8626 make pcplusmp and apix warning-free
[unleashed.git] / usr / src / uts / i86pc / io / mp_platform_misc.c
blobb232bd5eb8ba169f4d878585c8721b34f35c6958
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2017 Joyent, Inc.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
31 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
32 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
33 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
34 * PSMI 1.5 extensions are supported in Solaris Nevada.
35 * PSMI 1.6 extensions are supported in Solaris Nevada.
36 * PSMI 1.7 extensions are supported in Solaris Nevada.
38 #define PSMI_1_7
40 #include <sys/processor.h>
41 #include <sys/time.h>
42 #include <sys/psm.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/inttypes.h>
45 #include <sys/cram.h>
46 #include <sys/acpi/acpi.h>
47 #include <sys/acpica.h>
48 #include <sys/psm_common.h>
49 #include <sys/apic.h>
50 #include <sys/apic_common.h>
51 #include <sys/pit.h>
52 #include <sys/ddi.h>
53 #include <sys/sunddi.h>
54 #include <sys/ddi_impldefs.h>
55 #include <sys/pci.h>
56 #include <sys/promif.h>
57 #include <sys/x86_archext.h>
58 #include <sys/cpc_impl.h>
59 #include <sys/uadmin.h>
60 #include <sys/panic.h>
61 #include <sys/debug.h>
62 #include <sys/archsystm.h>
63 #include <sys/trap.h>
64 #include <sys/machsystm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/rm_platter.h>
67 #include <sys/privregs.h>
68 #include <sys/cyclic.h>
69 #include <sys/note.h>
70 #include <sys/pci_intr_lib.h>
71 #include <sys/sunndi.h>
72 #include <sys/hpet.h>
73 #include <sys/clock.h>
76 * Part of mp_platfrom_common.c that's used only by pcplusmp & xpv_psm
77 * but not apix.
78 * These functions may be moved to xpv_psm later when apix and pcplusmp
79 * are merged together
83 * Local Function Prototypes
85 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
86 static void apic_xlate_vector_free_timeout_handler(void *arg);
87 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
88 int new_bind_cpu, int apicindex, int intin_no, int which_irq,
89 struct ioapic_reprogram_data *drep);
90 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
91 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
92 int type);
93 static void apic_try_deferred_reprogram(int ipl, int vect);
94 static void delete_defer_repro_ent(int which_irq);
95 static void apic_ioapic_wait_pending_clear(int ioapicindex,
96 int intin_no);
98 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
99 int ipin, int *pci_irqp, iflag_t *intr_flagp);
100 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
101 int child_ipin, struct apic_io_intr **intrp);
102 extern uchar_t acpi_find_ioapic(int irq);
103 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
104 extern int apic_find_bus_id(int bustype);
105 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
106 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
108 extern int apic_sci_vect;
109 extern iflag_t apic_sci_flags;
110 /* ACPI HPET interrupt configuration; -1 if HPET not used */
111 extern int apic_hpet_vect;
112 extern iflag_t apic_hpet_flags;
113 extern int apic_intr_policy;
114 extern char *psm_name;
117 * number of bits per byte, from <sys/param.h>
119 #define UCHAR_MAX UINT8_MAX
121 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
122 extern int apic_max_reps_clear_pending;
124 /* The irq # is implicit in the array index: */
125 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
127 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
128 * is indexed by IRQ number, NOT by vector number.
131 extern int apic_int_busy_mark;
132 extern int apic_int_free_mark;
133 extern int apic_diff_for_redistribution;
134 extern int apic_sample_factor_redistribution;
135 extern int apic_redist_cpu_skip;
136 extern int apic_num_imbalance;
137 extern int apic_num_rebind;
139 /* timeout for xlate_vector, mark_vector */
140 int apic_revector_timeout = 16 * 10000; /* 160 millisec */
142 extern int apic_defconf;
143 extern int apic_irq_translate;
145 extern int apic_use_acpi_madt_only; /* 1=ONLY use MADT from ACPI */
147 extern uchar_t apic_io_vectbase[MAX_IO_APIC];
149 extern boolean_t ioapic_mask_workaround[MAX_IO_APIC];
152 * First available slot to be used as IRQ index into the apic_irq_table
153 * for those interrupts (like MSI/X) that don't have a physical IRQ.
155 extern int apic_first_avail_irq;
158 * apic_defer_reprogram_lock ensures that only one processor is handling
159 * deferred interrupt programming at *_intr_exit time.
161 static lock_t apic_defer_reprogram_lock;
164 * The current number of deferred reprogrammings outstanding
166 uint_t apic_reprogram_outstanding = 0;
168 #ifdef DEBUG
170 * Counters that keep track of deferred reprogramming stats
172 uint_t apic_intr_deferrals = 0;
173 uint_t apic_intr_deliver_timeouts = 0;
174 uint_t apic_last_ditch_reprogram_failures = 0;
175 uint_t apic_deferred_setup_failures = 0;
176 uint_t apic_defer_repro_total_retries = 0;
177 uint_t apic_defer_repro_successes = 0;
178 uint_t apic_deferred_spurious_enters = 0;
179 #endif
181 extern int apic_io_max;
182 extern struct apic_io_intr *apic_io_intrp;
184 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];
186 extern uint32_t eisa_level_intr_mask;
187 /* At least MSB will be set if EISA bus */
189 extern int apic_pci_bus_total;
190 extern uchar_t apic_single_pci_busid;
193 * Following declarations are for revectoring; used when ISRs at different
194 * IPLs share an irq.
196 static lock_t apic_revector_lock;
197 int apic_revector_pending = 0;
198 static uchar_t *apic_oldvec_to_newvec;
199 static uchar_t *apic_newvec_to_oldvec;
201 /* ACPI Interrupt Source Override Structure ptr */
202 extern ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
203 extern int acpi_iso_cnt;
206 * Auto-configuration routines
210 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
211 * are also set to NULL. vector->irq is set to a value which cannot map
212 * to a real irq to show that it is free.
214 void
215 apic_init_common(void)
217 int i, j, indx;
218 int *iptr;
221 * Initialize apic_ipls from apic_vectortoipl. This array is
222 * used in apic_intr_enter to determine the IPL to use for the
223 * corresponding vector. On some systems, due to hardware errata
224 * and interrupt sharing, the IPL may not correspond to the IPL listed
225 * in apic_vectortoipl (see apic_addspl and apic_delspl).
227 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
228 indx = i * APIC_VECTOR_PER_IPL;
230 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
231 apic_ipls[indx] = apic_vectortoipl[i];
234 /* cpu 0 is always up (for now) */
235 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
237 iptr = (int *)&apic_irq_table[0];
238 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
239 apic_level_intr[i] = 0;
240 *iptr++ = NULL;
241 apic_vector_to_irq[i] = APIC_RESV_IRQ;
243 /* These *must* be initted to B_TRUE! */
244 apic_reprogram_info[i].done = B_TRUE;
245 apic_reprogram_info[i].irqp = NULL;
246 apic_reprogram_info[i].tries = 0;
247 apic_reprogram_info[i].bindcpu = 0;
251 * Allocate a dummy irq table entry for the reserved entry.
252 * This takes care of the race between removing an irq and
253 * clock detecting a CPU in that irq during interrupt load
254 * sampling.
256 apic_irq_table[APIC_RESV_IRQ] =
257 kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
259 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
262 void
263 ioapic_init_intr(int mask_apic)
265 int ioapic_ix;
266 struct intrspec ispec;
267 apic_irq_t *irqptr;
268 int i, j;
269 ulong_t iflag;
271 LOCK_INIT_CLEAR(&apic_revector_lock);
272 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
274 /* mask interrupt vectors */
275 for (j = 0; j < apic_io_max && mask_apic; j++) {
276 int intin_max;
278 ioapic_ix = j;
279 /* Bits 23-16 define the maximum redirection entries */
280 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
281 & 0xff;
282 for (i = 0; i <= intin_max; i++)
283 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
287 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
289 if (apic_sci_vect > 0) {
291 * acpica has already done add_avintr(); we just
292 * to finish the job by mimicing translate_irq()
294 * Fake up an intrspec and setup the tables
296 ispec.intrspec_vec = apic_sci_vect;
297 ispec.intrspec_pri = SCI_IPL;
299 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
300 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
301 cmn_err(CE_WARN, "!apic: SCI setup failed");
302 return;
304 irqptr = apic_irq_table[apic_sci_vect];
306 iflag = intr_clear();
307 lock_set(&apic_ioapic_lock);
309 /* Program I/O APIC */
310 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
312 lock_clear(&apic_ioapic_lock);
313 intr_restore(iflag);
315 irqptr->airq_share++;
319 * Hack alert: deal with ACPI HPET interrupt chicken/egg here.
