Merge commit '5cabbc6b49070407fb9610cfe73d4c0e0dea3e77' into merges
[unleashed.git] / kernel / fs / zfs / sys / dmu.h
blob911c2784b8f2dfe0f1b7cfcedcb9ae99e3f666d2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2014 Integros [integros.com]
34 /* Portions Copyright 2010 Robert Milkowski */
36 #ifndef _SYS_DMU_H
37 #define _SYS_DMU_H
40 * This file describes the interface that the DMU provides for its
41 * consumers.
43 * The DMU also interacts with the SPA. That interface is described in
44 * dmu_spa.h.
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_compress.h>
52 #include <sys/zio_priority.h>
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
58 struct uio;
59 struct xuio;
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
84 typedef enum dmu_object_byteswap {
85 DMU_BSWAP_UINT8,
86 DMU_BSWAP_UINT16,
87 DMU_BSWAP_UINT32,
88 DMU_BSWAP_UINT64,
89 DMU_BSWAP_ZAP,
90 DMU_BSWAP_DNODE,
91 DMU_BSWAP_OBJSET,
92 DMU_BSWAP_ZNODE,
93 DMU_BSWAP_OLDACL,
94 DMU_BSWAP_ACL,
96 * Allocating a new byteswap type number makes the on-disk format
97 * incompatible with any other format that uses the same number.
99 * Data can usually be structured to work with one of the
100 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
102 DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
105 #define DMU_OT_NEWTYPE 0x80
106 #define DMU_OT_METADATA 0x40
107 #define DMU_OT_BYTESWAP_MASK 0x3f
110 * Defines a uint8_t object type. Object types specify if the data
111 * in the object is metadata (boolean) and how to byteswap the data
112 * (dmu_object_byteswap_t).
114 #define DMU_OT(byteswap, metadata) \
115 (DMU_OT_NEWTYPE | \
116 ((metadata) ? DMU_OT_METADATA : 0) | \
117 ((byteswap) & DMU_OT_BYTESWAP_MASK))
119 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
120 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
121 (ot) < DMU_OT_NUMTYPES)
123 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
124 ((ot) & DMU_OT_METADATA) : \
125 dmu_ot[(ot)].ot_metadata)
128 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
129 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
130 * is repurposed for embedded BPs.
132 #define DMU_OT_HAS_FILL(ot) \
133 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
135 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
136 ((ot) & DMU_OT_BYTESWAP_MASK) : \
137 dmu_ot[(ot)].ot_byteswap)
139 typedef enum dmu_object_type {
140 DMU_OT_NONE,
141 /* general: */
142 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
143 DMU_OT_OBJECT_ARRAY, /* UINT64 */
144 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
145 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
146 DMU_OT_BPOBJ, /* UINT64 */
147 DMU_OT_BPOBJ_HDR, /* UINT64 */
148 /* spa: */
149 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
150 DMU_OT_SPACE_MAP, /* UINT64 */
151 /* zil: */
152 DMU_OT_INTENT_LOG, /* UINT64 */
153 /* dmu: */
154 DMU_OT_DNODE, /* DNODE */
155 DMU_OT_OBJSET, /* OBJSET */
156 /* dsl: */
157 DMU_OT_DSL_DIR, /* UINT64 */
158 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
159 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
160 DMU_OT_DSL_PROPS, /* ZAP */
161 DMU_OT_DSL_DATASET, /* UINT64 */
162 /* zpl: */
163 DMU_OT_ZNODE, /* ZNODE */
164 DMU_OT_OLDACL, /* Old ACL */
165 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
166 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
167 DMU_OT_MASTER_NODE, /* ZAP */
168 DMU_OT_UNLINKED_SET, /* ZAP */
169 /* zvol: */
170 DMU_OT_ZVOL, /* UINT8 */
171 DMU_OT_ZVOL_PROP, /* ZAP */
