize and asize e.g. esize are always valid. It's safe
1401 * to do this as we've already validated that asize is greater than
1402 * vdev_min_asize.
1404 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1405 ((asize > vd->vdev_asize &&
1406 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1407 (asize < vd->vdev_asize)))
1408 vd->vdev_asize = asize;
1410 vdev_set_min_asize(vd);
1413 * Ensure we can issue some IO before declaring the
1414 * vdev open for business.
1416 if (vd->vdev_ops->vdev_op_leaf &&
1417 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1418 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1419 VDEV_AUX_ERR_EXCEEDED);
1420 return (error);
1423 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1424 !vd->vdev_isl2cache && !vd->vdev_islog) {
1425 if (vd->vdev_ashift > spa->spa_max_ashift)
1426 spa->spa_max_ashift = vd->vdev_ashift;
1427 if (vd->vdev_ashift < spa->spa_min_ashift)
1428 spa->spa_min_ashift = vd->vdev_ashift;
1432 * Track the min and max ashift values for normal data devices.
1434 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1435 !vd->vdev_islog && vd->vdev_aux == NULL) {
1436 if (vd->vdev_ashift > spa->spa_max_ashift)
1437 spa->spa_max_ashift = vd->vdev_ashift;
1438 if (vd->vdev_ashift < spa->spa_min_ashift)
1439 spa->spa_min_ashift = vd->vdev_ashift;
1443 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1444 * resilver. But don't do this if we are doing a reopen for a scrub,
1445 * since this would just restart the scrub we are already doing.
1447 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1448 vdev_resilver_needed(vd, NULL, NULL))
1449 spa_async_request(spa, SPA_ASYNC_RESILVER);
1451 return (0);
1455 * Called once the vdevs are all opened, this routine validates the label
1456 * contents. This needs to be done before vdev_load() so that we don't
1457 * inadvertently do repair I/Os to the wrong device.
1459 * If 'strict' is false ignore the spa guid check. This is necessary because
1460 * if the machine crashed during a re-guid the new guid might have been written
1461 * to all of the vdev labels, but not the cached config. The strict check
1462 * will be performed when the pool is opened again using the mos config.
1464 * This function will only return failure if one of the vdevs indicates that it
1465 * has since been destroyed or exported. This is only possible if
1466 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1467 * will be updated but the function will return 0.
1470 vdev_validate(vdev_t *vd, boolean_t strict)
1472 spa_t *spa = vd->vdev_spa;
1473 nvlist_t *label;
1474 uint64_t guid = 0, top_guid;
1475 uint64_t state;
1477 for (int c = 0; c < vd->vdev_children; c++)
1478 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1479 return (SET_ERROR(EBADF));
1482 * If the device has already failed, or was marked offline, don't do
1483 * any further validation. Otherwise, label I/O will fail and we will
1484 * overwrite the previous state.
1486 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1487 uint64_t aux_guid = 0;
1488 nvlist_t *nvl;
1489 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1490 spa_last_synced_txg(spa) : -1ULL;
1492 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1493 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1494 VDEV_AUX_BAD_LABEL);
1495 vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1496 return (0);
1500 * Determine if this vdev has been split off into another
1501 * pool. If so, then refuse to open it.
1503 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1504 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1505 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1506 VDEV_AUX_SPLIT_POOL);
1507 nvlist_free(label);
1508 vdev_dbgmsg(vd, "vdev_validate: vdev split into other "
1509 "pool");
1510 return (0);
1513 if (strict && (nvlist_lookup_uint64(label,
1514 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1515 guid != spa_guid(spa))) {
1516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1517 VDEV_AUX_CORRUPT_DATA);
1518 nvlist_free(label);
1519 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid "
1520 "doesn't match config (%llu != %llu)",
1521 (u_longlong_t)guid,
1522 (u_longlong_t)spa_guid(spa));
1523 return (0);
1526 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1527 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1528 &aux_guid) != 0)
1529 aux_guid = 0;
1532 * If this vdev just became a top-level vdev because its
1533 * sibling was detached, it will have adopted the parent's
1534 * vdev guid -- but the label may or may not be on disk yet.
1535 * Fortunately, either version of the label will have the
1536 * same top guid, so if we're a top-level vdev, we can
1537 * safely compare to that instead.
1539 * If we split this vdev off instead, then we also check the
1540 * original pool's guid. We don't want to consider the vdev
1541 * corrupt if it is partway through a split operation.
1543 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1544 &guid) != 0 ||
1545 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1546 &top_guid) != 0 ||
1547 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1548 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1549 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1550 VDEV_AUX_CORRUPT_DATA);
1551 nvlist_free(label);
1552 vdev_dbgmsg(vd, "vdev_validate: config guid doesn't "
1553 "match label guid (%llu != %llu)",
1554 (u_longlong_t)vd->vdev_guid, (u_longlong_t)guid);
1555 return (0);
1558 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1559 &state) != 0) {
1560 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1561 VDEV_AUX_CORRUPT_DATA);
1562 nvlist_free(label);
1563 vdev_dbgmsg(vd, "vdev_validate: '%s' missing",
1564 ZPOOL_CONFIG_POOL_STATE);
1565 return (0);
1568 nvlist_free(label);
1571 * If this is a verbatim import, no need to check the
1572 * state of the pool.
1574 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1575 spa_load_state(spa) == SPA_LOAD_OPEN &&
1576 state != POOL_STATE_ACTIVE) {
1577 vdev_dbgmsg(vd, "vdev_validate: invalid pool state "
1578 "(%llu) for spa %s", (u_longlong_t)state,
1579 spa->spa_name);
1580 return (SET_ERROR(EBADF));
1584 * If we were able to open and validate a vdev that was
1585 * previously marked permanently unavailable, clear that state
1586 * now.
1588 if (vd->vdev_not_present)
1589 vd->vdev_not_present = 0;
1592 return (0);
1596 * Close a virtual device.
1598 void
1599 vdev_close(vdev_t *vd)
1601 spa_t *spa = vd->vdev_spa;
1602 vdev_t *pvd = vd->vdev_parent;
1604 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1607 * If our parent is reopening, then we are as well, unless we are
1608 * going offline.
1610 if (pvd != NULL && pvd->vdev_reopening)
1611 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1613 vd->vdev_ops->vdev_op_close(vd);
1615 vdev_cache_purge(vd);
1618 * We record the previous state before we close it, so that if we are
1619 * doing a reopen(), we don't generate FMA ereports if we notice that
1620 * it's still faulted.
1622 vd->vdev_prevstate = vd->vdev_state;
1624 if (vd->vdev_offline)
1625 vd->vdev_state = VDEV_STATE_OFFLINE;
1626 else
1627 vd->vdev_state = VDEV_STATE_CLOSED;
1628 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1631 void
1632 vdev_hold(vdev_t *vd)
1634 spa_t *spa = vd->vdev_spa;
1636 ASSERT(spa_is_root(spa));
1637 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1638 return;
1640 for (int c = 0; c < vd->vdev_children; c++)
1641 vdev_hold(vd->vdev_child[c]);
1643 if (vd->vdev_ops->vdev_op_leaf)
1644 vd->vdev_ops->vdev_op_hold(vd);
1647 void
1648 vdev_rele(vdev_t *vd)
1650 spa_t *spa = vd->vdev_spa;
1652 ASSERT(spa_is_root(spa));
1653 for (int c = 0; c < vd->vdev_children; c++)
1654 vdev_rele(vd->vdev_child[c]);
1656 if (vd->vdev_ops->vdev_op_leaf)
1657 vd->vdev_ops->vdev_op_rele(vd);
1661 * Reopen all interior vdevs and any unopened leaves. We don't actually
1662 * reopen leaf vdevs which had previously been opened as they might deadlock
1663 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1664 * If the leaf has never been opened then open it, as usual.