321 if (apic_hpet_vect > 0) {
323 * hpet has already done add_avintr(); we just need
324 * to finish the job by mimicing translate_irq()
326 * Fake up an intrspec and setup the tables
328 ispec.intrspec_vec = apic_hpet_vect;
329 ispec.intrspec_pri = CBE_HIGH_PIL;
331 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL,
332 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) {
333 cmn_err(CE_WARN, "!apic: HPET setup failed");
334 return;
336 irqptr = apic_irq_table[apic_hpet_vect];
338 iflag = intr_clear();
339 lock_set(&apic_ioapic_lock);
341 /* Program I/O APIC */
342 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE);
344 lock_clear(&apic_ioapic_lock);
345 intr_restore(iflag);
347 irqptr->airq_share++;
352 * Add mask bits to disable interrupt vector from happening
353 * at or above IPL. In addition, it should remove mask bits
354 * to enable interrupt vectors below the given IPL.
356 * Both add and delspl are complicated by the fact that different interrupts
357 * may share IRQs. This can happen in two ways.
358 * 1. The same H/W line is shared by more than 1 device
359 * 1a. with interrupts at different IPLs
360 * 1b. with interrupts at same IPL
361 * 2. We ran out of vectors at a given IPL and started sharing vectors.
362 * 1b and 2 should be handled gracefully, except for the fact some ISRs
363 * will get called often when no interrupt is pending for the device.
364 * For 1a, we handle it at the higher IPL.
366 /*ARGSUSED*/
368 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
370 uchar_t vector;
371 ulong_t iflag;
372 apic_irq_t *irqptr, *irqheadptr;
373 int irqindex;
375 ASSERT(max_ipl <= UCHAR_MAX);
376 irqindex = IRQINDEX(irqno);
378 if ((irqindex == -1) || (!apic_irq_table[irqindex]))
379 return (PSM_FAILURE);
381 mutex_enter(&airq_mutex);
382 irqptr = irqheadptr = apic_irq_table[irqindex];
384 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
385 "vector=0x%x\n", (void *)irqptr->airq_dip,
386 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
388 while (irqptr) {
389 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
390 break;
391 irqptr = irqptr->airq_next;
393 irqptr->airq_share++;
395 mutex_exit(&airq_mutex);
397 /* return if it is not hardware interrupt */
398 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
399 return (PSM_SUCCESS);
401 /* Or if there are more interupts at a higher IPL */
402 if (ipl != max_ipl)
403 return (PSM_SUCCESS);
406 * if apic_picinit() has not been called yet, just return.
407 * At the end of apic_picinit(), we will call setup_io_intr().
410 if (!apic_picinit_called)
411 return (PSM_SUCCESS);
414 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
415 * return failure.
417 if (irqptr->airq_ipl != max_ipl &&
418 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
420 vector = apic_allocate_vector(max_ipl, irqindex, 1);
421 if (vector == 0) {
422 irqptr->airq_share--;
423 return (PSM_FAILURE);
425 irqptr = irqheadptr;
426 apic_mark_vector(irqptr->airq_vector, vector);
427 while (irqptr) {
428 irqptr->airq_vector = vector;
429 irqptr->airq_ipl = (uchar_t)max_ipl;
431 * reprogram irq being added and every one else
432 * who is not in the UNINIT state
434 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
435 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
436 apic_record_rdt_entry(irqptr, irqindex);
438 iflag = intr_clear();
439 lock_set(&apic_ioapic_lock);
441 (void) apic_setup_io_intr(irqptr, irqindex,
442 B_FALSE);
444 lock_clear(&apic_ioapic_lock);
445 intr_restore(iflag);
447 irqptr = irqptr->airq_next;
449 return (PSM_SUCCESS);
451 } else if (irqptr->airq_ipl != max_ipl &&
452 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
454 * We cannot upgrade the vector, but we can change
455 * the IPL that this vector induces.
457 * Note that we subtract APIC_BASE_VECT from the vector
458 * here because this array is used in apic_intr_enter
459 * (no need to add APIC_BASE_VECT in that hot code
460 * path since we can do it in the rarely-executed path
461 * here).
463 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
464 (uchar_t)max_ipl;
466 irqptr = irqheadptr;
467 while (irqptr) {
468 irqptr->airq_ipl = (uchar_t)max_ipl;
469 irqptr = irqptr->airq_next;
472 return (PSM_SUCCESS);
475 ASSERT(irqptr);
477 iflag = intr_clear();
478 lock_set(&apic_ioapic_lock);
480 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
482 lock_clear(&apic_ioapic_lock);
483 intr_restore(iflag);
485 return (PSM_SUCCESS);
489 * Recompute mask bits for the given interrupt vector.
490 * If there is no interrupt servicing routine for this
491 * vector, this function should disable interrupt vector
492 * from happening at all IPLs. If there are still
493 * handlers using the given vector, this function should
494 * disable the given vector from happening below the lowest
495 * IPL of the remaining hadlers.
497 /*ARGSUSED*/
499 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
501 uchar_t vector;
502 uint32_t bind_cpu;
503 int intin, irqindex;
504 int ioapic_ix;
505 apic_irq_t *irqptr, *preirqptr, *irqheadptr, *irqp;
506 ulong_t iflag;
508 mutex_enter(&airq_mutex);
509 irqindex = IRQINDEX(irqno);
510 irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
512 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
513 "vector=0x%x\n", (void *)irqptr->airq_dip,
514 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
516 while (irqptr) {
517 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
518 break;
519 preirqptr = irqptr;
520 irqptr = irqptr->airq_next;
522 ASSERT(irqptr);
524 irqptr->airq_share--;
526 mutex_exit(&airq_mutex);
529 * If there are more interrupts at a higher IPL, we don't need
530 * to disable anything.
532 if (ipl < max_ipl)
533 return (PSM_SUCCESS);
535 /* return if it is not hardware interrupt */
536 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
537 return (PSM_SUCCESS);
539 if (!apic_picinit_called) {
541 * Clear irq_struct. If two devices shared an intpt
542 * line & 1 unloaded before picinit, we are hosed. But, then
543 * we hope the machine survive.
545 irqptr->airq_mps_intr_index = FREE_INDEX;
546 irqptr->airq_temp_cpu = IRQ_UNINIT;
547 apic_free_vector(irqptr->airq_vector);
548 return (PSM_SUCCESS);
551 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
552 * use old IPL. Not very elegant, but it should work.
554 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
555 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
556 apic_irq_t *irqp;
557 if ((vector = apic_allocate_vector(max_ipl, irqno, 1))) {
558 apic_mark_vector(irqheadptr->airq_vector, vector);
559 irqp = irqheadptr;
560 while (irqp) {
561 irqp->airq_vector = vector;
562 irqp->airq_ipl = (uchar_t)max_ipl;
563 if (irqp->airq_temp_cpu != IRQ_UNINIT) {
564 apic_record_rdt_entry(irqp, irqindex);
566 iflag = intr_clear();
567 lock_set(&apic_ioapic_lock);
569 (void) apic_setup_io_intr(irqp,
570 irqindex, B_FALSE);
572 lock_clear(&apic_ioapic_lock);
573 intr_restore(iflag);
575 irqp = irqp->airq_next;
579 } else if (irqptr->airq_ipl != max_ipl &&
580 max_ipl != PSM_INVALID_IPL &&
581 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
584 * We cannot downgrade the IPL of the vector below the vector's
585 * hardware priority. If we did, it would be possible for a
586 * higher-priority hardware vector to interrupt a CPU running at an IPL
587 * lower than the hardware priority of the interrupting vector (but
588 * higher than the soft IPL of this IRQ). When this happens, we would
589 * then try to drop the IPL BELOW what it was (effectively dropping
590 * below base_spl) which would be potentially catastrophic.
