8961 SPA load/import should tell us why it failed
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
bloba425f8c912841624b2eaf95b1edca5d3bcd0d5f1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright (c) 2017 Datto Inc.
32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
36 * SPA: Storage Pool Allocator
38 * This file contains all the routines used when modifying on-disk SPA state.
39 * This includes opening, importing, destroying, exporting a pool, and syncing a
40 * pool.
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/metaslab.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/bpobj.h>
63 #include <sys/dmu_traverse.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/unique.h>
66 #include <sys/dsl_pool.h>
67 #include <sys/dsl_dataset.h>
68 #include <sys/dsl_dir.h>
69 #include <sys/dsl_prop.h>
70 #include <sys/dsl_synctask.h>
71 #include <sys/fs/zfs.h>
72 #include <sys/arc.h>
73 #include <sys/callb.h>
74 #include <sys/systeminfo.h>
75 #include <sys/spa_boot.h>
76 #include <sys/zfs_ioctl.h>
77 #include <sys/dsl_scan.h>
78 #include <sys/zfeature.h>
79 #include <sys/dsl_destroy.h>
80 #include <sys/abd.h>
82 #ifdef _KERNEL
83 #include <sys/bootprops.h>
84 #include <sys/callb.h>
85 #include <sys/cpupart.h>
86 #include <sys/pool.h>
87 #include <sys/sysdc.h>
88 #include <sys/zone.h>
89 #endif /* _KERNEL */
91 #include "zfs_prop.h"
92 #include "zfs_comutil.h"
95 * The interval, in seconds, at which failed configuration cache file writes
96 * should be retried.
98 int zfs_ccw_retry_interval = 300;
100 typedef enum zti_modes {
101 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
102 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
103 ZTI_MODE_NULL, /* don't create a taskq */
104 ZTI_NMODES
105 } zti_modes_t;
107 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
108 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
109 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
111 #define ZTI_N(n) ZTI_P(n, 1)
112 #define ZTI_ONE ZTI_N(1)
114 typedef struct zio_taskq_info {
115 zti_modes_t zti_mode;
116 uint_t zti_value;
117 uint_t zti_count;
118 } zio_taskq_info_t;
120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121 "issue", "issue_high", "intr", "intr_high"
125 * This table defines the taskq settings for each ZFS I/O type. When
126 * initializing a pool, we use this table to create an appropriately sized
127 * taskq. Some operations are low volume and therefore have a small, static
128 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129 * macros. Other operations process a large amount of data; the ZTI_BATCH
130 * macro causes us to create a taskq oriented for throughput. Some operations
131 * are so high frequency and short-lived that the taskq itself can become a a
132 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133 * additional degree of parallelism specified by the number of threads per-
134 * taskq and the number of taskqs; when dispatching an event in this case, the
135 * particular taskq is chosen at random.
137 * The different taskq priorities are to handle the different contexts (issue
138 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139 * need to be handled with minimum delay.
141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
143 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
144 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
145 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
146 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 static void spa_sync_version(void *arg, dmu_tx_t *tx);
152 static void spa_sync_props(void *arg, dmu_tx_t *tx);
153 static boolean_t spa_has_active_shared_spare(spa_t *spa);
154 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
155 spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
156 char **ereport);
157 static void spa_vdev_resilver_done(spa_t *spa);
159 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
160 id_t zio_taskq_psrset_bind = PS_NONE;
161 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
162 uint_t zio_taskq_basedc = 80; /* base duty cycle */
164 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
165 extern int zfs_sync_pass_deferred_free;
168 * This (illegal) pool name is used when temporarily importing a spa_t in order
169 * to get the vdev stats associated with the imported devices.
171 #define TRYIMPORT_NAME "$import"
174 * ==========================================================================
175 * SPA properties routines
176 * ==========================================================================
180 * Add a (source=src, propname=propval) list to an nvlist.
182 static void
183 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
184 uint64_t intval, zprop_source_t src)
186 const char *propname = zpool_prop_to_name(prop);
187 nvlist_t *propval;
189 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
190 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
192 if (strval != NULL)
193 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
194 else
195 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
197 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
198 nvlist_free(propval);
202 * Get property values from the spa configuration.
204 static void
205 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
207 vdev_t *rvd = spa->spa_root_vdev;
208 dsl_pool_t *pool = spa->spa_dsl_pool;
209 uint64_t size, alloc, cap, version;
210 zprop_source_t src = ZPROP_SRC_NONE;
211 spa_config_dirent_t *dp;
212 metaslab_class_t *mc = spa_normal_class(spa);
214 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
216 if (rvd != NULL) {
217 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
218 size = metaslab_class_get_space(spa_normal_class(spa));
219 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
220 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
223 size - alloc, src);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
226 metaslab_class_fragmentation(mc), src);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
228 metaslab_class_expandable_space(mc), src);
229 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
230 (spa_mode(spa) == FREAD), src);
232 cap = (size == 0) ? 0 : (alloc * 100 / size);
233 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
235 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
236 ddt_get_pool_dedup_ratio(spa), src);
238 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
239 rvd->vdev_state, src);
241 version = spa_version(spa);
242 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
243 src = ZPROP_SRC_DEFAULT;
244 else
245 src = ZPROP_SRC_LOCAL;
246 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
249 if (pool != NULL) {
251 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
252 * when opening pools before this version freedir will be NULL.
254 if (pool->dp_free_dir != NULL) {
255 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
256 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
257 src);
258 } else {
259 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
260 NULL, 0, src);
263 if (pool->dp_leak_dir != NULL) {
264 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
265 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
266 src);
267 } else {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
269 NULL, 0, src);
273 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
275 if (spa->spa_comment != NULL) {
276 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
277 0, ZPROP_SRC_LOCAL);
280 if (spa->spa_root != NULL)
281 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
282 0, ZPROP_SRC_LOCAL);
284 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
285 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
286 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
287 } else {
288 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
289 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
292 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
293 if (dp->scd_path == NULL) {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
295 "none", 0, ZPROP_SRC_LOCAL);
296 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
297 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298 dp->scd_path, 0, ZPROP_SRC_LOCAL);
304 * Get zpool property values.
307 spa_prop_get(spa_t *spa, nvlist_t **nvp)
309 objset_t *mos = spa->spa_meta_objset;
310 zap_cursor_t zc;
311 zap_attribute_t za;
312 int err;
314 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
316 mutex_enter(&spa->spa_props_lock);
319 * Get properties from the spa config.
321 spa_prop_get_config(spa, nvp);
323 /* If no pool property object, no more prop to get. */
324 if (mos == NULL || spa->spa_pool_props_object == 0) {
325 mutex_exit(&spa->spa_props_lock);
326 return (0);
330 * Get properties from the MOS pool property object.
332 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
333 (err = zap_cursor_retrieve(&zc, &za)) == 0;
334 zap_cursor_advance(&zc)) {
335 uint64_t intval = 0;
336 char *strval = NULL;
337 zprop_source_t src = ZPROP_SRC_DEFAULT;
338 zpool_prop_t prop;
340 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
341 continue;
343 switch (za.za_integer_length) {
344 case 8:
345 /* integer property */
346 if (za.za_first_integer !=
347 zpool_prop_default_numeric(prop))
348 src = ZPROP_SRC_LOCAL;
350 if (prop == ZPOOL_PROP_BOOTFS) {
351 dsl_pool_t *dp;
352 dsl_dataset_t *ds = NULL;
354 dp = spa_get_dsl(spa);
355 dsl_pool_config_enter(dp, FTAG);
356 if (err = dsl_dataset_hold_obj(dp,
357 za.za_first_integer, FTAG, &ds)) {
358 dsl_pool_config_exit(dp, FTAG);
359 break;
362 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
363 KM_SLEEP);
364 dsl_dataset_name(ds, strval);
365 dsl_dataset_rele(ds, FTAG);
366 dsl_pool_config_exit(dp, FTAG);
367 } else {
368 strval = NULL;
369 intval = za.za_first_integer;
372 spa_prop_add_list(*nvp, prop, strval, intval, src);
374 if (strval != NULL)
375 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
377 break;
379 case 1:
380 /* string property */
381 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
382 err = zap_lookup(mos, spa->spa_pool_props_object,
383 za.za_name, 1, za.za_num_integers, strval);
384 if (err) {
385 kmem_free(strval, za.za_num_integers);
386 break;
388 spa_prop_add_list(*nvp, prop, strval, 0, src);
389 kmem_free(strval, za.za_num_integers);
390 break;
392 default:
393 break;
396 zap_cursor_fini(&zc);
397 mutex_exit(&spa->spa_props_lock);
398 out:
399 if (err && err != ENOENT) {
400 nvlist_free(*nvp);
401 *nvp = NULL;
402 return (err);
405 return (0);
409 * Validate the given pool properties nvlist and modify the list
410 * for the property values to be set.
412 static int
413 spa_prop_validate(spa_t *spa, nvlist_t *props)
415 nvpair_t *elem;
416 int error = 0, reset_bootfs = 0;
417 uint64_t objnum = 0;
418 boolean_t has_feature = B_FALSE;
420 elem = NULL;
421 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
422 uint64_t intval;
423 char *strval, *slash, *check, *fname;
424 const char *propname = nvpair_name(elem);
425 zpool_prop_t prop = zpool_name_to_prop(propname);
427 switch (prop) {
428 case ZPOOL_PROP_INVAL:
429 if (!zpool_prop_feature(propname)) {
430 error = SET_ERROR(EINVAL);
431 break;
435 * Sanitize the input.
437 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
438 error = SET_ERROR(EINVAL);
439 break;
442 if (nvpair_value_uint64(elem, &intval) != 0) {
443 error = SET_ERROR(EINVAL);
444 break;
447 if (intval != 0) {
448 error = SET_ERROR(EINVAL);
449 break;
452 fname = strchr(propname, '@') + 1;
453 if (zfeature_lookup_name(fname, NULL) != 0) {
454 error = SET_ERROR(EINVAL);
455 break;
458 has_feature = B_TRUE;
459 break;
461 case ZPOOL_PROP_VERSION:
462 error = nvpair_value_uint64(elem, &intval);
463 if (!error &&
464 (intval < spa_version(spa) ||
465 intval > SPA_VERSION_BEFORE_FEATURES ||
466 has_feature))
467 error = SET_ERROR(EINVAL);
468 break;
470 case ZPOOL_PROP_DELEGATION:
471 case ZPOOL_PROP_AUTOREPLACE:
472 case ZPOOL_PROP_LISTSNAPS:
473 case ZPOOL_PROP_AUTOEXPAND:
474 error = nvpair_value_uint64(elem, &intval);
475 if (!error && intval > 1)
476 error = SET_ERROR(EINVAL);
477 break;
479 case ZPOOL_PROP_BOOTFS:
481 * If the pool version is less than SPA_VERSION_BOOTFS,
482 * or the pool is still being created (version == 0),
483 * the bootfs property cannot be set.
485 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
486 error = SET_ERROR(ENOTSUP);
487 break;
491 * Make sure the vdev config is bootable
493 if (!vdev_is_bootable(spa->spa_root_vdev)) {
494 error = SET_ERROR(ENOTSUP);
495 break;
498 reset_bootfs = 1;
500 error = nvpair_value_string(elem, &strval);
502 if (!error) {
503 objset_t *os;
504 uint64_t propval;
506 if (strval == NULL || strval[0] == '\0') {
507 objnum = zpool_prop_default_numeric(
508 ZPOOL_PROP_BOOTFS);
509 break;
512 if (error = dmu_objset_hold(strval, FTAG, &os))
513 break;
516 * Must be ZPL, and its property settings
517 * must be supported by GRUB (compression
518 * is not gzip, and large blocks are not used).
521 if (dmu_objset_type(os) != DMU_OST_ZFS) {
522 error = SET_ERROR(ENOTSUP);
523 } else if ((error =
524 dsl_prop_get_int_ds(dmu_objset_ds(os),
525 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
526 &propval)) == 0 &&
527 !BOOTFS_COMPRESS_VALID(propval)) {
528 error = SET_ERROR(ENOTSUP);
529 } else {
530 objnum = dmu_objset_id(os);
532 dmu_objset_rele(os, FTAG);
534 break;
536 case ZPOOL_PROP_FAILUREMODE:
537 error = nvpair_value_uint64(elem, &intval);
538 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
539 intval > ZIO_FAILURE_MODE_PANIC))
540 error = SET_ERROR(EINVAL);
543 * This is a special case which only occurs when
544 * the pool has completely failed. This allows
545 * the user to change the in-core failmode property
546 * without syncing it out to disk (I/Os might
547 * currently be blocked). We do this by returning
548 * EIO to the caller (spa_prop_set) to trick it
549 * into thinking we encountered a property validation
550 * error.
552 if (!error && spa_suspended(spa)) {
553 spa->spa_failmode = intval;
554 error = SET_ERROR(EIO);
556 break;
558 case ZPOOL_PROP_CACHEFILE:
559 if ((error = nvpair_value_string(elem, &strval)) != 0)
560 break;
562 if (strval[0] == '\0')
563 break;
565 if (strcmp(strval, "none") == 0)
566 break;
568 if (strval[0] != '/') {
569 error = SET_ERROR(EINVAL);
570 break;
573 slash = strrchr(strval, '/');
574 ASSERT(slash != NULL);
576 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
577 strcmp(slash, "/..") == 0)
578 error = SET_ERROR(EINVAL);
579 break;
581 case ZPOOL_PROP_COMMENT:
582 if ((error = nvpair_value_string(elem, &strval)) != 0)
583 break;
584 for (check = strval; *check != '\0'; check++) {
586 * The kernel doesn't have an easy isprint()
587 * check. For this kernel check, we merely
588 * check ASCII apart from DEL. Fix this if
589 * there is an easy-to-use kernel isprint().
591 if (*check >= 0x7f) {
592 error = SET_ERROR(EINVAL);
593 break;
596 if (strlen(strval) > ZPROP_MAX_COMMENT)
597 error = E2BIG;
598 break;
600 case ZPOOL_PROP_DEDUPDITTO:
601 if (spa_version(spa) < SPA_VERSION_DEDUP)
602 error = SET_ERROR(ENOTSUP);
603 else
604 error = nvpair_value_uint64(elem, &intval);
605 if (error == 0 &&
606 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
607 error = SET_ERROR(EINVAL);
608 break;
611 if (error)
612 break;
615 if (!error && reset_bootfs) {
616 error = nvlist_remove(props,
617 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
619 if (!error) {
620 error = nvlist_add_uint64(props,
621 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
625 return (error);
628 void
629 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
631 char *cachefile;
632 spa_config_dirent_t *dp;
634 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
635 &cachefile) != 0)
636 return;
638 dp = kmem_alloc(sizeof (spa_config_dirent_t),
639 KM_SLEEP);
641 if (cachefile[0] == '\0')
642 dp->scd_path = spa_strdup(spa_config_path);
643 else if (strcmp(cachefile, "none") == 0)
644 dp->scd_path = NULL;
645 else
646 dp->scd_path = spa_strdup(cachefile);
648 list_insert_head(&spa->spa_config_list, dp);
649 if (need_sync)
650 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
654 spa_prop_set(spa_t *spa, nvlist_t *nvp)
656 int error;
657 nvpair_t *elem = NULL;
658 boolean_t need_sync = B_FALSE;
660 if ((error = spa_prop_validate(spa, nvp)) != 0)
661 return (error);
663 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
664 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
666 if (prop == ZPOOL_PROP_CACHEFILE ||
667 prop == ZPOOL_PROP_ALTROOT ||
668 prop == ZPOOL_PROP_READONLY)
669 continue;
671 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
672 uint64_t ver;
674 if (prop == ZPOOL_PROP_VERSION) {
675 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
676 } else {
677 ASSERT(zpool_prop_feature(nvpair_name(elem)));
678 ver = SPA_VERSION_FEATURES;
679 need_sync = B_TRUE;
682 /* Save time if the version is already set. */
683 if (ver == spa_version(spa))
684 continue;
687 * In addition to the pool directory object, we might
688 * create the pool properties object, the features for
689 * read object, the features for write object, or the
690 * feature descriptions object.
692 error = dsl_sync_task(spa->spa_name, NULL,
693 spa_sync_version, &ver,
694 6, ZFS_SPACE_CHECK_RESERVED);
695 if (error)
696 return (error);
697 continue;
700 need_sync = B_TRUE;
701 break;
704 if (need_sync) {
705 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
706 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
709 return (0);
713 * If the bootfs property value is dsobj, clear it.
715 void
716 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
718 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
719 VERIFY(zap_remove(spa->spa_meta_objset,
720 spa->spa_pool_props_object,
721 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
722 spa->spa_bootfs = 0;
726 /*ARGSUSED*/
727 static int
728 spa_change_guid_check(void *arg, dmu_tx_t *tx)
730 uint64_t *newguid = arg;
731 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
732 vdev_t *rvd = spa->spa_root_vdev;
733 uint64_t vdev_state;
735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 vdev_state = rvd->vdev_state;
737 spa_config_exit(spa, SCL_STATE, FTAG);
739 if (vdev_state != VDEV_STATE_HEALTHY)
740 return (SET_ERROR(ENXIO));
742 ASSERT3U(spa_guid(spa), !=, *newguid);
744 return (0);
747 static void
748 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
750 uint64_t *newguid = arg;
751 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752 uint64_t oldguid;
753 vdev_t *rvd = spa->spa_root_vdev;
755 oldguid = spa_guid(spa);
757 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
758 rvd->vdev_guid = *newguid;
759 rvd->vdev_guid_sum += (*newguid - oldguid);
760 vdev_config_dirty(rvd);
761 spa_config_exit(spa, SCL_STATE, FTAG);
763 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
764 oldguid, *newguid);
768 * Change the GUID for the pool. This is done so that we can later
769 * re-import a pool built from a clone of our own vdevs. We will modify
770 * the root vdev's guid, our own pool guid, and then mark all of our
771 * vdevs dirty. Note that we must make sure that all our vdevs are
772 * online when we do this, or else any vdevs that weren't present
773 * would be orphaned from our pool. We are also going to issue a
774 * sysevent to update any watchers.
777 spa_change_guid(spa_t *spa)
779 int error;
780 uint64_t guid;
782 mutex_enter(&spa->spa_vdev_top_lock);
783 mutex_enter(&spa_namespace_lock);
784 guid = spa_generate_guid(NULL);
786 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
787 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
789 if (error == 0) {
790 spa_write_cachefile(spa, B_FALSE, B_TRUE);
791 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
794 mutex_exit(&spa_namespace_lock);
795 mutex_exit(&spa->spa_vdev_top_lock);
797 return (error);
801 * ==========================================================================
802 * SPA state manipulation (open/create/destroy/import/export)
803 * ==========================================================================
806 static int
807 spa_error_entry_compare(const void *a, const void *b)
809 spa_error_entry_t *sa = (spa_error_entry_t *)a;
810 spa_error_entry_t *sb = (spa_error_entry_t *)b;
811 int ret;
813 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
814 sizeof (zbookmark_phys_t));
816 if (ret < 0)
817 return (-1);
818 else if (ret > 0)
819 return (1);
820 else
821 return (0);
825 * Utility function which retrieves copies of the current logs and
826 * re-initializes them in the process.
828 void
829 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
831 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
833 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
834 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
836 avl_create(&spa->spa_errlist_scrub,
837 spa_error_entry_compare, sizeof (spa_error_entry_t),
838 offsetof(spa_error_entry_t, se_avl));
839 avl_create(&spa->spa_errlist_last,
840 spa_error_entry_compare, sizeof (spa_error_entry_t),
841 offsetof(spa_error_entry_t, se_avl));
844 static void
845 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
847 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
848 enum zti_modes mode = ztip->zti_mode;
849 uint_t value = ztip->zti_value;
850 uint_t count = ztip->zti_count;
851 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
852 char name[32];
853 uint_t flags = 0;
854 boolean_t batch = B_FALSE;
856 if (mode == ZTI_MODE_NULL) {
857 tqs->stqs_count = 0;
858 tqs->stqs_taskq = NULL;
859 return;
862 ASSERT3U(count, >, 0);
864 tqs->stqs_count = count;
865 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
867 switch (mode) {
868 case ZTI_MODE_FIXED:
869 ASSERT3U(value, >=, 1);
870 value = MAX(value, 1);
871 break;
873 case ZTI_MODE_BATCH:
874 batch = B_TRUE;
875 flags |= TASKQ_THREADS_CPU_PCT;
876 value = zio_taskq_batch_pct;
877 break;
879 default:
880 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
881 "spa_activate()",
882 zio_type_name[t], zio_taskq_types[q], mode, value);
883 break;
886 for (uint_t i = 0; i < count; i++) {
887 taskq_t *tq;
889 if (count > 1) {
890 (void) snprintf(name, sizeof (name), "%s_%s_%u",
891 zio_type_name[t], zio_taskq_types[q], i);
892 } else {
893 (void) snprintf(name, sizeof (name), "%s_%s",
894 zio_type_name[t], zio_taskq_types[q]);
897 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
898 if (batch)
899 flags |= TASKQ_DC_BATCH;
901 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
902 spa->spa_proc, zio_taskq_basedc, flags);
903 } else {
904 pri_t pri = maxclsyspri;
906 * The write issue taskq can be extremely CPU
907 * intensive. Run it at slightly lower priority
908 * than the other taskqs.
910 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
911 pri--;
913 tq = taskq_create_proc(name, value, pri, 50,
914 INT_MAX, spa->spa_proc, flags);
917 tqs->stqs_taskq[i] = tq;
921 static void
922 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
924 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
926 if (tqs->stqs_taskq == NULL) {
927 ASSERT0(tqs->stqs_count);
928 return;
931 for (uint_t i = 0; i < tqs->stqs_count; i++) {
932 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
933 taskq_destroy(tqs->stqs_taskq[i]);
936 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
937 tqs->stqs_taskq = NULL;
941 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
942 * Note that a type may have multiple discrete taskqs to avoid lock contention
943 * on the taskq itself. In that case we choose which taskq at random by using
944 * the low bits of gethrtime().
946 void
947 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
948 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
950 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
951 taskq_t *tq;
953 ASSERT3P(tqs->stqs_taskq, !=, NULL);
954 ASSERT3U(tqs->stqs_count, !=, 0);
956 if (tqs->stqs_count == 1) {
957 tq = tqs->stqs_taskq[0];
958 } else {
959 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
962 taskq_dispatch_ent(tq, func, arg, flags, ent);
965 static void
966 spa_create_zio_taskqs(spa_t *spa)
968 for (int t = 0; t < ZIO_TYPES; t++) {
969 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
970 spa_taskqs_init(spa, t, q);
975 #ifdef _KERNEL
976 static void
977 spa_thread(void *arg)
979 callb_cpr_t cprinfo;
981 spa_t *spa = arg;
982 user_t *pu = PTOU(curproc);
984 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
985 spa->spa_name);
987 ASSERT(curproc != &p0);
988 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
989 "zpool-%s", spa->spa_name);
990 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
992 /* bind this thread to the requested psrset */
993 if (zio_taskq_psrset_bind != PS_NONE) {
994 pool_lock();
995 mutex_enter(&cpu_lock);
996 mutex_enter(&pidlock);
997 mutex_enter(&curproc->p_lock);
999 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1000 0, NULL, NULL) == 0) {
1001 curthread->t_bind_pset = zio_taskq_psrset_bind;
1002 } else {
1003 cmn_err(CE_WARN,
1004 "Couldn't bind process for zfs pool \"%s\" to "
1005 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1008 mutex_exit(&curproc->p_lock);
1009 mutex_exit(&pidlock);
1010 mutex_exit(&cpu_lock);
1011 pool_unlock();
1014 if (zio_taskq_sysdc) {
1015 sysdc_thread_enter(curthread, 100, 0);
1018 spa->spa_proc = curproc;
1019 spa->spa_did = curthread->t_did;
1021 spa_create_zio_taskqs(spa);
1023 mutex_enter(&spa->spa_proc_lock);
1024 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1026 spa->spa_proc_state = SPA_PROC_ACTIVE;
1027 cv_broadcast(&spa->spa_proc_cv);
1029 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1030 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1031 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1032 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1034 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1035 spa->spa_proc_state = SPA_PROC_GONE;
1036 spa->spa_proc = &p0;
1037 cv_broadcast(&spa->spa_proc_cv);
1038 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1040 mutex_enter(&curproc->p_lock);
1041 lwp_exit();
1043 #endif
1046 * Activate an uninitialized pool.