1666 void
1667 vdev_reopen(vdev_t *vd)
1669 spa_t *spa = vd->vdev_spa;
1671 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1673 /* set the reopening flag unless we're taking the vdev offline */
1674 vd->vdev_reopening = !vd->vdev_offline;
1675 vdev_close(vd);
1676 (void) vdev_open(vd);
1679 * Call vdev_validate() here to make sure we have the same device.
1680 * Otherwise, a device with an invalid label could be successfully
1681 * opened in response to vdev_reopen().
1683 if (vd->vdev_aux) {
1684 (void) vdev_validate_aux(vd);
1685 if (vdev_readable(vd) && vdev_writeable(vd) &&
1686 vd->vdev_aux == &spa->spa_l2cache &&
1687 !l2arc_vdev_present(vd))
1688 l2arc_add_vdev(spa, vd);
1689 } else {
1690 (void) vdev_validate(vd, B_TRUE);
1694 * Reassess parent vdev's health.
1696 vdev_propagate_state(vd);
1700 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1702 int error;
1705 * Normally, partial opens (e.g. of a mirror) are allowed.
1706 * For a create, however, we want to fail the request if
1707 * there are any components we can't open.
1709 error = vdev_open(vd);
1711 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1712 vdev_close(vd);
1713 return (error ? error : ENXIO);
1717 * Recursively load DTLs and initialize all labels.
1719 if ((error = vdev_dtl_load(vd)) != 0 ||
1720 (error = vdev_label_init(vd, txg, isreplacing ?
1721 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1722 vdev_close(vd);
1723 return (error);
1726 return (0);
1729 void
1730 vdev_metaslab_set_size(vdev_t *vd)
1733 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1735 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1736 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1739 void
1740 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1742 ASSERT(vd == vd->vdev_top);
1743 /* indirect vdevs don't have metaslabs or dtls */
1744 ASSERT(vdev_is_concrete(vd) || flags == 0);
1745 ASSERT(ISP2(flags));
1746 ASSERT(spa_writeable(vd->vdev_spa));
1748 if (flags & VDD_METASLAB)
1749 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1751 if (flags & VDD_DTL)
1752 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1754 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1757 void
1758 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1760 for (int c = 0; c < vd->vdev_children; c++)
1761 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1763 if (vd->vdev_ops->vdev_op_leaf)
1764 vdev_dirty(vd->vdev_top, flags, vd, txg);
1768 * DTLs.
1770 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1771 * the vdev has less than perfect replication. There are four kinds of DTL:
1773 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1775 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1777 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1778 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1779 * txgs that was scrubbed.
1781 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1782 * persistent errors or just some device being offline.
1783 * Unlike the other three, the DTL_OUTAGE map is not generally
1784 * maintained; it's only computed when needed, typically to
1785 * determine whether a device can be detached.
1787 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1788 * either has the data or it doesn't.
1790 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1791 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1792 * if any child is less than fully replicated, then so is its parent.
1793 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1794 * comprising only those txgs which appear in 'maxfaults' or more children;
1795 * those are the txgs we don't have enough replication to read. For example,
1796 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1797 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1798 * two child DTL_MISSING maps.
1800 * It should be clear from the above that to compute the DTLs and outage maps
1801 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1802 * Therefore, that is all we keep on disk. When loading the pool, or after
1803 * a configuration change, we generate all other DTLs from first principles.
1805 void
1806 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1808 range_tree_t *rt = vd->vdev_dtl[t];
1810 ASSERT(t < DTL_TYPES);
1811 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1812 ASSERT(spa_writeable(vd->vdev_spa));
1814 mutex_enter(&vd->vdev_dtl_lock);
1815 if (!range_tree_contains(rt, txg, size))
1816 range_tree_add(rt, txg, size);
1817 mutex_exit(&vd->vdev_dtl_lock);
1820 boolean_t
1821 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1823 range_tree_t *rt = vd->vdev_dtl[t];
1824 boolean_t dirty = B_FALSE;
1826 ASSERT(t < DTL_TYPES);
1827 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1830 * While we are loading the pool, the DTLs have not been loaded yet.
1831 * Ignore the DTLs and try all devices. This avoids a recursive
1832 * mutex enter on the vdev_dtl_lock, and also makes us try hard
1833 * when loading the pool (relying on the checksum to ensure that
1834 * we get the right data -- note that we while loading, we are
1835 * only reading the MOS, which is always checksummed).
1837 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1838 return (B_FALSE);
1840 mutex_enter(&vd->vdev_dtl_lock);
1841 if (range_tree_space(rt) != 0)
1842 dirty = range_tree_contains(rt, txg, size);
1843 mutex_exit(&vd->vdev_dtl_lock);
1845 return (dirty);
1848 boolean_t
1849 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1851 range_tree_t *rt = vd->vdev_dtl[t];
1852 boolean_t empty;
1854 mutex_enter(&vd->vdev_dtl_lock);
1855 empty = (range_tree_space(rt) == 0);
1856 mutex_exit(&vd->vdev_dtl_lock);
1858 return (empty);
1862 * Returns the lowest txg in the DTL range.
1864 static uint64_t
1865 vdev_dtl_min(vdev_t *vd)
1867 range_seg_t *rs;
1869 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1870 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1871 ASSERT0(vd->vdev_children);
1873 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1874 return (rs->rs_start - 1);
1878 * Returns the highest txg in the DTL.
1880 static uint64_t
1881 vdev_dtl_max(vdev_t *vd)
1883 range_seg_t *rs;
1885 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1886 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1887 ASSERT0(vd->vdev_children);
1889 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1890 return (rs->rs_end);
1894 * Determine if a resilvering vdev should remove any DTL entries from
1895 * its range. If the vdev was resilvering for the entire duration of the
1896 * scan then it should excise that range from its DTLs. Otherwise, this
1897 * vdev is considered partially resilvered and should leave its DTL
1898 * entries intact. The comment in vdev_dtl_reassess() describes how we
1899 * excise the DTLs.
1901 static boolean_t
1902 vdev_dtl_should_excise(vdev_t *vd)
1904 spa_t *spa = vd->vdev_spa;
1905 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1907 ASSERT0(scn->scn_phys.scn_errors);
1908 ASSERT0(vd->vdev_children);
1910 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1911 return (B_FALSE);
1913 if (vd->vdev_resilver_txg == 0 ||
1914 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1915 return (B_TRUE);
1918 * When a resilver is initiated the scan will assign the scn_max_txg
1919 * value to the highest txg value that exists in all DTLs. If this
1920 * device's max DTL is not part of this scan (i.e. it is not in
1921 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1922 * for excision.
1924 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1925 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1926 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1927 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1928 return (B_TRUE);
1930 return (B_FALSE);
1934 * Reassess DTLs after a config change or scrub completion.
1936 void
1937 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1939 spa_t *spa = vd->vdev_spa;
1940 avl_tree_t reftree;
1941 int minref;
1943 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1945 for (int c = 0; c < vd->vdev_children; c++)
1946 vdev_dtl_reassess(vd->vdev_child[c], txg,
1947 scrub_txg, scrub_done);
1949 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
1950 return;
1952 if (vd->vdev_ops->vdev_op_leaf) {
1953 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1955 mutex_enter(&vd->vdev_dtl_lock);
1958 * If we've completed a scan cleanly then determine
1959 * if this vdev should remove any DTLs. We only want to
1960 * excise regions on vdevs that were available during
1961 * the entire duration of this scan.
1963 if (scrub_txg != 0 &&
1964 (spa->spa_scrub_started ||
1965 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1966 vdev_dtl_should_excise(vd)) {
1968 * We completed a scrub up to scrub_txg. If we
1969 * did it without rebooting, then the scrub dtl
1970 * will be valid, so excise the old region and
1971 * fold in the scrub dtl. Otherwise, leave the
1972 * dtl as-is if there was an error.
1974 * There's little trick here: to excise the beginning
1975 * of the DTL_MISSING map, we put it into a reference
1976 * tree and then add a segment with refcnt -1 that
1977 * covers the range [0, scrub_txg). This means
1978 * that each txg in that range has refcnt -1 or 0.
