1915 IPsec kstats shouldn't be persistent
[unleashed.git] / usr / src / uts / common / inet / ip / ipsecesp.c
blob78f33bf0c7755f87e3ac9056261a561f5138621e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017 Joyent, Inc.
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/stropts.h>
31 #include <sys/errno.h>
32 #include <sys/strlog.h>
33 #include <sys/tihdr.h>
34 #include <sys/socket.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/kmem.h>
38 #include <sys/zone.h>
39 #include <sys/sysmacros.h>
40 #include <sys/cmn_err.h>
41 #include <sys/vtrace.h>
42 #include <sys/debug.h>
43 #include <sys/atomic.h>
44 #include <sys/strsun.h>
45 #include <sys/random.h>
46 #include <netinet/in.h>
47 #include <net/if.h>
48 #include <netinet/ip6.h>
49 #include <net/pfkeyv2.h>
50 #include <net/pfpolicy.h>
52 #include <inet/common.h>
53 #include <inet/mi.h>
54 #include <inet/nd.h>
55 #include <inet/ip.h>
56 #include <inet/ip_impl.h>
57 #include <inet/ip6.h>
58 #include <inet/ip_if.h>
59 #include <inet/ip_ndp.h>
60 #include <inet/sadb.h>
61 #include <inet/ipsec_info.h>
62 #include <inet/ipsec_impl.h>
63 #include <inet/ipsecesp.h>
64 #include <inet/ipdrop.h>
65 #include <inet/tcp.h>
66 #include <sys/kstat.h>
67 #include <sys/policy.h>
68 #include <sys/strsun.h>
69 #include <sys/strsubr.h>
70 #include <inet/udp_impl.h>
71 #include <sys/taskq.h>
72 #include <sys/note.h>
74 #include <sys/tsol/tnet.h>
77 * Table of ND variables supported by ipsecesp. These are loaded into
78 * ipsecesp_g_nd in ipsecesp_init_nd.
79 * All of these are alterable, within the min/max values given, at run time.
81 static ipsecespparam_t lcl_param_arr[] = {
82 /* min max value name */
83 { 0, 3, 0, "ipsecesp_debug"},
84 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"},
85 { 1, 10, 1, "ipsecesp_reap_delay"},
86 { 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"},
87 { 1, 300, 15, "ipsecesp_acquire_timeout"},
88 { 1, 1800, 90, "ipsecesp_larval_timeout"},
89 /* Default lifetime values for ACQUIRE messages. */
90 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"},
91 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"},
92 { 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"},
93 { 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"},
94 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"},
95 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"},
96 { 0, 1, 0, "ipsecesp_log_unknown_spi"},
97 { 0, 2, 1, "ipsecesp_padding_check"},
98 { 0, 600, 20, "ipsecesp_nat_keepalive_interval"},
100 /* For ipsecesp_nat_keepalive_interval, see ipsecesp.h. */
102 #define esp0dbg(a) printf a
103 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */
104 #define esp1dbg(espstack, a) if (espstack->ipsecesp_debug != 0) printf a
105 #define esp2dbg(espstack, a) if (espstack->ipsecesp_debug > 1) printf a
106 #define esp3dbg(espstack, a) if (espstack->ipsecesp_debug > 2) printf a
108 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *);
109 static int ipsecesp_close(queue_t *);
110 static void ipsecesp_wput(queue_t *, mblk_t *);
111 static void *ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns);
112 static void ipsecesp_stack_fini(netstackid_t stackid, void *arg);
114 static void esp_prepare_udp(netstack_t *, mblk_t *, ipha_t *);
115 static void esp_outbound_finish(mblk_t *, ip_xmit_attr_t *);
116 static void esp_inbound_restart(mblk_t *, ip_recv_attr_t *);
118 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t,
119 ipsecesp_stack_t *, cred_t *);
120 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t,
121 kstat_named_t **, ipsecesp_stack_t *);
122 static mblk_t *esp_submit_req_inbound(mblk_t *, ip_recv_attr_t *,
123 ipsa_t *, uint_t);
124 static mblk_t *esp_submit_req_outbound(mblk_t *, ip_xmit_attr_t *,
125 ipsa_t *, uchar_t *, uint_t);
127 /* Setable in /etc/system */
128 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE;
130 static struct module_info info = {
131 5137, "ipsecesp", 0, INFPSZ, 65536, 1024
134 static struct qinit rinit = {
135 (pfi_t)putnext, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
136 NULL
139 static struct qinit winit = {
140 (pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
141 NULL
144 struct streamtab ipsecespinfo = {
145 &rinit, &winit, NULL, NULL
148 static taskq_t *esp_taskq;
151 * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now.