172 /* other; for testing only! */
173 DMU_OT_PLAIN_OTHER, /* UINT8 */
174 DMU_OT_UINT64_OTHER, /* UINT64 */
175 DMU_OT_ZAP_OTHER, /* ZAP */
176 /* new object types: */
177 DMU_OT_ERROR_LOG, /* ZAP */
178 DMU_OT_SPA_HISTORY, /* UINT8 */
179 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
180 DMU_OT_POOL_PROPS, /* ZAP */
181 DMU_OT_DSL_PERMS, /* ZAP */
182 DMU_OT_ACL, /* ACL */
183 DMU_OT_SYSACL, /* SYSACL */
184 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
185 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
186 DMU_OT_NEXT_CLONES, /* ZAP */
187 DMU_OT_SCAN_QUEUE, /* ZAP */
188 DMU_OT_USERGROUP_USED, /* ZAP */
189 DMU_OT_USERGROUP_QUOTA, /* ZAP */
190 DMU_OT_USERREFS, /* ZAP */
191 DMU_OT_DDT_ZAP, /* ZAP */
192 DMU_OT_DDT_STATS, /* ZAP */
193 DMU_OT_SA, /* System attr */
194 DMU_OT_SA_MASTER_NODE, /* ZAP */
195 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
196 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
197 DMU_OT_SCAN_XLATE, /* ZAP */
198 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
199 DMU_OT_DEADLIST, /* ZAP */
200 DMU_OT_DEADLIST_HDR, /* UINT64 */
201 DMU_OT_DSL_CLONES, /* ZAP */
202 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
204 * Do not allocate new object types here. Doing so makes the on-disk
205 * format incompatible with any other format that uses the same object
206 * type number.
208 * When creating an object which does not have one of the above types
209 * use the DMU_OTN_* type with the correct byteswap and metadata
210 * values.
212 * The DMU_OTN_* types do not have entries in the dmu_ot table,
213 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
214 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
215 * and DMU_OTN_* types).
217 DMU_OT_NUMTYPES,
220 * Names for valid types declared with DMU_OT().
222 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
223 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
224 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
225 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
226 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
227 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
228 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
229 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
230 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
231 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
232 } dmu_object_type_t;
234 typedef enum txg_how {
235 TXG_WAIT = 1,
236 TXG_NOWAIT,
237 TXG_WAITED,
238 } txg_how_t;
240 void byteswap_uint64_array(void *buf, size_t size);
241 void byteswap_uint32_array(void *buf, size_t size);
242 void byteswap_uint16_array(void *buf, size_t size);
243 void byteswap_uint8_array(void *buf, size_t size);
244 void zap_byteswap(void *buf, size_t size);
245 void zfs_oldacl_byteswap(void *buf, size_t size);
246 void zfs_acl_byteswap(void *buf, size_t size);
247 void zfs_znode_byteswap(void *buf, size_t size);
249 #define DS_FIND_SNAPSHOTS (1<<0)
250 #define DS_FIND_CHILDREN (1<<1)
251 #define DS_FIND_SERIALIZE (1<<2)
254 * The maximum number of bytes that can be accessed as part of one
255 * operation, including metadata.
257 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
258 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
260 #define DMU_USERUSED_OBJECT (-1ULL)
261 #define DMU_GROUPUSED_OBJECT (-2ULL)
264 * artificial blkids for bonus buffer and spill blocks
266 #define DMU_BONUS_BLKID (-1ULL)
267 #define DMU_SPILL_BLKID (-2ULL)
269 * Public routines to create, destroy, open, and close objsets.