1979 * We then add DTL_SCRUB with a refcnt of 2, so that
1980 * entries in the range [0, scrub_txg) will have a
1981 * positive refcnt -- either 1 or 2. We then convert
1982 * the reference tree into the new DTL_MISSING map.
1984 space_reftree_create(&reftree);
1985 space_reftree_add_map(&reftree,
1986 vd->vdev_dtl[DTL_MISSING], 1);
1987 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1988 space_reftree_add_map(&reftree,
1989 vd->vdev_dtl[DTL_SCRUB], 2);
1990 space_reftree_generate_map(&reftree,
1991 vd->vdev_dtl[DTL_MISSING], 1);
1992 space_reftree_destroy(&reftree);
1994 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1995 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1996 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1997 if (scrub_done)
1998 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1999 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2000 if (!vdev_readable(vd))
2001 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2002 else
2003 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2004 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2007 * If the vdev was resilvering and no longer has any
2008 * DTLs then reset its resilvering flag.
2010 if (vd->vdev_resilver_txg != 0 &&
2011 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2012 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
2013 vd->vdev_resilver_txg = 0;
2015 mutex_exit(&vd->vdev_dtl_lock);
2017 if (txg != 0)
2018 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2019 return;
2022 mutex_enter(&vd->vdev_dtl_lock);
2023 for (int t = 0; t < DTL_TYPES; t++) {
2024 /* account for child's outage in parent's missing map */
2025 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2026 if (t == DTL_SCRUB)
2027 continue; /* leaf vdevs only */
2028 if (t == DTL_PARTIAL)
2029 minref = 1; /* i.e. non-zero */
2030 else if (vd->vdev_nparity != 0)
2031 minref = vd->vdev_nparity + 1; /* RAID-Z */
2032 else
2033 minref = vd->vdev_children; /* any kind of mirror */
2034 space_reftree_create(&reftree);
2035 for (int c = 0; c < vd->vdev_children; c++) {
2036 vdev_t *cvd = vd->vdev_child[c];
2037 mutex_enter(&cvd->vdev_dtl_lock);
2038 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2039 mutex_exit(&cvd->vdev_dtl_lock);
2041 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2042 space_reftree_destroy(&reftree);
2044 mutex_exit(&vd->vdev_dtl_lock);
2048 vdev_dtl_load(vdev_t *vd)
2050 spa_t *spa = vd->vdev_spa;
2051 objset_t *mos = spa->spa_meta_objset;
2052 int error = 0;
2054 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2055 ASSERT(vdev_is_concrete(vd));
2057 error = space_map_open(&vd->vdev_dtl_sm, mos,
2058 vd->vdev_dtl_object, 0, -1ULL, 0);
2059 if (error)
2060 return (error);
2061 ASSERT(vd->vdev_dtl_sm != NULL);
2063 mutex_enter(&vd->vdev_dtl_lock);
2066 * Now that we've opened the space_map we need to update
2067 * the in-core DTL.
2069 space_map_update(vd->vdev_dtl_sm);
2071 error = space_map_load(vd->vdev_dtl_sm,
2072 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2073 mutex_exit(&vd->vdev_dtl_lock);
2075 return (error);
2078 for (int c = 0; c < vd->vdev_children; c++) {
2079 error = vdev_dtl_load(vd->vdev_child[c]);
2080 if (error != 0)
2081 break;
2084 return (error);
2087 void
2088 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2090 spa_t *spa = vd->vdev_spa;
2092 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2093 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2094 zapobj, tx));
2097 uint64_t
2098 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2100 spa_t *spa = vd->vdev_spa;
2101 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2102 DMU_OT_NONE, 0, tx);
2104 ASSERT(zap != 0);
2105 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2106 zap, tx));
2108 return (zap);
2111 void
2112 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2114 if (vd->vdev_ops != &vdev_hole_ops &&
2115 vd->vdev_ops != &vdev_missing_ops &&
2116 vd->vdev_ops != &vdev_root_ops &&
2117 !vd->vdev_top->vdev_removing) {
2118 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2119 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2121 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2122 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2125 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2126 vdev_construct_zaps(vd->vdev_child[i], tx);
2130 void
2131 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2133 spa_t *spa = vd->vdev_spa;
2134 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2135 objset_t *mos = spa->spa_meta_objset;
2136 range_tree_t *rtsync;
2137 dmu_tx_t *tx;
2138 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2140 ASSERT(vdev_is_concrete(vd));
2141 ASSERT(vd->vdev_ops->vdev_op_leaf);
2143 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2145 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2146 mutex_enter(&vd->vdev_dtl_lock);
2147 space_map_free(vd->vdev_dtl_sm, tx);
2148 space_map_close(vd->vdev_dtl_sm);
2149 vd->vdev_dtl_sm = NULL;
2150 mutex_exit(&vd->vdev_dtl_lock);
2153 * We only destroy the leaf ZAP for detached leaves or for
2154 * removed log devices. Removed data devices handle leaf ZAP
2155 * cleanup later, once cancellation is no longer possible.
2157 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2158 vd->vdev_top->vdev_islog)) {
2159 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2160 vd->vdev_leaf_zap = 0;
2163 dmu_tx_commit(tx);
2164 return;
2167 if (vd->vdev_dtl_sm == NULL) {
2168 uint64_t new_object;
2170 new_object = space_map_alloc(mos, tx);
2171 VERIFY3U(new_object, !=, 0);
2173 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2174 0, -1ULL, 0));
2175 ASSERT(vd->vdev_dtl_sm != NULL);
2178 rtsync = range_tree_create(NULL, NULL);
2180 mutex_enter(&vd->vdev_dtl_lock);
2181 range_tree_walk(rt, range_tree_add, rtsync);
2182 mutex_exit(&vd->vdev_dtl_lock);
2184 space_map_truncate(vd->vdev_dtl_sm, tx);
2185 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2186 range_tree_vacate(rtsync, NULL, NULL);
2188 range_tree_destroy(rtsync);
2191 * If the object for the space map has changed then dirty
2192 * the top level so that we update the config.
2194 if (object != space_map_object(vd->vdev_dtl_sm)) {
2195 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2196 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2197 (u_longlong_t)object,
2198 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2199 vdev_config_dirty(vd->vdev_top);
2202 dmu_tx_commit(tx);
2204 mutex_enter(&vd->vdev_dtl_lock);
2205 space_map_update(vd->vdev_dtl_sm);
2206 mutex_exit(&vd->vdev_dtl_lock);
2210 * Determine whether the specified vdev can be offlined/detached/removed
2211 * without losing data.
2213 boolean_t
2214 vdev_dtl_required(vdev_t *vd)
2216 spa_t *spa = vd->vdev_spa;
2217 vdev_t *tvd = vd->vdev_top;
2218 uint8_t cant_read = vd->vdev_cant_read;
2219 boolean_t required;
2221 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2223 if (vd == spa->spa_root_vdev || vd == tvd)
2224 return (B_TRUE);
2227 * Temporarily mark the device as unreadable, and then determine
2228 * whether this results in any DTL outages in the top-level vdev.
2229 * If not, we can safely offline/detach/remove the device.
2231 vd->vdev_cant_read = B_TRUE;
2232 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2233 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2234 vd->vdev_cant_read = cant_read;
2235 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2237 if (!required && zio_injection_enabled)
2238 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2240 return (required);
2244 * Determine if resilver is needed, and if so the txg range.
