Merge commit '37e84ab74e939caf52150fc3352081786ecc0c29' into merges
[unleashed.git] / kernel / fs / zfs / dsl_pool.c
blobc1443482a23052ba50549bf8d4adf90090865e0e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
53 * ZFS Write Throttle
54 * ------------------
56 * ZFS must limit the rate of incoming writes to the rate at which it is able
57 * to sync data modifications to the backend storage. Throttling by too much
58 * creates an artificial limit; throttling by too little can only be sustained
59 * for short periods and would lead to highly lumpy performance. On a per-pool
60 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62 * of dirty data decreases. When the amount of dirty data exceeds a
63 * predetermined threshold further modifications are blocked until the amount
64 * of dirty data decreases (as data is synced out).
66 * The limit on dirty data is tunable, and should be adjusted according to
67 * both the IO capacity and available memory of the system. The larger the
68 * window, the more ZFS is able to aggregate and amortize metadata (and data)
69 * changes. However, memory is a limited resource, and allowing for more dirty
70 * data comes at the cost of keeping other useful data in memory (for example
71 * ZFS data cached by the ARC).
73 * Implementation
75 * As buffers are modified dsl_pool_willuse_space() increments both the per-
76 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77 * dirty space used; dsl_pool_dirty_space() decrements those values as data
78 * is synced out from dsl_pool_sync(). While only the poolwide value is
79 * relevant, the per-txg value is useful for debugging. The tunable
80 * zfs_dirty_data_max determines the dirty space limit. Once that value is
81 * exceeded, new writes are halted until space frees up.
83 * The zfs_dirty_data_sync tunable dictates the threshold at which we
84 * ensure that there is a txg syncing (see the comment in txg.c for a full
85 * description of transaction group stages).
87 * The IO scheduler uses both the dirty space limit and current amount of
88 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
91 * The delay is also calculated based on the amount of dirty data. See the
92 * comment above dmu_tx_delay() for details.
96 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
104 * If there is at least this much dirty data, push out a txg.
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
109 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110 * and delay each transaction.
111 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
113 int zfs_delay_min_dirty_percent = 60;
116 * This controls how quickly the delay approaches infinity.
117 * Larger values cause it to delay more for a given amount of dirty data.
118 * Therefore larger values will cause there to be less dirty data for a
119 * given throughput.
121 * For the smoothest delay, this value should be about 1 billion divided
122 * by the maximum number of operations per second. This will smoothly
123 * handle between 10x and 1/10th this number.
125 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126 * multiply in dmu_tx_delay().
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
131 * This determines the number of threads used by the dp_sync_taskq.
133 int zfs_sync_taskq_batch_pct = 75;
136 * These tunables determine the behavior of how zil_itxg_clean() is
137 * called via zil_clean() in the context of spa_sync(). When an itxg
138 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
139 * If the dispatch fails, the call to zil_itxg_clean() will occur
140 * synchronously in the context of spa_sync(), which can negatively
141 * impact the performance of spa_sync() (e.g. in the case of the itxg
142 * list having a large number of itxs that needs to be cleaned).
144 * Thus, these tunables can be used to manipulate the behavior of the
145 * taskq used by zil_clean(); they determine the number of taskq entries
146 * that are pre-populated when the taskq is first created (via the
147 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
148 * taskq entries that are cached after an on-demand allocation (via the
149 * "zfs_zil_clean_taskq_maxalloc").
151 * The idea being, we want to try reasonably hard to ensure there will
152 * already be a taskq entry pre-allocated by the time that it is needed
153 * by zil_clean(). This way, we can avoid the possibility of an
154 * on-demand allocation of a new taskq entry from failing, which would
155 * result in zil_itxg_clean() being called synchronously from zil_clean()
156 * (which can adversely affect performance of spa_sync()).