153 * Question: Do I need this, given that all instance's esps->esps_wq point
154 * to IP?
156 * Answer: Yes, because I need to know which queue is BOUND to
157 * IPPROTO_ESP
160 static int esp_kstat_update(kstat_t *, int);
162 static boolean_t
163 esp_kstat_init(ipsecesp_stack_t *espstack, netstackid_t stackid)
165 espstack->esp_ksp = kstat_create_netstack("ipsecesp", 0, "esp_stat",
166 "net", KSTAT_TYPE_NAMED,
167 sizeof (esp_kstats_t) / sizeof (kstat_named_t), 0, stackid);
169 if (espstack->esp_ksp == NULL || espstack->esp_ksp->ks_data == NULL)
170 return (B_FALSE);
172 espstack->esp_kstats = espstack->esp_ksp->ks_data;
174 espstack->esp_ksp->ks_update = esp_kstat_update;
175 espstack->esp_ksp->ks_private = (void *)(uintptr_t)stackid;
177 #define K64 KSTAT_DATA_UINT64
178 #define KI(x) kstat_named_init(&(espstack->esp_kstats->esp_stat_##x), #x, K64)
180 KI(num_aalgs);
181 KI(num_ealgs);
182 KI(good_auth);
183 KI(bad_auth);
184 KI(bad_padding);
185 KI(replay_failures);
186 KI(replay_early_failures);
187 KI(keysock_in);
188 KI(out_requests);
189 KI(acquire_requests);
190 KI(bytes_expired);
191 KI(out_discards);
192 KI(crypto_sync);
193 KI(crypto_async);
194 KI(crypto_failures);
195 KI(bad_decrypt);
196 KI(sa_port_renumbers);
198 #undef KI
199 #undef K64
201 kstat_install(espstack->esp_ksp);
203 return (B_TRUE);
206 static int
207 esp_kstat_update(kstat_t *kp, int rw)
209 esp_kstats_t *ekp;
210 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
211 netstack_t *ns;
212 ipsec_stack_t *ipss;
214 if ((kp == NULL) || (kp->ks_data == NULL))
215 return (EIO);
217 if (rw == KSTAT_WRITE)
218 return (EACCES);
220 ns = netstack_find_by_stackid(stackid);
221 if (ns == NULL)
222 return (-1);
223 ipss = ns->netstack_ipsec;
224 if (ipss == NULL) {
225 netstack_rele(ns);
226 return (-1);
228 ekp = (esp_kstats_t *)kp->ks_data;
230 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
231 ekp->esp_stat_num_aalgs.value.ui64 =
232 ipss->ipsec_nalgs[IPSEC_ALG_AUTH];
233 ekp->esp_stat_num_ealgs.value.ui64 =
234 ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
235 rw_exit(&ipss->ipsec_alg_lock);
237 netstack_rele(ns);
238 return (0);
241 #ifdef DEBUG
243 * Debug routine, useful to see pre-encryption data.