271 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
272 int dmu_objset_own(const char *name, dmu_objset_type_t type,
273 boolean_t readonly, void *tag, objset_t **osp);
274 void dmu_objset_rele(objset_t *os, void *tag);
275 void dmu_objset_disown(objset_t *os, void *tag);
276 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
278 void dmu_objset_evict_dbufs(objset_t *os);
279 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
280 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
281 int dmu_objset_clone(const char *name, const char *origin);
282 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
283 struct nvlist *errlist);
284 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
285 int dmu_objset_snapshot_tmp(const char *, const char *, int);
286 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
287 int flags);
288 void dmu_objset_byteswap(void *buf, size_t size);
289 int dsl_dataset_rename_snapshot(const char *fsname,
290 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
291 int dmu_objset_remap_indirects(const char *fsname);
293 typedef struct dmu_buf {
294 uint64_t db_object; /* object that this buffer is part of */
295 uint64_t db_offset; /* byte offset in this object */
296 uint64_t db_size; /* size of buffer in bytes */
297 void *db_data; /* data in buffer */
298 } dmu_buf_t;
301 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
303 #define DMU_POOL_DIRECTORY_OBJECT 1
304 #define DMU_POOL_CONFIG "config"
305 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
306 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
307 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
308 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
309 #define DMU_POOL_ROOT_DATASET "root_dataset"
310 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
311 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
312 #define DMU_POOL_ERRLOG_LAST "errlog_last"
313 #define DMU_POOL_SPARES "spares"
314 #define DMU_POOL_DEFLATE "deflate"
315 #define DMU_POOL_HISTORY "history"
316 #define DMU_POOL_PROPS "pool_props"
317 #define DMU_POOL_L2CACHE "l2cache"
318 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
319 #define DMU_POOL_DDT "DDT-%s-%s-%s"
320 #define DMU_POOL_DDT_STATS "DDT-statistics"
321 #define DMU_POOL_CREATION_VERSION "creation_version"
322 #define DMU_POOL_SCAN "scan"
323 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
324 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
325 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
326 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
327 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
328 #define DMU_POOL_REMOVING "com.delphix:removing"
329 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
330 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
333 * Allocate an object from this objset. The range of object numbers
334 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
336 * The transaction must be assigned to a txg. The newly allocated
337 * object will be "held" in the transaction (ie. you can modify the
338 * newly allocated object in this transaction).
340 * dmu_object_alloc() chooses an object and returns it in *objectp.
342 * dmu_object_claim() allocates a specific object number. If that
343 * number is already allocated, it fails and returns EEXIST.
345 * Return 0 on success, or ENOSPC or EEXIST as specified above.
347 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
348 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
349 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
350 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
351 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
352 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
355 * Free an object from this objset.
357 * The object's data will be freed as well (ie. you don't need to call
358 * dmu_free(object, 0, -1, tx)).
360 * The object need not be held in the transaction.
362 * If there are any holds on this object's buffers (via dmu_buf_hold()),
363 * or tx holds on the object (via dmu_tx_hold_object()), you can not
364 * free it; it fails and returns EBUSY.
366 * If the object is not allocated, it fails and returns ENOENT.
368 * Return 0 on success, or EBUSY or ENOENT as specified above.
370 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
373 * Find the next allocated or free object.
375 * The objectp parameter is in-out. It will be updated to be the next
376 * object which is allocated. Ignore objects which have not been
377 * modified since txg.
379 * XXX Can only be called on a objset with no dirty data.
381 * Returns 0 on success, or ENOENT if there are no more objects.
383 int dmu_object_next(objset_t *os, uint64_t *objectp,
384 boolean_t hole, uint64_t txg);
387 * Set the data blocksize for an object.
389 * The object cannot have any blocks allcated beyond the first. If
390 * the first block is allocated already, the new size must be greater
391 * than the current block size. If these conditions are not met,
392 * ENOTSUP will be returned.
394 * Returns 0 on success, or EBUSY if there are any holds on the object
395 * contents, or ENOTSUP as described above.
397 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
398 int ibs, dmu_tx_t *tx);
401 * Set the checksum property on a dnode. The new checksum algorithm will
402 * apply to all newly written blocks; existing blocks will not be affected.
404 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
405 dmu_tx_t *tx);
408 * Set the compress property on a dnode. The new compression algorithm will
409 * apply to all newly written blocks; existing blocks will not be affected.
411 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
412 dmu_tx_t *tx);
414 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
416 void
417 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
418 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
419 int compressed_size, int byteorder, dmu_tx_t *tx);
422 * Decide how to write a block: checksum, compression, number of copies, etc.