158 * Additionally, the number of threads used by the taskq can be
159 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
161 int zfs_zil_clean_taskq_nthr_pct = 100;
162 int zfs_zil_clean_taskq_minalloc = 1024;
163 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
166 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
168 uint64_t obj;
169 int err;
171 err = zap_lookup(dp->dp_meta_objset,
172 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
173 name, sizeof (obj), 1, &obj);
174 if (err)
175 return (err);
177 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
180 static dsl_pool_t *
181 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
183 dsl_pool_t *dp;
184 blkptr_t *bp = spa_get_rootblkptr(spa);
186 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187 dp->dp_spa = spa;
188 dp->dp_meta_rootbp = *bp;
189 rrw_init(&dp->dp_config_rwlock, B_TRUE);
190 txg_init(dp, txg);
192 txg_list_create(&dp->dp_dirty_datasets, spa,
193 offsetof(dsl_dataset_t, ds_dirty_link));
194 txg_list_create(&dp->dp_dirty_zilogs, spa,
195 offsetof(zilog_t, zl_dirty_link));
196 txg_list_create(&dp->dp_dirty_dirs, spa,
197 offsetof(dsl_dir_t, dd_dirty_link));
198 txg_list_create(&dp->dp_sync_tasks, spa,
199 offsetof(dsl_sync_task_t, dst_node));
201 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
202 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
203 TASKQ_THREADS_CPU_PCT);
205 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
206 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
207 zfs_zil_clean_taskq_minalloc,
208 zfs_zil_clean_taskq_maxalloc,
209 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
211 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
212 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
214 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
215 1, 4, 0);
217 return (dp);
221 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
223 int err;
224 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
226 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
227 &dp->dp_meta_objset);
228 if (err != 0)
229 dsl_pool_close(dp);
230 else
231 *dpp = dp;
233 return (err);
237 dsl_pool_open(dsl_pool_t *dp)
239 int err;
240 dsl_dir_t *dd;
241 dsl_dataset_t *ds;
242 uint64_t obj;
244 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
246 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
247 &dp->dp_root_dir_obj);
248 if (err)
249 goto out;
251 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
252 NULL, dp, &dp->dp_root_dir);
253 if (err)
254 goto out;
256 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
257 if (err)
258 goto out;
260 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
261 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
262 if (err)
263 goto out;
264 err = dsl_dataset_hold_obj(dp,
265 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
266 if (err == 0) {
267 err = dsl_dataset_hold_obj(dp,
268 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
269 &dp->dp_origin_snap);
270 dsl_dataset_rele(ds, FTAG);
272 dsl_dir_rele(dd, dp);
273 if (err)
274 goto out;
277 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
278 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
279 &dp->dp_free_dir);
280 if (err)
281 goto out;
283 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
285 if (err)
286 goto out;
287 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
288 dp->dp_meta_objset, obj));
292 * Note: errors ignored, because the leak dir will not exist if we
293 * have not encountered a leak yet.
295 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
296 &dp->dp_leak_dir);
298 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
299 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
300 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
301 &dp->dp_bptree_obj);
302 if (err != 0)
303 goto out;
306 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
307 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
308 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
309 &dp->dp_empty_bpobj);
310 if (err != 0)
311 goto out;
314 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
315 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
316 &dp->dp_tmp_userrefs_obj);
317 if (err == ENOENT)
318 err = 0;
319 if (err)
320 goto out;
322 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
324 out:
325 rrw_exit(&dp->dp_config_rwlock, FTAG);
326 return (err);
329 void
330 dsl_pool_close(dsl_pool_t *dp)
333 * Drop our references from dsl_pool_open().
335 * Since we held the origin_snap from "syncing" context (which
336 * includes pool-opening context), it actually only got a "ref"
337 * and not a hold, so just drop that here.