245 static char *
246 dump_msg(mblk_t *mp)
248 char tmp_str[3], tmp_line[256];
250 while (mp != NULL) {
251 unsigned char *ptr;
253 printf("mblk address 0x%p, length %ld, db_ref %d "
254 "type %d, base 0x%p, lim 0x%p\n",
255 (void *) mp, (long)(mp->b_wptr - mp->b_rptr),
256 mp->b_datap->db_ref, mp->b_datap->db_type,
257 (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim);
258 ptr = mp->b_rptr;
260 tmp_line[0] = '\0';
261 while (ptr < mp->b_wptr) {
262 uint_t diff;
264 diff = (ptr - mp->b_rptr);
265 if (!(diff & 0x1f)) {
266 if (strlen(tmp_line) > 0) {
267 printf("bytes: %s\n", tmp_line);
268 tmp_line[0] = '\0';
271 if (!(diff & 0x3))
272 (void) strcat(tmp_line, " ");
273 (void) sprintf(tmp_str, "%02x", *ptr);
274 (void) strcat(tmp_line, tmp_str);
275 ptr++;
277 if (strlen(tmp_line) > 0)
278 printf("bytes: %s\n", tmp_line);
280 mp = mp->b_cont;
283 return ("\n");
286 #else /* DEBUG */
287 static char *
288 dump_msg(mblk_t *mp)
290 printf("Find value of mp %p.\n", mp);
291 return ("\n");
293 #endif /* DEBUG */
296 * Don't have to lock age_interval, as only one thread will access it at
297 * a time, because I control the one function that does with timeout().
299 static void
300 esp_ager(void *arg)
302 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
303 netstack_t *ns = espstack->ipsecesp_netstack;
304 hrtime_t begin = gethrtime();
306 sadb_ager(&espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
307 espstack->ipsecesp_reap_delay, ns);
308 sadb_ager(&espstack->esp_sadb.s_v6, espstack->esp_pfkey_q,
309 espstack->ipsecesp_reap_delay, ns);
311 espstack->esp_event = sadb_retimeout(begin, espstack->esp_pfkey_q,
312 esp_ager, espstack,
313 &espstack->ipsecesp_age_interval, espstack->ipsecesp_age_int_max,
314 info.mi_idnum);
318 * Get an ESP NDD parameter.
320 /* ARGSUSED */
321 static int
322 ipsecesp_param_get(
323 queue_t *q,
324 mblk_t *mp,
325 caddr_t cp,
326 cred_t *cr)
328 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
329 uint_t value;
330 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
332 mutex_enter(&espstack->ipsecesp_param_lock);
333 value = ipsecesppa->ipsecesp_param_value;
334 mutex_exit(&espstack->ipsecesp_param_lock);
336 (void) mi_mpprintf(mp, "%u", value);
337 return (0);
341 * This routine sets an NDD variable in a ipsecespparam_t structure.
343 /* ARGSUSED */
344 static int
345 ipsecesp_param_set(
346 queue_t *q,
347 mblk_t *mp,
348 char *value,
349 caddr_t cp,
350 cred_t *cr)
352 ulong_t new_value;
353 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
354 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
357 * Fail the request if the new value does not lie within the
358 * required bounds.
360 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
361 new_value < ipsecesppa->ipsecesp_param_min ||
362 new_value > ipsecesppa->ipsecesp_param_max) {
363 return (EINVAL);
366 /* Set the new value */
367 mutex_enter(&espstack->ipsecesp_param_lock);
368 ipsecesppa->ipsecesp_param_value = new_value;
369 mutex_exit(&espstack->ipsecesp_param_lock);
370 return (0);
374 * Using lifetime NDD variables, fill in an extended combination's
375 * lifetime information.
377 void
378 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb, netstack_t *ns)
380 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
382 ecomb->sadb_x_ecomb_soft_bytes = espstack->ipsecesp_default_soft_bytes;
383 ecomb->sadb_x_ecomb_hard_bytes = espstack->ipsecesp_default_hard_bytes;
384 ecomb->sadb_x_ecomb_soft_addtime =
385 espstack->ipsecesp_default_soft_addtime;
386 ecomb->sadb_x_ecomb_hard_addtime =
387 espstack->ipsecesp_default_hard_addtime;
388 ecomb->sadb_x_ecomb_soft_usetime =
389 espstack->ipsecesp_default_soft_usetime;
390 ecomb->sadb_x_ecomb_hard_usetime =
391 espstack->ipsecesp_default_hard_usetime;
395 * Initialize things for ESP at module load time.