424 #define WP_NOFILL 0x1
425 #define WP_DMU_SYNC 0x2
426 #define WP_SPILL 0x4
428 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
429 struct zio_prop *zp);
431 * The bonus data is accessed more or less like a regular buffer.
432 * You must dmu_bonus_hold() to get the buffer, which will give you a
433 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
434 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
435 * before modifying it, and the
436 * object must be held in an assigned transaction before calling
437 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
438 * buffer as well. You must release your hold with dmu_buf_rele().
440 * Returns ENOENT, EIO, or 0.
442 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
443 int dmu_bonus_max(void);
444 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
445 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
446 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
447 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
450 * Special spill buffer support used by "SA" framework
453 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
454 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
455 void *tag, dmu_buf_t **dbp);
456 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
459 * Obtain the DMU buffer from the specified object which contains the
460 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
461 * that it will remain in memory. You must release the hold with
462 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your
463 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
465 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
466 * on the returned buffer before reading or writing the buffer's
467 * db_data. The comments for those routines describe what particular
468 * operations are valid after calling them.
470 * The object number must be a valid, allocated object number.
472 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
473 void *tag, dmu_buf_t **, int flags);
474 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
475 void *tag, dmu_buf_t **dbp, int flags);
478 * Add a reference to a dmu buffer that has already been held via
479 * dmu_buf_hold() in the current context.
481 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
484 * Attempt to add a reference to a dmu buffer that is in an unknown state,
485 * using a pointer that may have been invalidated by eviction processing.
486 * The request will succeed if the passed in dbuf still represents the
487 * same os/object/blkid, is ineligible for eviction, and has at least
488 * one hold by a user other than the syncer.
490 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
491 uint64_t blkid, void *tag);
493 void dmu_buf_rele(dmu_buf_t *db, void *tag);
494 uint64_t dmu_buf_refcount(dmu_buf_t *db);
497 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
498 * range of an object. A pointer to an array of dmu_buf_t*'s is
499 * returned (in *dbpp).
501 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
502 * frees the array. The hold on the array of buffers MUST be released
503 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
504 * individually with dmu_buf_rele.
506 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
507 uint64_t length, boolean_t read, void *tag,
508 int *numbufsp, dmu_buf_t ***dbpp);
509 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
511 typedef void dmu_buf_evict_func_t(void *user_ptr);
514 * A DMU buffer user object may be associated with a dbuf for the
515 * duration of its lifetime. This allows the user of a dbuf (client)
516 * to attach private data to a dbuf (e.g. in-core only data such as a
517 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
518 * when that dbuf has been evicted. Clients typically respond to the
519 * eviction notification by freeing their private data, thus ensuring
520 * the same lifetime for both dbuf and private data.
522 * The mapping from a dmu_buf_user_t to any client private data is the
523 * client's responsibility. All current consumers of the API with private
524 * data embed a dmu_buf_user_t as the first member of the structure for
525 * their private data. This allows conversions between the two types
526 * with a simple cast. Since the DMU buf user API never needs access
527 * to the private data, other strategies can be employed if necessary
528 * or convenient for the client (e.g. using container_of() to do the
529 * conversion for private data that cannot have the dmu_buf_user_t as
530 * its first member).
532 * Eviction callbacks are executed without the dbuf mutex held or any
533 * other type of mechanism to guarantee that the dbuf is still available.
534 * For this reason, users must assume the dbuf has already been freed
535 * and not reference the dbuf from the callback context.
537 * Users requesting "immediate eviction" are notified as soon as the dbuf
538 * is only referenced by dirty records (dirties == holds). Otherwise the
539 * notification occurs after eviction processing for the dbuf begins.
541 typedef struct dmu_buf_user {
543 * Asynchronous user eviction callback state.
545 taskq_ent_t dbu_tqent;
548 * This instance's eviction function pointers.
550 * dbu_evict_func_sync is called synchronously and then
551 * dbu_evict_func_async is executed asynchronously on a taskq.