339 if (dp->dp_origin_snap)
340 dsl_dataset_rele(dp->dp_origin_snap, dp);
341 if (dp->dp_mos_dir)
342 dsl_dir_rele(dp->dp_mos_dir, dp);
343 if (dp->dp_free_dir)
344 dsl_dir_rele(dp->dp_free_dir, dp);
345 if (dp->dp_leak_dir)
346 dsl_dir_rele(dp->dp_leak_dir, dp);
347 if (dp->dp_root_dir)
348 dsl_dir_rele(dp->dp_root_dir, dp);
350 bpobj_close(&dp->dp_free_bpobj);
352 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
353 if (dp->dp_meta_objset)
354 dmu_objset_evict(dp->dp_meta_objset);
356 txg_list_destroy(&dp->dp_dirty_datasets);
357 txg_list_destroy(&dp->dp_dirty_zilogs);
358 txg_list_destroy(&dp->dp_sync_tasks);
359 txg_list_destroy(&dp->dp_dirty_dirs);
361 taskq_destroy(dp->dp_zil_clean_taskq);
362 taskq_destroy(dp->dp_sync_taskq);
365 * We can't set retry to TRUE since we're explicitly specifying
366 * a spa to flush. This is good enough; any missed buffers for
367 * this spa won't cause trouble, and they'll eventually fall
368 * out of the ARC just like any other unused buffer.
370 arc_flush(dp->dp_spa, FALSE);
372 txg_fini(dp);
373 dsl_scan_fini(dp);
374 dmu_buf_user_evict_wait();
376 rrw_destroy(&dp->dp_config_rwlock);
377 mutex_destroy(&dp->dp_lock);
378 taskq_destroy(dp->dp_vnrele_taskq);
379 if (dp->dp_blkstats)
380 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
381 kmem_free(dp, sizeof (dsl_pool_t));
384 dsl_pool_t *
385 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
387 int err;
388 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
389 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
390 objset_t *os;
391 dsl_dataset_t *ds;
392 uint64_t obj;
394 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
396 /* create and open the MOS (meta-objset) */
397 dp->dp_meta_objset = dmu_objset_create_impl(spa,
398 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
400 /* create the pool directory */
401 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
402 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
403 ASSERT0(err);
405 /* Initialize scan structures */
406 VERIFY0(dsl_scan_init(dp, txg));
408 /* create and open the root dir */
409 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
410 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
411 NULL, dp, &dp->dp_root_dir));
413 /* create and open the meta-objset dir */
414 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
415 VERIFY0(dsl_pool_open_special_dir(dp,
416 MOS_DIR_NAME, &dp->dp_mos_dir));
418 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
419 /* create and open the free dir */
420 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
421 FREE_DIR_NAME, tx);
422 VERIFY0(dsl_pool_open_special_dir(dp,
423 FREE_DIR_NAME, &dp->dp_free_dir));
425 /* create and open the free_bplist */
426 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
427 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
429 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
430 dp->dp_meta_objset, obj));
433 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
434 dsl_pool_create_origin(dp, tx);
436 /* create the root dataset */
437 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
439 /* create the root objset */
440 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
441 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
442 os = dmu_objset_create_impl(dp->dp_spa, ds,
443 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
444 rrw_exit(&ds->ds_bp_rwlock, FTAG);
445 #ifdef _KERNEL
446 zfs_create_fs(os, kcred, zplprops, tx);
447 #endif
448 dsl_dataset_rele(ds, FTAG);
450 dmu_tx_commit(tx);
452 rrw_exit(&dp->dp_config_rwlock, FTAG);
454 return (dp);
458 * Account for the meta-objset space in its placeholder dsl_dir.
460 void
461 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
462 int64_t used, int64_t comp, int64_t uncomp)
464 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
465 mutex_enter(&dp->dp_lock);
466 dp->dp_mos_used_delta += used;
467 dp->dp_mos_compressed_delta += comp;
468 dp->dp_mos_uncompressed_delta += uncomp;
469 mutex_exit(&dp->dp_lock);
472 static void
473 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
475 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
476 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
477 VERIFY0(zio_wait(zio));
478 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
479 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
482 static void
483 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
485 ASSERT(MUTEX_HELD(&dp->dp_lock));
487 if (delta < 0)
488 ASSERT3U(-delta, <=, dp->dp_dirty_total);
490 dp->dp_dirty_total += delta;
493 * Note: we signal even when increasing dp_dirty_total.