397 boolean_t
398 ipsecesp_ddi_init(void)
400 esp_taskq = taskq_create("esp_taskq", 1, minclsyspri,
401 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
404 * We want to be informed each time a stack is created or
405 * destroyed in the kernel, so we can maintain the
406 * set of ipsecesp_stack_t's.
408 netstack_register(NS_IPSECESP, ipsecesp_stack_init, NULL,
409 ipsecesp_stack_fini);
411 return (B_TRUE);
415 * Walk through the param array specified registering each element with the
416 * named dispatch handler.
418 static boolean_t
419 ipsecesp_param_register(IDP *ndp, ipsecespparam_t *espp, int cnt)
421 for (; cnt-- > 0; espp++) {
422 if (espp->ipsecesp_param_name != NULL &&
423 espp->ipsecesp_param_name[0]) {
424 if (!nd_load(ndp,
425 espp->ipsecesp_param_name,
426 ipsecesp_param_get, ipsecesp_param_set,
427 (caddr_t)espp)) {
428 nd_free(ndp);
429 return (B_FALSE);
433 return (B_TRUE);
437 * Initialize things for ESP for each stack instance
439 static void *
440 ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns)
442 ipsecesp_stack_t *espstack;
443 ipsecespparam_t *espp;
445 espstack = (ipsecesp_stack_t *)kmem_zalloc(sizeof (*espstack),
446 KM_SLEEP);
447 espstack->ipsecesp_netstack = ns;
449 espp = (ipsecespparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
450 espstack->ipsecesp_params = espp;
451 bcopy(lcl_param_arr, espp, sizeof (lcl_param_arr));
453 (void) ipsecesp_param_register(&espstack->ipsecesp_g_nd, espp,
454 A_CNT(lcl_param_arr));
456 (void) esp_kstat_init(espstack, stackid);
458 espstack->esp_sadb.s_acquire_timeout =
459 &espstack->ipsecesp_acquire_timeout;
460 sadbp_init("ESP", &espstack->esp_sadb, SADB_SATYPE_ESP, esp_hash_size,
461 espstack->ipsecesp_netstack);
463 mutex_init(&espstack->ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0);
465 ip_drop_register(&espstack->esp_dropper, "IPsec ESP");
466 return (espstack);
470 * Destroy things for ESP at module unload time.
472 void
473 ipsecesp_ddi_destroy(void)
475 netstack_unregister(NS_IPSECESP);
476 taskq_destroy(esp_taskq);
480 * Destroy things for ESP for one stack instance
482 static void
483 ipsecesp_stack_fini(netstackid_t stackid, void *arg)
485 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
487 if (espstack->esp_pfkey_q != NULL) {
488 (void) quntimeout(espstack->esp_pfkey_q, espstack->esp_event);
490 espstack->esp_sadb.s_acquire_timeout = NULL;
491 sadbp_destroy(&espstack->esp_sadb, espstack->ipsecesp_netstack);
492 ip_drop_unregister(&espstack->esp_dropper);
493 mutex_destroy(&espstack->ipsecesp_param_lock);
494 nd_free(&espstack->ipsecesp_g_nd);
496 kmem_free(espstack->ipsecesp_params, sizeof (lcl_param_arr));
497 espstack->ipsecesp_params = NULL;
498 kstat_delete_netstack(espstack->esp_ksp, stackid);
499 espstack->esp_ksp = NULL;
500 espstack->esp_kstats = NULL;
501 kmem_free(espstack, sizeof (*espstack));
505 * ESP module open routine, which is here for keysock plumbing.