592 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
593 * (hardware IPL of 4). Further assume that the old IPL of this IRQ
594 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in
595 * an IPL of 1, it would be possible for the processor to be executing
596 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
597 * the currently-executing ISR. When apic_intr_enter consults
598 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
599 * so even though the processor was running at IPL 4, an IPL 1
600 * interrupt will have interrupted it, which must not happen)).
602 * Effectively, this means that the hardware priority corresponding to
603 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
604 * hardware priority.
606 * (In the above example, then, after removal of the IPL 4 device's
607 * interrupt handler, the new IPL will continue to be 4 because the
608 * hardware priority that IPL 1 implies is lower than the hardware
609 * priority of the vector used.)
611 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
612 const int apic_ipls_index = irqptr->airq_vector -
613 APIC_BASE_VECT;
614 const int vect_inherent_hwpri = irqptr->airq_vector >>
615 APIC_IPL_SHIFT;
618 * If there are still devices using this IRQ, determine the
619 * new ipl to use.
621 if (irqptr->airq_share) {
622 int vect_desired_hwpri, hwpri;
624 ASSERT(max_ipl < MAXIPL);
625 vect_desired_hwpri = apic_ipltopri[max_ipl] >>
626 APIC_IPL_SHIFT;
629 * If the desired IPL's hardware priority is lower
630 * than that of the vector, use the hardware priority
631 * of the vector to determine the new IPL.
633 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
634 vect_inherent_hwpri : vect_desired_hwpri;
637 * Now, to get the right index for apic_vectortoipl,
638 * we need to subtract APIC_BASE_VECT from the
639 * hardware-vector-equivalent (in hwpri). Since hwpri
640 * is already shifted, we shift APIC_BASE_VECT before
641 * doing the subtraction.
643 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
645 ASSERT(hwpri >= 0);
646 ASSERT(hwpri < MAXIPL);
647 max_ipl = apic_vectortoipl[hwpri];
648 apic_ipls[apic_ipls_index] = (uchar_t)max_ipl;
650 irqp = irqheadptr;
651 while (irqp) {
652 irqp->airq_ipl = (uchar_t)max_ipl;
653 irqp = irqp->airq_next;
655 } else {
657 * No more devices on this IRQ, so reset this vector's
658 * element in apic_ipls to the original IPL for this
659 * vector
661 apic_ipls[apic_ipls_index] =
662 apic_vectortoipl[vect_inherent_hwpri];
667 * If there are still active interrupts, we are done.
669 if (irqptr->airq_share)
670 return (PSM_SUCCESS);
672 iflag = intr_clear();
673 lock_set(&apic_ioapic_lock);
675 if (irqptr->airq_mps_intr_index == MSI_INDEX) {
677 * Disable the MSI vector
678 * Make sure we only disable on the last
679 * of the multi-MSI support
681 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
682 apic_pci_msi_disable_mode(irqptr->airq_dip,
683 DDI_INTR_TYPE_MSI);
685 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
687 * Disable the MSI-X vector
688 * needs to clear its mask and addr/data for each MSI-X
690 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
691 irqptr->airq_origirq);
693 * Make sure we only disable on the last MSI-X
695 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
696 apic_pci_msi_disable_mode(irqptr->airq_dip,
697 DDI_INTR_TYPE_MSIX);
699 } else {
701 * The assumption here is that this is safe, even for
702 * systems with IOAPICs that suffer from the hardware
703 * erratum because all devices have been quiesced before
704 * they unregister their interrupt handlers. If that
705 * assumption turns out to be false, this mask operation
706 * can induce the same erratum result we're trying to
707 * avoid.
709 ioapic_ix = irqptr->airq_ioapicindex;
710 intin = irqptr->airq_intin_no;
711 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
714 apic_vt_ops->apic_intrmap_free_entry(&irqptr->airq_intrmap_private);
717 * This irq entry is the only one in the chain.
719 if (irqheadptr->airq_next == NULL) {
720 ASSERT(irqheadptr == irqptr);
721 bind_cpu = irqptr->airq_temp_cpu;
722 if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
723 ((uint32_t)bind_cpu != IRQ_UNINIT)) {
724 ASSERT(apic_cpu_in_range(bind_cpu));
725 if (bind_cpu & IRQ_USER_BOUND) {
726 /* If hardbound, temp_cpu == cpu */
727 bind_cpu &= ~IRQ_USER_BOUND;
728 apic_cpus[bind_cpu].aci_bound--;
729 } else
730 apic_cpus[bind_cpu].aci_temp_bound--;
732 irqptr->airq_temp_cpu = IRQ_UNINIT;
733 irqptr->airq_mps_intr_index = FREE_INDEX;
734 lock_clear(&apic_ioapic_lock);
735 intr_restore(iflag);
736 apic_free_vector(irqptr->airq_vector);
737 return (PSM_SUCCESS);
741 * If we get here, we are sharing the vector and there are more than
742 * one active irq entries in the chain.
744 lock_clear(&apic_ioapic_lock);
745 intr_restore(iflag);
747 mutex_enter(&airq_mutex);
748 /* Remove the irq entry from the chain */
749 if (irqptr == irqheadptr) { /* The irq entry is at the head */
750 apic_irq_table[irqindex] = irqptr->airq_next;
751 } else {
752 preirqptr->airq_next = irqptr->airq_next;
754 /* Free the irq entry */
755 kmem_free(irqptr, sizeof (apic_irq_t));
756 mutex_exit(&airq_mutex);
758 return (PSM_SUCCESS);
762 * apic_introp_xlate() replaces apic_translate_irq() and is
763 * called only from apic_intr_ops(). With the new ADII framework,
764 * the priority can no longer be retrieved through i_ddi_get_intrspec().
765 * It has to be passed in from the caller.