553 dmu_buf_evict_func_t *dbu_evict_func_sync;
554 dmu_buf_evict_func_t *dbu_evict_func_async;
555 #ifdef ZFS_DEBUG
557 * Pointer to user's dbuf pointer. NULL for clients that do
558 * not associate a dbuf with their user data.
560 * The dbuf pointer is cleared upon eviction so as to catch
561 * use-after-evict bugs in clients.
563 dmu_buf_t **dbu_clear_on_evict_dbufp;
564 #endif
565 } dmu_buf_user_t;
568 * Initialize the given dmu_buf_user_t instance with the eviction function
569 * evict_func, to be called when the user is evicted.
571 * NOTE: This function should only be called once on a given dmu_buf_user_t.
572 * To allow enforcement of this, dbu must already be zeroed on entry.
574 inline void
575 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
576 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
578 ASSERT(dbu->dbu_evict_func_sync == NULL);
579 ASSERT(dbu->dbu_evict_func_async == NULL);
581 /* must have at least one evict func */
582 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
583 dbu->dbu_evict_func_sync = evict_func_sync;
584 dbu->dbu_evict_func_async = evict_func_async;
585 #ifdef ZFS_DEBUG
586 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
587 #endif
591 * Attach user data to a dbuf and mark it for normal (when the dbuf's
592 * data is cleared or its reference count goes to zero) eviction processing.
594 * Returns NULL on success, or the existing user if another user currently
595 * owns the buffer.
597 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
600 * Attach user data to a dbuf and mark it for immediate (its dirty and
601 * reference counts are equal) eviction processing.
603 * Returns NULL on success, or the existing user if another user currently
604 * owns the buffer.
606 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
609 * Replace the current user of a dbuf.
611 * If given the current user of a dbuf, replaces the dbuf's user with
612 * "new_user" and returns the user data pointer that was replaced.
613 * Otherwise returns the current, and unmodified, dbuf user pointer.
615 void *dmu_buf_replace_user(dmu_buf_t *db,
616 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
619 * Remove the specified user data for a DMU buffer.
621 * Returns the user that was removed on success, or the current user if
622 * another user currently owns the buffer.
624 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
627 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
629 void *dmu_buf_get_user(dmu_buf_t *db);
631 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
632 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
633 void dmu_buf_dnode_exit(dmu_buf_t *db);
635 /* Block until any in-progress dmu buf user evictions complete. */
636 void dmu_buf_user_evict_wait(void);
639 * Returns the blkptr associated with this dbuf, or NULL if not set.
641 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
644 * Indicate that you are going to modify the buffer's data (db_data).
646 * The transaction (tx) must be assigned to a txg (ie. you've called
647 * dmu_tx_assign()). The buffer's object must be held in the tx
648 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
650 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
653 * You must create a transaction, then hold the objects which you will
654 * (or might) modify as part of this transaction. Then you must assign
655 * the transaction to a transaction group. Once the transaction has
656 * been assigned, you can modify buffers which belong to held objects as
657 * part of this transaction. You can't modify buffers before the
658 * transaction has been assigned; you can't modify buffers which don't
659 * belong to objects which this transaction holds; you can't hold
660 * objects once the transaction has been assigned. You may hold an
661 * object which you are going to free (with dmu_object_free()), but you
662 * don't have to.
664 * You can abort the transaction before it has been assigned.
666 * Note that you may hold buffers (with dmu_buf_hold) at any time,
667 * regardless of transaction state.
670 #define DMU_NEW_OBJECT (-1ULL)
671 #define DMU_OBJECT_END (-1ULL)
673 dmu_tx_t *dmu_tx_create(objset_t *os);
674 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
675 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
676 int len);
677 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
678 uint64_t len);
679 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
680 uint64_t len);
681 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
682 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
683 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
684 const char *name);
685 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
686 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
687 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
688 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
689 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
690 void dmu_tx_abort(dmu_tx_t *tx);
691 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
692 void dmu_tx_wait(dmu_tx_t *tx);
693 void dmu_tx_commit(dmu_tx_t *tx);
694 void dmu_tx_mark_netfree(dmu_tx_t *tx);
697 * To register a commit callback, dmu_tx_callback_register() must be called.