506 * Keysock is pushed over {AH,ESP} which is an artifact from the Bad Old
507 * Days of export control, and fears that ESP would not be allowed
508 * to be shipped at all by default. Eventually, keysock should
509 * either access AH and ESP via modstubs or krtld dependencies, or
510 * perhaps be folded in with AH and ESP into a single IPsec/netsec
511 * module ("netsec" if PF_KEY provides more than AH/ESP keying tables).
513 /* ARGSUSED */
514 static int
515 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
517 netstack_t *ns;
518 ipsecesp_stack_t *espstack;
520 if (secpolicy_ip_config(credp, B_FALSE) != 0)
521 return (EPERM);
523 if (q->q_ptr != NULL)
524 return (0); /* Re-open of an already open instance. */
526 if (sflag != MODOPEN)
527 return (EINVAL);
529 ns = netstack_find_by_cred(credp);
530 ASSERT(ns != NULL);
531 espstack = ns->netstack_ipsecesp;
532 ASSERT(espstack != NULL);
534 q->q_ptr = espstack;
535 WR(q)->q_ptr = q->q_ptr;
537 qprocson(q);
538 return (0);
542 * ESP module close routine.
544 static int
545 ipsecesp_close(queue_t *q)
547 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
550 * Clean up q_ptr, if needed.
552 qprocsoff(q);
554 /* Keysock queue check is safe, because of OCEXCL perimeter. */
556 if (q == espstack->esp_pfkey_q) {
557 esp1dbg(espstack,
558 ("ipsecesp_close: Ummm... keysock is closing ESP.\n"));
559 espstack->esp_pfkey_q = NULL;
560 /* Detach qtimeouts. */
561 (void) quntimeout(q, espstack->esp_event);
564 netstack_rele(espstack->ipsecesp_netstack);
565 return (0);
569 * Add a number of bytes to what the SA has protected so far. Return
570 * B_TRUE if the SA can still protect that many bytes.
572 * Caller must REFRELE the passed-in assoc. This function must REFRELE
573 * any obtained peer SA.
575 static boolean_t
576 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
578 ipsa_t *inassoc, *outassoc;
579 isaf_t *bucket;
580 boolean_t inrc, outrc, isv6;
581 sadb_t *sp;
582 int outhash;
583 netstack_t *ns = assoc->ipsa_netstack;
584 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
586 /* No peer? No problem! */
587 if (!assoc->ipsa_haspeer) {
588 return (sadb_age_bytes(espstack->esp_pfkey_q, assoc, bytes,
589 B_TRUE));
593 * Otherwise, we want to grab both the original assoc and its peer.
594 * There might be a race for this, but if it's a real race, two
595 * expire messages may occur. We limit this by only sending the
596 * expire message on one of the peers, we'll pick the inbound
597 * arbitrarily.
599 * If we need tight synchronization on the peer SA, then we need to
600 * reconsider.
603 /* Use address length to select IPv6/IPv4 */
604 isv6 = (assoc->ipsa_addrfam == AF_INET6);
605 sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
607 if (inbound) {
608 inassoc = assoc;
609 if (isv6) {
610 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
611 &inassoc->ipsa_dstaddr));
612 } else {
613 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
614 &inassoc->ipsa_dstaddr));
616 bucket = &sp->sdb_of[outhash];
617 mutex_enter(&bucket->isaf_lock);
618 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
619 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
620 inassoc->ipsa_addrfam);
621 mutex_exit(&bucket->isaf_lock);
622 if (outassoc == NULL) {
623 /* Q: Do we wish to set haspeer == B_FALSE? */
624 esp0dbg(("esp_age_bytes: "
625 "can't find peer for inbound.\n"));
626 return (sadb_age_bytes(espstack->esp_pfkey_q, inassoc,
627 bytes, B_TRUE));
629 } else {
630 outassoc = assoc;
631 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
632 mutex_enter(&bucket->isaf_lock);
633 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
634 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
635 outassoc->ipsa_addrfam);
636 mutex_exit(&bucket->isaf_lock);
637 if (inassoc == NULL) {
638 /* Q: Do we wish to set haspeer == B_FALSE? */
639 esp0dbg(("esp_age_bytes: "
640 "can't find peer for outbound.\n"));
641 return (sadb_age_bytes(espstack->esp_pfkey_q, outassoc,
642 bytes, B_TRUE));
646 inrc = sadb_age_bytes(espstack->esp_pfkey_q, inassoc, bytes, B_TRUE);
647 outrc = sadb_age_bytes(espstack->esp_pfkey_q, outassoc, bytes, B_FALSE);
650 * REFRELE any peer SA.