767 * Return value:
768 * Success: irqno for the given device
769 * Failure: -1
772 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
774 char dev_type[16];
775 int dev_len, pci_irq, newirq, bustype, devid, busid, i;
776 int irqno = ispec->intrspec_vec;
777 ddi_acc_handle_t cfg_handle;
778 uchar_t ipin;
779 struct apic_io_intr *intrp;
780 iflag_t intr_flag;
781 ACPI_SUBTABLE_HEADER *hp;
782 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
783 apic_irq_t *airqp;
784 int parent_is_pci_or_pciex = 0;
785 int child_is_pciex = 0;
787 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
788 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
789 irqno));
791 dev_len = sizeof (dev_type);
792 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
793 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
794 &dev_len) == DDI_PROP_SUCCESS) {
795 if ((strcmp(dev_type, "pci") == 0) ||
796 (strcmp(dev_type, "pciex") == 0))
797 parent_is_pci_or_pciex = 1;
800 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
801 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
802 &dev_len) == DDI_PROP_SUCCESS) {
803 if (strstr(dev_type, "pciex"))
804 child_is_pciex = 1;
807 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
808 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
809 airqp->airq_iflag.bustype =
810 child_is_pciex ? BUS_PCIE : BUS_PCI;
811 return (apic_vector_to_irq[airqp->airq_vector]);
813 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
814 NULL, type));
817 bustype = 0;
819 /* check if we have already translated this irq */
820 mutex_enter(&airq_mutex);
821 newirq = apic_min_device_irq;
822 for (; newirq <= apic_max_device_irq; newirq++) {
823 airqp = apic_irq_table[newirq];
824 while (airqp) {
825 if ((airqp->airq_dip == dip) &&
826 (airqp->airq_origirq == irqno) &&
827 (airqp->airq_mps_intr_index != FREE_INDEX)) {
829 mutex_exit(&airq_mutex);
830 return (VIRTIRQ(newirq, airqp->airq_share_id));
832 airqp = airqp->airq_next;
835 mutex_exit(&airq_mutex);
837 if (apic_defconf)
838 goto defconf;
840 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
841 goto nonpci;
843 if (parent_is_pci_or_pciex) {
844 /* pci device */
845 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
846 goto nonpci;
847 if (busid == 0 && apic_pci_bus_total == 1)
848 busid = (int)apic_single_pci_busid;
850 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
851 return (-1);
852 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
853 pci_config_teardown(&cfg_handle);
854 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
855 if (apic_acpi_translate_pci_irq(dip, busid, devid,
856 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
857 return (-1);
859 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
860 return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
861 &intr_flag, type));
862 } else {
863 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
864 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
865 == NULL) {
866 if ((pci_irq = apic_handle_pci_pci_bridge(dip,
867 devid, ipin, &intrp)) == -1)
868 return (-1);
870 return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
871 NULL, type));
873 } else if (strcmp(dev_type, "isa") == 0)
874 bustype = BUS_ISA;
875 else if (strcmp(dev_type, "eisa") == 0)
876 bustype = BUS_EISA;
878 nonpci:
879 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
880 /* search iso entries first */
881 if (acpi_iso_cnt != 0) {
882 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
883 i = 0;
884 while (i < acpi_iso_cnt) {
885 if (hp->Type ==
886 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
887 isop =
888 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
889 if (isop->Bus == 0 &&
890 isop->SourceIrq == irqno) {
891 newirq = isop->GlobalIrq;
892 intr_flag.intr_po =
893 isop->IntiFlags &
894 ACPI_MADT_POLARITY_MASK;
895 intr_flag.intr_el =
896 (isop->IntiFlags &
897 ACPI_MADT_TRIGGER_MASK)
898 >> 2;
899 intr_flag.bustype = BUS_ISA;
901 return (apic_setup_irq_table(
902 dip, newirq, NULL, ispec,
903 &intr_flag, type));
906 i++;
908 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
909 hp->Length);
912 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
913 intr_flag.intr_el = INTR_EL_EDGE;
914 intr_flag.bustype = BUS_ISA;
915 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
916 &intr_flag, type));
917 } else {
918 if (bustype == 0) /* not initialized */
919 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
920 for (i = 0; i < 2; i++) {
921 if (((busid = apic_find_bus_id(bustype)) != -1) &&
922 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
923 != NULL)) {
924 if ((newirq = apic_setup_irq_table(dip, irqno,
925 intrp, ispec, NULL, type)) != -1) {
926 return (newirq);
928 goto defconf;
930 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
934 /* MPS default configuration */
935 defconf:
936 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
937 if (newirq == -1)
938 return (-1);
939 ASSERT(IRQINDEX(newirq) == irqno);
940 ASSERT(apic_irq_table[irqno]);
941 return (newirq);
945 * Attempt to share vector with someone else
947 static int
948 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
949 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
951 #ifdef DEBUG
952 apic_irq_t *tmpirqp = NULL;
953 #endif /* DEBUG */
954 apic_irq_t *irqptr, dummyirq;
955 int newirq, chosen_irq = -1, share = 127;
956 int lowest, highest, i;
957 uchar_t share_id;
959 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
960 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
962 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
963 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
965 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
966 lowest -= APIC_VECTOR_PER_IPL;
967 dummyirq.airq_mps_intr_index = intr_index;
968 dummyirq.airq_ioapicindex = ioapicindex;
969 dummyirq.airq_intin_no = ipin;
970 if (intr_flagp)
971 dummyirq.airq_iflag = *intr_flagp;
972 apic_record_rdt_entry(&dummyirq, irqno);
973 for (i = lowest; i <= highest; i++) {
974 newirq = apic_vector_to_irq[i];
975 if (newirq == APIC_RESV_IRQ)
976 continue;
977 irqptr = apic_irq_table[newirq];
979 if ((dummyirq.airq_rdt_entry & 0xFF00) !=
980 (irqptr->airq_rdt_entry & 0xFF00))
981 /* not compatible */
982 continue;
984 if (irqptr->airq_share < share) {
985 share = irqptr->airq_share;
986 chosen_irq = newirq;
989 if (chosen_irq != -1) {
991 * Assign a share id which is free or which is larger
992 * than the largest one.
994 share_id = 1;
995 mutex_enter(&airq_mutex);
996 irqptr = apic_irq_table[chosen_irq];
997 while (irqptr) {
998 if (irqptr->airq_mps_intr_index == FREE_INDEX) {
999 share_id = irqptr->airq_share_id;
1000 break;
1002 if (share_id <= irqptr->airq_share_id)
1003 share_id = irqptr->airq_share_id + 1;
1004 #ifdef DEBUG
1005 tmpirqp = irqptr;
1006 #endif /* DEBUG */
1007 irqptr = irqptr->airq_next;
1009 if (!irqptr) {
1010 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1011 irqptr->airq_temp_cpu = IRQ_UNINIT;
1012 irqptr->airq_next =
1013 apic_irq_table[chosen_irq]->airq_next;
1014 apic_irq_table[chosen_irq]->airq_next = irqptr;
1015 #ifdef DEBUG
1016 tmpirqp = apic_irq_table[chosen_irq];
1017 #endif /* DEBUG */
1019 irqptr->airq_mps_intr_index = intr_index;
1020 irqptr->airq_ioapicindex = ioapicindex;
1021 irqptr->airq_intin_no = ipin;
1022 if (intr_flagp)
1023 irqptr->airq_iflag = *intr_flagp;
1024 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
1025 irqptr->airq_share_id = share_id;
1026 apic_record_rdt_entry(irqptr, irqno);
1027 *irqptrp = irqptr;
1028 #ifdef DEBUG
1029 /* shuffle the pointers to test apic_delspl path */
1030 if (tmpirqp) {
1031 tmpirqp->airq_next = irqptr->airq_next;
1032 irqptr->airq_next = apic_irq_table[chosen_irq];
1033 apic_irq_table[chosen_irq] = irqptr;
1035 #endif /* DEBUG */
1036 mutex_exit(&airq_mutex);
1037 return (VIRTIRQ(chosen_irq, share_id));
1039 return (-1);
1043 * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
1044 * is used already, we will try to allocate a new irqno.