1048 static void
1049 spa_activate(spa_t *spa, int mode)
1051 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1053 spa->spa_state = POOL_STATE_ACTIVE;
1054 spa->spa_mode = mode;
1056 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1059 /* Try to create a covering process */
1060 mutex_enter(&spa->spa_proc_lock);
1061 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1062 ASSERT(spa->spa_proc == &p0);
1063 spa->spa_did = 0;
1065 /* Only create a process if we're going to be around a while. */
1066 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1067 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1068 NULL, 0) == 0) {
1069 spa->spa_proc_state = SPA_PROC_CREATED;
1070 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1071 cv_wait(&spa->spa_proc_cv,
1072 &spa->spa_proc_lock);
1074 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1075 ASSERT(spa->spa_proc != &p0);
1076 ASSERT(spa->spa_did != 0);
1077 } else {
1078 #ifdef _KERNEL
1079 cmn_err(CE_WARN,
1080 "Couldn't create process for zfs pool \"%s\"\n",
1081 spa->spa_name);
1082 #endif
1085 mutex_exit(&spa->spa_proc_lock);
1087 /* If we didn't create a process, we need to create our taskqs. */
1088 if (spa->spa_proc == &p0) {
1089 spa_create_zio_taskqs(spa);
1092 for (size_t i = 0; i < TXG_SIZE; i++)
1093 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1095 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1096 offsetof(vdev_t, vdev_config_dirty_node));
1097 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1098 offsetof(objset_t, os_evicting_node));
1099 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1100 offsetof(vdev_t, vdev_state_dirty_node));
1102 txg_list_create(&spa->spa_vdev_txg_list, spa,
1103 offsetof(struct vdev, vdev_txg_node));
1105 avl_create(&spa->spa_errlist_scrub,
1106 spa_error_entry_compare, sizeof (spa_error_entry_t),
1107 offsetof(spa_error_entry_t, se_avl));
1108 avl_create(&spa->spa_errlist_last,
1109 spa_error_entry_compare, sizeof (spa_error_entry_t),
1110 offsetof(spa_error_entry_t, se_avl));
1114 * Opposite of spa_activate().
1116 static void
1117 spa_deactivate(spa_t *spa)
1119 ASSERT(spa->spa_sync_on == B_FALSE);
1120 ASSERT(spa->spa_dsl_pool == NULL);
1121 ASSERT(spa->spa_root_vdev == NULL);
1122 ASSERT(spa->spa_async_zio_root == NULL);
1123 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1125 spa_evicting_os_wait(spa);
1127 txg_list_destroy(&spa->spa_vdev_txg_list);
1129 list_destroy(&spa->spa_config_dirty_list);
1130 list_destroy(&spa->spa_evicting_os_list);
1131 list_destroy(&spa->spa_state_dirty_list);
1133 for (int t = 0; t < ZIO_TYPES; t++) {
1134 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1135 spa_taskqs_fini(spa, t, q);
1139 for (size_t i = 0; i < TXG_SIZE; i++) {
1140 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1141 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1142 spa->spa_txg_zio[i] = NULL;
1145 metaslab_class_destroy(spa->spa_normal_class);
1146 spa->spa_normal_class = NULL;
1148 metaslab_class_destroy(spa->spa_log_class);
1149 spa->spa_log_class = NULL;
1152 * If this was part of an import or the open otherwise failed, we may
1153 * still have errors left in the queues. Empty them just in case.
1155 spa_errlog_drain(spa);
1157 avl_destroy(&spa->spa_errlist_scrub);
1158 avl_destroy(&spa->spa_errlist_last);
1160 spa->spa_state = POOL_STATE_UNINITIALIZED;
1162 mutex_enter(&spa->spa_proc_lock);
1163 if (spa->spa_proc_state != SPA_PROC_NONE) {
1164 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1165 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1166 cv_broadcast(&spa->spa_proc_cv);
1167 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1168 ASSERT(spa->spa_proc != &p0);
1169 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1171 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1172 spa->spa_proc_state = SPA_PROC_NONE;
1174 ASSERT(spa->spa_proc == &p0);
1175 mutex_exit(&spa->spa_proc_lock);
1178 * We want to make sure spa_thread() has actually exited the ZFS
1179 * module, so that the module can't be unloaded out from underneath
1180 * it.
1182 if (spa->spa_did != 0) {
1183 thread_join(spa->spa_did);
1184 spa->spa_did = 0;
1189 * Verify a pool configuration, and construct the vdev tree appropriately. This
1190 * will create all the necessary vdevs in the appropriate layout, with each vdev
1191 * in the CLOSED state. This will prep the pool before open/creation/import.
1192 * All vdev validation is done by the vdev_alloc() routine.
1194 static int
1195 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1196 uint_t id, int atype)
1198 nvlist_t **child;
1199 uint_t children;
1200 int error;
1202 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1203 return (error);
1205 if ((*vdp)->vdev_ops->vdev_op_leaf)
1206 return (0);
1208 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1209 &child, &children);
1211 if (error == ENOENT)
1212 return (0);
1214 if (error) {
1215 vdev_free(*vdp);
1216 *vdp = NULL;
1217 return (SET_ERROR(EINVAL));
1220 for (int c = 0; c < children; c++) {
1221 vdev_t *vd;
1222 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1223 atype)) != 0) {
1224 vdev_free(*vdp);
1225 *vdp = NULL;
1226 return (error);
1230 ASSERT(*vdp != NULL);
1232 return (0);
1236 * Opposite of spa_load().
1238 static void
1239 spa_unload(spa_t *spa)
1241 int i;
1243 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1245 spa_load_note(spa, "UNLOADING");
1248 * Stop async tasks.
1250 spa_async_suspend(spa);
1253 * Stop syncing.
1255 if (spa->spa_sync_on) {
1256 txg_sync_stop(spa->spa_dsl_pool);
1257 spa->spa_sync_on = B_FALSE;
1261 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1262 * to call it earlier, before we wait for async i/o to complete.
1263 * This ensures that there is no async metaslab prefetching, by
1264 * calling taskq_wait(mg_taskq).
1266 if (spa->spa_root_vdev != NULL) {
1267 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1268 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1269 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1270 spa_config_exit(spa, SCL_ALL, FTAG);
1274 * Wait for any outstanding async I/O to complete.
1276 if (spa->spa_async_zio_root != NULL) {
1277 for (int i = 0; i < max_ncpus; i++)
1278 (void) zio_wait(spa->spa_async_zio_root[i]);
1279 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1280 spa->spa_async_zio_root = NULL;
1283 if (spa->spa_vdev_removal != NULL) {
1284 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1285 spa->spa_vdev_removal = NULL;
1288 spa_condense_fini(spa);
1290 bpobj_close(&spa->spa_deferred_bpobj);
1292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1295 * Close all vdevs.
1297 if (spa->spa_root_vdev)
1298 vdev_free(spa->spa_root_vdev);
1299 ASSERT(spa->spa_root_vdev == NULL);
1302 * Close the dsl pool.
1304 if (spa->spa_dsl_pool) {
1305 dsl_pool_close(spa->spa_dsl_pool);
1306 spa->spa_dsl_pool = NULL;
1307 spa->spa_meta_objset = NULL;
1310 ddt_unload(spa);
1313 * Drop and purge level 2 cache
1315 spa_l2cache_drop(spa);
1317 for (i = 0; i < spa->spa_spares.sav_count; i++)
1318 vdev_free(spa->spa_spares.sav_vdevs[i]);
1319 if (spa->spa_spares.sav_vdevs) {
1320 kmem_free(spa->spa_spares.sav_vdevs,
1321 spa->spa_spares.sav_count * sizeof (void *));
1322 spa->spa_spares.sav_vdevs = NULL;
1324 if (spa->spa_spares.sav_config) {
1325 nvlist_free(spa->spa_spares.sav_config);
1326 spa->spa_spares.sav_config = NULL;
1328 spa->spa_spares.sav_count = 0;
1330 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1331 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1332 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1334 if (spa->spa_l2cache.sav_vdevs) {
1335 kmem_free(spa->spa_l2cache.sav_vdevs,
1336 spa->spa_l2cache.sav_count * sizeof (void *));
1337 spa->spa_l2cache.sav_vdevs = NULL;
1339 if (spa->spa_l2cache.sav_config) {
1340 nvlist_free(spa->spa_l2cache.sav_config);
1341 spa->spa_l2cache.sav_config = NULL;
1343 spa->spa_l2cache.sav_count = 0;
1345 spa->spa_async_suspended = 0;
1347 spa->spa_indirect_vdevs_loaded = B_FALSE;
1349 if (spa->spa_comment != NULL) {
1350 spa_strfree(spa->spa_comment);
1351 spa->spa_comment = NULL;
1354 spa_config_exit(spa, SCL_ALL, FTAG);
1358 * Load (or re-load) the current list of vdevs describing the active spares for
1359 * this pool. When this is called, we have some form of basic information in
1360 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1361 * then re-generate a more complete list including status information.
1363 void
1364 spa_load_spares(spa_t *spa)
1366 nvlist_t **spares;
1367 uint_t nspares;
1368 int i;
1369 vdev_t *vd, *tvd;
1371 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1374 * First, close and free any existing spare vdevs.
1376 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1377 vd = spa->spa_spares.sav_vdevs[i];
1379 /* Undo the call to spa_activate() below */
1380 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1381 B_FALSE)) != NULL && tvd->vdev_isspare)
1382 spa_spare_remove(tvd);
1383 vdev_close(vd);
1384 vdev_free(vd);
1387 if (spa->spa_spares.sav_vdevs)
1388 kmem_free(spa->spa_spares.sav_vdevs,
1389 spa->spa_spares.sav_count * sizeof (void *));
1391 if (spa->spa_spares.sav_config == NULL)
1392 nspares = 0;
1393 else
1394 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1395 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1397 spa->spa_spares.sav_count = (int)nspares;
1398 spa->spa_spares.sav_vdevs = NULL;
1400 if (nspares == 0)
1401 return;
1404 * Construct the array of vdevs, opening them to get status in the
1405 * process. For each spare, there is potentially two different vdev_t
1406 * structures associated with it: one in the list of spares (used only
1407 * for basic validation purposes) and one in the active vdev
1408 * configuration (if it's spared in). During this phase we open and
1409 * validate each vdev on the spare list. If the vdev also exists in the
1410 * active configuration, then we also mark this vdev as an active spare.
1412 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1413 KM_SLEEP);
1414 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1415 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1416 VDEV_ALLOC_SPARE) == 0);
1417 ASSERT(vd != NULL);
1419 spa->spa_spares.sav_vdevs[i] = vd;
1421 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1422 B_FALSE)) != NULL) {
1423 if (!tvd->vdev_isspare)
1424 spa_spare_add(tvd);
1427 * We only mark the spare active if we were successfully
1428 * able to load the vdev. Otherwise, importing a pool
1429 * with a bad active spare would result in strange
1430 * behavior, because multiple pool would think the spare
1431 * is actively in use.
1433 * There is a vulnerability here to an equally bizarre
1434 * circumstance, where a dead active spare is later
1435 * brought back to life (onlined or otherwise). Given
1436 * the rarity of this scenario, and the extra complexity
1437 * it adds, we ignore the possibility.
1439 if (!vdev_is_dead(tvd))
1440 spa_spare_activate(tvd);
1443 vd->vdev_top = vd;
1444 vd->vdev_aux = &spa->spa_spares;
1446 if (vdev_open(vd) != 0)
1447 continue;
1449 if (vdev_validate_aux(vd) == 0)
1450 spa_spare_add(vd);
1454 * Recompute the stashed list of spares, with status information
1455 * this time.
1457 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1458 DATA_TYPE_NVLIST_ARRAY) == 0);
1460 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1461 KM_SLEEP);
1462 for (i = 0; i < spa->spa_spares.sav_count; i++)
1463 spares[i] = vdev_config_generate(spa,
1464 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1465 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1466 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1467 for (i = 0; i < spa->spa_spares.sav_count; i++)
1468 nvlist_free(spares[i]);
1469 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1473 * Load (or re-load) the current list of vdevs describing the active l2cache for
1474 * this pool. When this is called, we have some form of basic information in
1475 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1476 * then re-generate a more complete list including status information.
1477 * Devices which are already active have their details maintained, and are
1478 * not re-opened.
1480 void
1481 spa_load_l2cache(spa_t *spa)
1483 nvlist_t **l2cache;
1484 uint_t nl2cache;
1485 int i, j, oldnvdevs;
1486 uint64_t guid;
1487 vdev_t *vd, **oldvdevs, **newvdevs;
1488 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1490 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1492 if (sav->sav_config != NULL) {
1493 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1494 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1495 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1496 } else {
1497 nl2cache = 0;
1498 newvdevs = NULL;
1501 oldvdevs = sav->sav_vdevs;
1502 oldnvdevs = sav->sav_count;
1503 sav->sav_vdevs = NULL;
1504 sav->sav_count = 0;
1507 * Process new nvlist of vdevs.
1509 for (i = 0; i < nl2cache; i++) {
1510 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1511 &guid) == 0);
1513 newvdevs[i] = NULL;
1514 for (j = 0; j < oldnvdevs; j++) {
1515 vd = oldvdevs[j];
1516 if (vd != NULL && guid == vd->vdev_guid) {
1518 * Retain previous vdev for add/remove ops.
1520 newvdevs[i] = vd;
1521 oldvdevs[j] = NULL;
1522 break;
1526 if (newvdevs[i] == NULL) {
1528 * Create new vdev
1530 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1531 VDEV_ALLOC_L2CACHE) == 0);
1532 ASSERT(vd != NULL);
1533 newvdevs[i] = vd;
1536 * Commit this vdev as an l2cache device,
1537 * even if it fails to open.
1539 spa_l2cache_add(vd);
1541 vd->vdev_top = vd;
1542 vd->vdev_aux = sav;
1544 spa_l2cache_activate(vd);
1546 if (vdev_open(vd) != 0)
1547 continue;
1549 (void) vdev_validate_aux(vd);
1551 if (!vdev_is_dead(vd))
1552 l2arc_add_vdev(spa, vd);
1557 * Purge vdevs that were dropped
1559 for (i = 0; i < oldnvdevs; i++) {
1560 uint64_t pool;
1562 vd = oldvdevs[i];
1563 if (vd != NULL) {
1564 ASSERT(vd->vdev_isl2cache);
1566 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1567 pool != 0ULL && l2arc_vdev_present(vd))
1568 l2arc_remove_vdev(vd);
1569 vdev_clear_stats(vd);
1570 vdev_free(vd);
1574 if (oldvdevs)
1575 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1577 if (sav->sav_config == NULL)
1578 goto out;
1580 sav->sav_vdevs = newvdevs;
1581 sav->sav_count = (int)nl2cache;
1584 * Recompute the stashed list of l2cache devices, with status
1585 * information this time.
1587 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1588 DATA_TYPE_NVLIST_ARRAY) == 0);
1590 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1591 for (i = 0; i < sav->sav_count; i++)
1592 l2cache[i] = vdev_config_generate(spa,
1593 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1594 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1595 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1596 out:
1597 for (i = 0; i < sav->sav_count; i++)
1598 nvlist_free(l2cache[i]);
1599 if (sav->sav_count)
1600 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1603 static int
1604 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1606 dmu_buf_t *db;
1607 char *packed = NULL;
1608 size_t nvsize = 0;
1609 int error;
1610 *value = NULL;
1612 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1613 if (error != 0)
1614 return (error);
1616 nvsize = *(uint64_t *)db->db_data;
1617 dmu_buf_rele(db, FTAG);
1619 packed = kmem_alloc(nvsize, KM_SLEEP);
1620 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1621 DMU_READ_PREFETCH);
1622 if (error == 0)
1623 error = nvlist_unpack(packed, nvsize, value, 0);
1624 kmem_free(packed, nvsize);
1626 return (error);
1630 * Checks to see if the given vdev could not be opened, in which case we post a
1631 * sysevent to notify the autoreplace code that the device has been removed.
1633 static void
1634 spa_check_removed(vdev_t *vd)
1636 for (int c = 0; c < vd->vdev_children; c++)
1637 spa_check_removed(vd->vdev_child[c]);
1639 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1640 vdev_is_concrete(vd)) {
1641 zfs_post_autoreplace(vd->vdev_spa, vd);
1642 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1646 static void
1647 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1649 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1651 vd->vdev_top_zap = mvd->vdev_top_zap;
1652 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1654 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1655 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1660 * Validate the current config against the MOS config
1662 static boolean_t
1663 spa_config_valid(spa_t *spa, nvlist_t *config)
1665 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1666 nvlist_t *nv;
1668 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1670 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1671 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1673 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1676 * If we're doing a normal import, then build up any additional
1677 * diagnostic information about missing devices in this config.
1678 * We'll pass this up to the user for further processing.
1680 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1681 nvlist_t **child, *nv;
1682 uint64_t idx = 0;
1684 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1685 KM_SLEEP);
1686 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1688 for (int c = 0; c < rvd->vdev_children; c++) {
1689 vdev_t *tvd = rvd->vdev_child[c];
1690 vdev_t *mtvd = mrvd->vdev_child[c];
1692 if (tvd->vdev_ops == &vdev_missing_ops &&
1693 mtvd->vdev_ops != &vdev_missing_ops &&
1694 mtvd->vdev_islog)
1695 child[idx++] = vdev_config_generate(spa, mtvd,
1696 B_FALSE, 0);
1699 if (idx) {
1700 VERIFY(nvlist_add_nvlist_array(nv,
1701 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1702 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1703 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1705 for (int i = 0; i < idx; i++)
1706 nvlist_free(child[i]);
1708 nvlist_free(nv);
1709 kmem_free(child, rvd->vdev_children * sizeof (char **));
1713 * Compare the root vdev tree with the information we have
1714 * from the MOS config (mrvd). Check each top-level vdev
1715 * with the corresponding MOS config top-level (mtvd).
1717 for (int c = 0; c < rvd->vdev_children; c++) {
1718 vdev_t *tvd = rvd->vdev_child[c];
1719 vdev_t *mtvd = mrvd->vdev_child[c];
1722 * Resolve any "missing" vdevs in the current configuration.
1723 * Also trust the MOS config about any "indirect" vdevs.
1724 * If we find that the MOS config has more accurate information
1725 * about the top-level vdev then use that vdev instead.
1727 if ((tvd->vdev_ops == &vdev_missing_ops &&
1728 mtvd->vdev_ops != &vdev_missing_ops) ||
1729 (mtvd->vdev_ops == &vdev_indirect_ops &&
1730 tvd->vdev_ops != &vdev_indirect_ops)) {
1733 * Device specific actions.
1735 if (mtvd->vdev_islog) {
1736 if (!(spa->spa_import_flags &
1737 ZFS_IMPORT_MISSING_LOG)) {
1738 continue;
1741 spa_set_log_state(spa, SPA_LOG_CLEAR);
1742 } else if (mtvd->vdev_ops != &vdev_indirect_ops) {
1743 continue;
1747 * Swap the missing vdev with the data we were
1748 * able to obtain from the MOS config.
1750 vdev_remove_child(rvd, tvd);
1751 vdev_remove_child(mrvd, mtvd);
1753 vdev_add_child(rvd, mtvd);
1754 vdev_add_child(mrvd, tvd);
1756 vdev_reopen(rvd);
1757 } else {
1758 if (mtvd->vdev_islog) {
1760 * Load the slog device's state from the MOS
1761 * config since it's possible that the label
1762 * does not contain the most up-to-date
1763 * information.
1765 vdev_load_log_state(tvd, mtvd);
1766 vdev_reopen(tvd);
1770 * Per-vdev ZAP info is stored exclusively in the MOS.
1772 spa_config_valid_zaps(tvd, mtvd);
1776 * Never trust this info from userland; always use what's
1777 * in the MOS. This prevents it from getting out of sync
1778 * with the rest of the info in the MOS.
1780 tvd->vdev_removing = mtvd->vdev_removing;
1781 tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
1784 vdev_free(mrvd);
1785 spa_config_exit(spa, SCL_ALL, FTAG);
1788 * Ensure we were able to validate the config.
1790 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1794 * Check for missing log devices
1796 static boolean_t
1797 spa_check_logs(spa_t *spa)
1799 boolean_t rv = B_FALSE;
1800 dsl_pool_t *dp = spa_get_dsl(spa);
1802 switch (spa->spa_log_state) {
1803 case SPA_LOG_MISSING:
1804 /* need to recheck in case slog has been restored */
1805 case SPA_LOG_UNKNOWN:
1806 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1807 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1808 if (rv)
1809 spa_set_log_state(spa, SPA_LOG_MISSING);
1810 break;
1812 return (rv);
1815 static boolean_t
1816 spa_passivate_log(spa_t *spa)
1818 vdev_t *rvd = spa->spa_root_vdev;
1819 boolean_t slog_found = B_FALSE;
1821 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1823 if (!spa_has_slogs(spa))
1824 return (B_FALSE);
1826 for (int c = 0; c < rvd->vdev_children; c++) {
1827 vdev_t *tvd = rvd->vdev_child[c];
1828 metaslab_group_t *mg = tvd->vdev_mg;
1830 if (tvd->vdev_islog) {
1831 metaslab_group_passivate(mg);
1832 slog_found = B_TRUE;
1836 return (slog_found);
1839 static void
1840 spa_activate_log(spa_t *spa)
1842 vdev_t *rvd = spa->spa_root_vdev;
1844 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1846 for (int c = 0; c < rvd->vdev_children; c++) {
1847 vdev_t *tvd = rvd->vdev_child[c];
1848 metaslab_group_t *mg = tvd->vdev_mg;
1850 if (tvd->vdev_islog)
1851 metaslab_group_activate(mg);
1856 spa_reset_logs(spa_t *spa)
1858 int error;
1860 error = dmu_objset_find(spa_name(spa), zil_reset,
1861 NULL, DS_FIND_CHILDREN);
1862 if (error == 0) {
1864 * We successfully offlined the log device, sync out the
1865 * current txg so that the "stubby" block can be removed
1866 * by zil_sync().