494 * This ensures forward progress -- each thread wakes the next waiter.
496 if (dp->dp_dirty_total < zfs_dirty_data_max)
497 cv_signal(&dp->dp_spaceavail_cv);
500 void
501 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
503 zio_t *zio;
504 dmu_tx_t *tx;
505 dsl_dir_t *dd;
506 dsl_dataset_t *ds;
507 objset_t *mos = dp->dp_meta_objset;
508 list_t synced_datasets;
510 list_create(&synced_datasets, sizeof (dsl_dataset_t),
511 offsetof(dsl_dataset_t, ds_synced_link));
513 tx = dmu_tx_create_assigned(dp, txg);
516 * Write out all dirty blocks of dirty datasets.
518 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
519 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
521 * We must not sync any non-MOS datasets twice, because
522 * we may have taken a snapshot of them. However, we
523 * may sync newly-created datasets on pass 2.
525 ASSERT(!list_link_active(&ds->ds_synced_link));
526 list_insert_tail(&synced_datasets, ds);
527 dsl_dataset_sync(ds, zio, tx);
529 VERIFY0(zio_wait(zio));
532 * We have written all of the accounted dirty data, so our
533 * dp_space_towrite should now be zero. However, some seldom-used
534 * code paths do not adhere to this (e.g. dbuf_undirty(), also
535 * rounding error in dbuf_write_physdone).
536 * Shore up the accounting of any dirtied space now.
538 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
541 * Update the long range free counter after
542 * we're done syncing user data
544 mutex_enter(&dp->dp_lock);
545 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
546 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
547 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
548 mutex_exit(&dp->dp_lock);
551 * After the data blocks have been written (ensured by the zio_wait()
552 * above), update the user/group space accounting. This happens
553 * in tasks dispatched to dp_sync_taskq, so wait for them before
554 * continuing.
556 for (ds = list_head(&synced_datasets); ds != NULL;
557 ds = list_next(&synced_datasets, ds)) {
558 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
560 taskq_wait(dp->dp_sync_taskq);
563 * Sync the datasets again to push out the changes due to
564 * userspace updates. This must be done before we process the
565 * sync tasks, so that any snapshots will have the correct
566 * user accounting information (and we won't get confused
567 * about which blocks are part of the snapshot).
569 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
570 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
571 ASSERT(list_link_active(&ds->ds_synced_link));
572 dmu_buf_rele(ds->ds_dbuf, ds);
573 dsl_dataset_sync(ds, zio, tx);
575 VERIFY0(zio_wait(zio));
578 * Now that the datasets have been completely synced, we can
579 * clean up our in-memory structures accumulated while syncing:
581 * - move dead blocks from the pending deadlist to the on-disk deadlist
582 * - release hold from dsl_dataset_dirty()
584 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
585 dsl_dataset_sync_done(ds, tx);
587 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
588 dsl_dir_sync(dd, tx);
592 * The MOS's space is accounted for in the pool/$MOS
593 * (dp_mos_dir). We can't modify the mos while we're syncing
594 * it, so we remember the deltas and apply them here.
596 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
597 dp->dp_mos_uncompressed_delta != 0) {
598 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
599 dp->dp_mos_used_delta,
600 dp->dp_mos_compressed_delta,
601 dp->dp_mos_uncompressed_delta, tx);
602 dp->dp_mos_used_delta = 0;
603 dp->dp_mos_compressed_delta = 0;
604 dp->dp_mos_uncompressed_delta = 0;
607 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
608 dsl_pool_sync_mos(dp, tx);
612 * If we modify a dataset in the same txg that we want to destroy it,
613 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
614 * dsl_dir_destroy_check() will fail if there are unexpected holds.
615 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
616 * and clearing the hold on it) before we process the sync_tasks.