1046 * Return value:
1047 * Success: irqno
1048 * Failure: -1
1050 static int
1051 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1052 struct intrspec *ispec, iflag_t *intr_flagp, int type)
1054 int origirq;
1055 uchar_t ipl;
1056 int newirq, intr_index;
1057 uchar_t ipin, ioapic, ioapicindex, vector;
1058 apic_irq_t *irqptr;
1059 major_t major;
1060 dev_info_t *sdip;
1062 ASSERT(ispec != NULL);
1064 origirq = ispec->intrspec_vec;
1065 ipl = ispec->intrspec_pri;
1067 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1068 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1070 major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1072 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1073 /* MSI/X doesn't need to setup ioapic stuffs */
1074 ioapicindex = 0xff;
1075 ioapic = 0xff;
1076 ipin = (uchar_t)0xff;
1077 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1078 MSIX_INDEX;
1079 mutex_enter(&airq_mutex);
1080 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1081 mutex_exit(&airq_mutex);
1082 /* need an irq for MSI/X to index into autovect[] */
1083 cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1084 ddi_get_name(dip), ddi_get_instance(dip));
1085 return (-1);
1087 mutex_exit(&airq_mutex);
1089 } else if (intrp != NULL) {
1090 intr_index = (int)(intrp - apic_io_intrp);
1091 ioapic = intrp->intr_destid;
1092 ipin = intrp->intr_destintin;
1093 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
1094 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1095 if (apic_io_id[ioapicindex] == ioapic)
1096 break;
1097 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1098 (ioapic == INTR_ALL_APIC));
1100 /* check whether this intin# has been used by another irqno */
1101 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1102 return (newirq);
1105 } else if (intr_flagp != NULL) {
1106 /* ACPI case */
1107 intr_index = ACPI_INDEX;
1108 ioapicindex = acpi_find_ioapic(irqno);
1109 ASSERT(ioapicindex != 0xFF);
1110 ioapic = apic_io_id[ioapicindex];
1111 ipin = irqno - apic_io_vectbase[ioapicindex];
1112 if (apic_irq_table[irqno] &&
1113 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1114 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1115 apic_irq_table[irqno]->airq_ioapicindex ==
1116 ioapicindex);
1117 return (irqno);
1120 } else {
1121 /* default configuration */
1122 ioapicindex = 0;
1123 ioapic = apic_io_id[ioapicindex];
1124 ipin = (uchar_t)irqno;
1125 intr_index = DEFAULT_INDEX;
1128 if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1129 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1130 ipl, ioapicindex, ipin, &irqptr)) != -1) {
1131 irqptr->airq_ipl = ipl;
1132 irqptr->airq_origirq = (uchar_t)origirq;
1133 irqptr->airq_dip = dip;
1134 irqptr->airq_major = major;
1135 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1136 /* This is OK to do really */
1137 if (sdip == NULL) {
1138 cmn_err(CE_WARN, "Sharing vectors: %s"
1139 " instance %d and SCI",
1140 ddi_get_name(dip), ddi_get_instance(dip));
1141 } else {
1142 cmn_err(CE_WARN, "Sharing vectors: %s"
1143 " instance %d and %s instance %d",
1144 ddi_get_name(sdip), ddi_get_instance(sdip),
1145 ddi_get_name(dip), ddi_get_instance(dip));
1147 return (newirq);
1149 /* try high priority allocation now that share has failed */
1150 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1151 cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1152 ddi_get_name(dip), ddi_get_instance(dip));
1153 return (-1);
1157 mutex_enter(&airq_mutex);
1158 if (apic_irq_table[irqno] == NULL) {
1159 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1160 irqptr->airq_temp_cpu = IRQ_UNINIT;
1161 apic_irq_table[irqno] = irqptr;
1162 } else {
1163 irqptr = apic_irq_table[irqno];
1164 if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1166 * The slot is used by another irqno, so allocate
1167 * a free irqno for this interrupt
1169 newirq = apic_allocate_irq(apic_first_avail_irq);
1170 if (newirq == -1) {
1171 mutex_exit(&airq_mutex);
1172 return (-1);
1174 irqno = newirq;
1175 irqptr = apic_irq_table[irqno];
1176 if (irqptr == NULL) {
1177 irqptr = kmem_zalloc(sizeof (apic_irq_t),
1178 KM_SLEEP);
1179 irqptr->airq_temp_cpu = IRQ_UNINIT;
1180 apic_irq_table[irqno] = irqptr;
1182 vector = apic_modify_vector(vector, newirq);
1185 apic_max_device_irq = max(irqno, apic_max_device_irq);
1186 apic_min_device_irq = min(irqno, apic_min_device_irq);
1187 mutex_exit(&airq_mutex);
1188 irqptr->airq_ioapicindex = ioapicindex;
1189 irqptr->airq_intin_no = ipin;
1190 irqptr->airq_ipl = ipl;
1191 irqptr->airq_vector = vector;
1192 irqptr->airq_origirq = (uchar_t)origirq;
1193 irqptr->airq_share_id = 0;
1194 irqptr->airq_mps_intr_index = (short)intr_index;
1195 irqptr->airq_dip = dip;
1196 irqptr->airq_major = major;
1197 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1198 if (intr_flagp)
1199 irqptr->airq_iflag = *intr_flagp;
1201 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1202 /* setup I/O APIC entry for non-MSI/X interrupts */
1203 apic_record_rdt_entry(irqptr, irqno);
1205 return (irqno);
1209 * return the cpu to which this intr should be bound.
1210 * Check properties or any other mechanism to see if user wants it
1211 * bound to a specific CPU. If so, return the cpu id with high bit set.
1212 * If not, use the policy to choose a cpu and return the id.
1214 uint32_t
1215 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1217 int instance, instno, prop_len, bind_cpu, count;
1218 uint_t i, rc;
1219 uint32_t cpu;
1220 major_t major;
1221 char *name, *drv_name, *prop_val, *cptr;
1222 char prop_name[32];
1223 ulong_t iflag;
1226 if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1227 return (IRQ_UNBOUND);
1229 if (apic_nproc == 1)
1230 return (0);
1233 * dip may be NULL for interrupts not associated with a device driver,
1234 * such as the ACPI SCI or HPET interrupts. In that case just use the
1235 * next CPU and return.
1237 if (dip == NULL) {
1238 iflag = intr_clear();
1239 lock_set(&apic_ioapic_lock);
1240 bind_cpu = apic_get_next_bind_cpu();
1241 lock_clear(&apic_ioapic_lock);
1242 intr_restore(iflag);
1244 cmn_err(CE_CONT, "!%s: irq 0x%x "
1245 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1246 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1247 intin, bind_cpu & ~IRQ_USER_BOUND);
1249 return ((uint32_t)bind_cpu);
1252 name = ddi_get_name(dip);
1253 major = ddi_name_to_major(name);
1254 drv_name = ddi_major_to_name(major);
1255 instance = ddi_get_instance(dip);
1256 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1257 i = apic_min_device_irq;
1258 for (; i <= apic_max_device_irq; i++) {
1259 if ((i == irq) || (apic_irq_table[i] == NULL) ||
1260 (apic_irq_table[i]->airq_mps_intr_index
1261 == FREE_INDEX))
1262 continue;
1264 if ((apic_irq_table[i]->airq_major == major) &&
1265 (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) {
1266 cpu = apic_irq_table[i]->airq_cpu;
1268 cmn_err(CE_CONT,
1269 "!%s: %s (%s) instance #%d "
1270 "irq 0x%x vector 0x%x ioapic 0x%x "
1271 "intin 0x%x is bound to cpu %d\n",
1272 psm_name,
1273 name, drv_name, instance, irq,
1274 apic_irq_table[irq]->airq_vector,
1275 ioapicid, intin, cpu);
1276 return (cpu);
1281 * search for "drvname"_intpt_bind_cpus property first, the
1282 * syntax of the property should be "a[,b,c,...]" where
1283 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1284 * instance 3 binds to cpu c...
1285 * ddi_getlongprop() will search /option first, then /
1286 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1287 * intpt_bind_cpus property. The syntax is the same, and
1288 * it applies to all the devices if its "drvname" specific
1289 * property doesn't exist
1291 (void) strcpy(prop_name, drv_name);
1292 (void) strcat(prop_name, "_intpt_bind_cpus");
1293 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1294 (caddr_t)&prop_val, &prop_len);
1295 if (rc != DDI_PROP_SUCCESS) {
1296 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1297 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1299 if (rc == DDI_PROP_SUCCESS) {
1300 for (i = count = 0; i < (prop_len - 1); i++)
1301 if (prop_val[i] == ',')
1302 count++;
1303 if (prop_val[i-1] != ',')
1304 count++;
1306 * if somehow the binding instances defined in the
1307 * property are not enough for this instno., then
1308 * reuse the pattern for the next instance until
1309 * it reaches the requested instno
1311 instno = instance % count;
1312 i = 0;
1313 cptr = prop_val;
1314 while (i < instno)
1315 if (*cptr++ == ',')
1316 i++;
1317 bind_cpu = stoi(&cptr);
1318 kmem_free(prop_val, prop_len);
1319 /* if specific CPU is bogus, then default to next cpu */
1320 if (!apic_cpu_in_range(bind_cpu)) {
1321 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1322 psm_name, prop_name, prop_val, bind_cpu);
1323 rc = DDI_PROP_NOT_FOUND;
1324 } else {
1325 /* indicate that we are bound at user request */
1326 bind_cpu |= IRQ_USER_BOUND;
1329 * no need to check apic_cpus[].aci_status, if specific CPU is
1330 * not up, then post_cpu_start will handle it.
1334 if (rc != DDI_PROP_SUCCESS) {
1335 iflag = intr_clear();
1336 lock_set(&apic_ioapic_lock);
1337 bind_cpu = apic_get_next_bind_cpu();
1338 lock_clear(&apic_ioapic_lock);
1339 intr_restore(iflag);
1342 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1343 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1344 psm_name, name, drv_name, instance, irq,
1345 apic_irq_table[irq]->airq_vector, ioapicid, intin,
1346 bind_cpu & ~IRQ_USER_BOUND);
1348 return ((uint32_t)bind_cpu);
1352 * Mark vector as being in the process of being deleted. Interrupts
1353 * may still come in on some CPU. The moment an interrupt comes with
1354 * the new vector, we know we can free the old one. Called only from
1355 * addspl and delspl with interrupts disabled. Because an interrupt
1356 * can be shared, but no interrupt from either device may come in,
1357 * we also use a timeout mechanism, which we arbitrarily set to
1358 * apic_revector_timeout microseconds.