1868 txg_wait_synced(spa->spa_dsl_pool, 0);
1870 return (error);
1873 static void
1874 spa_aux_check_removed(spa_aux_vdev_t *sav)
1876 for (int i = 0; i < sav->sav_count; i++)
1877 spa_check_removed(sav->sav_vdevs[i]);
1880 void
1881 spa_claim_notify(zio_t *zio)
1883 spa_t *spa = zio->io_spa;
1885 if (zio->io_error)
1886 return;
1888 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1889 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1890 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1891 mutex_exit(&spa->spa_props_lock);
1894 typedef struct spa_load_error {
1895 uint64_t sle_meta_count;
1896 uint64_t sle_data_count;
1897 } spa_load_error_t;
1899 static void
1900 spa_load_verify_done(zio_t *zio)
1902 blkptr_t *bp = zio->io_bp;
1903 spa_load_error_t *sle = zio->io_private;
1904 dmu_object_type_t type = BP_GET_TYPE(bp);
1905 int error = zio->io_error;
1906 spa_t *spa = zio->io_spa;
1908 abd_free(zio->io_abd);
1909 if (error) {
1910 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1911 type != DMU_OT_INTENT_LOG)
1912 atomic_inc_64(&sle->sle_meta_count);
1913 else
1914 atomic_inc_64(&sle->sle_data_count);
1917 mutex_enter(&spa->spa_scrub_lock);
1918 spa->spa_scrub_inflight--;
1919 cv_broadcast(&spa->spa_scrub_io_cv);
1920 mutex_exit(&spa->spa_scrub_lock);
1924 * Maximum number of concurrent scrub i/os to create while verifying
1925 * a pool while importing it.
1927 int spa_load_verify_maxinflight = 10000;
1928 boolean_t spa_load_verify_metadata = B_TRUE;
1929 boolean_t spa_load_verify_data = B_TRUE;
1931 /*ARGSUSED*/
1932 static int
1933 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1934 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1936 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1937 return (0);
1939 * Note: normally this routine will not be called if
1940 * spa_load_verify_metadata is not set. However, it may be useful
1941 * to manually set the flag after the traversal has begun.
1943 if (!spa_load_verify_metadata)
1944 return (0);
1945 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1946 return (0);
1948 zio_t *rio = arg;
1949 size_t size = BP_GET_PSIZE(bp);
1951 mutex_enter(&spa->spa_scrub_lock);
1952 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1953 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1954 spa->spa_scrub_inflight++;
1955 mutex_exit(&spa->spa_scrub_lock);
1957 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1958 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1959 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1960 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1961 return (0);
1964 /* ARGSUSED */
1966 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1968 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1969 return (SET_ERROR(ENAMETOOLONG));
1971 return (0);
1974 static int
1975 spa_load_verify(spa_t *spa)
1977 zio_t *rio;
1978 spa_load_error_t sle = { 0 };
1979 zpool_rewind_policy_t policy;
1980 boolean_t verify_ok = B_FALSE;
1981 int error = 0;
1983 zpool_get_rewind_policy(spa->spa_config, &policy);
1985 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1986 return (0);
1988 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1989 error = dmu_objset_find_dp(spa->spa_dsl_pool,
1990 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1991 DS_FIND_CHILDREN);
1992 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1993 if (error != 0)
1994 return (error);
1996 rio = zio_root(spa, NULL, &sle,
1997 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1999 if (spa_load_verify_metadata) {
2000 if (spa->spa_extreme_rewind) {
2001 spa_load_note(spa, "performing a complete scan of the "
2002 "pool since extreme rewind is on. This may take "
2003 "a very long time.\n (spa_load_verify_data=%u, "
2004 "spa_load_verify_metadata=%u)",
2005 spa_load_verify_data, spa_load_verify_metadata);
2007 error = traverse_pool(spa, spa->spa_verify_min_txg,
2008 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2009 spa_load_verify_cb, rio);
2012 (void) zio_wait(rio);
2014 spa->spa_load_meta_errors = sle.sle_meta_count;
2015 spa->spa_load_data_errors = sle.sle_data_count;
2017 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2018 sle.sle_data_count <= policy.zrp_maxdata) {
2019 int64_t loss = 0;
2021 verify_ok = B_TRUE;
2022 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2023 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2025 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2026 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2027 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2028 VERIFY(nvlist_add_int64(spa->spa_load_info,
2029 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2030 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2031 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2032 } else {
2033 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2036 if (error) {
2037 if (error != ENXIO && error != EIO)
2038 error = SET_ERROR(EIO);
2039 return (error);
2042 return (verify_ok ? 0 : EIO);
2046 * Find a value in the pool props object.
2048 static void
2049 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2051 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2052 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2056 * Find a value in the pool directory object.
2058 static int
2059 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2061 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2062 name, sizeof (uint64_t), 1, val);
2064 if (error != 0 && (error != ENOENT || log_enoent)) {
2065 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2066 "[error=%d]", name, error);
2069 return (error);
2072 static int
2073 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2075 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2076 return (SET_ERROR(err));
2080 * Fix up config after a partly-completed split. This is done with the
2081 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2082 * pool have that entry in their config, but only the splitting one contains
2083 * a list of all the guids of the vdevs that are being split off.
2085 * This function determines what to do with that list: either rejoin
2086 * all the disks to the pool, or complete the splitting process. To attempt
2087 * the rejoin, each disk that is offlined is marked online again, and
2088 * we do a reopen() call. If the vdev label for every disk that was
2089 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2090 * then we call vdev_split() on each disk, and complete the split.
2092 * Otherwise we leave the config alone, with all the vdevs in place in
2093 * the original pool.
2095 static void
2096 spa_try_repair(spa_t *spa, nvlist_t *config)
2098 uint_t extracted;
2099 uint64_t *glist;
2100 uint_t i, gcount;
2101 nvlist_t *nvl;
2102 vdev_t **vd;
2103 boolean_t attempt_reopen;
2105 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2106 return;
2108 /* check that the config is complete */
2109 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2110 &glist, &gcount) != 0)
2111 return;
2113 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2115 /* attempt to online all the vdevs & validate */
2116 attempt_reopen = B_TRUE;
2117 for (i = 0; i < gcount; i++) {
2118 if (glist[i] == 0) /* vdev is hole */
2119 continue;
2121 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2122 if (vd[i] == NULL) {
2124 * Don't bother attempting to reopen the disks;
2125 * just do the split.
2127 attempt_reopen = B_FALSE;
2128 } else {
2129 /* attempt to re-online it */
2130 vd[i]->vdev_offline = B_FALSE;
2134 if (attempt_reopen) {
2135 vdev_reopen(spa->spa_root_vdev);
2137 /* check each device to see what state it's in */
2138 for (extracted = 0, i = 0; i < gcount; i++) {
2139 if (vd[i] != NULL &&
2140 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2141 break;
2142 ++extracted;
2147 * If every disk has been moved to the new pool, or if we never
2148 * even attempted to look at them, then we split them off for
2149 * good.
2151 if (!attempt_reopen || gcount == extracted) {
2152 for (i = 0; i < gcount; i++)
2153 if (vd[i] != NULL)
2154 vdev_split(vd[i]);
2155 vdev_reopen(spa->spa_root_vdev);
2158 kmem_free(vd, gcount * sizeof (vdev_t *));
2161 static int
2162 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2163 boolean_t trust_config)
2165 nvlist_t *config = spa->spa_config;
2166 char *ereport = FM_EREPORT_ZFS_POOL;
2167 char *comment;
2168 int error;
2169 uint64_t pool_guid;
2170 nvlist_t *nvl;
2172 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2173 return (SET_ERROR(EINVAL));
2175 ASSERT(spa->spa_comment == NULL);
2176 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2177 spa->spa_comment = spa_strdup(comment);
2180 * Versioning wasn't explicitly added to the label until later, so if
2181 * it's not present treat it as the initial version.
2183 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2184 &spa->spa_ubsync.ub_version) != 0)
2185 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2187 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2188 &spa->spa_config_txg);
2190 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2191 spa_guid_exists(pool_guid, 0)) {
2192 error = SET_ERROR(EEXIST);
2193 } else {
2194 spa->spa_config_guid = pool_guid;
2196 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2197 &nvl) == 0) {
2198 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2199 KM_SLEEP) == 0);
2202 nvlist_free(spa->spa_load_info);
2203 spa->spa_load_info = fnvlist_alloc();
2205 gethrestime(&spa->spa_loaded_ts);
2206 error = spa_load_impl(spa, pool_guid, config, state, type,
2207 trust_config, &ereport);
2211 * Don't count references from objsets that are already closed
2212 * and are making their way through the eviction process.
2214 spa_evicting_os_wait(spa);
2215 spa->spa_minref = refcount_count(&spa->spa_refcount);
2216 if (error) {
2217 if (error != EEXIST) {
2218 spa->spa_loaded_ts.tv_sec = 0;
2219 spa->spa_loaded_ts.tv_nsec = 0;
2221 if (error != EBADF) {
2222 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2225 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2226 spa->spa_ena = 0;
2228 return (error);
2232 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2233 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2234 * spa's per-vdev ZAP list.
2236 static uint64_t
2237 vdev_count_verify_zaps(vdev_t *vd)
2239 spa_t *spa = vd->vdev_spa;
2240 uint64_t total = 0;
2241 if (vd->vdev_top_zap != 0) {
2242 total++;
2243 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2244 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2246 if (vd->vdev_leaf_zap != 0) {
2247 total++;
2248 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2249 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2252 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2253 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2256 return (total);
2259 static int
2260 spa_ld_parse_config(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2261 spa_import_type_t type)
2263 int error = 0;
2264 nvlist_t *nvtree = NULL;
2265 int parse;
2266 vdev_t *rvd;
2268 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2269 spa_load_failed(spa, "invalid config provided: '%s' missing",
2270 ZPOOL_CONFIG_VDEV_TREE);
2271 return (SET_ERROR(EINVAL));
2274 parse = (type == SPA_IMPORT_EXISTING ?
2275 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2278 * Create "The Godfather" zio to hold all async IOs
2280 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2281 KM_SLEEP);
2282 for (int i = 0; i < max_ncpus; i++) {
2283 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2284 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2285 ZIO_FLAG_GODFATHER);
2289 * Parse the configuration into a vdev tree. We explicitly set the
2290 * value that will be returned by spa_version() since parsing the
2291 * configuration requires knowing the version number.
2293 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2294 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2295 spa_config_exit(spa, SCL_ALL, FTAG);
2297 if (error != 0) {
2298 spa_load_failed(spa, "unable to parse config [error=%d]",
2299 error);
2300 return (error);
2303 ASSERT(spa->spa_root_vdev == rvd);
2304 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2305 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2307 if (type != SPA_IMPORT_ASSEMBLE) {
2308 ASSERT(spa_guid(spa) == pool_guid);
2311 return (0);
2314 static int
2315 spa_ld_open_vdevs(spa_t *spa)
2317 int error = 0;
2319 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2320 error = vdev_open(spa->spa_root_vdev);
2321 spa_config_exit(spa, SCL_ALL, FTAG);
2322 if (error != 0) {
2323 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2324 error);
2327 return (error);
2330 static int
2331 spa_ld_validate_vdevs(spa_t *spa, spa_import_type_t type,
2332 boolean_t trust_config)
2334 int error = 0;
2335 vdev_t *rvd = spa->spa_root_vdev;
2338 * We need to validate the vdev labels against the configuration that
2339 * we have in hand, which is dependent on the setting of trust_config.
2340 * If trust_config is true then we're validating the vdev labels based
2341 * on that config. Otherwise, we're validating against the cached
2342 * config (zpool.cache) that was read when we loaded the zfs module, and
2343 * then later we will recursively call spa_load() and validate against
2344 * the vdev config.
2346 * If we're assembling a new pool that's been split off from an
2347 * existing pool, the labels haven't yet been updated so we skip
2348 * validation for now.
2350 if (type != SPA_IMPORT_ASSEMBLE) {
2351 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2352 error = vdev_validate(rvd, trust_config);
2353 spa_config_exit(spa, SCL_ALL, FTAG);
2355 if (error != 0) {
2356 spa_load_failed(spa, "vdev_validate failed [error=%d]",
2357 error);
2358 return (error);
2361 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2362 spa_load_failed(spa, "cannot open vdev tree after "
2363 "invalidating some vdevs");
2364 return (SET_ERROR(ENXIO));
2368 return (0);
2371 static int
2372 spa_ld_select_uberblock(spa_t *spa, nvlist_t *config, spa_import_type_t type,
2373 boolean_t trust_config)
2375 vdev_t *rvd = spa->spa_root_vdev;
2376 nvlist_t *label;
2377 uberblock_t *ub = &spa->spa_uberblock;
2378 uint64_t children;
2381 * Find the best uberblock.
2383 vdev_uberblock_load(rvd, ub, &label);
2386 * If we weren't able to find a single valid uberblock, return failure.
2388 if (ub->ub_txg == 0) {
2389 nvlist_free(label);
2390 spa_load_failed(spa, "no valid uberblock found");
2391 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2394 spa_load_note(spa, "using uberblock with txg=%llu",
2395 (u_longlong_t)ub->ub_txg);
2398 * If the pool has an unsupported version we can't open it.
2400 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2401 nvlist_free(label);
2402 spa_load_failed(spa, "version %llu is not supported",
2403 (u_longlong_t)ub->ub_version);
2404 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2407 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2408 nvlist_t *features;
2411 * If we weren't able to find what's necessary for reading the
2412 * MOS in the label, return failure.
2414 if (label == NULL) {
2415 spa_load_failed(spa, "label config unavailable");
2416 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2417 ENXIO));
2420 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2421 &features) != 0) {
2422 nvlist_free(label);
2423 spa_load_failed(spa, "invalid label: '%s' missing",
2424 ZPOOL_CONFIG_FEATURES_FOR_READ);
2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2426 ENXIO));
2430 * Update our in-core representation with the definitive values
2431 * from the label.
2433 nvlist_free(spa->spa_label_features);
2434 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2437 nvlist_free(label);
2440 * Look through entries in the label nvlist's features_for_read. If
2441 * there is a feature listed there which we don't understand then we
2442 * cannot open a pool.
2444 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2445 nvlist_t *unsup_feat;
2447 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2450 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2451 NULL); nvp != NULL;
2452 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2453 if (!zfeature_is_supported(nvpair_name(nvp))) {
2454 VERIFY(nvlist_add_string(unsup_feat,
2455 nvpair_name(nvp), "") == 0);
2459 if (!nvlist_empty(unsup_feat)) {
2460 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2461 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2462 nvlist_free(unsup_feat);
2463 spa_load_failed(spa, "some features are unsupported");
2464 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2465 ENOTSUP));
2468 nvlist_free(unsup_feat);
2472 * If the vdev guid sum doesn't match the uberblock, we have an
2473 * incomplete configuration. We first check to see if the pool
2474 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2475 * If it is, defer the vdev_guid_sum check till later so we
2476 * can handle missing vdevs.
2478 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2479 &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
2480 rvd->vdev_guid_sum != ub->ub_guid_sum) {
2481 spa_load_failed(spa, "guid sum in config doesn't match guid "
2482 "sum in uberblock (%llu != %llu)",
2483 (u_longlong_t)rvd->vdev_guid_sum,
2484 (u_longlong_t)ub->ub_guid_sum);
2485 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2488 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2489 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2490 spa_try_repair(spa, config);
2491 spa_config_exit(spa, SCL_ALL, FTAG);
2492 nvlist_free(spa->spa_config_splitting);
2493 spa->spa_config_splitting = NULL;
2497 * Initialize internal SPA structures.
2499 spa->spa_state = POOL_STATE_ACTIVE;
2500 spa->spa_ubsync = spa->spa_uberblock;
2501 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2502 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2503 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2504 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2505 spa->spa_claim_max_txg = spa->spa_first_txg;
2506 spa->spa_prev_software_version = ub->ub_software_version;
2508 return (0);
2511 static int
2512 spa_ld_open_rootbp(spa_t *spa)
2514 int error = 0;
2515 vdev_t *rvd = spa->spa_root_vdev;
2517 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2518 if (error != 0) {
2519 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2520 "[error=%d]", error);
2521 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2525 return (0);
2528 static int
2529 spa_ld_validate_config(spa_t *spa, spa_import_type_t type)
2531 vdev_t *rvd = spa->spa_root_vdev;
2533 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2534 != 0)
2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 * Validate the config, using the MOS config to fill in any
2539 * information which might be missing. If we fail to validate
2540 * the config then declare the pool unfit for use. If we're
2541 * assembling a pool from a split, the log is not transferred
2542 * over.
2544 if (type != SPA_IMPORT_ASSEMBLE) {
2545 nvlist_t *mos_config;
2546 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2547 != 0) {
2548 spa_load_failed(spa, "unable to retrieve MOS config");
2549 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552 if (!spa_config_valid(spa, mos_config)) {
2553 nvlist_free(mos_config);
2554 spa_load_failed(spa, "mismatch between config provided "
2555 "and config stored in MOS");
2556 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2557 ENXIO));
2559 nvlist_free(mos_config);
2562 * Now that we've validated the config, check the state of the
2563 * root vdev. If it can't be opened, it indicates one or
2564 * more toplevel vdevs are faulted.
2566 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2567 spa_load_failed(spa, "some top vdevs are unavailable");
2568 return (SET_ERROR(ENXIO));
2572 return (0);
2575 static int
2576 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2578 int error = 0;
2579 vdev_t *rvd = spa->spa_root_vdev;
2582 * Everything that we read before spa_remove_init() must be stored
2583 * on concreted vdevs. Therefore we do this as early as possible.
2585 error = spa_remove_init(spa);
2586 if (error != 0) {
2587 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2588 error);
2589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593 * Retrieve information needed to condense indirect vdev mappings.
2595 error = spa_condense_init(spa);
2596 if (error != 0) {
2597 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2598 error);
2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2602 return (0);
2605 static int
2606 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2608 int error = 0;
2609 vdev_t *rvd = spa->spa_root_vdev;
2611 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2612 boolean_t missing_feat_read = B_FALSE;
2613 nvlist_t *unsup_feat, *enabled_feat;
2615 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2616 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2620 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2621 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2625 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2626 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2627 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2630 enabled_feat = fnvlist_alloc();
2631 unsup_feat = fnvlist_alloc();
2633 if (!spa_features_check(spa, B_FALSE,
2634 unsup_feat, enabled_feat))
2635 missing_feat_read = B_TRUE;
2637 if (spa_writeable(spa) ||
2638 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2639 if (!spa_features_check(spa, B_TRUE,
2640 unsup_feat, enabled_feat)) {
2641 *missing_feat_writep = B_TRUE;
2645 fnvlist_add_nvlist(spa->spa_load_info,
2646 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2648 if (!nvlist_empty(unsup_feat)) {
2649 fnvlist_add_nvlist(spa->spa_load_info,
2650 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2653 fnvlist_free(enabled_feat);
2654 fnvlist_free(unsup_feat);
2656 if (!missing_feat_read) {
2657 fnvlist_add_boolean(spa->spa_load_info,
2658 ZPOOL_CONFIG_CAN_RDONLY);
2662 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2663 * twofold: to determine whether the pool is available for
2664 * import in read-write mode and (if it is not) whether the
2665 * pool is available for import in read-only mode. If the pool
2666 * is available for import in read-write mode, it is displayed
2667 * as available in userland; if it is not available for import
2668 * in read-only mode, it is displayed as unavailable in
2669 * userland. If the pool is available for import in read-only
2670 * mode but not read-write mode, it is displayed as unavailable
2671 * in userland with a special note that the pool is actually
2672 * available for open in read-only mode.
2674 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2675 * missing a feature for write, we must first determine whether
2676 * the pool can be opened read-only before returning to
2677 * userland in order to know whether to display the
2678 * abovementioned note.
2680 if (missing_feat_read || (*missing_feat_writep &&
2681 spa_writeable(spa))) {
2682 spa_load_failed(spa, "pool uses unsupported features");
2683 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2684 ENOTSUP));
2688 * Load refcounts for ZFS features from disk into an in-memory
2689 * cache during SPA initialization.
2691 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2692 uint64_t refcount;
2694 error = feature_get_refcount_from_disk(spa,
2695 &spa_feature_table[i], &refcount);
2696 if (error == 0) {
2697 spa->spa_feat_refcount_cache[i] = refcount;
2698 } else if (error == ENOTSUP) {
2699 spa->spa_feat_refcount_cache[i] =
2700 SPA_FEATURE_DISABLED;
2701 } else {
2702 spa_load_failed(spa, "error getting refcount "
2703 "for feature %s [error=%d]",
2704 spa_feature_table[i].fi_guid, error);
2705 return (spa_vdev_err(rvd,
2706 VDEV_AUX_CORRUPT_DATA, EIO));
2711 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2712 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2713 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
2714 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2717 return (0);
2720 static int
2721 spa_ld_load_special_directories(spa_t *spa)
2723 int error = 0;
2724 vdev_t *rvd = spa->spa_root_vdev;
2726 spa->spa_is_initializing = B_TRUE;
2727 error = dsl_pool_open(spa->spa_dsl_pool);
2728 spa->spa_is_initializing = B_FALSE;
2729 if (error != 0) {
2730 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
2731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2734 return (0);
2737 static int
2738 spa_ld_prepare_for_reload(spa_t *spa, int orig_mode)
2740 vdev_t *rvd = spa->spa_root_vdev;
2742 uint64_t hostid;
2743 nvlist_t *policy = NULL;
2744 nvlist_t *mos_config;
2746 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2747 spa_load_failed(spa, "unable to retrieve MOS config");
2748 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2751 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2752 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2753 char *hostname;
2754 unsigned long myhostid = 0;
2756 VERIFY(nvlist_lookup_string(mos_config,
2757 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2759 #ifdef _KERNEL
2760 myhostid = zone_get_hostid(NULL);
2761 #else /* _KERNEL */
2763 * We're emulating the system's hostid in userland, so
2764 * we can't use zone_get_hostid().
2766 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2767 #endif /* _KERNEL */
2768 if (hostid != 0 && myhostid != 0 &&
2769 hostid != myhostid) {
2770 nvlist_free(mos_config);
2771 cmn_err(CE_WARN, "pool '%s' could not be "
2772 "loaded as it was last accessed by "
2773 "another system (host: %s hostid: 0x%lx). "
2774 "See: http://illumos.org/msg/ZFS-8000-EY",
2775 spa_name(spa), hostname,
2776 (unsigned long)hostid);
2777 return (SET_ERROR(EBADF));
2780 if (nvlist_lookup_nvlist(spa->spa_config,
2781 ZPOOL_REWIND_POLICY, &policy) == 0)
2782 VERIFY(nvlist_add_nvlist(mos_config,
2783 ZPOOL_REWIND_POLICY, policy) == 0);
2785 spa_config_set(spa, mos_config);
2786 spa_unload(spa);
2787 spa_deactivate(spa);
2788 spa_activate(spa, orig_mode);
2790 return (0);
2793 static int
2794 spa_ld_get_props(spa_t *spa)
2796 int error = 0;
2797 uint64_t obj;
2798 vdev_t *rvd = spa->spa_root_vdev;
2800 /* Grab the secret checksum salt from the MOS. */
2801 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2802 DMU_POOL_CHECKSUM_SALT, 1,
2803 sizeof (spa->spa_cksum_salt.zcs_bytes),
2804 spa->spa_cksum_salt.zcs_bytes);
2805 if (error == ENOENT) {
2806 /* Generate a new salt for subsequent use */
2807 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2808 sizeof (spa->spa_cksum_salt.zcs_bytes));
2809 } else if (error != 0) {
2810 spa_load_failed(spa, "unable to retrieve checksum salt from "
2811 "MOS [error=%d]", error);
2812 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2815 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
2816 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2817 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2818 if (error != 0) {
2819 spa_load_failed(spa, "error opening deferred-frees bpobj "
2820 "[error=%d]", error);
2821 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2825 * Load the bit that tells us to use the new accounting function
2826 * (raid-z deflation). If we have an older pool, this will not
2827 * be present.
2829 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
2830 if (error != 0 && error != ENOENT)
2831 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2833 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2834 &spa->spa_creation_version, B_FALSE);
2835 if (error != 0 && error != ENOENT)
2836 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2839 * Load the persistent error log. If we have an older pool, this will
2840 * not be present.