617 * The MOS data dirtied by the sync_tasks will be synced on the next
618 * pass.
620 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
621 dsl_sync_task_t *dst;
623 * No more sync tasks should have been added while we
624 * were syncing.
626 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
627 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
628 dsl_sync_task_sync(dst, tx);
631 dmu_tx_commit(tx);
633 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
636 void
637 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
639 zilog_t *zilog;
641 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
642 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
644 * We don't remove the zilog from the dp_dirty_zilogs
645 * list until after we've cleaned it. This ensures that
646 * callers of zilog_is_dirty() receive an accurate
647 * answer when they are racing with the spa sync thread.
649 zil_clean(zilog, txg);
650 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
651 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
652 dmu_buf_rele(ds->ds_dbuf, zilog);
654 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
658 * TRUE if the current thread is the tx_sync_thread or if we
659 * are being called from SPA context during pool initialization.
662 dsl_pool_sync_context(dsl_pool_t *dp)
664 return (curthread == dp->dp_tx.tx_sync_thread ||
665 spa_is_initializing(dp->dp_spa) ||
666 taskq_member(dp->dp_sync_taskq, curthread));
669 uint64_t
670 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
672 uint64_t space, resv;
675 * If we're trying to assess whether it's OK to do a free,
676 * cut the reservation in half to allow forward progress
677 * (e.g. make it possible to rm(1) files from a full pool).
679 space = spa_get_dspace(dp->dp_spa);
680 resv = spa_get_slop_space(dp->dp_spa);
681 if (netfree)
682 resv >>= 1;
684 return (space - resv);
687 boolean_t
688 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
690 uint64_t delay_min_bytes =
691 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
692 boolean_t rv;
694 mutex_enter(&dp->dp_lock);
695 if (dp->dp_dirty_total > zfs_dirty_data_sync)
696 txg_kick(dp);
697 rv = (dp->dp_dirty_total > delay_min_bytes);
698 mutex_exit(&dp->dp_lock);
699 return (rv);
702 void
703 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
705 if (space > 0) {
706 mutex_enter(&dp->dp_lock);
707 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
708 dsl_pool_dirty_delta(dp, space);
709 mutex_exit(&dp->dp_lock);
713 void
714 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
716 ASSERT3S(space, >=, 0);
717 if (space == 0)
718 return;
719 mutex_enter(&dp->dp_lock);
720 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
721 /* XXX writing something we didn't dirty? */
722 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
724 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
725 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
726 ASSERT3U(dp->dp_dirty_total, >=, space);
727 dsl_pool_dirty_delta(dp, -space);
728 mutex_exit(&dp->dp_lock);
731 /* ARGSUSED */
732 static int
733 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
735 dmu_tx_t *tx = arg;
736 dsl_dataset_t *ds, *prev = NULL;
737 int err;
739 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
740 if (err)
741 return (err);
743 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
744 err = dsl_dataset_hold_obj(dp,
745 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
746 if (err) {
747 dsl_dataset_rele(ds, FTAG);
748 return (err);
751 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
752 break;
753 dsl_dataset_rele(ds, FTAG);
754 ds = prev;
755 prev = NULL;
758 if (prev == NULL) {
759 prev = dp->dp_origin_snap;
762 * The $ORIGIN can't have any data, or the accounting
763 * will be wrong.