1360 static void
1361 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1363 ulong_t iflag;
1365 iflag = intr_clear();
1366 lock_set(&apic_revector_lock);
1367 if (!apic_oldvec_to_newvec) {
1368 apic_oldvec_to_newvec =
1369 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1370 KM_NOSLEEP);
1372 if (!apic_oldvec_to_newvec) {
1374 * This failure is not catastrophic.
1375 * But, the oldvec will never be freed.
1377 apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1378 lock_clear(&apic_revector_lock);
1379 intr_restore(iflag);
1380 return;
1382 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1385 /* See if we already did this for drivers which do double addintrs */
1386 if (apic_oldvec_to_newvec[oldvector] != newvector) {
1387 apic_oldvec_to_newvec[oldvector] = newvector;
1388 apic_newvec_to_oldvec[newvector] = oldvector;
1389 apic_revector_pending++;
1391 lock_clear(&apic_revector_lock);
1392 intr_restore(iflag);
1393 (void) timeout(apic_xlate_vector_free_timeout_handler,
1394 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1398 * xlate_vector is called from intr_enter if revector_pending is set.
1399 * It will xlate it if needed and mark the old vector as free.
1401 uchar_t
1402 apic_xlate_vector(uchar_t vector)
1404 uchar_t newvector, oldvector = 0;
1406 lock_set(&apic_revector_lock);
1407 /* Do we really need to do this ? */
1408 if (!apic_revector_pending) {
1409 lock_clear(&apic_revector_lock);
1410 return (vector);
1412 if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1413 oldvector = vector;
1414 else {
1416 * The incoming vector is new . See if a stale entry is
1417 * remaining
1419 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1420 newvector = vector;
1423 if (oldvector) {
1424 apic_revector_pending--;
1425 apic_oldvec_to_newvec[oldvector] = 0;
1426 apic_newvec_to_oldvec[newvector] = 0;
1427 apic_free_vector(oldvector);
1428 lock_clear(&apic_revector_lock);
1429 /* There could have been more than one reprogramming! */
1430 return (apic_xlate_vector(newvector));
1432 lock_clear(&apic_revector_lock);
1433 return (vector);
1436 void
1437 apic_xlate_vector_free_timeout_handler(void *arg)
1439 ulong_t iflag;
1440 uchar_t oldvector, newvector;
1442 oldvector = (uchar_t)(uintptr_t)arg;
1443 iflag = intr_clear();
1444 lock_set(&apic_revector_lock);
1445 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1446 apic_free_vector(oldvector);
1447 apic_oldvec_to_newvec[oldvector] = 0;
1448 apic_newvec_to_oldvec[newvector] = 0;
1449 apic_revector_pending--;
1452 lock_clear(&apic_revector_lock);
1453 intr_restore(iflag);
1457 * Bind interrupt corresponding to irq_ptr to bind_cpu.
1458 * Must be called with interrupts disabled and apic_ioapic_lock held
1461 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1462 struct ioapic_reprogram_data *drep)
1464 int ioapicindex, intin_no;
1465 uint32_t airq_temp_cpu;
1466 apic_cpus_info_t *cpu_infop;
1467 uint32_t rdt_entry;
1468 int which_irq;
1469 ioapic_rdt_t irdt;
1471 which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1473 intin_no = irq_ptr->airq_intin_no;
1474 ioapicindex = irq_ptr->airq_ioapicindex;
1475 airq_temp_cpu = irq_ptr->airq_temp_cpu;
1476 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1477 if (airq_temp_cpu & IRQ_USER_BOUND)
1478 /* Mask off high bit so it can be used as array index */
1479 airq_temp_cpu &= ~IRQ_USER_BOUND;
1481 ASSERT(apic_cpu_in_range(airq_temp_cpu));
1485 * Can't bind to a CPU that's not accepting interrupts:
1487 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1488 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1489 return (1);
1492 * If we are about to change the interrupt vector for this interrupt,
1493 * and this interrupt is level-triggered, attached to an IOAPIC,
1494 * has been delivered to a CPU and that CPU has not handled it
1495 * yet, we cannot reprogram the IOAPIC now.
1497 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1499 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1500 intin_no);
1502 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1503 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1504 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1506 return (0);
1510 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1511 * still come in before we have a chance to reprogram it below.
1512 * The reprogramming below will simultaneously change and
1513 * unmask the RDT entry.
1516 if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1517 irdt.ir_lo = AV_LDEST | AV_LOPRI |
1518 irq_ptr->airq_rdt_entry;
1520 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET;
1522 apic_vt_ops->apic_intrmap_alloc_entry(
1523 &irq_ptr->airq_intrmap_private, NULL,
1524 DDI_INTR_TYPE_FIXED, 1, ioapicindex);
1525 apic_vt_ops->apic_intrmap_map_entry(
1526 irq_ptr->airq_intrmap_private, (void *)&irdt,
1527 DDI_INTR_TYPE_FIXED, 1);
1528 apic_vt_ops->apic_intrmap_record_rdt(
1529 irq_ptr->airq_intrmap_private, &irdt);
1531 /* Write the RDT entry -- no specific CPU binding */
1532 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1533 irdt.ir_hi | AV_TOALL);
1535 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1536 IRQ_UNBOUND)
1537 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1540 * Write the vector, trigger, and polarity portion of
1541 * the RDT
1543 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1544 irdt.ir_lo);
1546 irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1547 return (0);
1551 if (bind_cpu & IRQ_USER_BOUND) {
1552 cpu_infop->aci_bound++;
1553 } else {
1554 cpu_infop->aci_temp_bound++;
1556 ASSERT(apic_cpu_in_range(bind_cpu));
1558 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1559 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1561 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1563 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1564 irdt.ir_hi = cpu_infop->aci_local_id;
1566 apic_vt_ops->apic_intrmap_alloc_entry(
1567 &irq_ptr->airq_intrmap_private, NULL, DDI_INTR_TYPE_FIXED,
1568 1, ioapicindex);
1569 apic_vt_ops->apic_intrmap_map_entry(
1570 irq_ptr->airq_intrmap_private,
1571 (void *)&irdt, DDI_INTR_TYPE_FIXED, 1);
1572 apic_vt_ops->apic_intrmap_record_rdt(
1573 irq_ptr->airq_intrmap_private, &irdt);
1575 /* Write the RDT entry -- bind to a specific CPU: */
1576 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1577 irdt.ir_hi);
1579 /* Write the vector, trigger, and polarity portion of the RDT */
1580 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1581 irdt.ir_lo);
1583 } else {
1584 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1585 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1586 if (type == DDI_INTR_TYPE_MSI) {
1587 if (irq_ptr->airq_ioapicindex ==
1588 irq_ptr->airq_origirq) {
1589 /* first one */
1590 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1591 "apic_pci_msi_enable_vector\n"));
1592 apic_pci_msi_enable_vector(irq_ptr,
1593 type, which_irq, irq_ptr->airq_vector,
1594 irq_ptr->airq_intin_no,
1595 cpu_infop->aci_local_id);
1597 if ((irq_ptr->airq_ioapicindex +
1598 irq_ptr->airq_intin_no - 1) ==
1599 irq_ptr->airq_origirq) { /* last one */
1600 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1601 "apic_pci_msi_enable_mode\n"));
1602 apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1603 type, which_irq);
1605 } else { /* MSI-X */
1606 apic_pci_msi_enable_vector(irq_ptr, type,
1607 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1608 cpu_infop->aci_local_id);
1609 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1610 irq_ptr->airq_origirq);
1613 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1614 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1615 return (0);
1618 static void
1619 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1621 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1622 & AV_REMOTE_IRR) != 0) {
1624 * Trying to clear the bit through normal
1625 * channels has failed. So as a last-ditch
1626 * effort, try to set the trigger mode to
1627 * edge, then to level. This has been
1628 * observed to work on many systems.
1630 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1631 intin_no,
1632 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1633 intin_no) & ~AV_LEVEL);
1635 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1636 intin_no,
1637 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1638 intin_no) | AV_LEVEL);
1641 * If the bit's STILL set, this interrupt may
1642 * be hosed.