2842 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
2843 B_FALSE);
2844 if (error != 0 && error != ENOENT)
2845 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2847 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2848 &spa->spa_errlog_scrub, B_FALSE);
2849 if (error != 0 && error != ENOENT)
2850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2853 * Load the history object. If we have an older pool, this
2854 * will not be present.
2856 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
2857 if (error != 0 && error != ENOENT)
2858 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2861 * Load the per-vdev ZAP map. If we have an older pool, this will not
2862 * be present; in this case, defer its creation to a later time to
2863 * avoid dirtying the MOS this early / out of sync context. See
2864 * spa_sync_config_object.
2867 /* The sentinel is only available in the MOS config. */
2868 nvlist_t *mos_config;
2869 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2870 spa_load_failed(spa, "unable to retrieve MOS config");
2871 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2874 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2875 &spa->spa_all_vdev_zaps, B_FALSE);
2877 if (error == ENOENT) {
2878 VERIFY(!nvlist_exists(mos_config,
2879 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2880 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2881 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2882 } else if (error != 0) {
2883 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2884 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2886 * An older version of ZFS overwrote the sentinel value, so
2887 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2888 * destruction to later; see spa_sync_config_object.
2890 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2892 * We're assuming that no vdevs have had their ZAPs created
2893 * before this. Better be sure of it.
2895 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2897 nvlist_free(mos_config);
2899 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2901 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
2902 B_FALSE);
2903 if (error && error != ENOENT)
2904 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2906 if (error == 0) {
2907 uint64_t autoreplace;
2909 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2910 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2911 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2912 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2913 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2914 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2915 &spa->spa_dedup_ditto);
2917 spa->spa_autoreplace = (autoreplace != 0);
2920 return (0);
2923 static int
2924 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
2926 int error = 0;
2927 vdev_t *rvd = spa->spa_root_vdev;
2930 * If we're assembling the pool from the split-off vdevs of
2931 * an existing pool, we don't want to attach the spares & cache
2932 * devices.
2936 * Load any hot spares for this pool.
2938 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
2939 B_FALSE);
2940 if (error != 0 && error != ENOENT)
2941 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2942 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2943 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2944 if (load_nvlist(spa, spa->spa_spares.sav_object,
2945 &spa->spa_spares.sav_config) != 0) {
2946 spa_load_failed(spa, "error loading spares nvlist");
2947 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2951 spa_load_spares(spa);
2952 spa_config_exit(spa, SCL_ALL, FTAG);
2953 } else if (error == 0) {
2954 spa->spa_spares.sav_sync = B_TRUE;
2958 * Load any level 2 ARC devices for this pool.
2960 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2961 &spa->spa_l2cache.sav_object, B_FALSE);
2962 if (error != 0 && error != ENOENT)
2963 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2964 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2965 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2966 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2967 &spa->spa_l2cache.sav_config) != 0) {
2968 spa_load_failed(spa, "error loading l2cache nvlist");
2969 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2972 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2973 spa_load_l2cache(spa);
2974 spa_config_exit(spa, SCL_ALL, FTAG);
2975 } else if (error == 0) {
2976 spa->spa_l2cache.sav_sync = B_TRUE;
2979 return (0);
2982 static int
2983 spa_ld_load_vdev_metadata(spa_t *spa)
2985 int error = 0;
2986 vdev_t *rvd = spa->spa_root_vdev;
2989 * If the 'autoreplace' property is set, then post a resource notifying
2990 * the ZFS DE that it should not issue any faults for unopenable
2991 * devices. We also iterate over the vdevs, and post a sysevent for any
2992 * unopenable vdevs so that the normal autoreplace handler can take
2993 * over.
2995 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
2996 spa_check_removed(spa->spa_root_vdev);
2998 * For the import case, this is done in spa_import(), because
2999 * at this point we're using the spare definitions from
3000 * the MOS config, not necessarily from the userland config.
3002 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3003 spa_aux_check_removed(&spa->spa_spares);
3004 spa_aux_check_removed(&spa->spa_l2cache);
3009 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3011 error = vdev_load(rvd);
3012 if (error != 0) {
3013 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3014 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3018 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3020 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3021 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3022 spa_config_exit(spa, SCL_ALL, FTAG);
3024 return (0);
3027 static int
3028 spa_ld_load_dedup_tables(spa_t *spa)
3030 int error = 0;
3031 vdev_t *rvd = spa->spa_root_vdev;
3033 error = ddt_load(spa);
3034 if (error != 0) {
3035 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3036 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3039 return (0);
3042 static int
3043 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3045 vdev_t *rvd = spa->spa_root_vdev;
3047 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3048 boolean_t missing = spa_check_logs(spa);
3049 if (missing) {
3050 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3051 spa_load_failed(spa, "spa_check_logs failed");
3052 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3056 return (0);
3059 static int
3060 spa_ld_verify_pool_data(spa_t *spa)
3062 int error = 0;
3063 vdev_t *rvd = spa->spa_root_vdev;
3066 * We've successfully opened the pool, verify that we're ready
3067 * to start pushing transactions.
3069 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3070 error = spa_load_verify(spa);
3071 if (error != 0) {
3072 spa_load_failed(spa, "spa_load_verify failed "
3073 "[error=%d]", error);
3074 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3075 error));
3079 return (0);
3082 static void
3083 spa_ld_claim_log_blocks(spa_t *spa)
3085 dmu_tx_t *tx;
3086 dsl_pool_t *dp = spa_get_dsl(spa);
3089 * Claim log blocks that haven't been committed yet.
3090 * This must all happen in a single txg.
3091 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3092 * invoked from zil_claim_log_block()'s i/o done callback.
3093 * Price of rollback is that we abandon the log.
3095 spa->spa_claiming = B_TRUE;
3097 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3098 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3099 zil_claim, tx, DS_FIND_CHILDREN);
3100 dmu_tx_commit(tx);
3102 spa->spa_claiming = B_FALSE;
3104 spa_set_log_state(spa, SPA_LOG_GOOD);
3107 static void
3108 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg)
3110 vdev_t *rvd = spa->spa_root_vdev;
3111 int need_update = B_FALSE;
3114 * If the config cache is stale, or we have uninitialized
3115 * metaslabs (see spa_vdev_add()), then update the config.
3117 * If this is a verbatim import, trust the current
3118 * in-core spa_config and update the disk labels.
3120 if (config_cache_txg != spa->spa_config_txg ||
3121 spa->spa_load_state == SPA_LOAD_IMPORT ||
3122 spa->spa_load_state == SPA_LOAD_RECOVER ||
3123 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3124 need_update = B_TRUE;
3126 for (int c = 0; c < rvd->vdev_children; c++)
3127 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3128 need_update = B_TRUE;
3131 * Update the config cache asychronously in case we're the
3132 * root pool, in which case the config cache isn't writable yet.
3134 if (need_update)
3135 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3139 * Load an existing storage pool, using the config provided. This config
3140 * describes which vdevs are part of the pool and is later validated against
3141 * partial configs present in each vdev's label and an entire copy of the
3142 * config stored in the MOS.
3144 static int
3145 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
3146 spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
3147 char **ereport)
3149 int error = 0;
3150 uint64_t config_cache_txg = spa->spa_config_txg;
3151 int orig_mode = spa->spa_mode;
3152 boolean_t missing_feat_write = B_FALSE;
3154 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3156 spa->spa_load_state = state;
3157 spa_load_note(spa, "LOADING");
3160 * If this is an untrusted config, first access the pool in read-only
3161 * mode. We will then retrieve a trusted copy of the config from the MOS
3162 * and use it to reopen the pool in read-write mode.
3164 if (!trust_config)
3165 spa->spa_mode = FREAD;
3168 * Parse the config provided to create a vdev tree.
3170 error = spa_ld_parse_config(spa, pool_guid, config, type);
3171 if (error != 0)
3172 return (error);
3175 * Now that we have the vdev tree, try to open each vdev. This involves
3176 * opening the underlying physical device, retrieving its geometry and
3177 * probing the vdev with a dummy I/O. The state of each vdev will be set
3178 * based on the success of those operations. After this we'll be ready
3179 * to read from the vdevs.
3181 error = spa_ld_open_vdevs(spa);
3182 if (error != 0)
3183 return (error);
3186 * Read the label of each vdev and make sure that the GUIDs stored
3187 * there match the GUIDs in the config provided.
3189 error = spa_ld_validate_vdevs(spa, type, trust_config);
3190 if (error != 0)
3191 return (error);
3194 * Read vdev labels to find the best uberblock (i.e. latest, unless
3195 * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3196 * list of features required to read blkptrs in the MOS from the vdev
3197 * label with the best uberblock and verify that our version of zfs
3198 * supports them all.
3200 error = spa_ld_select_uberblock(spa, config, type, trust_config);
3201 if (error != 0)
3202 return (error);
3205 * Pass that uberblock to the dsl_pool layer which will open the root
3206 * blkptr. This blkptr points to the latest version of the MOS and will
3207 * allow us to read its contents.
3209 error = spa_ld_open_rootbp(spa);
3210 if (error != 0)
3211 return (error);
3214 * Retrieve the config stored in the MOS and use it to validate the
3215 * config provided. Also extract some information from the MOS config
3216 * to update our vdev tree.
3218 error = spa_ld_validate_config(spa, type);
3219 if (error != 0)
3220 return (error);
3223 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3224 * from the pool and their contents were re-mapped to other vdevs. Note
3225 * that everything that we read before this step must have been
3226 * rewritten on concrete vdevs after the last device removal was
3227 * initiated. Otherwise we could be reading from indirect vdevs before
3228 * we have loaded their mappings.
3230 error = spa_ld_open_indirect_vdev_metadata(spa);
3231 if (error != 0)
3232 return (error);
3235 * Retrieve the full list of active features from the MOS and check if
3236 * they are all supported.
3238 error = spa_ld_check_features(spa, &missing_feat_write);
3239 if (error != 0)
3240 return (error);
3243 * Load several special directories from the MOS needed by the dsl_pool
3244 * layer.
3246 error = spa_ld_load_special_directories(spa);
3247 if (error != 0)
3248 return (error);
3251 * If the config provided is not trusted, discard it and use the config
3252 * from the MOS to reload the pool.
3254 if (!trust_config) {
3255 error = spa_ld_prepare_for_reload(spa, orig_mode);
3256 if (error != 0)
3257 return (error);
3259 spa_load_note(spa, "RELOADING");
3260 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
3264 * Retrieve pool properties from the MOS.
3266 error = spa_ld_get_props(spa);
3267 if (error != 0)
3268 return (error);
3271 * Retrieve the list of auxiliary devices - cache devices and spares -
3272 * and open them.
3274 error = spa_ld_open_aux_vdevs(spa, type);
3275 if (error != 0)
3276 return (error);
3279 * Load the metadata for all vdevs. Also check if unopenable devices
3280 * should be autoreplaced.
3282 error = spa_ld_load_vdev_metadata(spa);
3283 if (error != 0)
3284 return (error);
3286 error = spa_ld_load_dedup_tables(spa);
3287 if (error != 0)
3288 return (error);
3291 * Verify the logs now to make sure we don't have any unexpected errors
3292 * when we claim log blocks later.
3294 error = spa_ld_verify_logs(spa, type, ereport);
3295 if (error != 0)
3296 return (error);
3298 if (missing_feat_write) {
3299 ASSERT(state == SPA_LOAD_TRYIMPORT);
3302 * At this point, we know that we can open the pool in
3303 * read-only mode but not read-write mode. We now have enough
3304 * information and can return to userland.
3306 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3307 ENOTSUP));
3311 * Traverse the last txgs to make sure the pool was left off in a safe
3312 * state. When performing an extreme rewind, we verify the whole pool,
3313 * which can take a very long time.
3315 error = spa_ld_verify_pool_data(spa);
3316 if (error != 0)
3317 return (error);
3320 * Calculate the deflated space for the pool. This must be done before
3321 * we write anything to the pool because we'd need to update the space
3322 * accounting using the deflated sizes.
3324 spa_update_dspace(spa);
3327 * We have now retrieved all the information we needed to open the
3328 * pool. If we are importing the pool in read-write mode, a few
3329 * additional steps must be performed to finish the import.
3331 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3332 spa->spa_load_max_txg == UINT64_MAX)) {
3333 ASSERT(state != SPA_LOAD_TRYIMPORT);
3336 * We must check this before we start the sync thread, because
3337 * we only want to start a condense thread for condense
3338 * operations that were in progress when the pool was
3339 * imported. Once we start syncing, spa_sync() could
3340 * initiate a condense (and start a thread for it). In
3341 * that case it would be wrong to start a second
3342 * condense thread.
3344 boolean_t condense_in_progress =
3345 (spa->spa_condensing_indirect != NULL);
3348 * Traverse the ZIL and claim all blocks.
3350 spa_ld_claim_log_blocks(spa);
3353 * Kick-off the syncing thread.
3355 spa->spa_sync_on = B_TRUE;
3356 txg_sync_start(spa->spa_dsl_pool);
3359 * Wait for all claims to sync. We sync up to the highest
3360 * claimed log block birth time so that claimed log blocks
3361 * don't appear to be from the future. spa_claim_max_txg
3362 * will have been set for us by ZIL traversal operations
3363 * performed above.
3365 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3368 * Check if we need to request an update of the config. On the
3369 * next sync, we would update the config stored in vdev labels
3370 * and the cachefile (by default /etc/zfs/zpool.cache).
3372 spa_ld_check_for_config_update(spa, config_cache_txg);
3375 * Check all DTLs to see if anything needs resilvering.
3377 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3378 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3379 spa_async_request(spa, SPA_ASYNC_RESILVER);
3382 * Log the fact that we booted up (so that we can detect if
3383 * we rebooted in the middle of an operation).
3385 spa_history_log_version(spa, "open");
3388 * Delete any inconsistent datasets.
3390 (void) dmu_objset_find(spa_name(spa),
3391 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3394 * Clean up any stale temporary dataset userrefs.
3396 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3399 * Note: unlike condensing, we don't need an analogous
3400 * "removal_in_progress" dance because no other thread
3401 * can start a removal while we hold the spa_namespace_lock.
3403 spa_restart_removal(spa);
3405 if (condense_in_progress)
3406 spa_condense_indirect_restart(spa);
3409 spa_load_note(spa, "LOADED");
3411 return (0);
3414 static int
3415 spa_load_retry(spa_t *spa, spa_load_state_t state, int trust_config)
3417 int mode = spa->spa_mode;
3419 spa_unload(spa);
3420 spa_deactivate(spa);
3422 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3424 spa_activate(spa, mode);
3425 spa_async_suspend(spa);
3427 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3428 (u_longlong_t)spa->spa_load_max_txg);
3430 return (spa_load(spa, state, SPA_IMPORT_EXISTING, trust_config));
3434 * If spa_load() fails this function will try loading prior txg's. If
3435 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3436 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3437 * function will not rewind the pool and will return the same error as
3438 * spa_load().
3440 static int
3441 spa_load_best(spa_t *spa, spa_load_state_t state, int trust_config,
3442 uint64_t max_request, int rewind_flags)
3444 nvlist_t *loadinfo = NULL;
3445 nvlist_t *config = NULL;
3446 int load_error, rewind_error;
3447 uint64_t safe_rewind_txg;
3448 uint64_t min_txg;
3450 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3451 spa->spa_load_max_txg = spa->spa_load_txg;
3452 spa_set_log_state(spa, SPA_LOG_CLEAR);
3453 } else {
3454 spa->spa_load_max_txg = max_request;
3455 if (max_request != UINT64_MAX)
3456 spa->spa_extreme_rewind = B_TRUE;
3459 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3460 trust_config);
3461 if (load_error == 0)
3462 return (0);
3464 if (spa->spa_root_vdev != NULL)
3465 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3467 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3468 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3470 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3471 nvlist_free(config);
3472 return (load_error);
3475 if (state == SPA_LOAD_RECOVER) {
3476 /* Price of rolling back is discarding txgs, including log */
3477 spa_set_log_state(spa, SPA_LOG_CLEAR);
3478 } else {
3480 * If we aren't rolling back save the load info from our first
3481 * import attempt so that we can restore it after attempting
3482 * to rewind.
3484 loadinfo = spa->spa_load_info;
3485 spa->spa_load_info = fnvlist_alloc();
3488 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3489 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3490 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3491 TXG_INITIAL : safe_rewind_txg;
3494 * Continue as long as we're finding errors, we're still within
3495 * the acceptable rewind range, and we're still finding uberblocks
3497 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3498 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3499 if (spa->spa_load_max_txg < safe_rewind_txg)
3500 spa->spa_extreme_rewind = B_TRUE;
3501 rewind_error = spa_load_retry(spa, state, trust_config);
3504 spa->spa_extreme_rewind = B_FALSE;
3505 spa->spa_load_max_txg = UINT64_MAX;
3507 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3508 spa_config_set(spa, config);
3509 else
3510 nvlist_free(config);
3512 if (state == SPA_LOAD_RECOVER) {
3513 ASSERT3P(loadinfo, ==, NULL);
3514 return (rewind_error);
3515 } else {
3516 /* Store the rewind info as part of the initial load info */
3517 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3518 spa->spa_load_info);
3520 /* Restore the initial load info */
3521 fnvlist_free(spa->spa_load_info);
3522 spa->spa_load_info = loadinfo;
3524 return (load_error);
3529 * Pool Open/Import
3531 * The import case is identical to an open except that the configuration is sent
3532 * down from userland, instead of grabbed from the configuration cache. For the
3533 * case of an open, the pool configuration will exist in the
3534 * POOL_STATE_UNINITIALIZED state.
3536 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3537 * the same time open the pool, without having to keep around the spa_t in some
3538 * ambiguous state.
3540 static int
3541 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3542 nvlist_t **config)
3544 spa_t *spa;
3545 spa_load_state_t state = SPA_LOAD_OPEN;
3546 int error;
3547 int locked = B_FALSE;
3549 *spapp = NULL;
3552 * As disgusting as this is, we need to support recursive calls to this
3553 * function because dsl_dir_open() is called during spa_load(), and ends
3554 * up calling spa_open() again. The real fix is to figure out how to
3555 * avoid dsl_dir_open() calling this in the first place.
3557 if (mutex_owner(&spa_namespace_lock) != curthread) {
3558 mutex_enter(&spa_namespace_lock);
3559 locked = B_TRUE;
3562 if ((spa = spa_lookup(pool)) == NULL) {
3563 if (locked)
3564 mutex_exit(&spa_namespace_lock);
3565 return (SET_ERROR(ENOENT));
3568 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3569 zpool_rewind_policy_t policy;
3571 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3572 &policy);
3573 if (policy.zrp_request & ZPOOL_DO_REWIND)
3574 state = SPA_LOAD_RECOVER;
3576 spa_activate(spa, spa_mode_global);
3578 if (state != SPA_LOAD_RECOVER)
3579 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3581 zfs_dbgmsg("spa_open_common: opening %s", pool);
3582 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3583 policy.zrp_request);
3585 if (error == EBADF) {
3587 * If vdev_validate() returns failure (indicated by
3588 * EBADF), it indicates that one of the vdevs indicates
3589 * that the pool has been exported or destroyed. If
3590 * this is the case, the config cache is out of sync and
3591 * we should remove the pool from the namespace.
3593 spa_unload(spa);
3594 spa_deactivate(spa);
3595 spa_write_cachefile(spa, B_TRUE, B_TRUE);
3596 spa_remove(spa);
3597 if (locked)
3598 mutex_exit(&spa_namespace_lock);
3599 return (SET_ERROR(ENOENT));
3602 if (error) {
3604 * We can't open the pool, but we still have useful
3605 * information: the state of each vdev after the
3606 * attempted vdev_open(). Return this to the user.
3608 if (config != NULL && spa->spa_config) {
3609 VERIFY(nvlist_dup(spa->spa_config, config,
3610 KM_SLEEP) == 0);
3611 VERIFY(nvlist_add_nvlist(*config,
3612 ZPOOL_CONFIG_LOAD_INFO,
3613 spa->spa_load_info) == 0);
3615 spa_unload(spa);
3616 spa_deactivate(spa);
3617 spa->spa_last_open_failed = error;
3618 if (locked)
3619 mutex_exit(&spa_namespace_lock);
3620 *spapp = NULL;
3621 return (error);
3625 spa_open_ref(spa, tag);
3627 if (config != NULL)
3628 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3631 * If we've recovered the pool, pass back any information we
3632 * gathered while doing the load.
3634 if (state == SPA_LOAD_RECOVER) {
3635 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3636 spa->spa_load_info) == 0);
3639 if (locked) {
3640 spa->spa_last_open_failed = 0;
3641 spa->spa_last_ubsync_txg = 0;
3642 spa->spa_load_txg = 0;
3643 mutex_exit(&spa_namespace_lock);
3646 *spapp = spa;
3648 return (0);
3652 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3653 nvlist_t **config)
3655 return (spa_open_common(name, spapp, tag, policy, config));
3659 spa_open(const char *name, spa_t **spapp, void *tag)
3661 return (spa_open_common(name, spapp, tag, NULL, NULL));
3665 * Lookup the given spa_t, incrementing the inject count in the process,
3666 * preventing it from being exported or destroyed.
3668 spa_t *
3669 spa_inject_addref(char *name)
3671 spa_t *spa;
3673 mutex_enter(&spa_namespace_lock);
3674 if ((spa = spa_lookup(name)) == NULL) {
3675 mutex_exit(&spa_namespace_lock);
3676 return (NULL);
3678 spa->spa_inject_ref++;
3679 mutex_exit(&spa_namespace_lock);
3681 return (spa);
3684 void
3685 spa_inject_delref(spa_t *spa)
3687 mutex_enter(&spa_namespace_lock);
3688 spa->spa_inject_ref--;
3689 mutex_exit(&spa_namespace_lock);
3693 * Add spares device information to the nvlist.
3695 static void
3696 spa_add_spares(spa_t *spa, nvlist_t *config)
3698 nvlist_t **spares;
3699 uint_t i, nspares;
3700 nvlist_t *nvroot;
3701 uint64_t guid;
3702 vdev_stat_t *vs;
3703 uint_t vsc;
3704 uint64_t pool;
3706 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3708 if (spa->spa_spares.sav_count == 0)
3709 return;
3711 VERIFY(nvlist_lookup_nvlist(config,
3712 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3713 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3714 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3715 if (nspares != 0) {
3716 VERIFY(nvlist_add_nvlist_array(nvroot,
3717 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3718 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3719 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3722 * Go through and find any spares which have since been
3723 * repurposed as an active spare. If this is the case, update
3724 * their status appropriately.
3726 for (i = 0; i < nspares; i++) {
3727 VERIFY(nvlist_lookup_uint64(spares[i],
3728 ZPOOL_CONFIG_GUID, &guid) == 0);
3729 if (spa_spare_exists(guid, &pool, NULL) &&
3730 pool != 0ULL) {
3731 VERIFY(nvlist_lookup_uint64_array(
3732 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3733 (uint64_t **)&vs, &vsc) == 0);
3734 vs->vs_state = VDEV_STATE_CANT_OPEN;
3735 vs->vs_aux = VDEV_AUX_SPARED;
3742 * Add l2cache device information to the nvlist, including vdev stats.
3744 static void
3745 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3747 nvlist_t **l2cache;
3748 uint_t i, j, nl2cache;
3749 nvlist_t *nvroot;
3750 uint64_t guid;
3751 vdev_t *vd;
3752 vdev_stat_t *vs;
3753 uint_t vsc;
3755 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3757 if (spa->spa_l2cache.sav_count == 0)
3758 return;
3760 VERIFY(nvlist_lookup_nvlist(config,
3761 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3762 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3763 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3764 if (nl2cache != 0) {
3765 VERIFY(nvlist_add_nvlist_array(nvroot,
3766 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3767 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3768 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3771 * Update level 2 cache device stats.