765 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
766 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
767 rrw_exit(&ds->ds_bp_rwlock, FTAG);
769 /* The origin doesn't get attached to itself */
770 if (ds->ds_object == prev->ds_object) {
771 dsl_dataset_rele(ds, FTAG);
772 return (0);
775 dmu_buf_will_dirty(ds->ds_dbuf, tx);
776 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
777 dsl_dataset_phys(ds)->ds_prev_snap_txg =
778 dsl_dataset_phys(prev)->ds_creation_txg;
780 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
781 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
783 dmu_buf_will_dirty(prev->ds_dbuf, tx);
784 dsl_dataset_phys(prev)->ds_num_children++;
786 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
787 ASSERT(ds->ds_prev == NULL);
788 VERIFY0(dsl_dataset_hold_obj(dp,
789 dsl_dataset_phys(ds)->ds_prev_snap_obj,
790 ds, &ds->ds_prev));
794 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
795 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
797 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
798 dmu_buf_will_dirty(prev->ds_dbuf, tx);
799 dsl_dataset_phys(prev)->ds_next_clones_obj =
800 zap_create(dp->dp_meta_objset,
801 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
803 VERIFY0(zap_add_int(dp->dp_meta_objset,
804 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
806 dsl_dataset_rele(ds, FTAG);
807 if (prev != dp->dp_origin_snap)
808 dsl_dataset_rele(prev, FTAG);
809 return (0);
812 void
813 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
815 ASSERT(dmu_tx_is_syncing(tx));
816 ASSERT(dp->dp_origin_snap != NULL);
818 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
819 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
822 /* ARGSUSED */
823 static int
824 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
826 dmu_tx_t *tx = arg;
827 objset_t *mos = dp->dp_meta_objset;
829 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
830 dsl_dataset_t *origin;
832 VERIFY0(dsl_dataset_hold_obj(dp,
833 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
835 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
836 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
837 dsl_dir_phys(origin->ds_dir)->dd_clones =
838 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
839 0, tx);
842 VERIFY0(zap_add_int(dp->dp_meta_objset,
843 dsl_dir_phys(origin->ds_dir)->dd_clones,
844 ds->ds_object, tx));
846 dsl_dataset_rele(origin, FTAG);
848 return (0);
851 void
852 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
854 ASSERT(dmu_tx_is_syncing(tx));
855 uint64_t obj;
857 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
858 VERIFY0(dsl_pool_open_special_dir(dp,
859 FREE_DIR_NAME, &dp->dp_free_dir));
862 * We can't use bpobj_alloc(), because spa_version() still
863 * returns the old version, and we need a new-version bpobj with
864 * subobj support. So call dmu_object_alloc() directly.
866 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
867 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
868 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
869 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
870 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
872 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
873 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
876 void
877 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
879 uint64_t dsobj;
880 dsl_dataset_t *ds;
882 ASSERT(dmu_tx_is_syncing(tx));
883 ASSERT(dp->dp_origin_snap == NULL);
884 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
886 /* create the origin dir, ds, & snap-ds */
887 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
888 NULL, 0, kcred, tx);
889 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
890 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
891 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
892 dp, &dp->dp_origin_snap));
893 dsl_dataset_rele(ds, FTAG);
896 taskq_t *
897 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
899 return (dp->dp_vnrele_taskq);
903 * Walk through the pool-wide zap object of temporary snapshot user holds
904 * and release them.
906 void
907 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
909 zap_attribute_t za;
910 zap_cursor_t zc;
911 objset_t *mos = dp->dp_meta_objset;
912 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
913 nvlist_t *holds;
915 if (zapobj == 0)
916 return;
917 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
919 holds = fnvlist_alloc();
921 for (zap_cursor_init(&zc, mos, zapobj);
922 zap_cursor_retrieve(&zc, &za) == 0;
923 zap_cursor_advance(&zc)) {
924 char *htag;
925 nvlist_t *tags;
927 htag = strchr(za.za_name, '-');
928 *htag = '\0';
929 ++htag;
930 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
931 tags = fnvlist_alloc();
932 fnvlist_add_boolean(tags, htag);
933 fnvlist_add_nvlist(holds, za.za_name, tags);
934 fnvlist_free(tags);
935 } else {
936 fnvlist_add_boolean(tags, htag);
939 dsl_dataset_user_release_tmp(dp, holds);
940 fnvlist_free(holds);
941 zap_cursor_fini(&zc);
945 * Create the pool-wide zap object for storing temporary snapshot holds.