1644 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1645 intin_no) & AV_REMOTE_IRR) != 0) {
1647 prom_printf("%s: Remote IRR still "
1648 "not clear for IOAPIC %d intin %d.\n"
1649 "\tInterrupts to this pin may cease "
1650 "functioning.\n", psm_name, ioapic_ix,
1651 intin_no);
1652 #ifdef DEBUG
1653 apic_last_ditch_reprogram_failures++;
1654 #endif
1660 * This function is protected by apic_ioapic_lock coupled with the
1661 * fact that interrupts are disabled.
1663 static void
1664 delete_defer_repro_ent(int which_irq)
1666 ASSERT(which_irq >= 0);
1667 ASSERT(which_irq <= 255);
1668 ASSERT(LOCK_HELD(&apic_ioapic_lock));
1670 if (apic_reprogram_info[which_irq].done)
1671 return;
1673 apic_reprogram_info[which_irq].done = B_TRUE;
1675 #ifdef DEBUG
1676 apic_defer_repro_total_retries +=
1677 apic_reprogram_info[which_irq].tries;
1679 apic_defer_repro_successes++;
1680 #endif
1682 if (--apic_reprogram_outstanding == 0) {
1684 setlvlx = psm_intr_exit_fn();
1690 * Interrupts must be disabled during this function to prevent
1691 * self-deadlock. Interrupts are disabled because this function
1692 * is called from apic_check_stuck_interrupt(), which is called
1693 * from apic_rebind(), which requires its caller to disable interrupts.
1695 static void
1696 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1698 ASSERT(which_irq >= 0);
1699 ASSERT(which_irq <= 255);
1700 ASSERT(!interrupts_enabled());
1703 * On the off-chance that there's already a deferred
1704 * reprogramming on this irq, check, and if so, just update the
1705 * CPU and irq pointer to which the interrupt is targeted, then return.
1707 if (!apic_reprogram_info[which_irq].done) {
1708 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1709 apic_reprogram_info[which_irq].irqp = irq_ptr;
1710 return;
1713 apic_reprogram_info[which_irq].irqp = irq_ptr;
1714 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1715 apic_reprogram_info[which_irq].tries = 0;
1717 * This must be the last thing set, since we're not
1718 * grabbing any locks, apic_try_deferred_reprogram() will
1719 * make its decision about using this entry iff done
1720 * is false.
1722 apic_reprogram_info[which_irq].done = B_FALSE;
1725 * If there were previously no deferred reprogrammings, change
1726 * setlvlx to call apic_try_deferred_reprogram()
1728 if (++apic_reprogram_outstanding == 1) {
1730 setlvlx = apic_try_deferred_reprogram;
1734 static void
1735 apic_try_deferred_reprogram(int prev_ipl, int irq)
1737 int reproirq;
1738 ulong_t iflag;
1739 struct ioapic_reprogram_data *drep;
1741 (*psm_intr_exit_fn())(prev_ipl, irq);
1743 if (!lock_try(&apic_defer_reprogram_lock)) {
1744 return;
1748 * Acquire the apic_ioapic_lock so that any other operations that
1749 * may affect the apic_reprogram_info state are serialized.
1750 * It's still possible for the last deferred reprogramming to clear
1751 * between the time we entered this function and the time we get to
1752 * the for loop below. In that case, *setlvlx will have been set
1753 * back to *_intr_exit and drep will be NULL. (There's no way to
1754 * stop that from happening -- we would need to grab a lock before
1755 * calling *setlvlx, which is neither realistic nor prudent).
1757 iflag = intr_clear();
1758 lock_set(&apic_ioapic_lock);
1761 * For each deferred RDT entry, try to reprogram it now. Note that
1762 * there is no lock acquisition to read apic_reprogram_info because
1763 * '.done' is set only after the other fields in the structure are set.
1766 drep = NULL;
1767 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1768 if (apic_reprogram_info[reproirq].done == B_FALSE) {
1769 drep = &apic_reprogram_info[reproirq];
1770 break;
1775 * Either we found a deferred action to perform, or
1776 * we entered this function spuriously, after *setlvlx
1777 * was restored to point to *_intr_exit. Any other
1778 * permutation is invalid.
1780 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1783 * Though we can't really do anything about errors
1784 * at this point, keep track of them for reporting.
1785 * Note that it is very possible for apic_setup_io_intr
1786 * to re-register this very timeout if the Remote IRR bit
1787 * has not yet cleared.
1790 #ifdef DEBUG
1791 if (drep != NULL) {
1792 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1793 apic_deferred_setup_failures++;
1795 } else {
1796 apic_deferred_spurious_enters++;
1798 #else
1799 if (drep != NULL)
1800 (void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1801 #endif
1803 lock_clear(&apic_ioapic_lock);
1804 intr_restore(iflag);
1806 lock_clear(&apic_defer_reprogram_lock);
1809 static void
1810 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1812 int waited;
1815 * Wait for the delivery pending bit to clear.
1817 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1818 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1821 * If we're still waiting on the delivery of this interrupt,
1822 * continue to wait here until it is delivered (this should be
1823 * a very small amount of time, but include a timeout just in
1824 * case).
1826 for (waited = 0; waited < apic_max_reps_clear_pending;
1827 waited++) {
1828 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1829 intin_no) & AV_PENDING) == 0) {
1830 break;
1838 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1839 * bit set. Calls functions that modify the function that setlvlx points to,
1840 * so that the reprogramming can be retried very shortly.
1842 * This function will mask the RDT entry if the interrupt is level-triggered.
1843 * (The caller is responsible for unmasking the RDT entry.)
1845 * Returns non-zero if the caller should defer IOAPIC reprogramming.
1847 static int
1848 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1849 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1850 struct ioapic_reprogram_data *drep)
1852 int32_t rdt_entry;
1853 int waited;
1854 int reps = 0;
1857 * Wait for the delivery pending bit to clear.
1859 do {
1860 ++reps;
1862 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1865 * Mask the RDT entry, but only if it's a level-triggered
1866 * interrupt
1868 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1869 intin_no);
1870 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1872 /* Mask it */
1873 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1874 AV_MASK | rdt_entry);
1877 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1879 * If there was a race and an interrupt was injected
1880 * just before we masked, check for that case here.
1881 * Then, unmask the RDT entry and try again. If we're
1882 * on our last try, don't unmask (because we want the
1883 * RDT entry to remain masked for the rest of the
1884 * function).
1886 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1887 intin_no);
1888 if ((rdt_entry & AV_PENDING) &&
1889 (reps < apic_max_reps_clear_pending)) {
1890 /* Unmask it */
1891 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1892 intin_no, rdt_entry & ~AV_MASK);
1896 } while ((rdt_entry & AV_PENDING) &&
1897 (reps < apic_max_reps_clear_pending));
1899 #ifdef DEBUG
1900 if (rdt_entry & AV_PENDING)
1901 apic_intr_deliver_timeouts++;
1902 #endif
1905 * If the remote IRR bit is set, then the interrupt has been sent
1906 * to a CPU for processing. We have no choice but to wait for
1907 * that CPU to process the interrupt, at which point the remote IRR
1908 * bit will be cleared.
1910 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1911 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1914 * If the CPU that this RDT is bound to is NOT the current
1915 * CPU, wait until that CPU handles the interrupt and ACKs
1916 * it. If this interrupt is not bound to any CPU (that is,
1917 * if it's bound to the logical destination of "anyone"), it
1918 * may have been delivered to the current CPU so handle that
1919 * case by deferring the reprogramming (below).
1921 if ((old_bind_cpu != IRQ_UNBOUND) &&
1922 (old_bind_cpu != IRQ_UNINIT) &&
1923 (old_bind_cpu != psm_get_cpu_id())) {
1924 for (waited = 0; waited < apic_max_reps_clear_pending;
1925 waited++) {
1926 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1927 intin_no) & AV_REMOTE_IRR) == 0) {
1929 delete_defer_repro_ent(which_irq);
1931 /* Remote IRR has cleared! */
1932 return (0);
1938 * If we waited and the Remote IRR bit is still not cleared,
1939 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1940 * times for this interrupt, try the last-ditch workaround:
1942 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1944 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1946 /* Mark this one as reprogrammed: */
1947 delete_defer_repro_ent(which_irq);
1949 return (0);
1950 } else {
1951 #ifdef DEBUG
1952 apic_intr_deferrals++;
1953 #endif
1956 * If waiting for the Remote IRR bit (above) didn't
1957 * allow it to clear, defer the reprogramming.