652 * Because of the multi-line macro nature of IPSA_REFRELE, keep
653 * them in { }.
655 if (inbound) {
656 IPSA_REFRELE(outassoc);
657 } else {
658 IPSA_REFRELE(inassoc);
661 return (inrc && outrc);
665 * Do incoming NAT-T manipulations for packet.
666 * Returns NULL if the mblk chain is consumed.
668 static mblk_t *
669 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc)
671 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
672 tcpha_t *tcpha;
673 udpha_t *udpha;
674 /* Initialize to our inbound cksum adjustment... */
675 uint32_t sum = assoc->ipsa_inbound_cksum;
677 switch (ipha->ipha_protocol) {
678 case IPPROTO_TCP:
679 tcpha = (tcpha_t *)(data_mp->b_rptr +
680 IPH_HDR_LENGTH(ipha));
682 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16)
683 sum += ~ntohs(tcpha->tha_sum) & 0xFFFF;
684 DOWN_SUM(sum);
685 DOWN_SUM(sum);
686 tcpha->tha_sum = ~htons(sum);
687 break;
688 case IPPROTO_UDP:
689 udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha));
691 if (udpha->uha_checksum != 0) {
692 /* Adujst if the inbound one was not zero. */
693 sum += ~ntohs(udpha->uha_checksum) & 0xFFFF;
694 DOWN_SUM(sum);
695 DOWN_SUM(sum);
696 udpha->uha_checksum = ~htons(sum);
697 if (udpha->uha_checksum == 0)
698 udpha->uha_checksum = 0xFFFF;
700 #undef DOWN_SUM
701 break;
702 case IPPROTO_IP:
704 * This case is only an issue for self-encapsulated
705 * packets. So for now, fall through.
707 break;
709 return (data_mp);
714 * Strip ESP header, check padding, and fix IP header.
715 * Returns B_TRUE on success, B_FALSE if an error occured.
717 static boolean_t
718 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen,
719 kstat_named_t **counter, ipsecesp_stack_t *espstack)
721 ipha_t *ipha;
722 ip6_t *ip6h;
723 uint_t divpoint;
724 mblk_t *scratch;
725 uint8_t nexthdr, padlen;
726 uint8_t lastpad;
727 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
728 uint8_t *lastbyte;
731 * Strip ESP data and fix IP header.
733 * XXX In case the beginning of esp_inbound() changes to not do a
734 * pullup, this part of the code can remain unchanged.
736 if (isv4) {
737 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t));
738 ipha = (ipha_t *)data_mp->b_rptr;
739 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) +
740 IPH_HDR_LENGTH(ipha));
741 divpoint = IPH_HDR_LENGTH(ipha);
742 } else {
743 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t));
744 ip6h = (ip6_t *)data_mp->b_rptr;
745 divpoint = ip_hdr_length_v6(data_mp, ip6h);
748 scratch = data_mp;
749 while (scratch->b_cont != NULL)
750 scratch = scratch->b_cont;
752 ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3);
755 * "Next header" and padding length are the last two bytes in the
756 * ESP-protected datagram, thus the explicit - 1 and - 2.
757 * lastpad is the last byte of the padding, which can be used for
758 * a quick check to see if the padding is correct.