947 void
948 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
950 objset_t *mos = dp->dp_meta_objset;
952 ASSERT(dp->dp_tmp_userrefs_obj == 0);
953 ASSERT(dmu_tx_is_syncing(tx));
955 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
956 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
959 static int
960 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
961 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
963 objset_t *mos = dp->dp_meta_objset;
964 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
965 char *name;
966 int error;
968 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
969 ASSERT(dmu_tx_is_syncing(tx));
972 * If the pool was created prior to SPA_VERSION_USERREFS, the
973 * zap object for temporary holds might not exist yet.
975 if (zapobj == 0) {
976 if (holding) {
977 dsl_pool_user_hold_create_obj(dp, tx);
978 zapobj = dp->dp_tmp_userrefs_obj;
979 } else {
980 return (SET_ERROR(ENOENT));
984 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
985 if (holding)
986 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
987 else
988 error = zap_remove(mos, zapobj, name, tx);
989 strfree(name);
991 return (error);
995 * Add a temporary hold for the given dataset object and tag.
998 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
999 uint64_t now, dmu_tx_t *tx)
1001 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1005 * Release a temporary hold for the given dataset object and tag.
1008 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1009 dmu_tx_t *tx)
1011 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, (uintptr_t)NULL,
1012 tx, B_FALSE));
1016 * DSL Pool Configuration Lock
1018 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1019 * creation / destruction / rename / property setting). It must be held for
1020 * read to hold a dataset or dsl_dir. I.e. you must call
1021 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1022 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1023 * must be held continuously until all datasets and dsl_dirs are released.
1025 * The only exception to this rule is that if a "long hold" is placed on
1026 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1027 * is still held. The long hold will prevent the dataset from being
1028 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1029 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1030 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1032 * Legitimate long-holders (including owners) should be long-running, cancelable
1033 * tasks that should cause "zfs destroy" to fail. This includes DMU
1034 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1035 * "zfs send", and "zfs diff". There are several other long-holders whose
1036 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1038 * The usual formula for long-holding would be:
1039 * dsl_pool_hold()
1040 * dsl_dataset_hold()
1041 * ... perform checks ...
1042 * dsl_dataset_long_hold()
1043 * dsl_pool_rele()
1044 * ... perform long-running task ...
1045 * dsl_dataset_long_rele()
1046 * dsl_dataset_rele()
1048 * Note that when the long hold is released, the dataset is still held but
1049 * the pool is not held. The dataset may change arbitrarily during this time
1050 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1051 * dataset except release it.
1053 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1054 * or modifying operations.
1056 * Modifying operations should generally use dsl_sync_task(). The synctask
1057 * infrastructure enforces proper locking strategy with respect to the
1058 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1060 * Read-only operations will manually hold the pool, then the dataset, obtain
1061 * information from the dataset, then release the pool and dataset.
1062 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1063 * hold/rele.
1067 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1069 spa_t *spa;
1070 int error;
1072 error = spa_open(name, &spa, tag);
1073 if (error == 0) {
1074 *dp = spa_get_dsl(spa);
1075 dsl_pool_config_enter(*dp, tag);
1077 return (error);
1080 void
1081 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1083 dsl_pool_config_exit(dp, tag);
1084 spa_close(dp->dp_spa, tag);
1087 void
1088 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1091 * We use a "reentrant" reader-writer lock, but not reentrantly.
1093 * The rrwlock can (with the track_all flag) track all reading threads,
1094 * which is very useful for debugging which code path failed to release
1095 * the lock, and for verifying that the *current* thread does hold
1096 * the lock.
1098 * (Unlike a rwlock, which knows that N threads hold it for
1099 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1100 * if any thread holds it for read, even if this thread doesn't).
1102 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1103 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1106 void
1107 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1109 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1110 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1113 void
1114 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1116 rrw_exit(&dp->dp_config_rwlock, tag);
1119 boolean_t
1120 dsl_pool_config_held(dsl_pool_t *dp)
1122 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1125 boolean_t
1126 dsl_pool_config_held_writer(dsl_pool_t *dp)
1128 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));