2246 boolean_t
2247 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2249 boolean_t needed = B_FALSE;
2250 uint64_t thismin = UINT64_MAX;
2251 uint64_t thismax = 0;
2253 if (vd->vdev_children == 0) {
2254 mutex_enter(&vd->vdev_dtl_lock);
2255 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2256 vdev_writeable(vd)) {
2258 thismin = vdev_dtl_min(vd);
2259 thismax = vdev_dtl_max(vd);
2260 needed = B_TRUE;
2262 mutex_exit(&vd->vdev_dtl_lock);
2263 } else {
2264 for (int c = 0; c < vd->vdev_children; c++) {
2265 vdev_t *cvd = vd->vdev_child[c];
2266 uint64_t cmin, cmax;
2268 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2269 thismin = MIN(thismin, cmin);
2270 thismax = MAX(thismax, cmax);
2271 needed = B_TRUE;
2276 if (needed && minp) {
2277 *minp = thismin;
2278 *maxp = thismax;
2280 return (needed);
2284 vdev_load(vdev_t *vd)
2286 int error = 0;
2288 * Recursively load all children.
2290 for (int c = 0; c < vd->vdev_children; c++) {
2291 error = vdev_load(vd->vdev_child[c]);
2292 if (error != 0) {
2293 return (error);
2297 vdev_set_deflate_ratio(vd);
2300 * If this is a top-level vdev, initialize its metaslabs.
2302 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2303 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2304 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2305 VDEV_AUX_CORRUPT_DATA);
2306 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2307 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2308 (u_longlong_t)vd->vdev_asize);
2309 return (SET_ERROR(ENXIO));
2310 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2311 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2312 "[error=%d]", error);
2313 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2314 VDEV_AUX_CORRUPT_DATA);
2315 return (error);
2320 * If this is a leaf vdev, load its DTL.
2322 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2323 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2324 VDEV_AUX_CORRUPT_DATA);
2325 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2326 "[error=%d]", error);
2327 return (error);
2330 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2331 if (obsolete_sm_object != 0) {
2332 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2333 ASSERT(vd->vdev_asize != 0);
2334 ASSERT(vd->vdev_obsolete_sm == NULL);
2336 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2337 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2338 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2339 VDEV_AUX_CORRUPT_DATA);
2340 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2341 "obsolete spacemap (obj %llu) [error=%d]",
2342 (u_longlong_t)obsolete_sm_object, error);
2343 return (error);
2345 space_map_update(vd->vdev_obsolete_sm);
2348 return (0);
2352 * The special vdev case is used for hot spares and l2cache devices. Its
2353 * sole purpose it to set the vdev state for the associated vdev. To do this,
2354 * we make sure that we can open the underlying device, then try to read the
2355 * label, and make sure that the label is sane and that it hasn't been
2356 * repurposed to another pool.
2359 vdev_validate_aux(vdev_t *vd)
2361 nvlist_t *label;
2362 uint64_t guid, version;
2363 uint64_t state;
2365 if (!vdev_readable(vd))
2366 return (0);
2368 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2369 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2370 VDEV_AUX_CORRUPT_DATA);
2371 return (-1);
2374 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2375 !SPA_VERSION_IS_SUPPORTED(version) ||
2376 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2377 guid != vd->vdev_guid ||
2378 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2379 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2380 VDEV_AUX_CORRUPT_DATA);
2381 nvlist_free(label);
2382 return (-1);
2386 * We don't actually check the pool state here. If it's in fact in
2387 * use by another pool, we update this fact on the fly when requested.
2389 nvlist_free(label);
2390 return (0);
2394 * Free the objects used to store this vdev's spacemaps, and the array
2395 * that points to them.
2397 void
2398 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2400 if (vd->vdev_ms_array == 0)
2401 return;
2403 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2404 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2405 size_t array_bytes = array_count * sizeof (uint64_t);
2406 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2407 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2408 array_bytes, smobj_array, 0));
2410 for (uint64_t i = 0; i < array_count; i++) {
2411 uint64_t smobj = smobj_array[i];
2412 if (smobj == 0)
2413 continue;
2415 space_map_free_obj(mos, smobj, tx);
2418 kmem_free(smobj_array, array_bytes);
2419 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2420 vd->vdev_ms_array = 0;
2423 static void
2424 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2426 spa_t *spa = vd->vdev_spa;
2427 dmu_tx_t *tx;
2429 ASSERT(vd == vd->vdev_top);
2430 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2432 if (vd->vdev_ms != NULL) {
2433 metaslab_group_t *mg = vd->vdev_mg;
2435 metaslab_group_histogram_verify(mg);
2436 metaslab_class_histogram_verify(mg->mg_class);
2438 for (int m = 0; m < vd->vdev_ms_count; m++) {
2439 metaslab_t *msp = vd->vdev_ms[m];
2441 if (msp == NULL || msp->ms_sm == NULL)
2442 continue;
2444 mutex_enter(&msp->ms_lock);
2446 * If the metaslab was not loaded when the vdev
2447 * was removed then the histogram accounting may
2448 * not be accurate. Update the histogram information
2449 * here so that we ensure that the metaslab group
2450 * and metaslab class are up-to-date.
2452 metaslab_group_histogram_remove(mg, msp);
2454 VERIFY0(space_map_allocated(msp->ms_sm));
2455 space_map_close(msp->ms_sm);
2456 msp->ms_sm = NULL;
2457 mutex_exit(&msp->ms_lock);
2460 metaslab_group_histogram_verify(mg);
2461 metaslab_class_histogram_verify(mg->mg_class);
2462 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2463 ASSERT0(mg->mg_histogram[i]);
2466 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2467 vdev_destroy_spacemaps(vd, tx);
2469 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2470 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2471 vd->vdev_top_zap = 0;
2473 dmu_tx_commit(tx);
2476 void
2477 vdev_sync_done(vdev_t *vd, uint64_t txg)
2479 metaslab_t *msp;
2480 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2482 ASSERT(vdev_is_concrete(vd));
2484 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2485 metaslab_sync_done(msp, txg);
2487 if (reassess)
2488 metaslab_sync_reassess(vd->vdev_mg);
2491 void
2492 vdev_sync(vdev_t *vd, uint64_t txg)
2494 spa_t *spa = vd->vdev_spa;
2495 vdev_t *lvd;
2496 metaslab_t *msp;
2497 dmu_tx_t *tx;
2499 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2500 dmu_tx_t *tx;
2502 ASSERT(vd->vdev_removing ||
2503 vd->vdev_ops == &vdev_indirect_ops);
2505 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2506 vdev_indirect_sync_obsolete(vd, tx);
2507 dmu_tx_commit(tx);
2510 * If the vdev is indirect, it can't have dirty
2511 * metaslabs or DTLs.
2513 if (vd->vdev_ops == &vdev_indirect_ops) {
2514 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2515 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2516 return;
2520 ASSERT(vdev_is_concrete(vd));
2522 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2523 !vd->vdev_removing) {
2524 ASSERT(vd == vd->vdev_top);
2525 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2526 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2527 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2528 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2529 ASSERT(vd->vdev_ms_array != 0);
2530 vdev_config_dirty(vd);
2531 dmu_tx_commit(tx);
2534 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2535 metaslab_sync(msp, txg);
2536 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2539 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2540 vdev_dtl_sync(lvd, txg);
2543 * Remove the metadata associated with this vdev once it's empty.
2544 * Note that this is typically used for log/cache device removal;
2545 * we don't empty toplevel vdevs when removing them. But if
2546 * a toplevel happens to be emptied, this is not harmful.
2548 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2549 vdev_remove_empty(vd, txg);
2552 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2555 uint64_t
2556 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2558 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2562 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2563 * not be opened, and no I/O is attempted.
2566 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2568 vdev_t *vd, *tvd;
2570 spa_vdev_state_enter(spa, SCL_NONE);
2572 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2573 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2575 if (!vd->vdev_ops->vdev_op_leaf)
2576 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2578 tvd = vd->vdev_top;
2581 * We don't directly use the aux state here, but if we do a
2582 * vdev_reopen(), we need this value to be present to remember why we
2583 * were faulted.
2585 vd->vdev_label_aux = aux;
2588 * Faulted state takes precedence over degraded.
2590 vd->vdev_delayed_close = B_FALSE;
2591 vd->vdev_faulted = 1ULL;
2592 vd->vdev_degraded = 0ULL;
2593 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2596 * If this device has the only valid copy of the data, then
2597 * back off and simply mark the vdev as degraded instead.