3774 for (i = 0; i < nl2cache; i++) {
3775 VERIFY(nvlist_lookup_uint64(l2cache[i],
3776 ZPOOL_CONFIG_GUID, &guid) == 0);
3778 vd = NULL;
3779 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3780 if (guid ==
3781 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3782 vd = spa->spa_l2cache.sav_vdevs[j];
3783 break;
3786 ASSERT(vd != NULL);
3788 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3789 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3790 == 0);
3791 vdev_get_stats(vd, vs);
3796 static void
3797 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3799 nvlist_t *features;
3800 zap_cursor_t zc;
3801 zap_attribute_t za;
3803 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3804 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3806 if (spa->spa_feat_for_read_obj != 0) {
3807 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3808 spa->spa_feat_for_read_obj);
3809 zap_cursor_retrieve(&zc, &za) == 0;
3810 zap_cursor_advance(&zc)) {
3811 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3812 za.za_num_integers == 1);
3813 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3814 za.za_first_integer));
3816 zap_cursor_fini(&zc);
3819 if (spa->spa_feat_for_write_obj != 0) {
3820 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3821 spa->spa_feat_for_write_obj);
3822 zap_cursor_retrieve(&zc, &za) == 0;
3823 zap_cursor_advance(&zc)) {
3824 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3825 za.za_num_integers == 1);
3826 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3827 za.za_first_integer));
3829 zap_cursor_fini(&zc);
3832 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3833 features) == 0);
3834 nvlist_free(features);
3838 spa_get_stats(const char *name, nvlist_t **config,
3839 char *altroot, size_t buflen)
3841 int error;
3842 spa_t *spa;
3844 *config = NULL;
3845 error = spa_open_common(name, &spa, FTAG, NULL, config);
3847 if (spa != NULL) {
3849 * This still leaves a window of inconsistency where the spares
3850 * or l2cache devices could change and the config would be
3851 * self-inconsistent.
3853 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3855 if (*config != NULL) {
3856 uint64_t loadtimes[2];
3858 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3859 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3860 VERIFY(nvlist_add_uint64_array(*config,
3861 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3863 VERIFY(nvlist_add_uint64(*config,
3864 ZPOOL_CONFIG_ERRCOUNT,
3865 spa_get_errlog_size(spa)) == 0);
3867 if (spa_suspended(spa))
3868 VERIFY(nvlist_add_uint64(*config,
3869 ZPOOL_CONFIG_SUSPENDED,
3870 spa->spa_failmode) == 0);
3872 spa_add_spares(spa, *config);
3873 spa_add_l2cache(spa, *config);
3874 spa_add_feature_stats(spa, *config);
3879 * We want to get the alternate root even for faulted pools, so we cheat
3880 * and call spa_lookup() directly.
3882 if (altroot) {
3883 if (spa == NULL) {
3884 mutex_enter(&spa_namespace_lock);
3885 spa = spa_lookup(name);
3886 if (spa)
3887 spa_altroot(spa, altroot, buflen);
3888 else
3889 altroot[0] = '\0';
3890 spa = NULL;
3891 mutex_exit(&spa_namespace_lock);
3892 } else {
3893 spa_altroot(spa, altroot, buflen);
3897 if (spa != NULL) {
3898 spa_config_exit(spa, SCL_CONFIG, FTAG);
3899 spa_close(spa, FTAG);
3902 return (error);
3906 * Validate that the auxiliary device array is well formed. We must have an
3907 * array of nvlists, each which describes a valid leaf vdev. If this is an
3908 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3909 * specified, as long as they are well-formed.
3911 static int
3912 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3913 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3914 vdev_labeltype_t label)
3916 nvlist_t **dev;
3917 uint_t i, ndev;
3918 vdev_t *vd;
3919 int error;
3921 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3924 * It's acceptable to have no devs specified.
3926 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3927 return (0);
3929 if (ndev == 0)
3930 return (SET_ERROR(EINVAL));
3933 * Make sure the pool is formatted with a version that supports this
3934 * device type.
3936 if (spa_version(spa) < version)
3937 return (SET_ERROR(ENOTSUP));
3940 * Set the pending device list so we correctly handle device in-use
3941 * checking.
3943 sav->sav_pending = dev;
3944 sav->sav_npending = ndev;
3946 for (i = 0; i < ndev; i++) {
3947 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3948 mode)) != 0)
3949 goto out;
3951 if (!vd->vdev_ops->vdev_op_leaf) {
3952 vdev_free(vd);
3953 error = SET_ERROR(EINVAL);
3954 goto out;
3958 * The L2ARC currently only supports disk devices in
3959 * kernel context. For user-level testing, we allow it.
3961 #ifdef _KERNEL
3962 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3963 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3964 error = SET_ERROR(ENOTBLK);
3965 vdev_free(vd);
3966 goto out;
3968 #endif
3969 vd->vdev_top = vd;
3971 if ((error = vdev_open(vd)) == 0 &&
3972 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3973 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3974 vd->vdev_guid) == 0);
3977 vdev_free(vd);
3979 if (error &&
3980 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3981 goto out;
3982 else
3983 error = 0;
3986 out:
3987 sav->sav_pending = NULL;
3988 sav->sav_npending = 0;
3989 return (error);
3992 static int
3993 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3995 int error;
3997 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3999 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4000 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4001 VDEV_LABEL_SPARE)) != 0) {
4002 return (error);
4005 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4006 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4007 VDEV_LABEL_L2CACHE));
4010 static void
4011 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4012 const char *config)
4014 int i;
4016 if (sav->sav_config != NULL) {
4017 nvlist_t **olddevs;
4018 uint_t oldndevs;
4019 nvlist_t **newdevs;
4022 * Generate new dev list by concatentating with the
4023 * current dev list.
4025 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4026 &olddevs, &oldndevs) == 0);
4028 newdevs = kmem_alloc(sizeof (void *) *
4029 (ndevs + oldndevs), KM_SLEEP);
4030 for (i = 0; i < oldndevs; i++)
4031 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4032 KM_SLEEP) == 0);
4033 for (i = 0; i < ndevs; i++)
4034 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4035 KM_SLEEP) == 0);
4037 VERIFY(nvlist_remove(sav->sav_config, config,
4038 DATA_TYPE_NVLIST_ARRAY) == 0);
4040 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4041 config, newdevs, ndevs + oldndevs) == 0);
4042 for (i = 0; i < oldndevs + ndevs; i++)
4043 nvlist_free(newdevs[i]);
4044 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4045 } else {
4047 * Generate a new dev list.
4049 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4050 KM_SLEEP) == 0);
4051 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4052 devs, ndevs) == 0);
4057 * Stop and drop level 2 ARC devices
4059 void
4060 spa_l2cache_drop(spa_t *spa)
4062 vdev_t *vd;
4063 int i;
4064 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4066 for (i = 0; i < sav->sav_count; i++) {
4067 uint64_t pool;
4069 vd = sav->sav_vdevs[i];
4070 ASSERT(vd != NULL);
4072 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4073 pool != 0ULL && l2arc_vdev_present(vd))
4074 l2arc_remove_vdev(vd);
4079 * Pool Creation
4082 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4083 nvlist_t *zplprops)
4085 spa_t *spa;
4086 char *altroot = NULL;
4087 vdev_t *rvd;
4088 dsl_pool_t *dp;
4089 dmu_tx_t *tx;
4090 int error = 0;
4091 uint64_t txg = TXG_INITIAL;
4092 nvlist_t **spares, **l2cache;
4093 uint_t nspares, nl2cache;
4094 uint64_t version, obj;
4095 boolean_t has_features;
4098 * If this pool already exists, return failure.
4100 mutex_enter(&spa_namespace_lock);
4101 if (spa_lookup(pool) != NULL) {
4102 mutex_exit(&spa_namespace_lock);
4103 return (SET_ERROR(EEXIST));
4107 * Allocate a new spa_t structure.
4109 (void) nvlist_lookup_string(props,
4110 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4111 spa = spa_add(pool, NULL, altroot);
4112 spa_activate(spa, spa_mode_global);
4114 if (props && (error = spa_prop_validate(spa, props))) {
4115 spa_deactivate(spa);
4116 spa_remove(spa);
4117 mutex_exit(&spa_namespace_lock);
4118 return (error);
4121 has_features = B_FALSE;
4122 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4123 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4124 if (zpool_prop_feature(nvpair_name(elem)))
4125 has_features = B_TRUE;
4128 if (has_features || nvlist_lookup_uint64(props,
4129 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4130 version = SPA_VERSION;
4132 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4134 spa->spa_first_txg = txg;
4135 spa->spa_uberblock.ub_txg = txg - 1;
4136 spa->spa_uberblock.ub_version = version;
4137 spa->spa_ubsync = spa->spa_uberblock;
4138 spa->spa_load_state = SPA_LOAD_CREATE;
4139 spa->spa_removing_phys.sr_state = DSS_NONE;
4140 spa->spa_removing_phys.sr_removing_vdev = -1;
4141 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4144 * Create "The Godfather" zio to hold all async IOs
4146 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4147 KM_SLEEP);
4148 for (int i = 0; i < max_ncpus; i++) {
4149 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4150 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4151 ZIO_FLAG_GODFATHER);
4155 * Create the root vdev.
4157 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4159 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4161 ASSERT(error != 0 || rvd != NULL);
4162 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4164 if (error == 0 && !zfs_allocatable_devs(nvroot))
4165 error = SET_ERROR(EINVAL);
4167 if (error == 0 &&
4168 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4169 (error = spa_validate_aux(spa, nvroot, txg,
4170 VDEV_ALLOC_ADD)) == 0) {
4171 for (int c = 0; c < rvd->vdev_children; c++) {
4172 vdev_metaslab_set_size(rvd->vdev_child[c]);
4173 vdev_expand(rvd->vdev_child[c], txg);
4177 spa_config_exit(spa, SCL_ALL, FTAG);
4179 if (error != 0) {
4180 spa_unload(spa);
4181 spa_deactivate(spa);
4182 spa_remove(spa);
4183 mutex_exit(&spa_namespace_lock);
4184 return (error);
4188 * Get the list of spares, if specified.
4190 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4191 &spares, &nspares) == 0) {
4192 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4193 KM_SLEEP) == 0);
4194 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4195 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4197 spa_load_spares(spa);
4198 spa_config_exit(spa, SCL_ALL, FTAG);
4199 spa->spa_spares.sav_sync = B_TRUE;
4203 * Get the list of level 2 cache devices, if specified.
4205 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4206 &l2cache, &nl2cache) == 0) {
4207 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4208 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4209 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4210 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4211 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4212 spa_load_l2cache(spa);
4213 spa_config_exit(spa, SCL_ALL, FTAG);
4214 spa->spa_l2cache.sav_sync = B_TRUE;
4217 spa->spa_is_initializing = B_TRUE;
4218 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4219 spa->spa_meta_objset = dp->dp_meta_objset;
4220 spa->spa_is_initializing = B_FALSE;
4223 * Create DDTs (dedup tables).
4225 ddt_create(spa);
4227 spa_update_dspace(spa);
4229 tx = dmu_tx_create_assigned(dp, txg);
4232 * Create the pool config object.
4234 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4235 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4236 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4238 if (zap_add(spa->spa_meta_objset,
4239 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4240 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4241 cmn_err(CE_PANIC, "failed to add pool config");
4244 if (spa_version(spa) >= SPA_VERSION_FEATURES)
4245 spa_feature_create_zap_objects(spa, tx);
4247 if (zap_add(spa->spa_meta_objset,
4248 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4249 sizeof (uint64_t), 1, &version, tx) != 0) {
4250 cmn_err(CE_PANIC, "failed to add pool version");
4253 /* Newly created pools with the right version are always deflated. */
4254 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4255 spa->spa_deflate = TRUE;
4256 if (zap_add(spa->spa_meta_objset,
4257 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4258 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4259 cmn_err(CE_PANIC, "failed to add deflate");
4264 * Create the deferred-free bpobj. Turn off compression
4265 * because sync-to-convergence takes longer if the blocksize
4266 * keeps changing.
4268 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4269 dmu_object_set_compress(spa->spa_meta_objset, obj,
4270 ZIO_COMPRESS_OFF, tx);
4271 if (zap_add(spa->spa_meta_objset,
4272 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4273 sizeof (uint64_t), 1, &obj, tx) != 0) {
4274 cmn_err(CE_PANIC, "failed to add bpobj");
4276 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4277 spa->spa_meta_objset, obj));
4280 * Create the pool's history object.
4282 if (version >= SPA_VERSION_ZPOOL_HISTORY)
4283 spa_history_create_obj(spa, tx);
4286 * Generate some random noise for salted checksums to operate on.
4288 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4289 sizeof (spa->spa_cksum_salt.zcs_bytes));
4292 * Set pool properties.
4294 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4295 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4296 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4297 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4299 if (props != NULL) {
4300 spa_configfile_set(spa, props, B_FALSE);
4301 spa_sync_props(props, tx);
4304 dmu_tx_commit(tx);
4306 spa->spa_sync_on = B_TRUE;
4307 txg_sync_start(spa->spa_dsl_pool);
4310 * We explicitly wait for the first transaction to complete so that our
4311 * bean counters are appropriately updated.
4313 txg_wait_synced(spa->spa_dsl_pool, txg);
4315 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4316 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4318 spa_history_log_version(spa, "create");
4321 * Don't count references from objsets that are already closed
4322 * and are making their way through the eviction process.
4324 spa_evicting_os_wait(spa);
4325 spa->spa_minref = refcount_count(&spa->spa_refcount);
4326 spa->spa_load_state = SPA_LOAD_NONE;
4328 mutex_exit(&spa_namespace_lock);
4330 return (0);
4333 #ifdef _KERNEL
4335 * Get the root pool information from the root disk, then import the root pool
4336 * during the system boot up time.
4338 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4340 static nvlist_t *
4341 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4343 nvlist_t *config;
4344 nvlist_t *nvtop, *nvroot;
4345 uint64_t pgid;
4347 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4348 return (NULL);
4351 * Add this top-level vdev to the child array.
4353 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4354 &nvtop) == 0);
4355 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4356 &pgid) == 0);
4357 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4360 * Put this pool's top-level vdevs into a root vdev.
4362 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4363 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4364 VDEV_TYPE_ROOT) == 0);
4365 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4366 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4367 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4368 &nvtop, 1) == 0);
4371 * Replace the existing vdev_tree with the new root vdev in
4372 * this pool's configuration (remove the old, add the new).
4374 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4375 nvlist_free(nvroot);
4376 return (config);
4380 * Walk the vdev tree and see if we can find a device with "better"
4381 * configuration. A configuration is "better" if the label on that
4382 * device has a more recent txg.
4384 static void
4385 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4387 for (int c = 0; c < vd->vdev_children; c++)
4388 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4390 if (vd->vdev_ops->vdev_op_leaf) {
4391 nvlist_t *label;
4392 uint64_t label_txg;
4394 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4395 &label) != 0)
4396 return;
4398 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4399 &label_txg) == 0);
4402 * Do we have a better boot device?
4404 if (label_txg > *txg) {
4405 *txg = label_txg;
4406 *avd = vd;
4408 nvlist_free(label);
4413 * Import a root pool.
4415 * For x86. devpath_list will consist of devid and/or physpath name of
4416 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4417 * The GRUB "findroot" command will return the vdev we should boot.
4419 * For Sparc, devpath_list consists the physpath name of the booting device
4420 * no matter the rootpool is a single device pool or a mirrored pool.
4421 * e.g.
4422 * "/pci@1f,0/ide@d/disk@0,0:a"
4425 spa_import_rootpool(char *devpath, char *devid)
4427 spa_t *spa;
4428 vdev_t *rvd, *bvd, *avd = NULL;
4429 nvlist_t *config, *nvtop;
4430 uint64_t guid, txg;
4431 char *pname;
4432 int error;
4435 * Read the label from the boot device and generate a configuration.
4437 config = spa_generate_rootconf(devpath, devid, &guid);
4438 #if defined(_OBP) && defined(_KERNEL)
4439 if (config == NULL) {
4440 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4441 /* iscsi boot */
4442 get_iscsi_bootpath_phy(devpath);
4443 config = spa_generate_rootconf(devpath, devid, &guid);
4446 #endif
4447 if (config == NULL) {
4448 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4449 devpath);
4450 return (SET_ERROR(EIO));
4453 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4454 &pname) == 0);
4455 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4457 mutex_enter(&spa_namespace_lock);
4458 if ((spa = spa_lookup(pname)) != NULL) {
4460 * Remove the existing root pool from the namespace so that we
4461 * can replace it with the correct config we just read in.
4463 spa_remove(spa);
4466 spa = spa_add(pname, config, NULL);
4467 spa->spa_is_root = B_TRUE;
4468 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4469 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4470 &spa->spa_ubsync.ub_version) != 0)
4471 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4474 * Build up a vdev tree based on the boot device's label config.
4476 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4477 &nvtop) == 0);
4478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4479 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4480 VDEV_ALLOC_ROOTPOOL);
4481 spa_config_exit(spa, SCL_ALL, FTAG);
4482 if (error) {
4483 mutex_exit(&spa_namespace_lock);
4484 nvlist_free(config);
4485 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4486 pname);
4487 return (error);
4491 * Get the boot vdev.
4493 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4494 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4495 (u_longlong_t)guid);
4496 error = SET_ERROR(ENOENT);
4497 goto out;
4501 * Determine if there is a better boot device.
4503 avd = bvd;
4504 spa_alt_rootvdev(rvd, &avd, &txg);
4505 if (avd != bvd) {
4506 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4507 "try booting from '%s'", avd->vdev_path);
4508 error = SET_ERROR(EINVAL);
4509 goto out;
4513 * If the boot device is part of a spare vdev then ensure that
4514 * we're booting off the active spare.
4516 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4517 !bvd->vdev_isspare) {
4518 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4519 "try booting from '%s'",
4520 bvd->vdev_parent->
4521 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4522 error = SET_ERROR(EINVAL);
4523 goto out;
4526 error = 0;
4527 out:
4528 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4529 vdev_free(rvd);
4530 spa_config_exit(spa, SCL_ALL, FTAG);
4531 mutex_exit(&spa_namespace_lock);
4533 nvlist_free(config);
4534 return (error);
4537 #endif
4540 * Import a non-root pool into the system.
4543 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4545 spa_t *spa;
4546 char *altroot = NULL;
4547 spa_load_state_t state = SPA_LOAD_IMPORT;
4548 zpool_rewind_policy_t policy;
4549 uint64_t mode = spa_mode_global;
4550 uint64_t readonly = B_FALSE;
4551 int error;
4552 nvlist_t *nvroot;
4553 nvlist_t **spares, **l2cache;
4554 uint_t nspares, nl2cache;
4557 * If a pool with this name exists, return failure.
4559 mutex_enter(&spa_namespace_lock);
4560 if (spa_lookup(pool) != NULL) {
4561 mutex_exit(&spa_namespace_lock);
4562 return (SET_ERROR(EEXIST));
4566 * Create and initialize the spa structure.
4568 (void) nvlist_lookup_string(props,
4569 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4570 (void) nvlist_lookup_uint64(props,
4571 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4572 if (readonly)
4573 mode = FREAD;
4574 spa = spa_add(pool, config, altroot);
4575 spa->spa_import_flags = flags;
4578 * Verbatim import - Take a pool and insert it into the namespace
4579 * as if it had been loaded at boot.
4581 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4582 if (props != NULL)
4583 spa_configfile_set(spa, props, B_FALSE);
4585 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4586 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4587 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
4588 mutex_exit(&spa_namespace_lock);
4589 return (0);
4592 spa_activate(spa, mode);
4595 * Don't start async tasks until we know everything is healthy.
4597 spa_async_suspend(spa);
4599 zpool_get_rewind_policy(config, &policy);
4600 if (policy.zrp_request & ZPOOL_DO_REWIND)
4601 state = SPA_LOAD_RECOVER;
4604 * Pass off the heavy lifting to spa_load(). Pass TRUE for trust_config
4605 * because the user-supplied config is actually the one to trust when
4606 * doing an import.
4608 if (state != SPA_LOAD_RECOVER)
4609 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4611 zfs_dbgmsg("spa_import: importing %s%s", pool,
4612 (state == SPA_LOAD_RECOVER) ? " (RECOVERY MODE)" : "");
4613 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4614 policy.zrp_request);
4617 * Propagate anything learned while loading the pool and pass it
4618 * back to caller (i.e. rewind info, missing devices, etc).
4620 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4621 spa->spa_load_info) == 0);
4623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4625 * Toss any existing sparelist, as it doesn't have any validity
4626 * anymore, and conflicts with spa_has_spare().
4628 if (spa->spa_spares.sav_config) {
4629 nvlist_free(spa->spa_spares.sav_config);
4630 spa->spa_spares.sav_config = NULL;
4631 spa_load_spares(spa);
4633 if (spa->spa_l2cache.sav_config) {
4634 nvlist_free(spa->spa_l2cache.sav_config);
4635 spa->spa_l2cache.sav_config = NULL;
4636 spa_load_l2cache(spa);
4639 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4640 &nvroot) == 0);
4641 if (error == 0)
4642 error = spa_validate_aux(spa, nvroot, -1ULL,
4643 VDEV_ALLOC_SPARE);
4644 if (error == 0)
4645 error = spa_validate_aux(spa, nvroot, -1ULL,
4646 VDEV_ALLOC_L2CACHE);
4647 spa_config_exit(spa, SCL_ALL, FTAG);
4649 if (props != NULL)
4650 spa_configfile_set(spa, props, B_FALSE);
4652 if (error != 0 || (props && spa_writeable(spa) &&
4653 (error = spa_prop_set(spa, props)))) {
4654 spa_unload(spa);
4655 spa_deactivate(spa);
4656 spa_remove(spa);
4657 mutex_exit(&spa_namespace_lock);
4658 return (error);
4661 spa_async_resume(spa);
4664 * Override any spares and level 2 cache devices as specified by
4665 * the user, as these may have correct device names/devids, etc.
4667 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4668 &spares, &nspares) == 0) {
4669 if (spa->spa_spares.sav_config)
4670 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4671 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4672 else
4673 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4674 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4675 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4676 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4677 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4678 spa_load_spares(spa);
4679 spa_config_exit(spa, SCL_ALL, FTAG);
4680 spa->spa_spares.sav_sync = B_TRUE;
4682 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4683 &l2cache, &nl2cache) == 0) {
4684 if (spa->spa_l2cache.sav_config)
4685 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4686 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4687 else
4688 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4689 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4690 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4691 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4692 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4693 spa_load_l2cache(spa);
4694 spa_config_exit(spa, SCL_ALL, FTAG);
4695 spa->spa_l2cache.sav_sync = B_TRUE;
4699 * Check for any removed devices.
4701 if (spa->spa_autoreplace) {
4702 spa_aux_check_removed(&spa->spa_spares);
4703 spa_aux_check_removed(&spa->spa_l2cache);
4706 if (spa_writeable(spa)) {
4708 * Update the config cache to include the newly-imported pool.
4710 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4714 * It's possible that the pool was expanded while it was exported.
4715 * We kick off an async task to handle this for us.
4717 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4719 spa_history_log_version(spa, "import");
4721 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4723 mutex_exit(&spa_namespace_lock);
4725 return (0);
4728 nvlist_t *
4729 spa_tryimport(nvlist_t *tryconfig)
4731 nvlist_t *config = NULL;
4732 char *poolname;
4733 spa_t *spa;
4734 uint64_t state;
4735 int error;
4737 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4738 return (NULL);
4740 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4741 return (NULL);
4744 * Create and initialize the spa structure.