760 lastbyte = scratch->b_wptr - 1;
761 nexthdr = *lastbyte--;
762 padlen = *lastbyte--;
764 if (isv4) {
765 /* Fix part of the IP header. */
766 ipha->ipha_protocol = nexthdr;
768 * Reality check the padlen. The explicit - 2 is for the
769 * padding length and the next-header bytes.
771 if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 -
772 sizeof (esph_t) - ivlen) {
773 ESP_BUMP_STAT(espstack, bad_decrypt);
774 ipsec_rl_strlog(espstack->ipsecesp_netstack,
775 info.mi_idnum, 0, 0,
776 SL_ERROR | SL_WARN,
777 "Corrupt ESP packet (padlen too big).\n");
778 esp1dbg(espstack, ("padlen (%d) is greater than:\n",
779 padlen));
780 esp1dbg(espstack, ("pkt len(%d) - ip hdr - esp "
781 "hdr - ivlen(%d) = %d.\n",
782 ntohs(ipha->ipha_length), ivlen,
783 (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) -
784 2 - sizeof (esph_t) - ivlen)));
785 *counter = DROPPER(ipss, ipds_esp_bad_padlen);
786 return (B_FALSE);
790 * Fix the rest of the header. The explicit - 2 is for the
791 * padding length and the next-header bytes.
793 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen -
794 2 - sizeof (esph_t) - ivlen);
795 ipha->ipha_hdr_checksum = 0;
796 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
797 } else {
798 if (ip6h->ip6_nxt == IPPROTO_ESP) {
799 ip6h->ip6_nxt = nexthdr;
800 } else {
801 ip_pkt_t ipp;
803 bzero(&ipp, sizeof (ipp));
804 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
805 NULL);
806 if (ipp.ipp_dstopts != NULL) {
807 ipp.ipp_dstopts->ip6d_nxt = nexthdr;
808 } else if (ipp.ipp_rthdr != NULL) {
809 ipp.ipp_rthdr->ip6r_nxt = nexthdr;
810 } else if (ipp.ipp_hopopts != NULL) {
811 ipp.ipp_hopopts->ip6h_nxt = nexthdr;
812 } else {
813 /* Panic a DEBUG kernel. */
814 ASSERT(ipp.ipp_hopopts != NULL);
815 /* Otherwise, pretend it's IP + ESP. */
816 cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n");
817 ip6h->ip6_nxt = nexthdr;
821 if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) -
822 ivlen) {
823 ESP_BUMP_STAT(espstack, bad_decrypt);
824 ipsec_rl_strlog(espstack->ipsecesp_netstack,
825 info.mi_idnum, 0, 0,
826 SL_ERROR | SL_WARN,
827 "Corrupt ESP packet (v6 padlen too big).\n");
828 esp1dbg(espstack, ("padlen (%d) is greater than:\n",
829 padlen));
830 esp1dbg(espstack,
831 ("pkt len(%u) - ip hdr - esp hdr - ivlen(%d) = "
832 "%u.\n", (unsigned)(ntohs(ip6h->ip6_plen)
833 + sizeof (ip6_t)), ivlen,
834 (unsigned)(ntohs(ip6h->ip6_plen) - 2 -
835 sizeof (esph_t) - ivlen)));
836 *counter = DROPPER(ipss, ipds_esp_bad_padlen);
837 return (B_FALSE);
842 * Fix the rest of the header. The explicit - 2 is for the
843 * padding length and the next-header bytes. IPv6 is nice,
844 * because there's no hdr checksum!
846 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen -
847 2 - sizeof (esph_t) - ivlen);
850 if (espstack->ipsecesp_padding_check > 0 && padlen > 0) {
852 * Weak padding check: compare last-byte to length, they
853 * should be equal.