2599 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2600 vd->vdev_degraded = 1ULL;
2601 vd->vdev_faulted = 0ULL;
2604 * If we reopen the device and it's not dead, only then do we
2605 * mark it degraded.
2607 vdev_reopen(tvd);
2609 if (vdev_readable(vd))
2610 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2613 return (spa_vdev_state_exit(spa, vd, 0));
2617 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2618 * user that something is wrong. The vdev continues to operate as normal as far
2619 * as I/O is concerned.
2622 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2624 vdev_t *vd;
2626 spa_vdev_state_enter(spa, SCL_NONE);
2628 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2629 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2631 if (!vd->vdev_ops->vdev_op_leaf)
2632 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2635 * If the vdev is already faulted, then don't do anything.
2637 if (vd->vdev_faulted || vd->vdev_degraded)
2638 return (spa_vdev_state_exit(spa, NULL, 0));
2640 vd->vdev_degraded = 1ULL;
2641 if (!vdev_is_dead(vd))
2642 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2643 aux);
2645 return (spa_vdev_state_exit(spa, vd, 0));
2649 * Online the given vdev.
2651 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2652 * spare device should be detached when the device finishes resilvering.
2653 * Second, the online should be treated like a 'test' online case, so no FMA
2654 * events are generated if the device fails to open.
2657 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2659 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2660 boolean_t wasoffline;
2661 vdev_state_t oldstate;
2663 spa_vdev_state_enter(spa, SCL_NONE);
2665 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2666 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2668 if (!vd->vdev_ops->vdev_op_leaf)
2669 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2671 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2672 oldstate = vd->vdev_state;
2674 tvd = vd->vdev_top;
2675 vd->vdev_offline = B_FALSE;
2676 vd->vdev_tmpoffline = B_FALSE;
2677 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2678 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2680 /* XXX - L2ARC 1.0 does not support expansion */
2681 if (!vd->vdev_aux) {
2682 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2683 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2686 vdev_reopen(tvd);
2687 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2689 if (!vd->vdev_aux) {
2690 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2691 pvd->vdev_expanding = B_FALSE;
2694 if (newstate)
2695 *newstate = vd->vdev_state;
2696 if ((flags & ZFS_ONLINE_UNSPARE) &&
2697 !vdev_is_dead(vd) && vd->vdev_parent &&
2698 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2699 vd->vdev_parent->vdev_child[0] == vd)
2700 vd->vdev_unspare = B_TRUE;
2702 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2704 /* XXX - L2ARC 1.0 does not support expansion */
2705 if (vd->vdev_aux)
2706 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2707 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2710 if (wasoffline ||
2711 (oldstate < VDEV_STATE_DEGRADED &&
2712 vd->vdev_state >= VDEV_STATE_DEGRADED))
2713 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2715 return (spa_vdev_state_exit(spa, vd, 0));
2718 static int
2719 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2721 vdev_t *vd, *tvd;
2722 int error = 0;
2723 uint64_t generation;
2724 metaslab_group_t *mg;
2726 top:
2727 spa_vdev_state_enter(spa, SCL_ALLOC);
2729 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2730 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2732 if (!vd->vdev_ops->vdev_op_leaf)
2733 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2735 tvd = vd->vdev_top;
2736 mg = tvd->vdev_mg;
2737 generation = spa->spa_config_generation + 1;
2740 * If the device isn't already offline, try to offline it.
2742 if (!vd->vdev_offline) {
2744 * If this device has the only valid copy of some data,
2745 * don't allow it to be offlined. Log devices are always
2746 * expendable.
2748 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2749 vdev_dtl_required(vd))
2750 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2753 * If the top-level is a slog and it has had allocations
2754 * then proceed. We check that the vdev's metaslab group
2755 * is not NULL since it's possible that we may have just
2756 * added this vdev but not yet initialized its metaslabs.
2758 if (tvd->vdev_islog && mg != NULL) {
2760 * Prevent any future allocations.
2762 metaslab_group_passivate(mg);
2763 (void) spa_vdev_state_exit(spa, vd, 0);
2765 error = spa_reset_logs(spa);
2767 spa_vdev_state_enter(spa, SCL_ALLOC);
2770 * Check to see if the config has changed.
2772 if (error || generation != spa->spa_config_generation) {
2773 metaslab_group_activate(mg);
2774 if (error)
2775 return (spa_vdev_state_exit(spa,
2776 vd, error));
2777 (void) spa_vdev_state_exit(spa, vd, 0);
2778 goto top;
2780 ASSERT0(tvd->vdev_stat.vs_alloc);
2784 * Offline this device and reopen its top-level vdev.
2785 * If the top-level vdev is a log device then just offline
2786 * it. Otherwise, if this action results in the top-level
2787 * vdev becoming unusable, undo it and fail the request.
2789 vd->vdev_offline = B_TRUE;
2790 vdev_reopen(tvd);
2792 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2793 vdev_is_dead(tvd)) {
2794 vd->vdev_offline = B_FALSE;
2795 vdev_reopen(tvd);
2796 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2800 * Add the device back into the metaslab rotor so that
2801 * once we online the device it's open for business.
2803 if (tvd->vdev_islog && mg != NULL)
2804 metaslab_group_activate(mg);
2807 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2809 return (spa_vdev_state_exit(spa, vd, 0));
2813 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2815 int error;
2817 mutex_enter(&spa->spa_vdev_top_lock);
2818 error = vdev_offline_locked(spa, guid, flags);
2819 mutex_exit(&spa->spa_vdev_top_lock);
2821 return (error);
2825 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2826 * vdev_offline(), we assume the spa config is locked. We also clear all
2827 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2829 void
2830 vdev_clear(spa_t *spa, vdev_t *vd)
2832 vdev_t *rvd = spa->spa_root_vdev;
2834 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2836 if (vd == NULL)
2837 vd = rvd;
2839 vd->vdev_stat.vs_read_errors = 0;
2840 vd->vdev_stat.vs_write_errors = 0;
2841 vd->vdev_stat.vs_checksum_errors = 0;
2843 for (int c = 0; c < vd->vdev_children; c++)
2844 vdev_clear(spa, vd->vdev_child[c]);
2847 * It makes no sense to "clear" an indirect vdev.
2849 if (!vdev_is_concrete(vd))
2850 return;
2853 * If we're in the FAULTED state or have experienced failed I/O, then
2854 * clear the persistent state and attempt to reopen the device. We
2855 * also mark the vdev config dirty, so that the new faulted state is
2856 * written out to disk.
2858 if (vd->vdev_faulted || vd->vdev_degraded ||
2859 !vdev_readable(vd) || !vdev_writeable(vd)) {
2862 * When reopening in reponse to a clear event, it may be due to
2863 * a fmadm repair request. In this case, if the device is
2864 * still broken, we want to still post the ereport again.
2866 vd->vdev_forcefault = B_TRUE;
2868 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2869 vd->vdev_cant_read = B_FALSE;
2870 vd->vdev_cant_write = B_FALSE;
2872 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2874 vd->vdev_forcefault = B_FALSE;
2876 if (vd != rvd && vdev_writeable(vd->vdev_top))
2877 vdev_state_dirty(vd->vdev_top);
2879 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2880 spa_async_request(spa, SPA_ASYNC_RESILVER);
2882 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2886 * When clearing a FMA-diagnosed fault, we always want to
2887 * unspare the device, as we assume that the original spare was
2888 * done in response to the FMA fault.
2890 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2891 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2892 vd->vdev_parent->vdev_child[0] == vd)
2893 vd->vdev_unspare = B_TRUE;
2896 boolean_t
2897 vdev_is_dead(vdev_t *vd)
2900 * Holes and missing devices are always considered "dead".
2901 * This simplifies the code since we don't have to check for
2902 * these types of devices in the various code paths.
2903 * Instead we rely on the fact that we skip over dead devices
2904 * before issuing I/O to them.