4746 mutex_enter(&spa_namespace_lock);
4747 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4748 spa_activate(spa, FREAD);
4750 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
4753 * Pass off the heavy lifting to spa_load().
4754 * Pass TRUE for trust_config because the user-supplied config
4755 * is actually the one to trust when doing an import.
4757 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4760 * If 'tryconfig' was at least parsable, return the current config.
4762 if (spa->spa_root_vdev != NULL) {
4763 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4764 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4765 poolname) == 0);
4766 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4767 state) == 0);
4768 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4769 spa->spa_uberblock.ub_timestamp) == 0);
4770 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4771 spa->spa_load_info) == 0);
4774 * If the bootfs property exists on this pool then we
4775 * copy it out so that external consumers can tell which
4776 * pools are bootable.
4778 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4779 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4782 * We have to play games with the name since the
4783 * pool was opened as TRYIMPORT_NAME.
4785 if (dsl_dsobj_to_dsname(spa_name(spa),
4786 spa->spa_bootfs, tmpname) == 0) {
4787 char *cp;
4788 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4790 cp = strchr(tmpname, '/');
4791 if (cp == NULL) {
4792 (void) strlcpy(dsname, tmpname,
4793 MAXPATHLEN);
4794 } else {
4795 (void) snprintf(dsname, MAXPATHLEN,
4796 "%s/%s", poolname, ++cp);
4798 VERIFY(nvlist_add_string(config,
4799 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4800 kmem_free(dsname, MAXPATHLEN);
4802 kmem_free(tmpname, MAXPATHLEN);
4806 * Add the list of hot spares and level 2 cache devices.
4808 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4809 spa_add_spares(spa, config);
4810 spa_add_l2cache(spa, config);
4811 spa_config_exit(spa, SCL_CONFIG, FTAG);
4814 spa_unload(spa);
4815 spa_deactivate(spa);
4816 spa_remove(spa);
4817 mutex_exit(&spa_namespace_lock);
4819 return (config);
4823 * Pool export/destroy
4825 * The act of destroying or exporting a pool is very simple. We make sure there
4826 * is no more pending I/O and any references to the pool are gone. Then, we
4827 * update the pool state and sync all the labels to disk, removing the
4828 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4829 * we don't sync the labels or remove the configuration cache.
4831 static int
4832 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4833 boolean_t force, boolean_t hardforce)
4835 spa_t *spa;
4837 if (oldconfig)
4838 *oldconfig = NULL;
4840 if (!(spa_mode_global & FWRITE))
4841 return (SET_ERROR(EROFS));
4843 mutex_enter(&spa_namespace_lock);
4844 if ((spa = spa_lookup(pool)) == NULL) {
4845 mutex_exit(&spa_namespace_lock);
4846 return (SET_ERROR(ENOENT));
4850 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4851 * reacquire the namespace lock, and see if we can export.
4853 spa_open_ref(spa, FTAG);
4854 mutex_exit(&spa_namespace_lock);
4855 spa_async_suspend(spa);
4856 mutex_enter(&spa_namespace_lock);
4857 spa_close(spa, FTAG);
4860 * The pool will be in core if it's openable,
4861 * in which case we can modify its state.
4863 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4865 * Objsets may be open only because they're dirty, so we
4866 * have to force it to sync before checking spa_refcnt.
4868 txg_wait_synced(spa->spa_dsl_pool, 0);
4869 spa_evicting_os_wait(spa);
4872 * A pool cannot be exported or destroyed if there are active
4873 * references. If we are resetting a pool, allow references by
4874 * fault injection handlers.
4876 if (!spa_refcount_zero(spa) ||
4877 (spa->spa_inject_ref != 0 &&
4878 new_state != POOL_STATE_UNINITIALIZED)) {
4879 spa_async_resume(spa);
4880 mutex_exit(&spa_namespace_lock);
4881 return (SET_ERROR(EBUSY));
4885 * A pool cannot be exported if it has an active shared spare.
4886 * This is to prevent other pools stealing the active spare
4887 * from an exported pool. At user's own will, such pool can
4888 * be forcedly exported.
4890 if (!force && new_state == POOL_STATE_EXPORTED &&
4891 spa_has_active_shared_spare(spa)) {
4892 spa_async_resume(spa);
4893 mutex_exit(&spa_namespace_lock);
4894 return (SET_ERROR(EXDEV));
4898 * We want this to be reflected on every label,
4899 * so mark them all dirty. spa_unload() will do the
4900 * final sync that pushes these changes out.
4902 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4903 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4904 spa->spa_state = new_state;
4905 spa->spa_final_txg = spa_last_synced_txg(spa) +
4906 TXG_DEFER_SIZE + 1;
4907 vdev_config_dirty(spa->spa_root_vdev);
4908 spa_config_exit(spa, SCL_ALL, FTAG);
4912 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4914 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4915 spa_unload(spa);
4916 spa_deactivate(spa);
4919 if (oldconfig && spa->spa_config)
4920 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4922 if (new_state != POOL_STATE_UNINITIALIZED) {
4923 if (!hardforce)
4924 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4925 spa_remove(spa);
4927 mutex_exit(&spa_namespace_lock);
4929 return (0);
4933 * Destroy a storage pool.
4936 spa_destroy(char *pool)
4938 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4939 B_FALSE, B_FALSE));
4943 * Export a storage pool.
4946 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4947 boolean_t hardforce)
4949 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4950 force, hardforce));
4954 * Similar to spa_export(), this unloads the spa_t without actually removing it
4955 * from the namespace in any way.
4958 spa_reset(char *pool)
4960 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4961 B_FALSE, B_FALSE));
4965 * ==========================================================================
4966 * Device manipulation
4967 * ==========================================================================
4971 * Add a device to a storage pool.
4974 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4976 uint64_t txg, id;
4977 int error;
4978 vdev_t *rvd = spa->spa_root_vdev;
4979 vdev_t *vd, *tvd;
4980 nvlist_t **spares, **l2cache;
4981 uint_t nspares, nl2cache;
4983 ASSERT(spa_writeable(spa));
4985 txg = spa_vdev_enter(spa);
4987 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4988 VDEV_ALLOC_ADD)) != 0)
4989 return (spa_vdev_exit(spa, NULL, txg, error));
4991 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4993 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4994 &nspares) != 0)
4995 nspares = 0;
4997 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4998 &nl2cache) != 0)
4999 nl2cache = 0;
5001 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5002 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5004 if (vd->vdev_children != 0 &&
5005 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5006 return (spa_vdev_exit(spa, vd, txg, error));
5009 * We must validate the spares and l2cache devices after checking the
5010 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5012 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5013 return (spa_vdev_exit(spa, vd, txg, error));
5016 * If we are in the middle of a device removal, we can only add
5017 * devices which match the existing devices in the pool.
5018 * If we are in the middle of a removal, or have some indirect
5019 * vdevs, we can not add raidz toplevels.
5021 if (spa->spa_vdev_removal != NULL ||
5022 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5023 for (int c = 0; c < vd->vdev_children; c++) {
5024 tvd = vd->vdev_child[c];
5025 if (spa->spa_vdev_removal != NULL &&
5026 tvd->vdev_ashift !=
5027 spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5028 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5030 /* Fail if top level vdev is raidz */
5031 if (tvd->vdev_ops == &vdev_raidz_ops) {
5032 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5035 * Need the top level mirror to be
5036 * a mirror of leaf vdevs only
5038 if (tvd->vdev_ops == &vdev_mirror_ops) {
5039 for (uint64_t cid = 0;
5040 cid < tvd->vdev_children; cid++) {
5041 vdev_t *cvd = tvd->vdev_child[cid];
5042 if (!cvd->vdev_ops->vdev_op_leaf) {
5043 return (spa_vdev_exit(spa, vd,
5044 txg, EINVAL));
5051 for (int c = 0; c < vd->vdev_children; c++) {
5054 * Set the vdev id to the first hole, if one exists.
5056 for (id = 0; id < rvd->vdev_children; id++) {
5057 if (rvd->vdev_child[id]->vdev_ishole) {
5058 vdev_free(rvd->vdev_child[id]);
5059 break;
5062 tvd = vd->vdev_child[c];
5063 vdev_remove_child(vd, tvd);
5064 tvd->vdev_id = id;
5065 vdev_add_child(rvd, tvd);
5066 vdev_config_dirty(tvd);
5069 if (nspares != 0) {
5070 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5071 ZPOOL_CONFIG_SPARES);
5072 spa_load_spares(spa);
5073 spa->spa_spares.sav_sync = B_TRUE;
5076 if (nl2cache != 0) {
5077 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5078 ZPOOL_CONFIG_L2CACHE);
5079 spa_load_l2cache(spa);
5080 spa->spa_l2cache.sav_sync = B_TRUE;
5084 * We have to be careful when adding new vdevs to an existing pool.
5085 * If other threads start allocating from these vdevs before we
5086 * sync the config cache, and we lose power, then upon reboot we may
5087 * fail to open the pool because there are DVAs that the config cache
5088 * can't translate. Therefore, we first add the vdevs without
5089 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5090 * and then let spa_config_update() initialize the new metaslabs.
5092 * spa_load() checks for added-but-not-initialized vdevs, so that
5093 * if we lose power at any point in this sequence, the remaining
5094 * steps will be completed the next time we load the pool.
5096 (void) spa_vdev_exit(spa, vd, txg, 0);
5098 mutex_enter(&spa_namespace_lock);
5099 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5100 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5101 mutex_exit(&spa_namespace_lock);
5103 return (0);
5107 * Attach a device to a mirror. The arguments are the path to any device
5108 * in the mirror, and the nvroot for the new device. If the path specifies
5109 * a device that is not mirrored, we automatically insert the mirror vdev.
5111 * If 'replacing' is specified, the new device is intended to replace the
5112 * existing device; in this case the two devices are made into their own
5113 * mirror using the 'replacing' vdev, which is functionally identical to
5114 * the mirror vdev (it actually reuses all the same ops) but has a few
5115 * extra rules: you can't attach to it after it's been created, and upon
5116 * completion of resilvering, the first disk (the one being replaced)
5117 * is automatically detached.
5120 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5122 uint64_t txg, dtl_max_txg;
5123 vdev_t *rvd = spa->spa_root_vdev;
5124 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5125 vdev_ops_t *pvops;
5126 char *oldvdpath, *newvdpath;
5127 int newvd_isspare;
5128 int error;
5130 ASSERT(spa_writeable(spa));
5132 txg = spa_vdev_enter(spa);
5134 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5136 if (spa->spa_vdev_removal != NULL ||
5137 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5138 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5141 if (oldvd == NULL)
5142 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5144 if (!oldvd->vdev_ops->vdev_op_leaf)
5145 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5147 pvd = oldvd->vdev_parent;
5149 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5150 VDEV_ALLOC_ATTACH)) != 0)
5151 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5153 if (newrootvd->vdev_children != 1)
5154 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5156 newvd = newrootvd->vdev_child[0];
5158 if (!newvd->vdev_ops->vdev_op_leaf)
5159 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5161 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5162 return (spa_vdev_exit(spa, newrootvd, txg, error));
5165 * Spares can't replace logs
5167 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5168 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5170 if (!replacing) {
5172 * For attach, the only allowable parent is a mirror or the root
5173 * vdev.
5175 if (pvd->vdev_ops != &vdev_mirror_ops &&
5176 pvd->vdev_ops != &vdev_root_ops)
5177 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5179 pvops = &vdev_mirror_ops;
5180 } else {
5182 * Active hot spares can only be replaced by inactive hot
5183 * spares.
5185 if (pvd->vdev_ops == &vdev_spare_ops &&
5186 oldvd->vdev_isspare &&
5187 !spa_has_spare(spa, newvd->vdev_guid))
5188 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5191 * If the source is a hot spare, and the parent isn't already a
5192 * spare, then we want to create a new hot spare. Otherwise, we
5193 * want to create a replacing vdev. The user is not allowed to
5194 * attach to a spared vdev child unless the 'isspare' state is
5195 * the same (spare replaces spare, non-spare replaces
5196 * non-spare).
5198 if (pvd->vdev_ops == &vdev_replacing_ops &&
5199 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5200 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5201 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5202 newvd->vdev_isspare != oldvd->vdev_isspare) {
5203 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5206 if (newvd->vdev_isspare)
5207 pvops = &vdev_spare_ops;
5208 else
5209 pvops = &vdev_replacing_ops;
5213 * Make sure the new device is big enough.
5215 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5216 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5219 * The new device cannot have a higher alignment requirement
5220 * than the top-level vdev.
5222 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5223 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5226 * If this is an in-place replacement, update oldvd's path and devid
5227 * to make it distinguishable from newvd, and unopenable from now on.
5229 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5230 spa_strfree(oldvd->vdev_path);
5231 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5232 KM_SLEEP);
5233 (void) sprintf(oldvd->vdev_path, "%s/%s",
5234 newvd->vdev_path, "old");
5235 if (oldvd->vdev_devid != NULL) {
5236 spa_strfree(oldvd->vdev_devid);
5237 oldvd->vdev_devid = NULL;
5241 /* mark the device being resilvered */
5242 newvd->vdev_resilver_txg = txg;
5245 * If the parent is not a mirror, or if we're replacing, insert the new
5246 * mirror/replacing/spare vdev above oldvd.
5248 if (pvd->vdev_ops != pvops)
5249 pvd = vdev_add_parent(oldvd, pvops);
5251 ASSERT(pvd->vdev_top->vdev_parent == rvd);
5252 ASSERT(pvd->vdev_ops == pvops);
5253 ASSERT(oldvd->vdev_parent == pvd);
5256 * Extract the new device from its root and add it to pvd.
5258 vdev_remove_child(newrootvd, newvd);
5259 newvd->vdev_id = pvd->vdev_children;
5260 newvd->vdev_crtxg = oldvd->vdev_crtxg;
5261 vdev_add_child(pvd, newvd);
5263 tvd = newvd->vdev_top;
5264 ASSERT(pvd->vdev_top == tvd);
5265 ASSERT(tvd->vdev_parent == rvd);
5267 vdev_config_dirty(tvd);
5270 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5271 * for any dmu_sync-ed blocks. It will propagate upward when
5272 * spa_vdev_exit() calls vdev_dtl_reassess().
5274 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5276 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5277 dtl_max_txg - TXG_INITIAL);
5279 if (newvd->vdev_isspare) {
5280 spa_spare_activate(newvd);
5281 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5284 oldvdpath = spa_strdup(oldvd->vdev_path);
5285 newvdpath = spa_strdup(newvd->vdev_path);
5286 newvd_isspare = newvd->vdev_isspare;
5289 * Mark newvd's DTL dirty in this txg.
5291 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5294 * Schedule the resilver to restart in the future. We do this to
5295 * ensure that dmu_sync-ed blocks have been stitched into the
5296 * respective datasets.
5298 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5300 if (spa->spa_bootfs)
5301 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5303 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5306 * Commit the config
5308 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5310 spa_history_log_internal(spa, "vdev attach", NULL,
5311 "%s vdev=%s %s vdev=%s",
5312 replacing && newvd_isspare ? "spare in" :
5313 replacing ? "replace" : "attach", newvdpath,
5314 replacing ? "for" : "to", oldvdpath);
5316 spa_strfree(oldvdpath);
5317 spa_strfree(newvdpath);
5319 return (0);
5323 * Detach a device from a mirror or replacing vdev.
5325 * If 'replace_done' is specified, only detach if the parent
5326 * is a replacing vdev.
5329 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5331 uint64_t txg;
5332 int error;
5333 vdev_t *rvd = spa->spa_root_vdev;
5334 vdev_t *vd, *pvd, *cvd, *tvd;
5335 boolean_t unspare = B_FALSE;
5336 uint64_t unspare_guid = 0;
5337 char *vdpath;
5339 ASSERT(spa_writeable(spa));
5341 txg = spa_vdev_enter(spa);
5343 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5345 if (vd == NULL)
5346 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5348 if (!vd->vdev_ops->vdev_op_leaf)
5349 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5351 pvd = vd->vdev_parent;
5354 * If the parent/child relationship is not as expected, don't do it.
5355 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5356 * vdev that's replacing B with C. The user's intent in replacing
5357 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5358 * the replace by detaching C, the expected behavior is to end up
5359 * M(A,B). But suppose that right after deciding to detach C,
5360 * the replacement of B completes. We would have M(A,C), and then
5361 * ask to detach C, which would leave us with just A -- not what
5362 * the user wanted. To prevent this, we make sure that the
5363 * parent/child relationship hasn't changed -- in this example,
5364 * that C's parent is still the replacing vdev R.
5366 if (pvd->vdev_guid != pguid && pguid != 0)
5367 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5370 * Only 'replacing' or 'spare' vdevs can be replaced.
5372 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5373 pvd->vdev_ops != &vdev_spare_ops)
5374 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5376 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5377 spa_version(spa) >= SPA_VERSION_SPARES);
5380 * Only mirror, replacing, and spare vdevs support detach.
5382 if (pvd->vdev_ops != &vdev_replacing_ops &&
5383 pvd->vdev_ops != &vdev_mirror_ops &&
5384 pvd->vdev_ops != &vdev_spare_ops)
5385 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5388 * If this device has the only valid copy of some data,
5389 * we cannot safely detach it.
5391 if (vdev_dtl_required(vd))
5392 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5394 ASSERT(pvd->vdev_children >= 2);
5397 * If we are detaching the second disk from a replacing vdev, then
5398 * check to see if we changed the original vdev's path to have "/old"
5399 * at the end in spa_vdev_attach(). If so, undo that change now.
5401 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5402 vd->vdev_path != NULL) {
5403 size_t len = strlen(vd->vdev_path);
5405 for (int c = 0; c < pvd->vdev_children; c++) {
5406 cvd = pvd->vdev_child[c];
5408 if (cvd == vd || cvd->vdev_path == NULL)
5409 continue;
5411 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5412 strcmp(cvd->vdev_path + len, "/old") == 0) {
5413 spa_strfree(cvd->vdev_path);
5414 cvd->vdev_path = spa_strdup(vd->vdev_path);
5415 break;
5421 * If we are detaching the original disk from a spare, then it implies
5422 * that the spare should become a real disk, and be removed from the
5423 * active spare list for the pool.
5425 if (pvd->vdev_ops == &vdev_spare_ops &&
5426 vd->vdev_id == 0 &&
5427 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5428 unspare = B_TRUE;
5431 * Erase the disk labels so the disk can be used for other things.
5432 * This must be done after all other error cases are handled,
5433 * but before we disembowel vd (so we can still do I/O to it).
5434 * But if we can't do it, don't treat the error as fatal --
5435 * it may be that the unwritability of the disk is the reason
5436 * it's being detached!
5438 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5441 * Remove vd from its parent and compact the parent's children.
5443 vdev_remove_child(pvd, vd);
5444 vdev_compact_children(pvd);
5447 * Remember one of the remaining children so we can get tvd below.
5449 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5452 * If we need to remove the remaining child from the list of hot spares,
5453 * do it now, marking the vdev as no longer a spare in the process.
5454 * We must do this before vdev_remove_parent(), because that can
5455 * change the GUID if it creates a new toplevel GUID. For a similar
5456 * reason, we must remove the spare now, in the same txg as the detach;
5457 * otherwise someone could attach a new sibling, change the GUID, and
5458 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5460 if (unspare) {
5461 ASSERT(cvd->vdev_isspare);
5462 spa_spare_remove(cvd);
5463 unspare_guid = cvd->vdev_guid;
5464 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5465 cvd->vdev_unspare = B_TRUE;
5469 * If the parent mirror/replacing vdev only has one child,
5470 * the parent is no longer needed. Remove it from the tree.
5472 if (pvd->vdev_children == 1) {
5473 if (pvd->vdev_ops == &vdev_spare_ops)
5474 cvd->vdev_unspare = B_FALSE;
5475 vdev_remove_parent(cvd);
5480 * We don't set tvd until now because the parent we just removed
5481 * may have been the previous top-level vdev.
5483 tvd = cvd->vdev_top;
5484 ASSERT(tvd->vdev_parent == rvd);
5487 * Reevaluate the parent vdev state.
5489 vdev_propagate_state(cvd);
5492 * If the 'autoexpand' property is set on the pool then automatically
5493 * try to expand the size of the pool. For example if the device we
5494 * just detached was smaller than the others, it may be possible to
5495 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5496 * first so that we can obtain the updated sizes of the leaf vdevs.
5498 if (spa->spa_autoexpand) {
5499 vdev_reopen(tvd);
5500 vdev_expand(tvd, txg);
5503 vdev_config_dirty(tvd);
5506 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5507 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5508 * But first make sure we're not on any *other* txg's DTL list, to
5509 * prevent vd from being accessed after it's freed.
5511 vdpath = spa_strdup(vd->vdev_path);
5512 for (int t = 0; t < TXG_SIZE; t++)
5513 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5514 vd->vdev_detached = B_TRUE;
5515 vdev_dirty(tvd, VDD_DTL, vd, txg);
5517 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5519 /* hang on to the spa before we release the lock */
5520 spa_open_ref(spa, FTAG);
5522 error = spa_vdev_exit(spa, vd, txg, 0);
5524 spa_history_log_internal(spa, "detach", NULL,
5525 "vdev=%s", vdpath);
5526 spa_strfree(vdpath);
5529 * If this was the removal of the original device in a hot spare vdev,
5530 * then we want to go through and remove the device from the hot spare
5531 * list of every other pool.
5533 if (unspare) {
5534 spa_t *altspa = NULL;
5536 mutex_enter(&spa_namespace_lock);
5537 while ((altspa = spa_next(altspa)) != NULL) {
5538 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5539 altspa == spa)
5540 continue;
5542 spa_open_ref(altspa, FTAG);
5543 mutex_exit(&spa_namespace_lock);
5544 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5545 mutex_enter(&spa_namespace_lock);
5546 spa_close(altspa, FTAG);
5548 mutex_exit(&spa_namespace_lock);
5550 /* search the rest of the vdevs for spares to remove */
5551 spa_vdev_resilver_done(spa);
5554 /* all done with the spa; OK to release */
5555 mutex_enter(&spa_namespace_lock);
5556 spa_close(spa, FTAG);
5557 mutex_exit(&spa_namespace_lock);
5559 return (error);
5563 * Split a set of devices from their mirrors, and create a new pool from them.