1958 * Add a new deferred-programming entry if the
1959 * caller passed a NULL one (and update the existing one
1960 * in case anything changed).
1962 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1963 if (drep)
1964 drep->tries++;
1966 /* Inform caller to defer IOAPIC programming: */
1967 return (1);
1972 /* Remote IRR is clear */
1973 delete_defer_repro_ent(which_irq);
1975 return (0);
1979 * Called to migrate all interrupts at an irq to another cpu.
1980 * Must be called with interrupts disabled and apic_ioapic_lock held
1983 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1985 apic_irq_t *irqptr = irq_ptr;
1986 int retval = 0;
1988 while (irqptr) {
1989 if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1990 retval |= apic_rebind(irqptr, bind_cpu, NULL);
1991 irqptr = irqptr->airq_next;
1994 return (retval);
1998 * apic_intr_redistribute does all the messy computations for identifying
1999 * which interrupt to move to which CPU. Currently we do just one interrupt
2000 * at a time. This reduces the time we spent doing all this within clock
2001 * interrupt. When it is done in idle, we could do more than 1.
2002 * First we find the most busy and the most free CPU (time in ISR only)
2003 * skipping those CPUs that has been identified as being ineligible (cpu_skip)
2004 * Then we look for IRQs which are closest to the difference between the
2005 * most busy CPU and the average ISR load. We try to find one whose load
2006 * is less than difference.If none exists, then we chose one larger than the
2007 * difference, provided it does not make the most idle CPU worse than the
2008 * most busy one. In the end, we clear all the busy fields for CPUs. For
2009 * IRQs, they are cleared as they are scanned.
2011 void
2012 apic_intr_redistribute(void)
2014 int busiest_cpu, most_free_cpu;
2015 int cpu_free, cpu_busy, max_busy, min_busy;
2016 int min_free, diff;
2017 int average_busy, cpus_online;
2018 int i, busy;
2019 ulong_t iflag;
2020 apic_cpus_info_t *cpu_infop;
2021 apic_irq_t *min_busy_irq = NULL;
2022 apic_irq_t *max_busy_irq = NULL;
2024 busiest_cpu = most_free_cpu = -1;
2025 cpu_free = cpu_busy = max_busy = average_busy = 0;
2026 min_free = apic_sample_factor_redistribution;
2027 cpus_online = 0;
2029 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
2030 * without ioapic_lock. That is OK as we are just doing statistical
2031 * sampling anyway and any inaccuracy now will get corrected next time
2032 * The call to rebind which actually changes things will make sure
2033 * we are consistent.
2035 for (i = 0; i < apic_nproc; i++) {
2036 if (apic_cpu_in_range(i) &&
2037 !(apic_redist_cpu_skip & (1 << i)) &&
2038 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
2040 cpu_infop = &apic_cpus[i];
2042 * If no unbound interrupts or only 1 total on this
2043 * CPU, skip
2045 if (!cpu_infop->aci_temp_bound ||
2046 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
2047 == 1) {
2048 apic_redist_cpu_skip |= 1 << i;
2049 continue;
2052 busy = cpu_infop->aci_busy;
2053 average_busy += busy;
2054 cpus_online++;
2055 if (max_busy < busy) {
2056 max_busy = busy;
2057 busiest_cpu = i;
2059 if (min_free > busy) {
2060 min_free = busy;
2061 most_free_cpu = i;
2063 if (busy > apic_int_busy_mark) {
2064 cpu_busy |= 1 << i;
2065 } else {
2066 if (busy < apic_int_free_mark)
2067 cpu_free |= 1 << i;
2071 if ((cpu_busy && cpu_free) ||
2072 (max_busy >= (min_free + apic_diff_for_redistribution))) {
2074 apic_num_imbalance++;
2075 #ifdef DEBUG
2076 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2077 prom_printf(
2078 "redistribute busy=%x free=%x max=%x min=%x",
2079 cpu_busy, cpu_free, max_busy, min_free);
2081 #endif /* DEBUG */
2084 average_busy /= cpus_online;
2086 diff = max_busy - average_busy;
2087 min_busy = max_busy; /* start with the max possible value */
2088 max_busy = 0;
2089 min_busy_irq = max_busy_irq = NULL;
2090 i = apic_min_device_irq;
2091 for (; i <= apic_max_device_irq; i++) {
2092 apic_irq_t *irq_ptr;
2093 /* Change to linked list per CPU ? */
2094 if ((irq_ptr = apic_irq_table[i]) == NULL)
2095 continue;
2096 /* Check for irq_busy & decide which one to move */
2097 /* Also zero them for next round */
2098 if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2099 irq_ptr->airq_busy) {
2100 if (irq_ptr->airq_busy < diff) {
2102 * Check for least busy CPU,
2103 * best fit or what ?
2105 if (max_busy < irq_ptr->airq_busy) {
2107 * Most busy within the
2108 * required differential
2110 max_busy = irq_ptr->airq_busy;
2111 max_busy_irq = irq_ptr;
2113 } else {
2114 if (min_busy > irq_ptr->airq_busy) {
2116 * least busy, but more than
2117 * the reqd diff
2119 if (min_busy <
2120 (diff + average_busy -
2121 min_free)) {
2123 * Making sure new cpu
2124 * will not end up
2125 * worse
2127 min_busy =
2128 irq_ptr->airq_busy;
2130 min_busy_irq = irq_ptr;
2135 irq_ptr->airq_busy = 0;
2138 if (max_busy_irq != NULL) {
2139 #ifdef DEBUG
2140 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2141 prom_printf("rebinding %x to %x",
2142 max_busy_irq->airq_vector, most_free_cpu);
2144 #endif /* DEBUG */
2145 iflag = intr_clear();
2146 if (lock_try(&apic_ioapic_lock)) {
2147 if (apic_rebind_all(max_busy_irq,
2148 most_free_cpu) == 0) {
2149 /* Make change permenant */
2150 max_busy_irq->airq_cpu =
2151 (uint32_t)most_free_cpu;
2153 lock_clear(&apic_ioapic_lock);
2155 intr_restore(iflag);
2157 } else if (min_busy_irq != NULL) {
2158 #ifdef DEBUG
2159 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2160 prom_printf("rebinding %x to %x",
2161 min_busy_irq->airq_vector, most_free_cpu);
2163 #endif /* DEBUG */
2165 iflag = intr_clear();
2166 if (lock_try(&apic_ioapic_lock)) {
2167 if (apic_rebind_all(min_busy_irq,
2168 most_free_cpu) == 0) {
2169 /* Make change permenant */
2170 min_busy_irq->airq_cpu =
2171 (uint32_t)most_free_cpu;
2173 lock_clear(&apic_ioapic_lock);
2175 intr_restore(iflag);
2177 } else {
2178 if (cpu_busy != (1 << busiest_cpu)) {
2179 apic_redist_cpu_skip |= 1 << busiest_cpu;
2181 * We leave cpu_skip set so that next time we
2182 * can choose another cpu
2186 apic_num_rebind++;
2187 } else {
2189 * found nothing. Could be that we skipped over valid CPUs
2190 * or we have balanced everything. If we had a variable
2191 * ticks_for_redistribution, it could be increased here.
2192 * apic_int_busy, int_free etc would also need to be
2193 * changed.
2195 if (apic_redist_cpu_skip)
2196 apic_redist_cpu_skip = 0;
2198 for (i = 0; i < apic_nproc; i++) {
2199 if (apic_cpu_in_range(i)) {
2200 apic_cpus[i].aci_busy = 0;
2205 void
2206 apic_cleanup_busy(void)
2208 int i;
2209 apic_irq_t *irq_ptr;
2211 for (i = 0; i < apic_nproc; i++) {
2212 if (apic_cpu_in_range(i)) {
2213 apic_cpus[i].aci_busy = 0;
2217 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2218 if ((irq_ptr = apic_irq_table[i]) != NULL)
2219 irq_ptr->airq_busy = 0;