2906 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
2907 vd->vdev_ops == &vdev_hole_ops ||
2908 vd->vdev_ops == &vdev_missing_ops);
2911 boolean_t
2912 vdev_readable(vdev_t *vd)
2914 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2917 boolean_t
2918 vdev_writeable(vdev_t *vd)
2920 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
2921 vdev_is_concrete(vd));
2924 boolean_t
2925 vdev_allocatable(vdev_t *vd)
2927 uint64_t state = vd->vdev_state;
2930 * We currently allow allocations from vdevs which may be in the
2931 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2932 * fails to reopen then we'll catch it later when we're holding
2933 * the proper locks. Note that we have to get the vdev state
2934 * in a local variable because although it changes atomically,
2935 * we're asking two separate questions about it.
2937 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2938 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
2939 vd->vdev_mg->mg_initialized);
2942 boolean_t
2943 vdev_accessible(vdev_t *vd, zio_t *zio)
2945 ASSERT(zio->io_vd == vd);
2947 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2948 return (B_FALSE);
2950 if (zio->io_type == ZIO_TYPE_READ)
2951 return (!vd->vdev_cant_read);
2953 if (zio->io_type == ZIO_TYPE_WRITE)
2954 return (!vd->vdev_cant_write);
2956 return (B_TRUE);
2960 * Get statistics for the given vdev.
2962 void
2963 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2965 spa_t *spa = vd->vdev_spa;
2966 vdev_t *rvd = spa->spa_root_vdev;
2967 vdev_t *tvd = vd->vdev_top;
2969 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2971 mutex_enter(&vd->vdev_stat_lock);
2972 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2973 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2974 vs->vs_state = vd->vdev_state;
2975 vs->vs_rsize = vdev_get_min_asize(vd);
2976 if (vd->vdev_ops->vdev_op_leaf)
2977 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2979 * Report expandable space on top-level, non-auxillary devices only.
2980 * The expandable space is reported in terms of metaslab sized units
2981 * since that determines how much space the pool can expand.
2983 if (vd->vdev_aux == NULL && tvd != NULL) {
2984 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2985 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2987 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2988 vdev_is_concrete(vd)) {
2989 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2993 * If we're getting stats on the root vdev, aggregate the I/O counts
2994 * over all top-level vdevs (i.e. the direct children of the root).
2996 if (vd == rvd) {
2997 for (int c = 0; c < rvd->vdev_children; c++) {
2998 vdev_t *cvd = rvd->vdev_child[c];
2999 vdev_stat_t *cvs = &cvd->vdev_stat;
3001 for (int t = 0; t < ZIO_TYPES; t++) {
3002 vs->vs_ops[t] += cvs->vs_ops[t];
3003 vs->vs_bytes[t] += cvs->vs_bytes[t];
3005 cvs->vs_scan_removing = cvd->vdev_removing;
3008 mutex_exit(&vd->vdev_stat_lock);
3011 void
3012 vdev_clear_stats(vdev_t *vd)
3014 mutex_enter(&vd->vdev_stat_lock);
3015 vd->vdev_stat.vs_space = 0;
3016 vd->vdev_stat.vs_dspace = 0;
3017 vd->vdev_stat.vs_alloc = 0;
3018 mutex_exit(&vd->vdev_stat_lock);
3021 void
3022 vdev_scan_stat_init(vdev_t *vd)
3024 vdev_stat_t *vs = &vd->vdev_stat;
3026 for (int c = 0; c < vd->vdev_children; c++)
3027 vdev_scan_stat_init(vd->vdev_child[c]);
3029 mutex_enter(&vd->vdev_stat_lock);
3030 vs->vs_scan_processed = 0;
3031 mutex_exit(&vd->vdev_stat_lock);
3034 void
3035 vdev_stat_update(zio_t *zio, uint64_t psize)
3037 spa_t *spa = zio->io_spa;
3038 vdev_t *rvd = spa->spa_root_vdev;
3039 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3040 vdev_t *pvd;
3041 uint64_t txg = zio->io_txg;
3042 vdev_stat_t *vs = &vd->vdev_stat;
3043 zio_type_t type = zio->io_type;
3044 int flags = zio->io_flags;
3047 * If this i/o is a gang leader, it didn't do any actual work.
3049 if (zio->io_gang_tree)
3050 return;
3052 if (zio->io_error == 0) {
3054 * If this is a root i/o, don't count it -- we've already
3055 * counted the top-level vdevs, and vdev_get_stats() will
3056 * aggregate them when asked. This reduces contention on
3057 * the root vdev_stat_lock and implicitly handles blocks
3058 * that compress away to holes, for which there is no i/o.
3059 * (Holes never create vdev children, so all the counters
3060 * remain zero, which is what we want.)
3062 * Note: this only applies to successful i/o (io_error == 0)
3063 * because unlike i/o counts, errors are not additive.
3064 * When reading a ditto block, for example, failure of
3065 * one top-level vdev does not imply a root-level error.
3067 if (vd == rvd)
3068 return;
3070 ASSERT(vd == zio->io_vd);
3072 if (flags & ZIO_FLAG_IO_BYPASS)
3073 return;
3075 mutex_enter(&vd->vdev_stat_lock);
3077 if (flags & ZIO_FLAG_IO_REPAIR) {
3078 if (flags & ZIO_FLAG_SCAN_THREAD) {
3079 dsl_scan_phys_t *scn_phys =
3080 &spa->spa_dsl_pool->dp_scan->scn_phys;
3081 uint64_t *processed = &scn_phys->scn_processed;
3083 /* XXX cleanup? */
3084 if (vd->vdev_ops->vdev_op_leaf)
3085 atomic_add_64(processed, psize);
3086 vs->vs_scan_processed += psize;
3089 if (flags & ZIO_FLAG_SELF_HEAL)
3090 vs->vs_self_healed += psize;
3093 vs->vs_ops[type]++;
3094 vs->vs_bytes[type] += psize;
3096 mutex_exit(&vd->vdev_stat_lock);
3097 return;
3100 if (flags & ZIO_FLAG_SPECULATIVE)
3101 return;
3104 * If this is an I/O error that is going to be retried, then ignore the
3105 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3106 * hard errors, when in reality they can happen for any number of
3107 * innocuous reasons (bus resets, MPxIO link failure, etc).
3109 if (zio->io_error == EIO &&
3110 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3111 return;
3114 * Intent logs writes won't propagate their error to the root
3115 * I/O so don't mark these types of failures as pool-level
3116 * errors.
3118 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3119 return;
3121 mutex_enter(&vd->vdev_stat_lock);
3122 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3123 if (zio->io_error == ECKSUM)
3124 vs->vs_checksum_errors++;
3125 else
3126 vs->vs_read_errors++;
3128 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3129 vs->vs_write_errors++;
3130 mutex_exit(&vd->vdev_stat_lock);
3132 if (spa->spa_load_state == SPA_LOAD_NONE &&
3133 type == ZIO_TYPE_WRITE && txg != 0 &&
3134 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3135 (flags & ZIO_FLAG_SCAN_THREAD) ||
3136 spa->spa_claiming)) {
3138 * This is either a normal write (not a repair), or it's
3139 * a repair induced by the scrub thread, or it's a repair
3140 * made by zil_claim() during spa_load() in the first txg.
3141 * In the normal case, we commit the DTL change in the same
3142 * txg as the block was born. In the scrub-induced repair
3143 * case, we know that scrubs run in first-pass syncing context,
3144 * so we commit the DTL change in spa_syncing_txg(spa).
3145 * In the zil_claim() case, we commit in spa_first_txg(spa).
3147 * We currently do not make DTL entries for failed spontaneous
3148 * self-healing writes triggered by normal (non-scrubbing)
3149 * reads, because we have no transactional context in which to
3150 * do so -- and it's not clear that it'd be desirable anyway.