5566 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5567 nvlist_t *props, boolean_t exp)
5569 int error = 0;
5570 uint64_t txg, *glist;
5571 spa_t *newspa;
5572 uint_t c, children, lastlog;
5573 nvlist_t **child, *nvl, *tmp;
5574 dmu_tx_t *tx;
5575 char *altroot = NULL;
5576 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5577 boolean_t activate_slog;
5579 ASSERT(spa_writeable(spa));
5581 txg = spa_vdev_enter(spa);
5583 /* clear the log and flush everything up to now */
5584 activate_slog = spa_passivate_log(spa);
5585 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5586 error = spa_reset_logs(spa);
5587 txg = spa_vdev_config_enter(spa);
5589 if (activate_slog)
5590 spa_activate_log(spa);
5592 if (error != 0)
5593 return (spa_vdev_exit(spa, NULL, txg, error));
5595 /* check new spa name before going any further */
5596 if (spa_lookup(newname) != NULL)
5597 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5600 * scan through all the children to ensure they're all mirrors
5602 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5603 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5604 &children) != 0)
5605 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5607 /* first, check to ensure we've got the right child count */
5608 rvd = spa->spa_root_vdev;
5609 lastlog = 0;
5610 for (c = 0; c < rvd->vdev_children; c++) {
5611 vdev_t *vd = rvd->vdev_child[c];
5613 /* don't count the holes & logs as children */
5614 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5615 if (lastlog == 0)
5616 lastlog = c;
5617 continue;
5620 lastlog = 0;
5622 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5623 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5625 /* next, ensure no spare or cache devices are part of the split */
5626 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5627 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5628 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5630 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5631 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5633 /* then, loop over each vdev and validate it */
5634 for (c = 0; c < children; c++) {
5635 uint64_t is_hole = 0;
5637 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5638 &is_hole);
5640 if (is_hole != 0) {
5641 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5642 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5643 continue;
5644 } else {
5645 error = SET_ERROR(EINVAL);
5646 break;
5650 /* which disk is going to be split? */
5651 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5652 &glist[c]) != 0) {
5653 error = SET_ERROR(EINVAL);
5654 break;
5657 /* look it up in the spa */
5658 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5659 if (vml[c] == NULL) {
5660 error = SET_ERROR(ENODEV);
5661 break;
5664 /* make sure there's nothing stopping the split */
5665 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5666 vml[c]->vdev_islog ||
5667 !vdev_is_concrete(vml[c]) ||
5668 vml[c]->vdev_isspare ||
5669 vml[c]->vdev_isl2cache ||
5670 !vdev_writeable(vml[c]) ||
5671 vml[c]->vdev_children != 0 ||
5672 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5673 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5674 error = SET_ERROR(EINVAL);
5675 break;
5678 if (vdev_dtl_required(vml[c])) {
5679 error = SET_ERROR(EBUSY);
5680 break;
5683 /* we need certain info from the top level */
5684 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5685 vml[c]->vdev_top->vdev_ms_array) == 0);
5686 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5687 vml[c]->vdev_top->vdev_ms_shift) == 0);
5688 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5689 vml[c]->vdev_top->vdev_asize) == 0);
5690 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5691 vml[c]->vdev_top->vdev_ashift) == 0);
5693 /* transfer per-vdev ZAPs */
5694 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5695 VERIFY0(nvlist_add_uint64(child[c],
5696 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5698 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5699 VERIFY0(nvlist_add_uint64(child[c],
5700 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5701 vml[c]->vdev_parent->vdev_top_zap));
5704 if (error != 0) {
5705 kmem_free(vml, children * sizeof (vdev_t *));
5706 kmem_free(glist, children * sizeof (uint64_t));
5707 return (spa_vdev_exit(spa, NULL, txg, error));
5710 /* stop writers from using the disks */
5711 for (c = 0; c < children; c++) {
5712 if (vml[c] != NULL)
5713 vml[c]->vdev_offline = B_TRUE;
5715 vdev_reopen(spa->spa_root_vdev);
5718 * Temporarily record the splitting vdevs in the spa config. This
5719 * will disappear once the config is regenerated.
5721 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5722 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5723 glist, children) == 0);
5724 kmem_free(glist, children * sizeof (uint64_t));
5726 mutex_enter(&spa->spa_props_lock);
5727 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5728 nvl) == 0);
5729 mutex_exit(&spa->spa_props_lock);
5730 spa->spa_config_splitting = nvl;
5731 vdev_config_dirty(spa->spa_root_vdev);
5733 /* configure and create the new pool */
5734 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5735 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5736 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5737 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5738 spa_version(spa)) == 0);
5739 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5740 spa->spa_config_txg) == 0);
5741 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5742 spa_generate_guid(NULL)) == 0);
5743 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5744 (void) nvlist_lookup_string(props,
5745 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5747 /* add the new pool to the namespace */
5748 newspa = spa_add(newname, config, altroot);
5749 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5750 newspa->spa_config_txg = spa->spa_config_txg;
5751 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5753 /* release the spa config lock, retaining the namespace lock */
5754 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5756 if (zio_injection_enabled)
5757 zio_handle_panic_injection(spa, FTAG, 1);
5759 spa_activate(newspa, spa_mode_global);
5760 spa_async_suspend(newspa);
5762 /* create the new pool from the disks of the original pool */
5763 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5764 if (error)
5765 goto out;
5767 /* if that worked, generate a real config for the new pool */
5768 if (newspa->spa_root_vdev != NULL) {
5769 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5770 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5771 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5772 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5773 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5774 B_TRUE));
5777 /* set the props */
5778 if (props != NULL) {
5779 spa_configfile_set(newspa, props, B_FALSE);
5780 error = spa_prop_set(newspa, props);
5781 if (error)
5782 goto out;
5785 /* flush everything */
5786 txg = spa_vdev_config_enter(newspa);
5787 vdev_config_dirty(newspa->spa_root_vdev);
5788 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5790 if (zio_injection_enabled)
5791 zio_handle_panic_injection(spa, FTAG, 2);
5793 spa_async_resume(newspa);
5795 /* finally, update the original pool's config */
5796 txg = spa_vdev_config_enter(spa);
5797 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5798 error = dmu_tx_assign(tx, TXG_WAIT);
5799 if (error != 0)
5800 dmu_tx_abort(tx);
5801 for (c = 0; c < children; c++) {
5802 if (vml[c] != NULL) {
5803 vdev_split(vml[c]);
5804 if (error == 0)
5805 spa_history_log_internal(spa, "detach", tx,
5806 "vdev=%s", vml[c]->vdev_path);
5808 vdev_free(vml[c]);
5811 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5812 vdev_config_dirty(spa->spa_root_vdev);
5813 spa->spa_config_splitting = NULL;
5814 nvlist_free(nvl);
5815 if (error == 0)
5816 dmu_tx_commit(tx);
5817 (void) spa_vdev_exit(spa, NULL, txg, 0);
5819 if (zio_injection_enabled)
5820 zio_handle_panic_injection(spa, FTAG, 3);
5822 /* split is complete; log a history record */
5823 spa_history_log_internal(newspa, "split", NULL,
5824 "from pool %s", spa_name(spa));
5826 kmem_free(vml, children * sizeof (vdev_t *));
5828 /* if we're not going to mount the filesystems in userland, export */
5829 if (exp)
5830 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5831 B_FALSE, B_FALSE);
5833 return (error);
5835 out:
5836 spa_unload(newspa);
5837 spa_deactivate(newspa);
5838 spa_remove(newspa);
5840 txg = spa_vdev_config_enter(spa);
5842 /* re-online all offlined disks */
5843 for (c = 0; c < children; c++) {
5844 if (vml[c] != NULL)
5845 vml[c]->vdev_offline = B_FALSE;
5847 vdev_reopen(spa->spa_root_vdev);
5849 nvlist_free(spa->spa_config_splitting);
5850 spa->spa_config_splitting = NULL;
5851 (void) spa_vdev_exit(spa, NULL, txg, error);
5853 kmem_free(vml, children * sizeof (vdev_t *));
5854 return (error);
5858 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5859 * currently spared, so we can detach it.
5861 static vdev_t *
5862 spa_vdev_resilver_done_hunt(vdev_t *vd)
5864 vdev_t *newvd, *oldvd;
5866 for (int c = 0; c < vd->vdev_children; c++) {
5867 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5868 if (oldvd != NULL)
5869 return (oldvd);
5873 * Check for a completed replacement. We always consider the first
5874 * vdev in the list to be the oldest vdev, and the last one to be
5875 * the newest (see spa_vdev_attach() for how that works). In
5876 * the case where the newest vdev is faulted, we will not automatically
5877 * remove it after a resilver completes. This is OK as it will require
5878 * user intervention to determine which disk the admin wishes to keep.
5880 if (vd->vdev_ops == &vdev_replacing_ops) {
5881 ASSERT(vd->vdev_children > 1);
5883 newvd = vd->vdev_child[vd->vdev_children - 1];
5884 oldvd = vd->vdev_child[0];
5886 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5887 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5888 !vdev_dtl_required(oldvd))
5889 return (oldvd);
5893 * Check for a completed resilver with the 'unspare' flag set.
5895 if (vd->vdev_ops == &vdev_spare_ops) {
5896 vdev_t *first = vd->vdev_child[0];
5897 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5899 if (last->vdev_unspare) {
5900 oldvd = first;
5901 newvd = last;
5902 } else if (first->vdev_unspare) {
5903 oldvd = last;
5904 newvd = first;
5905 } else {
5906 oldvd = NULL;
5909 if (oldvd != NULL &&
5910 vdev_dtl_empty(newvd, DTL_MISSING) &&
5911 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5912 !vdev_dtl_required(oldvd))
5913 return (oldvd);
5916 * If there are more than two spares attached to a disk,
5917 * and those spares are not required, then we want to
5918 * attempt to free them up now so that they can be used
5919 * by other pools. Once we're back down to a single
5920 * disk+spare, we stop removing them.
5922 if (vd->vdev_children > 2) {
5923 newvd = vd->vdev_child[1];
5925 if (newvd->vdev_isspare && last->vdev_isspare &&
5926 vdev_dtl_empty(last, DTL_MISSING) &&
5927 vdev_dtl_empty(last, DTL_OUTAGE) &&
5928 !vdev_dtl_required(newvd))
5929 return (newvd);
5933 return (NULL);
5936 static void
5937 spa_vdev_resilver_done(spa_t *spa)
5939 vdev_t *vd, *pvd, *ppvd;
5940 uint64_t guid, sguid, pguid, ppguid;
5942 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5944 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5945 pvd = vd->vdev_parent;
5946 ppvd = pvd->vdev_parent;
5947 guid = vd->vdev_guid;
5948 pguid = pvd->vdev_guid;
5949 ppguid = ppvd->vdev_guid;
5950 sguid = 0;
5952 * If we have just finished replacing a hot spared device, then
5953 * we need to detach the parent's first child (the original hot
5954 * spare) as well.
5956 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5957 ppvd->vdev_children == 2) {
5958 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5959 sguid = ppvd->vdev_child[1]->vdev_guid;
5961 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5963 spa_config_exit(spa, SCL_ALL, FTAG);
5964 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5965 return;
5966 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5967 return;
5968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5971 spa_config_exit(spa, SCL_ALL, FTAG);
5975 * Update the stored path or FRU for this vdev.
5978 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5979 boolean_t ispath)
5981 vdev_t *vd;
5982 boolean_t sync = B_FALSE;
5984 ASSERT(spa_writeable(spa));
5986 spa_vdev_state_enter(spa, SCL_ALL);
5988 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5989 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5991 if (!vd->vdev_ops->vdev_op_leaf)
5992 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5994 if (ispath) {
5995 if (strcmp(value, vd->vdev_path) != 0) {
5996 spa_strfree(vd->vdev_path);
5997 vd->vdev_path = spa_strdup(value);
5998 sync = B_TRUE;
6000 } else {
6001 if (vd->vdev_fru == NULL) {
6002 vd->vdev_fru = spa_strdup(value);
6003 sync = B_TRUE;
6004 } else if (strcmp(value, vd->vdev_fru) != 0) {
6005 spa_strfree(vd->vdev_fru);
6006 vd->vdev_fru = spa_strdup(value);
6007 sync = B_TRUE;
6011 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6015 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6017 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6021 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6023 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6027 * ==========================================================================
6028 * SPA Scanning
6029 * ==========================================================================
6032 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6034 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6036 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6037 return (SET_ERROR(EBUSY));
6039 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6043 spa_scan_stop(spa_t *spa)
6045 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6046 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6047 return (SET_ERROR(EBUSY));
6048 return (dsl_scan_cancel(spa->spa_dsl_pool));
6052 spa_scan(spa_t *spa, pool_scan_func_t func)
6054 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6056 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6057 return (SET_ERROR(ENOTSUP));
6060 * If a resilver was requested, but there is no DTL on a
6061 * writeable leaf device, we have nothing to do.
6063 if (func == POOL_SCAN_RESILVER &&
6064 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6065 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6066 return (0);
6069 return (dsl_scan(spa->spa_dsl_pool, func));
6073 * ==========================================================================
6074 * SPA async task processing
6075 * ==========================================================================
6078 static void
6079 spa_async_remove(spa_t *spa, vdev_t *vd)
6081 if (vd->vdev_remove_wanted) {
6082 vd->vdev_remove_wanted = B_FALSE;
6083 vd->vdev_delayed_close = B_FALSE;
6084 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6087 * We want to clear the stats, but we don't want to do a full
6088 * vdev_clear() as that will cause us to throw away
6089 * degraded/faulted state as well as attempt to reopen the
6090 * device, all of which is a waste.
6092 vd->vdev_stat.vs_read_errors = 0;
6093 vd->vdev_stat.vs_write_errors = 0;
6094 vd->vdev_stat.vs_checksum_errors = 0;
6096 vdev_state_dirty(vd->vdev_top);
6099 for (int c = 0; c < vd->vdev_children; c++)
6100 spa_async_remove(spa, vd->vdev_child[c]);
6103 static void
6104 spa_async_probe(spa_t *spa, vdev_t *vd)
6106 if (vd->vdev_probe_wanted) {
6107 vd->vdev_probe_wanted = B_FALSE;
6108 vdev_reopen(vd); /* vdev_open() does the actual probe */
6111 for (int c = 0; c < vd->vdev_children; c++)
6112 spa_async_probe(spa, vd->vdev_child[c]);
6115 static void
6116 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6118 sysevent_id_t eid;
6119 nvlist_t *attr;
6120 char *physpath;
6122 if (!spa->spa_autoexpand)
6123 return;
6125 for (int c = 0; c < vd->vdev_children; c++) {
6126 vdev_t *cvd = vd->vdev_child[c];
6127 spa_async_autoexpand(spa, cvd);
6130 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6131 return;
6133 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6134 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6136 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6137 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6139 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6140 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6142 nvlist_free(attr);
6143 kmem_free(physpath, MAXPATHLEN);
6146 static void
6147 spa_async_thread(void *arg)
6149 spa_t *spa = (spa_t *)arg;
6150 int tasks;
6152 ASSERT(spa->spa_sync_on);
6154 mutex_enter(&spa->spa_async_lock);
6155 tasks = spa->spa_async_tasks;
6156 spa->spa_async_tasks = 0;
6157 mutex_exit(&spa->spa_async_lock);
6160 * See if the config needs to be updated.
6162 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6163 uint64_t old_space, new_space;
6165 mutex_enter(&spa_namespace_lock);
6166 old_space = metaslab_class_get_space(spa_normal_class(spa));
6167 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6168 new_space = metaslab_class_get_space(spa_normal_class(spa));
6169 mutex_exit(&spa_namespace_lock);
6172 * If the pool grew as a result of the config update,
6173 * then log an internal history event.
6175 if (new_space != old_space) {
6176 spa_history_log_internal(spa, "vdev online", NULL,
6177 "pool '%s' size: %llu(+%llu)",
6178 spa_name(spa), new_space, new_space - old_space);
6183 * See if any devices need to be marked REMOVED.
6185 if (tasks & SPA_ASYNC_REMOVE) {
6186 spa_vdev_state_enter(spa, SCL_NONE);
6187 spa_async_remove(spa, spa->spa_root_vdev);
6188 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6189 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6190 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6191 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6192 (void) spa_vdev_state_exit(spa, NULL, 0);
6195 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6196 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6197 spa_async_autoexpand(spa, spa->spa_root_vdev);
6198 spa_config_exit(spa, SCL_CONFIG, FTAG);
6202 * See if any devices need to be probed.
6204 if (tasks & SPA_ASYNC_PROBE) {
6205 spa_vdev_state_enter(spa, SCL_NONE);
6206 spa_async_probe(spa, spa->spa_root_vdev);
6207 (void) spa_vdev_state_exit(spa, NULL, 0);
6211 * If any devices are done replacing, detach them.
6213 if (tasks & SPA_ASYNC_RESILVER_DONE)
6214 spa_vdev_resilver_done(spa);
6217 * Kick off a resilver.
6219 if (tasks & SPA_ASYNC_RESILVER)
6220 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6223 * Let the world know that we're done.
6225 mutex_enter(&spa->spa_async_lock);
6226 spa->spa_async_thread = NULL;
6227 cv_broadcast(&spa->spa_async_cv);
6228 mutex_exit(&spa->spa_async_lock);
6229 thread_exit();
6232 void
6233 spa_async_suspend(spa_t *spa)
6235 mutex_enter(&spa->spa_async_lock);
6236 spa->spa_async_suspended++;
6237 while (spa->spa_async_thread != NULL ||
6238 spa->spa_condense_thread != NULL)
6239 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6240 mutex_exit(&spa->spa_async_lock);
6242 spa_vdev_remove_suspend(spa);
6245 void
6246 spa_async_resume(spa_t *spa)
6248 mutex_enter(&spa->spa_async_lock);
6249 ASSERT(spa->spa_async_suspended != 0);
6250 spa->spa_async_suspended--;
6251 mutex_exit(&spa->spa_async_lock);
6252 spa_restart_removal(spa);
6255 static boolean_t
6256 spa_async_tasks_pending(spa_t *spa)
6258 uint_t non_config_tasks;
6259 uint_t config_task;
6260 boolean_t config_task_suspended;
6262 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6263 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6264 if (spa->spa_ccw_fail_time == 0) {
6265 config_task_suspended = B_FALSE;
6266 } else {
6267 config_task_suspended =
6268 (gethrtime() - spa->spa_ccw_fail_time) <
6269 (zfs_ccw_retry_interval * NANOSEC);
6272 return (non_config_tasks || (config_task && !config_task_suspended));
6275 static void
6276 spa_async_dispatch(spa_t *spa)
6278 mutex_enter(&spa->spa_async_lock);
6279 if (spa_async_tasks_pending(spa) &&
6280 !spa->spa_async_suspended &&
6281 spa->spa_async_thread == NULL &&
6282 rootdir != NULL)
6283 spa->spa_async_thread = thread_create(NULL, 0,
6284 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6285 mutex_exit(&spa->spa_async_lock);
6288 void
6289 spa_async_request(spa_t *spa, int task)
6291 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6292 mutex_enter(&spa->spa_async_lock);
6293 spa->spa_async_tasks |= task;
6294 mutex_exit(&spa->spa_async_lock);
6298 * ==========================================================================
6299 * SPA syncing routines
6300 * ==========================================================================
6303 static int
6304 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6306 bpobj_t *bpo = arg;
6307 bpobj_enqueue(bpo, bp, tx);
6308 return (0);
6311 static int
6312 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6314 zio_t *zio = arg;
6316 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6317 zio->io_flags));
6318 return (0);
6322 * Note: this simple function is not inlined to make it easier to dtrace the
6323 * amount of time spent syncing frees.
6325 static void
6326 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6328 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6329 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6330 VERIFY(zio_wait(zio) == 0);
6334 * Note: this simple function is not inlined to make it easier to dtrace the
6335 * amount of time spent syncing deferred frees.
6337 static void
6338 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6340 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6341 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6342 spa_free_sync_cb, zio, tx), ==, 0);
6343 VERIFY0(zio_wait(zio));
6347 static void
6348 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6350 char *packed = NULL;
6351 size_t bufsize;
6352 size_t nvsize = 0;
6353 dmu_buf_t *db;
6355 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6358 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6359 * information. This avoids the dmu_buf_will_dirty() path and
6360 * saves us a pre-read to get data we don't actually care about.
6362 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6363 packed = kmem_alloc(bufsize, KM_SLEEP);
6365 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6366 KM_SLEEP) == 0);
6367 bzero(packed + nvsize, bufsize - nvsize);
6369 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6371 kmem_free(packed, bufsize);
6373 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6374 dmu_buf_will_dirty(db, tx);
6375 *(uint64_t *)db->db_data = nvsize;
6376 dmu_buf_rele(db, FTAG);
6379 static void
6380 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6381 const char *config, const char *entry)
6383 nvlist_t *nvroot;
6384 nvlist_t **list;
6385 int i;
6387 if (!sav->sav_sync)
6388 return;
6391 * Update the MOS nvlist describing the list of available devices.
6392 * spa_validate_aux() will have already made sure this nvlist is
6393 * valid and the vdevs are labeled appropriately.
6395 if (sav->sav_object == 0) {
6396 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6397 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6398 sizeof (uint64_t), tx);
6399 VERIFY(zap_update(spa->spa_meta_objset,
6400 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6401 &sav->sav_object, tx) == 0);
6404 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6405 if (sav->sav_count == 0) {
6406 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6407 } else {
6408 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6409 for (i = 0; i < sav->sav_count; i++)
6410 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6411 B_FALSE, VDEV_CONFIG_L2CACHE);
6412 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6413 sav->sav_count) == 0);
6414 for (i = 0; i < sav->sav_count; i++)
6415 nvlist_free(list[i]);
6416 kmem_free(list, sav->sav_count * sizeof (void *));
6419 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6420 nvlist_free(nvroot);
6422 sav->sav_sync = B_FALSE;
6426 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6427 * The all-vdev ZAP must be empty.
6429 static void
6430 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6432 spa_t *spa = vd->vdev_spa;
6433 if (vd->vdev_top_zap != 0) {
6434 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6435 vd->vdev_top_zap, tx));
6437 if (vd->vdev_leaf_zap != 0) {
6438 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6439 vd->vdev_leaf_zap, tx));
6441 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6442 spa_avz_build(vd->vdev_child[i], avz, tx);
6446 static void
6447 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6449 nvlist_t *config;
6452 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6453 * its config may not be dirty but we still need to build per-vdev ZAPs.
6454 * Similarly, if the pool is being assembled (e.g. after a split), we
6455 * need to rebuild the AVZ although the config may not be dirty.
6457 if (list_is_empty(&spa->spa_config_dirty_list) &&
6458 spa->spa_avz_action == AVZ_ACTION_NONE)
6459 return;
6461 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6463 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6464 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6465 spa->spa_all_vdev_zaps != 0);
6467 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6468 /* Make and build the new AVZ */
6469 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6470 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6471 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6473 /* Diff old AVZ with new one */
6474 zap_cursor_t zc;
6475 zap_attribute_t za;
6477 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6478 spa->spa_all_vdev_zaps);
6479 zap_cursor_retrieve(&zc, &za) == 0;
6480 zap_cursor_advance(&zc)) {
6481 uint64_t vdzap = za.za_first_integer;
6482 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6483 vdzap) == ENOENT) {
6485 * ZAP is listed in old AVZ but not in new one;
6486 * destroy it
6488 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6489 tx));
6493 zap_cursor_fini(&zc);
6495 /* Destroy the old AVZ */
6496 VERIFY0(zap_destroy(spa->spa_meta_objset,
6497 spa->spa_all_vdev_zaps, tx));
6499 /* Replace the old AVZ in the dir obj with the new one */
6500 VERIFY0(zap_update(spa->spa_meta_objset,
6501 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6502 sizeof (new_avz), 1, &new_avz, tx));
6504 spa->spa_all_vdev_zaps = new_avz;
6505 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6506 zap_cursor_t zc;
6507 zap_attribute_t za;
6509 /* Walk through the AVZ and destroy all listed ZAPs */
6510 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6511 spa->spa_all_vdev_zaps);
6512 zap_cursor_retrieve(&zc, &za) == 0;
6513 zap_cursor_advance(&zc)) {
6514 uint64_t zap = za.za_first_integer;
6515 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6518 zap_cursor_fini(&zc);
6520 /* Destroy and unlink the AVZ itself */
6521 VERIFY0(zap_destroy(spa->spa_meta_objset,
6522 spa->spa_all_vdev_zaps, tx));
6523 VERIFY0(zap_remove(spa->spa_meta_objset,
6524 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6525 spa->spa_all_vdev_zaps = 0;
6528 if (spa->spa_all_vdev_zaps == 0) {
6529 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6530 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6531 DMU_POOL_VDEV_ZAP_MAP, tx);
6533 spa->spa_avz_action = AVZ_ACTION_NONE;
6535 /* Create ZAPs for vdevs that don't have them. */
6536 vdev_construct_zaps(spa->spa_root_vdev, tx);
6538 config = spa_config_generate(spa, spa->spa_root_vdev,
6539 dmu_tx_get_txg(tx), B_FALSE);
6542 * If we're upgrading the spa version then make sure that
6543 * the config object gets updated with the correct version.