699 * dcb_data is a pointer to caller private data that is passed on as a
700 * callback parameter. The caller is responsible for properly allocating and
701 * freeing it.
703 * When registering a callback, the transaction must be already created, but
704 * it cannot be committed or aborted. It can be assigned to a txg or not.
706 * The callback will be called after the transaction has been safely written
707 * to stable storage and will also be called if the dmu_tx is aborted.
708 * If there is any error which prevents the transaction from being committed to
709 * disk, the callback will be called with a value of error != 0.
711 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
713 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
714 void *dcb_data);
717 * Free up the data blocks for a defined range of a file. If size is
718 * -1, the range from offset to end-of-file is freed.
720 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
721 uint64_t size, dmu_tx_t *tx);
722 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
723 uint64_t size);
724 int dmu_free_long_object(objset_t *os, uint64_t object);
727 * Convenience functions.
729 * Canfail routines will return 0 on success, or an errno if there is a
730 * nonrecoverable I/O error.
732 #define DMU_READ_PREFETCH 0 /* prefetch */
733 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
734 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
735 void *buf, uint32_t flags);
736 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
737 uint32_t flags);
738 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
739 const void *buf, dmu_tx_t *tx);
740 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
741 const void *buf, dmu_tx_t *tx);
742 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
743 dmu_tx_t *tx);
744 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
745 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
746 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
747 dmu_tx_t *tx);
748 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
749 dmu_tx_t *tx);
750 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
751 uint64_t size, struct page *pp, dmu_tx_t *tx);
752 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
753 void dmu_return_arcbuf(struct arc_buf *buf);
754 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
755 dmu_tx_t *tx);
756 int dmu_xuio_init(struct xuio *uio, int niov);
757 void dmu_xuio_fini(struct xuio *uio);
758 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
759 size_t n);
760 int dmu_xuio_cnt(struct xuio *uio);
761 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
762 void dmu_xuio_clear(struct xuio *uio, int i);
763 void xuio_stat_wbuf_copied(void);
764 void xuio_stat_wbuf_nocopy(void);
766 extern boolean_t zfs_prefetch_disable;
767 extern int zfs_max_recordsize;
770 * Asynchronously try to read in the data.
772 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
773 uint64_t len, enum zio_priority pri);
775 typedef struct dmu_object_info {
776 /* All sizes are in bytes unless otherwise indicated. */
777 uint32_t doi_data_block_size;
778 uint32_t doi_metadata_block_size;
779 dmu_object_type_t doi_type;
780 dmu_object_type_t doi_bonus_type;
781 uint64_t doi_bonus_size;
782 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
783 uint8_t doi_checksum;
784 uint8_t doi_compress;
785 uint8_t doi_nblkptr;
786 uint8_t doi_pad[4];
787 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
788 uint64_t doi_max_offset;
789 uint64_t doi_fill_count; /* number of non-empty blocks */
790 } dmu_object_info_t;
792 typedef void arc_byteswap_func_t(void *buf, size_t size);
794 typedef struct dmu_object_type_info {
795 dmu_object_byteswap_t ot_byteswap;
796 boolean_t ot_metadata;
797 char *ot_name;
798 } dmu_object_type_info_t;
800 typedef struct dmu_object_byteswap_info {
801 arc_byteswap_func_t *ob_func;
802 char *ob_name;
803 } dmu_object_byteswap_info_t;
805 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
806 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
809 * Get information on a DMU object.
811 * Return 0 on success or ENOENT if object is not allocated.
813 * If doi is NULL, just indicates whether the object exists.
815 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
816 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
817 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
818 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
819 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
821 * Like dmu_object_info_from_db, but faster still when you only care about
822 * the size. This is specifically optimized for zfs_getattr().