3152 if (vd->vdev_ops->vdev_op_leaf) {
3153 uint64_t commit_txg = txg;
3154 if (flags & ZIO_FLAG_SCAN_THREAD) {
3155 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3156 ASSERT(spa_sync_pass(spa) == 1);
3157 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3158 commit_txg = spa_syncing_txg(spa);
3159 } else if (spa->spa_claiming) {
3160 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3161 commit_txg = spa_first_txg(spa);
3163 ASSERT(commit_txg >= spa_syncing_txg(spa));
3164 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3165 return;
3166 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3167 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3168 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3170 if (vd != rvd)
3171 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3176 * Update the in-core space usage stats for this vdev, its metaslab class,
3177 * and the root vdev.
3179 void
3180 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3181 int64_t space_delta)
3183 int64_t dspace_delta = space_delta;
3184 spa_t *spa = vd->vdev_spa;
3185 vdev_t *rvd = spa->spa_root_vdev;
3186 metaslab_group_t *mg = vd->vdev_mg;
3187 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3189 ASSERT(vd == vd->vdev_top);
3192 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3193 * factor. We must calculate this here and not at the root vdev
3194 * because the root vdev's psize-to-asize is simply the max of its
3195 * childrens', thus not accurate enough for us.
3197 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3198 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3199 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3200 vd->vdev_deflate_ratio;
3202 mutex_enter(&vd->vdev_stat_lock);
3203 vd->vdev_stat.vs_alloc += alloc_delta;
3204 vd->vdev_stat.vs_space += space_delta;
3205 vd->vdev_stat.vs_dspace += dspace_delta;
3206 mutex_exit(&vd->vdev_stat_lock);
3208 if (mc == spa_normal_class(spa)) {
3209 mutex_enter(&rvd->vdev_stat_lock);
3210 rvd->vdev_stat.vs_alloc += alloc_delta;
3211 rvd->vdev_stat.vs_space += space_delta;
3212 rvd->vdev_stat.vs_dspace += dspace_delta;
3213 mutex_exit(&rvd->vdev_stat_lock);
3216 if (mc != NULL) {
3217 ASSERT(rvd == vd->vdev_parent);
3218 ASSERT(vd->vdev_ms_count != 0);
3220 metaslab_class_space_update(mc,
3221 alloc_delta, defer_delta, space_delta, dspace_delta);
3226 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3227 * so that it will be written out next time the vdev configuration is synced.
3228 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3230 void
3231 vdev_config_dirty(vdev_t *vd)
3233 spa_t *spa = vd->vdev_spa;
3234 vdev_t *rvd = spa->spa_root_vdev;
3235 int c;
3237 ASSERT(spa_writeable(spa));
3240 * If this is an aux vdev (as with l2cache and spare devices), then we
3241 * update the vdev config manually and set the sync flag.
3243 if (vd->vdev_aux != NULL) {
3244 spa_aux_vdev_t *sav = vd->vdev_aux;
3245 nvlist_t **aux;
3246 uint_t naux;
3248 for (c = 0; c < sav->sav_count; c++) {
3249 if (sav->sav_vdevs[c] == vd)
3250 break;
3253 if (c == sav->sav_count) {
3255 * We're being removed. There's nothing more to do.
3257 ASSERT(sav->sav_sync == B_TRUE);
3258 return;
3261 sav->sav_sync = B_TRUE;
3263 if (nvlist_lookup_nvlist_array(sav->sav_config,
3264 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3265 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3266 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3269 ASSERT(c < naux);
3272 * Setting the nvlist in the middle if the array is a little
3273 * sketchy, but it will work.
3275 nvlist_free(aux[c]);
3276 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3278 return;
3282 * The dirty list is protected by the SCL_CONFIG lock. The caller
3283 * must either hold SCL_CONFIG as writer, or must be the sync thread
3284 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3285 * so this is sufficient to ensure mutual exclusion.
3287 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3288 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3289 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3291 if (vd == rvd) {
3292 for (c = 0; c < rvd->vdev_children; c++)
3293 vdev_config_dirty(rvd->vdev_child[c]);
3294 } else {
3295 ASSERT(vd == vd->vdev_top);
3297 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3298 vdev_is_concrete(vd)) {
3299 list_insert_head(&spa->spa_config_dirty_list, vd);
3304 void
3305 vdev_config_clean(vdev_t *vd)
3307 spa_t *spa = vd->vdev_spa;
3309 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3310 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3311 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3313 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3314 list_remove(&spa->spa_config_dirty_list, vd);
3318 * Mark a top-level vdev's state as dirty, so that the next pass of
3319 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3320 * the state changes from larger config changes because they require
3321 * much less locking, and are often needed for administrative actions.
3323 void
3324 vdev_state_dirty(vdev_t *vd)
3326 spa_t *spa = vd->vdev_spa;
3328 ASSERT(spa_writeable(spa));
3329 ASSERT(vd == vd->vdev_top);
3332 * The state list is protected by the SCL_STATE lock. The caller
3333 * must either hold SCL_STATE as writer, or must be the sync thread
3334 * (which holds SCL_STATE as reader). There's only one sync thread,
3335 * so this is sufficient to ensure mutual exclusion.
3337 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3338 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3339 spa_config_held(spa, SCL_STATE, RW_READER)));
3341 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3342 vdev_is_concrete(vd))
3343 list_insert_head(&spa->spa_state_dirty_list, vd);
3346 void
3347 vdev_state_clean(vdev_t *vd)
3349 spa_t *spa = vd->vdev_spa;
3351 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3352 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3353 spa_config_held(spa, SCL_STATE, RW_READER)));
3355 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3356 list_remove(&spa->spa_state_dirty_list, vd);
3360 * Propagate vdev state up from children to parent.
3362 void
3363 vdev_propagate_state(vdev_t *vd)
3365 spa_t *spa = vd->vdev_spa;
3366 vdev_t *rvd = spa->spa_root_vdev;
3367 int degraded = 0, faulted = 0;
3368 int corrupted = 0;
3369 vdev_t *child;
3371 if (vd->vdev_children > 0) {
3372 for (int c = 0; c < vd->vdev_children; c++) {
3373 child = vd->vdev_child[c];
3376 * Don't factor holes or indirect vdevs into the
3377 * decision.
3379 if (!vdev_is_concrete(child))
3380 continue;
3382 if (!vdev_readable(child) ||
3383 (!vdev_writeable(child) && spa_writeable(spa))) {
3385 * Root special: if there is a top-level log
3386 * device, treat the root vdev as if it were
3387 * degraded.
3389 if (child->vdev_islog && vd == rvd)
3390 degraded++;
3391 else
3392 faulted++;
3393 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3394 degraded++;
3397 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3398 corrupted++;
3401 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3404 * Root special: if there is a top-level vdev that cannot be
3405 * opened due to corrupted metadata, then propagate the root
3406 * vdev's aux state as 'corrupt' rather than 'insufficient
3407 * replicas'.
3409 if (corrupted && vd == rvd &&
3410 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3411 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3412 VDEV_AUX_CORRUPT_DATA);
3415 if (vd->vdev_parent)
3416 vdev_propagate_state(vd->vdev_parent);
3420 * Set a vdev's state. If this is during an open, we don't update the parent
3421 * state, because we're in the process of opening children depth-first.
3422 * Otherwise, we propagate the change to the parent.
3424 * If this routine places a device in a faulted state, an appropriate ereport is
3425 * generated.
3427 void
3428 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3430 uint64_t save_state;
3431 spa_t *spa = vd->vdev_spa;
3433 if (state == vd->vdev_state) {
3434 vd->vdev_stat.vs_aux = aux;
3435 return;
3438 save_state = vd->vdev_state;
3440 vd->vdev_state = state;
3441 vd->vdev_stat.vs_aux = aux;
3444 * If we are setting the vdev state to anything but an open state, then
3445 * always close the underlying device unless the device has requested
3446 * a delayed close (i.e. we're about to remove or fault the device).
3447 * Otherwise, we keep accessible but invalid devices open forever.