6545 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6546 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6547 spa->spa_uberblock.ub_version);
6549 spa_config_exit(spa, SCL_STATE, FTAG);
6551 nvlist_free(spa->spa_config_syncing);
6552 spa->spa_config_syncing = config;
6554 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6557 static void
6558 spa_sync_version(void *arg, dmu_tx_t *tx)
6560 uint64_t *versionp = arg;
6561 uint64_t version = *versionp;
6562 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6565 * Setting the version is special cased when first creating the pool.
6567 ASSERT(tx->tx_txg != TXG_INITIAL);
6569 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6570 ASSERT(version >= spa_version(spa));
6572 spa->spa_uberblock.ub_version = version;
6573 vdev_config_dirty(spa->spa_root_vdev);
6574 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6578 * Set zpool properties.
6580 static void
6581 spa_sync_props(void *arg, dmu_tx_t *tx)
6583 nvlist_t *nvp = arg;
6584 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6585 objset_t *mos = spa->spa_meta_objset;
6586 nvpair_t *elem = NULL;
6588 mutex_enter(&spa->spa_props_lock);
6590 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6591 uint64_t intval;
6592 char *strval, *fname;
6593 zpool_prop_t prop;
6594 const char *propname;
6595 zprop_type_t proptype;
6596 spa_feature_t fid;
6598 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6599 case ZPOOL_PROP_INVAL:
6601 * We checked this earlier in spa_prop_validate().
6603 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6605 fname = strchr(nvpair_name(elem), '@') + 1;
6606 VERIFY0(zfeature_lookup_name(fname, &fid));
6608 spa_feature_enable(spa, fid, tx);
6609 spa_history_log_internal(spa, "set", tx,
6610 "%s=enabled", nvpair_name(elem));
6611 break;
6613 case ZPOOL_PROP_VERSION:
6614 intval = fnvpair_value_uint64(elem);
6616 * The version is synced seperatly before other
6617 * properties and should be correct by now.
6619 ASSERT3U(spa_version(spa), >=, intval);
6620 break;
6622 case ZPOOL_PROP_ALTROOT:
6624 * 'altroot' is a non-persistent property. It should
6625 * have been set temporarily at creation or import time.
6627 ASSERT(spa->spa_root != NULL);
6628 break;
6630 case ZPOOL_PROP_READONLY:
6631 case ZPOOL_PROP_CACHEFILE:
6633 * 'readonly' and 'cachefile' are also non-persisitent
6634 * properties.
6636 break;
6637 case ZPOOL_PROP_COMMENT:
6638 strval = fnvpair_value_string(elem);
6639 if (spa->spa_comment != NULL)
6640 spa_strfree(spa->spa_comment);
6641 spa->spa_comment = spa_strdup(strval);
6643 * We need to dirty the configuration on all the vdevs
6644 * so that their labels get updated. It's unnecessary
6645 * to do this for pool creation since the vdev's
6646 * configuratoin has already been dirtied.
6648 if (tx->tx_txg != TXG_INITIAL)
6649 vdev_config_dirty(spa->spa_root_vdev);
6650 spa_history_log_internal(spa, "set", tx,
6651 "%s=%s", nvpair_name(elem), strval);
6652 break;
6653 default:
6655 * Set pool property values in the poolprops mos object.
6657 if (spa->spa_pool_props_object == 0) {
6658 spa->spa_pool_props_object =
6659 zap_create_link(mos, DMU_OT_POOL_PROPS,
6660 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6661 tx);
6664 /* normalize the property name */
6665 propname = zpool_prop_to_name(prop);
6666 proptype = zpool_prop_get_type(prop);
6668 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6669 ASSERT(proptype == PROP_TYPE_STRING);
6670 strval = fnvpair_value_string(elem);
6671 VERIFY0(zap_update(mos,
6672 spa->spa_pool_props_object, propname,
6673 1, strlen(strval) + 1, strval, tx));
6674 spa_history_log_internal(spa, "set", tx,
6675 "%s=%s", nvpair_name(elem), strval);
6676 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6677 intval = fnvpair_value_uint64(elem);
6679 if (proptype == PROP_TYPE_INDEX) {
6680 const char *unused;
6681 VERIFY0(zpool_prop_index_to_string(
6682 prop, intval, &unused));
6684 VERIFY0(zap_update(mos,
6685 spa->spa_pool_props_object, propname,
6686 8, 1, &intval, tx));
6687 spa_history_log_internal(spa, "set", tx,
6688 "%s=%lld", nvpair_name(elem), intval);
6689 } else {
6690 ASSERT(0); /* not allowed */
6693 switch (prop) {
6694 case ZPOOL_PROP_DELEGATION:
6695 spa->spa_delegation = intval;
6696 break;
6697 case ZPOOL_PROP_BOOTFS:
6698 spa->spa_bootfs = intval;
6699 break;
6700 case ZPOOL_PROP_FAILUREMODE:
6701 spa->spa_failmode = intval;
6702 break;
6703 case ZPOOL_PROP_AUTOEXPAND:
6704 spa->spa_autoexpand = intval;
6705 if (tx->tx_txg != TXG_INITIAL)
6706 spa_async_request(spa,
6707 SPA_ASYNC_AUTOEXPAND);
6708 break;
6709 case ZPOOL_PROP_DEDUPDITTO:
6710 spa->spa_dedup_ditto = intval;
6711 break;
6712 default:
6713 break;
6719 mutex_exit(&spa->spa_props_lock);
6723 * Perform one-time upgrade on-disk changes. spa_version() does not
6724 * reflect the new version this txg, so there must be no changes this
6725 * txg to anything that the upgrade code depends on after it executes.
6726 * Therefore this must be called after dsl_pool_sync() does the sync
6727 * tasks.
6729 static void
6730 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6732 dsl_pool_t *dp = spa->spa_dsl_pool;
6734 ASSERT(spa->spa_sync_pass == 1);
6736 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6738 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6739 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6740 dsl_pool_create_origin(dp, tx);
6742 /* Keeping the origin open increases spa_minref */
6743 spa->spa_minref += 3;
6746 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6747 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6748 dsl_pool_upgrade_clones(dp, tx);
6751 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6752 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6753 dsl_pool_upgrade_dir_clones(dp, tx);
6755 /* Keeping the freedir open increases spa_minref */
6756 spa->spa_minref += 3;
6759 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6760 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6761 spa_feature_create_zap_objects(spa, tx);
6765 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6766 * when possibility to use lz4 compression for metadata was added
6767 * Old pools that have this feature enabled must be upgraded to have
6768 * this feature active
6770 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6771 boolean_t lz4_en = spa_feature_is_enabled(spa,
6772 SPA_FEATURE_LZ4_COMPRESS);
6773 boolean_t lz4_ac = spa_feature_is_active(spa,
6774 SPA_FEATURE_LZ4_COMPRESS);
6776 if (lz4_en && !lz4_ac)
6777 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6781 * If we haven't written the salt, do so now. Note that the
6782 * feature may not be activated yet, but that's fine since
6783 * the presence of this ZAP entry is backwards compatible.
6785 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6786 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6787 VERIFY0(zap_add(spa->spa_meta_objset,
6788 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6789 sizeof (spa->spa_cksum_salt.zcs_bytes),
6790 spa->spa_cksum_salt.zcs_bytes, tx));
6793 rrw_exit(&dp->dp_config_rwlock, FTAG);
6796 static void
6797 vdev_indirect_state_sync_verify(vdev_t *vd)
6799 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6800 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6802 if (vd->vdev_ops == &vdev_indirect_ops) {
6803 ASSERT(vim != NULL);
6804 ASSERT(vib != NULL);
6807 if (vdev_obsolete_sm_object(vd) != 0) {
6808 ASSERT(vd->vdev_obsolete_sm != NULL);
6809 ASSERT(vd->vdev_removing ||
6810 vd->vdev_ops == &vdev_indirect_ops);
6811 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6812 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6814 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6815 space_map_object(vd->vdev_obsolete_sm));
6816 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6817 space_map_allocated(vd->vdev_obsolete_sm));
6819 ASSERT(vd->vdev_obsolete_segments != NULL);
6822 * Since frees / remaps to an indirect vdev can only
6823 * happen in syncing context, the obsolete segments
6824 * tree must be empty when we start syncing.
6826 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
6830 * Sync the specified transaction group. New blocks may be dirtied as
6831 * part of the process, so we iterate until it converges.
6833 void
6834 spa_sync(spa_t *spa, uint64_t txg)
6836 dsl_pool_t *dp = spa->spa_dsl_pool;
6837 objset_t *mos = spa->spa_meta_objset;
6838 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6839 vdev_t *rvd = spa->spa_root_vdev;
6840 vdev_t *vd;
6841 dmu_tx_t *tx;
6842 int error;
6843 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6844 zfs_vdev_queue_depth_pct / 100;
6846 VERIFY(spa_writeable(spa));
6849 * Wait for i/os issued in open context that need to complete
6850 * before this txg syncs.
6852 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
6853 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
6856 * Lock out configuration changes.
6858 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6860 spa->spa_syncing_txg = txg;
6861 spa->spa_sync_pass = 0;
6863 mutex_enter(&spa->spa_alloc_lock);
6864 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6865 mutex_exit(&spa->spa_alloc_lock);
6868 * If there are any pending vdev state changes, convert them
6869 * into config changes that go out with this transaction group.
6871 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6872 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6874 * We need the write lock here because, for aux vdevs,
6875 * calling vdev_config_dirty() modifies sav_config.
6876 * This is ugly and will become unnecessary when we
6877 * eliminate the aux vdev wart by integrating all vdevs
6878 * into the root vdev tree.
6880 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6881 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6882 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6883 vdev_state_clean(vd);
6884 vdev_config_dirty(vd);
6886 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6887 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6889 spa_config_exit(spa, SCL_STATE, FTAG);
6891 tx = dmu_tx_create_assigned(dp, txg);
6893 spa->spa_sync_starttime = gethrtime();
6894 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6895 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6898 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6899 * set spa_deflate if we have no raid-z vdevs.
6901 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6902 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6903 int i;
6905 for (i = 0; i < rvd->vdev_children; i++) {
6906 vd = rvd->vdev_child[i];
6907 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6908 break;
6910 if (i == rvd->vdev_children) {
6911 spa->spa_deflate = TRUE;
6912 VERIFY(0 == zap_add(spa->spa_meta_objset,
6913 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6914 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6919 * Set the top-level vdev's max queue depth. Evaluate each
6920 * top-level's async write queue depth in case it changed.
6921 * The max queue depth will not change in the middle of syncing
6922 * out this txg.
6924 uint64_t queue_depth_total = 0;
6925 for (int c = 0; c < rvd->vdev_children; c++) {
6926 vdev_t *tvd = rvd->vdev_child[c];
6927 metaslab_group_t *mg = tvd->vdev_mg;
6929 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6930 !metaslab_group_initialized(mg))
6931 continue;
6934 * It is safe to do a lock-free check here because only async
6935 * allocations look at mg_max_alloc_queue_depth, and async
6936 * allocations all happen from spa_sync().
6938 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6939 mg->mg_max_alloc_queue_depth = max_queue_depth;
6940 queue_depth_total += mg->mg_max_alloc_queue_depth;
6942 metaslab_class_t *mc = spa_normal_class(spa);
6943 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6944 mc->mc_alloc_max_slots = queue_depth_total;
6945 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6947 ASSERT3U(mc->mc_alloc_max_slots, <=,
6948 max_queue_depth * rvd->vdev_children);
6950 for (int c = 0; c < rvd->vdev_children; c++) {
6951 vdev_t *vd = rvd->vdev_child[c];
6952 vdev_indirect_state_sync_verify(vd);
6954 if (vdev_indirect_should_condense(vd)) {
6955 spa_condense_indirect_start_sync(vd, tx);
6956 break;
6961 * Iterate to convergence.
6963 do {
6964 int pass = ++spa->spa_sync_pass;
6966 spa_sync_config_object(spa, tx);
6967 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6968 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6969 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6970 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6971 spa_errlog_sync(spa, txg);
6972 dsl_pool_sync(dp, txg);
6974 if (pass < zfs_sync_pass_deferred_free) {
6975 spa_sync_frees(spa, free_bpl, tx);
6976 } else {
6978 * We can not defer frees in pass 1, because
6979 * we sync the deferred frees later in pass 1.
6981 ASSERT3U(pass, >, 1);
6982 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6983 &spa->spa_deferred_bpobj, tx);
6986 ddt_sync(spa, txg);
6987 dsl_scan_sync(dp, tx);
6989 if (spa->spa_vdev_removal != NULL)
6990 svr_sync(spa, tx);
6992 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6993 != NULL)
6994 vdev_sync(vd, txg);
6996 if (pass == 1) {
6997 spa_sync_upgrades(spa, tx);
6998 ASSERT3U(txg, >=,
6999 spa->spa_uberblock.ub_rootbp.blk_birth);
7001 * Note: We need to check if the MOS is dirty
7002 * because we could have marked the MOS dirty
7003 * without updating the uberblock (e.g. if we
7004 * have sync tasks but no dirty user data). We
7005 * need to check the uberblock's rootbp because
7006 * it is updated if we have synced out dirty
7007 * data (though in this case the MOS will most
7008 * likely also be dirty due to second order
7009 * effects, we don't want to rely on that here).
7011 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7012 !dmu_objset_is_dirty(mos, txg)) {
7014 * Nothing changed on the first pass,
7015 * therefore this TXG is a no-op. Avoid
7016 * syncing deferred frees, so that we
7017 * can keep this TXG as a no-op.
7019 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7020 txg));
7021 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7022 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7023 break;
7025 spa_sync_deferred_frees(spa, tx);
7028 } while (dmu_objset_is_dirty(mos, txg));
7030 if (!list_is_empty(&spa->spa_config_dirty_list)) {
7032 * Make sure that the number of ZAPs for all the vdevs matches
7033 * the number of ZAPs in the per-vdev ZAP list. This only gets
7034 * called if the config is dirty; otherwise there may be
7035 * outstanding AVZ operations that weren't completed in
7036 * spa_sync_config_object.
7038 uint64_t all_vdev_zap_entry_count;
7039 ASSERT0(zap_count(spa->spa_meta_objset,
7040 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7041 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7042 all_vdev_zap_entry_count);
7045 if (spa->spa_vdev_removal != NULL) {
7046 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7050 * Rewrite the vdev configuration (which includes the uberblock)
7051 * to commit the transaction group.
7053 * If there are no dirty vdevs, we sync the uberblock to a few
7054 * random top-level vdevs that are known to be visible in the
7055 * config cache (see spa_vdev_add() for a complete description).
7056 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7058 for (;;) {
7060 * We hold SCL_STATE to prevent vdev open/close/etc.
7061 * while we're attempting to write the vdev labels.
7063 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7065 if (list_is_empty(&spa->spa_config_dirty_list)) {
7066 vdev_t *svd[SPA_DVAS_PER_BP];
7067 int svdcount = 0;
7068 int children = rvd->vdev_children;
7069 int c0 = spa_get_random(children);
7071 for (int c = 0; c < children; c++) {
7072 vd = rvd->vdev_child[(c0 + c) % children];
7073 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7074 !vdev_is_concrete(vd))
7075 continue;
7076 svd[svdcount++] = vd;
7077 if (svdcount == SPA_DVAS_PER_BP)
7078 break;
7080 error = vdev_config_sync(svd, svdcount, txg);
7081 } else {
7082 error = vdev_config_sync(rvd->vdev_child,
7083 rvd->vdev_children, txg);
7086 if (error == 0)
7087 spa->spa_last_synced_guid = rvd->vdev_guid;
7089 spa_config_exit(spa, SCL_STATE, FTAG);
7091 if (error == 0)
7092 break;
7093 zio_suspend(spa, NULL);
7094 zio_resume_wait(spa);
7096 dmu_tx_commit(tx);
7098 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7101 * Clear the dirty config list.
7103 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7104 vdev_config_clean(vd);
7107 * Now that the new config has synced transactionally,
7108 * let it become visible to the config cache.
7110 if (spa->spa_config_syncing != NULL) {
7111 spa_config_set(spa, spa->spa_config_syncing);
7112 spa->spa_config_txg = txg;
7113 spa->spa_config_syncing = NULL;
7116 dsl_pool_sync_done(dp, txg);
7118 mutex_enter(&spa->spa_alloc_lock);
7119 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7120 mutex_exit(&spa->spa_alloc_lock);
7123 * Update usable space statistics.
7125 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7126 vdev_sync_done(vd, txg);
7128 spa_update_dspace(spa);
7131 * It had better be the case that we didn't dirty anything
7132 * since vdev_config_sync().
7134 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7135 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7136 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7138 spa->spa_sync_pass = 0;
7141 * Update the last synced uberblock here. We want to do this at
7142 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7143 * will be guaranteed that all the processing associated with
7144 * that txg has been completed.
7146 spa->spa_ubsync = spa->spa_uberblock;
7147 spa_config_exit(spa, SCL_CONFIG, FTAG);
7149 spa_handle_ignored_writes(spa);
7152 * If any async tasks have been requested, kick them off.
7154 spa_async_dispatch(spa);
7158 * Sync all pools. We don't want to hold the namespace lock across these
7159 * operations, so we take a reference on the spa_t and drop the lock during the
7160 * sync.
7162 void
7163 spa_sync_allpools(void)
7165 spa_t *spa = NULL;
7166 mutex_enter(&spa_namespace_lock);
7167 while ((spa = spa_next(spa)) != NULL) {
7168 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7169 !spa_writeable(spa) || spa_suspended(spa))
7170 continue;
7171 spa_open_ref(spa, FTAG);
7172 mutex_exit(&spa_namespace_lock);
7173 txg_wait_synced(spa_get_dsl(spa), 0);
7174 mutex_enter(&spa_namespace_lock);
7175 spa_close(spa, FTAG);
7177 mutex_exit(&spa_namespace_lock);
7181 * ==========================================================================
7182 * Miscellaneous routines
7183 * ==========================================================================
7187 * Remove all pools in the system.
7189 void
7190 spa_evict_all(void)
7192 spa_t *spa;
7195 * Remove all cached state. All pools should be closed now,
7196 * so every spa in the AVL tree should be unreferenced.
7198 mutex_enter(&spa_namespace_lock);
7199 while ((spa = spa_next(NULL)) != NULL) {
7201 * Stop async tasks. The async thread may need to detach
7202 * a device that's been replaced, which requires grabbing
7203 * spa_namespace_lock, so we must drop it here.
7205 spa_open_ref(spa, FTAG);
7206 mutex_exit(&spa_namespace_lock);
7207 spa_async_suspend(spa);
7208 mutex_enter(&spa_namespace_lock);
7209 spa_close(spa, FTAG);
7211 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7212 spa_unload(spa);
7213 spa_deactivate(spa);
7215 spa_remove(spa);
7217 mutex_exit(&spa_namespace_lock);
7220 vdev_t *
7221 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7223 vdev_t *vd;
7224 int i;
7226 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7227 return (vd);
7229 if (aux) {
7230 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7231 vd = spa->spa_l2cache.sav_vdevs[i];
7232 if (vd->vdev_guid == guid)
7233 return (vd);
7236 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7237 vd = spa->spa_spares.sav_vdevs[i];
7238 if (vd->vdev_guid == guid)
7239 return (vd);
7243 return (NULL);
7246 void
7247 spa_upgrade(spa_t *spa, uint64_t version)
7249 ASSERT(spa_writeable(spa));
7251 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7254 * This should only be called for a non-faulted pool, and since a
7255 * future version would result in an unopenable pool, this shouldn't be
7256 * possible.
7258 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7259 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7261 spa->spa_uberblock.ub_version = version;
7262 vdev_config_dirty(spa->spa_root_vdev);
7264 spa_config_exit(spa, SCL_ALL, FTAG);
7266 txg_wait_synced(spa_get_dsl(spa), 0);
7269 boolean_t
7270 spa_has_spare(spa_t *spa, uint64_t guid)
7272 int i;
7273 uint64_t spareguid;
7274 spa_aux_vdev_t *sav = &spa->spa_spares;
7276 for (i = 0; i < sav->sav_count; i++)
7277 if (sav->sav_vdevs[i]->vdev_guid == guid)
7278 return (B_TRUE);
7280 for (i = 0; i < sav->sav_npending; i++) {
7281 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7282 &spareguid) == 0 && spareguid == guid)
7283 return (B_TRUE);
7286 return (B_FALSE);
7290 * Check if a pool has an active shared spare device.
7291 * Note: reference count of an active spare is 2, as a spare and as a replace
7293 static boolean_t
7294 spa_has_active_shared_spare(spa_t *spa)
7296 int i, refcnt;
7297 uint64_t pool;
7298 spa_aux_vdev_t *sav = &spa->spa_spares;
7300 for (i = 0; i < sav->sav_count; i++) {
7301 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7302 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7303 refcnt > 2)
7304 return (B_TRUE);
7307 return (B_FALSE);
7310 sysevent_t *
7311 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7313 sysevent_t *ev = NULL;
7314 #ifdef _KERNEL
7315 sysevent_attr_list_t *attr = NULL;
7316 sysevent_value_t value;
7318 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7319 SE_SLEEP);
7320 ASSERT(ev != NULL);
7322 value.value_type = SE_DATA_TYPE_STRING;
7323 value.value.sv_string = spa_name(spa);
7324 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7325 goto done;
7327 value.value_type = SE_DATA_TYPE_UINT64;
7328 value.value.sv_uint64 = spa_guid(spa);
7329 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7330 goto done;
7332 if (vd) {
7333 value.value_type = SE_DATA_TYPE_UINT64;
7334 value.value.sv_uint64 = vd->vdev_guid;
7335 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7336 SE_SLEEP) != 0)
7337 goto done;
7339 if (vd->vdev_path) {
7340 value.value_type = SE_DATA_TYPE_STRING;
7341 value.value.sv_string = vd->vdev_path;
7342 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7343 &value, SE_SLEEP) != 0)
7344 goto done;
7348 if (hist_nvl != NULL) {
7349 fnvlist_merge((nvlist_t *)attr, hist_nvl);
7352 if (sysevent_attach_attributes(ev, attr) != 0)
7353 goto done;
7354 attr = NULL;
7356 done:
7357 if (attr)
7358 sysevent_free_attr(attr);
7360 #endif
7361 return (ev);
7364 void
7365 spa_event_post(sysevent_t *ev)
7367 #ifdef _KERNEL
7368 sysevent_id_t eid;
7370 (void) log_sysevent(ev, SE_SLEEP, &eid);
7371 sysevent_free(ev);
7372 #endif
7375 void
7376 spa_event_discard(sysevent_t *ev)
7378 #ifdef _KERNEL
7379 sysevent_free(ev);
7380 #endif
7384 * Post a sysevent corresponding to the given event. The 'name' must be one of
7385 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
7386 * filled in from the spa and (optionally) the vdev and history nvl. This
7387 * doesn't do anything in the userland libzpool, as we don't want consumers to
7388 * misinterpret ztest or zdb as real changes.
7390 void
7391 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7393 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));