824 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
825 u_longlong_t *nblk512);
827 typedef struct dmu_objset_stats {
828 uint64_t dds_num_clones; /* number of clones of this */
829 uint64_t dds_creation_txg;
830 uint64_t dds_guid;
831 dmu_objset_type_t dds_type;
832 uint8_t dds_is_snapshot;
833 uint8_t dds_inconsistent;
834 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
835 } dmu_objset_stats_t;
838 * Get stats on a dataset.
840 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
843 * Add entries to the nvlist for all the objset's properties. See
844 * zfs_prop_table[] and zfs(1m) for details on the properties.
846 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
849 * Get the space usage statistics for statvfs().
851 * refdbytes is the amount of space "referenced" by this objset.
852 * availbytes is the amount of space available to this objset, taking
853 * into account quotas & reservations, assuming that no other objsets
854 * use the space first. These values correspond to the 'referenced' and
855 * 'available' properties, described in the zfs(1m) manpage.
857 * usedobjs and availobjs are the number of objects currently allocated,
858 * and available.
860 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
861 uint64_t *usedobjsp, uint64_t *availobjsp);
864 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
865 * (Contrast with the ds_guid which is a 64-bit ID that will never
866 * change, so there is a small probability that it will collide.)
868 uint64_t dmu_objset_fsid_guid(objset_t *os);
871 * Get the [cm]time for an objset's snapshot dir
873 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
875 int dmu_objset_is_snapshot(objset_t *os);
877 extern struct spa *dmu_objset_spa(objset_t *os);
878 extern struct zilog *dmu_objset_zil(objset_t *os);
879 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
880 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
881 extern void dmu_objset_name(objset_t *os, char *buf);
882 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
883 extern uint64_t dmu_objset_id(objset_t *os);
884 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
885 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
886 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
887 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
888 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
889 int maxlen, boolean_t *conflict);
890 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
891 uint64_t *idp, uint64_t *offp);
893 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
894 void *bonus, uint64_t *userp, uint64_t *groupp);
895 extern void dmu_objset_register_type(dmu_objset_type_t ost,
896 objset_used_cb_t *cb);
897 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
898 extern void *dmu_objset_get_user(objset_t *os);
901 * Return the txg number for the given assigned transaction.
903 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
906 * Synchronous write.
907 * If a parent zio is provided this function initiates a write on the
908 * provided buffer as a child of the parent zio.
909 * In the absence of a parent zio, the write is completed synchronously.
910 * At write completion, blk is filled with the bp of the written block.
911 * Note that while the data covered by this function will be on stable
912 * storage when the write completes this new data does not become a
913 * permanent part of the file until the associated transaction commits.
917 * {zfs,zvol,ztest}_get_done() args
919 typedef struct zgd {
920 struct lwb *zgd_lwb;
921 struct blkptr *zgd_bp;
922 dmu_buf_t *zgd_db;
923 struct rl *zgd_rl;
924 void *zgd_private;
925 } zgd_t;
927 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
928 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
931 * Find the next hole or data block in file starting at *off
932 * Return found offset in *off. Return ESRCH for end of file.
934 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
935 uint64_t *off);
938 * Check if a DMU object has any dirty blocks. If so, sync out
939 * all pending transaction groups. Otherwise, this function
940 * does not alter DMU state. This could be improved to only sync
941 * out the necessary transaction groups for this particular
942 * object.
944 int dmu_object_wait_synced(objset_t *os, uint64_t object);
947 * Initial setup and final teardown.
949 extern void dmu_init(void);
950 extern void dmu_fini(void);
952 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
953 uint64_t object, uint64_t offset, int len);
954 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
955 dmu_traverse_cb_t cb, void *arg);
957 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
958 struct vnode *vp, offset_t *offp);
960 /* CRC64 table */
961 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
962 extern uint64_t zfs_crc64_table[256];
964 extern int zfs_mdcomp_disable;
966 #ifdef __cplusplus
968 #endif
970 #endif /* _SYS_DMU_H */