3448 * We don't call vdev_close() itself, because that implies some extra
3449 * checks (offline, etc) that we don't want here. This is limited to
3450 * leaf devices, because otherwise closing the device will affect other
3451 * children.
3453 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3454 vd->vdev_ops->vdev_op_leaf)
3455 vd->vdev_ops->vdev_op_close(vd);
3458 * If we have brought this vdev back into service, we need
3459 * to notify fmd so that it can gracefully repair any outstanding
3460 * cases due to a missing device. We do this in all cases, even those
3461 * that probably don't correlate to a repaired fault. This is sure to
3462 * catch all cases, and we let the zfs-retire agent sort it out. If
3463 * this is a transient state it's OK, as the retire agent will
3464 * double-check the state of the vdev before repairing it.
3466 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3467 vd->vdev_prevstate != state)
3468 zfs_post_state_change(spa, vd);
3470 if (vd->vdev_removed &&
3471 state == VDEV_STATE_CANT_OPEN &&
3472 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3474 * If the previous state is set to VDEV_STATE_REMOVED, then this
3475 * device was previously marked removed and someone attempted to
3476 * reopen it. If this failed due to a nonexistent device, then
3477 * keep the device in the REMOVED state. We also let this be if
3478 * it is one of our special test online cases, which is only
3479 * attempting to online the device and shouldn't generate an FMA
3480 * fault.
3482 vd->vdev_state = VDEV_STATE_REMOVED;
3483 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3484 } else if (state == VDEV_STATE_REMOVED) {
3485 vd->vdev_removed = B_TRUE;
3486 } else if (state == VDEV_STATE_CANT_OPEN) {
3488 * If we fail to open a vdev during an import or recovery, we
3489 * mark it as "not available", which signifies that it was
3490 * never there to begin with. Failure to open such a device
3491 * is not considered an error.
3493 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3494 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3495 vd->vdev_ops->vdev_op_leaf)
3496 vd->vdev_not_present = 1;
3499 * Post the appropriate ereport. If the 'prevstate' field is
3500 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3501 * that this is part of a vdev_reopen(). In this case, we don't
3502 * want to post the ereport if the device was already in the
3503 * CANT_OPEN state beforehand.
3505 * If the 'checkremove' flag is set, then this is an attempt to
3506 * online the device in response to an insertion event. If we
3507 * hit this case, then we have detected an insertion event for a
3508 * faulted or offline device that wasn't in the removed state.
3509 * In this scenario, we don't post an ereport because we are
3510 * about to replace the device, or attempt an online with
3511 * vdev_forcefault, which will generate the fault for us.
3513 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3514 !vd->vdev_not_present && !vd->vdev_checkremove &&
3515 vd != spa->spa_root_vdev) {
3516 const char *class;
3518 switch (aux) {
3519 case VDEV_AUX_OPEN_FAILED:
3520 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3521 break;
3522 case VDEV_AUX_CORRUPT_DATA:
3523 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3524 break;
3525 case VDEV_AUX_NO_REPLICAS:
3526 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3527 break;
3528 case VDEV_AUX_BAD_GUID_SUM:
3529 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3530 break;
3531 case VDEV_AUX_TOO_SMALL:
3532 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3533 break;
3534 case VDEV_AUX_BAD_LABEL:
3535 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3536 break;
3537 default:
3538 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3541 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3544 /* Erase any notion of persistent removed state */
3545 vd->vdev_removed = B_FALSE;
3546 } else {
3547 vd->vdev_removed = B_FALSE;
3550 if (!isopen && vd->vdev_parent)
3551 vdev_propagate_state(vd->vdev_parent);
3555 * Check the vdev configuration to ensure that it's capable of supporting
3556 * a root pool. We do not support partial configuration.
3557 * In addition, only a single top-level vdev is allowed.
3559 boolean_t
3560 vdev_is_bootable(vdev_t *vd)
3562 if (!vd->vdev_ops->vdev_op_leaf) {
3563 char *vdev_type = vd->vdev_ops->vdev_op_type;
3565 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3566 vd->vdev_children > 1) {
3567 return (B_FALSE);
3568 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3569 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3570 return (B_FALSE);
3574 for (int c = 0; c < vd->vdev_children; c++) {
3575 if (!vdev_is_bootable(vd->vdev_child[c]))
3576 return (B_FALSE);
3578 return (B_TRUE);
3581 boolean_t
3582 vdev_is_concrete(vdev_t *vd)
3584 vdev_ops_t *ops = vd->vdev_ops;
3585 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3586 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3587 return (B_FALSE);
3588 } else {
3589 return (B_TRUE);
3594 * Load the state from the original vdev tree (ovd) which
3595 * we've retrieved from the MOS config object. If the original
3596 * vdev was offline or faulted then we transfer that state to the
3597 * device in the current vdev tree (nvd).
3599 void
3600 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3602 spa_t *spa = nvd->vdev_spa;
3604 ASSERT(nvd->vdev_top->vdev_islog);
3605 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3606 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3608 for (int c = 0; c < nvd->vdev_children; c++)
3609 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3611 if (nvd->vdev_ops->vdev_op_leaf) {
3613 * Restore the persistent vdev state
3615 nvd->vdev_offline = ovd->vdev_offline;
3616 nvd->vdev_faulted = ovd->vdev_faulted;
3617 nvd->vdev_degraded = ovd->vdev_degraded;
3618 nvd->vdev_removed = ovd->vdev_removed;
3623 * Determine if a log device has valid content. If the vdev was
3624 * removed or faulted in the MOS config then we know that
3625 * the content on the log device has already been written to the pool.
3627 boolean_t
3628 vdev_log_state_valid(vdev_t *vd)
3630 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3631 !vd->vdev_removed)
3632 return (B_TRUE);
3634 for (int c = 0; c < vd->vdev_children; c++)
3635 if (vdev_log_state_valid(vd->vdev_child[c]))
3636 return (B_TRUE);
3638 return (B_FALSE);
3642 * Expand a vdev if possible.
3644 void
3645 vdev_expand(vdev_t *vd, uint64_t txg)
3647 ASSERT(vd->vdev_top == vd);
3648 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3650 vdev_set_deflate_ratio(vd);
3652 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3653 vdev_is_concrete(vd)) {
3654 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3655 vdev_config_dirty(vd);
3660 * Split a vdev.
3662 void
3663 vdev_split(vdev_t *vd)
3665 vdev_t *cvd, *pvd = vd->vdev_parent;
3667 vdev_remove_child(pvd, vd);
3668 vdev_compact_children(pvd);
3670 cvd = pvd->vdev_child[0];
3671 if (pvd->vdev_children == 1) {
3672 vdev_remove_parent(cvd);
3673 cvd->vdev_splitting = B_TRUE;
3675 vdev_propagate_state(cvd);
3678 void
3679 vdev_deadman(vdev_t *vd)
3681 for (int c = 0; c < vd->vdev_children; c++) {
3682 vdev_t *cvd = vd->vdev_child[c];
3684 vdev_deadman(cvd);
3687 if (vd->vdev_ops->vdev_op_leaf) {
3688 vdev_queue_t *vq = &vd->vdev_queue;
3690 mutex_enter(&vq->vq_lock);
3691 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3692 spa_t *spa = vd->vdev_spa;
3693 zio_t *fio;
3694 uint64_t delta;
3697 * Look at the head of all the pending queues,
3698 * if any I/O has been outstanding for longer than
3699 * the spa_deadman_synctime we panic the system.
3701 fio = avl_first(&vq->vq_active_tree);
3702 delta = gethrtime() - fio->io_timestamp;
3703 if (delta > spa_deadman_synctime(spa)) {
3704 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3705 "%lluns, delta %lluns, last io %lluns",
3706 fio->io_timestamp, (u_longlong_t)delta,
3707 vq->vq_io_complete_ts);
3708 fm_panic("I/O to pool '%s' appears to be "
3709 "hung.", spa_name(spa));
3712 mutex_exit(&vq->vq_lock);