855 lastpad = *lastbyte--;
857 if (padlen != lastpad) {
858 ipsec_rl_strlog(espstack->ipsecesp_netstack,
859 info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
860 "Corrupt ESP packet (lastpad != padlen).\n");
861 esp1dbg(espstack,
862 ("lastpad (%d) not equal to padlen (%d):\n",
863 lastpad, padlen));
864 ESP_BUMP_STAT(espstack, bad_padding);
865 *counter = DROPPER(ipss, ipds_esp_bad_padding);
866 return (B_FALSE);
870 * Strong padding check: Check all pad bytes to see that
871 * they're ascending. Go backwards using a descending counter
872 * to verify. padlen == 1 is checked by previous block, so
873 * only bother if we've more than 1 byte of padding.
874 * Consequently, start the check one byte before the location
875 * of "lastpad".
877 if (espstack->ipsecesp_padding_check > 1) {
879 * This assert may have to become an if and a pullup
880 * if we start accepting multi-dblk mblks. For now,
881 * though, any packet here will have been pulled up in
882 * esp_inbound.
884 ASSERT(MBLKL(scratch) >= lastpad + 3);
887 * Use "--lastpad" because we already checked the very
888 * last pad byte previously.
890 while (--lastpad != 0) {
891 if (lastpad != *lastbyte) {
892 ipsec_rl_strlog(
893 espstack->ipsecesp_netstack,
894 info.mi_idnum, 0, 0,
895 SL_ERROR | SL_WARN, "Corrupt ESP "
896 "packet (bad padding).\n");
897 esp1dbg(espstack,
898 ("padding not in correct"
899 " format:\n"));
900 ESP_BUMP_STAT(espstack, bad_padding);
901 *counter = DROPPER(ipss,
902 ipds_esp_bad_padding);
903 return (B_FALSE);
905 lastbyte--;
910 /* Trim off the padding. */
911 ASSERT(data_mp->b_cont == NULL);
912 data_mp->b_wptr -= (padlen + 2);
915 * Remove the ESP header.
917 * The above assertions about data_mp's size will make this work.
919 * XXX Question: If I send up and get back a contiguous mblk,
920 * would it be quicker to bcopy over, or keep doing the dupb stuff?
921 * I go with copying for now.
924 if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) &&
925 IS_P2ALIGNED(ivlen, sizeof (uint32_t))) {
926 uint8_t *start = data_mp->b_rptr;
927 uint32_t *src, *dst;
929 src = (uint32_t *)(start + divpoint);
930 dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen);
932 ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) &&
933 IS_P2ALIGNED(src, sizeof (uint32_t)));
935 do {
936 src--;
937 dst--;
938 *dst = *src;
939 } while (src != (uint32_t *)start);
941 data_mp->b_rptr = (uchar_t *)dst;
942 } else {
943 uint8_t *start = data_mp->b_rptr;
944 uint8_t *src, *dst;
946 src = start + divpoint;
947 dst = src + sizeof (esph_t) + ivlen;
949 do {
950 src--;
951 dst--;
952 *dst = *src;
953 } while (src != start);
955 data_mp->b_rptr = dst;
958 esp2dbg(espstack, ("data_mp after inbound ESP adjustment:\n"));
959 esp2dbg(espstack, (dump_msg(data_mp)));
961 return (B_TRUE);
965 * Updating use times can be tricky business if the ipsa_haspeer flag is
966 * set. This function is called once in an SA's lifetime.
968 * Caller has to REFRELE "assoc" which is passed in. This function has
969 * to REFRELE any peer SA that is obtained.
971 static void
972 esp_set_usetime(ipsa_t *assoc, boolean_t inbound)
974 ipsa_t *inassoc, *outassoc;
975 isaf_t *bucket;
976 sadb_t *sp;
977 int outhash;
978 boolean_t isv6;
979 netstack_t *ns = assoc->ipsa_netstack;
980 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
982 /* No peer? No problem! */
983 if (!assoc->ipsa_haspeer) {
984 sadb_set_usetime(assoc);
985 return;
989 * Otherwise, we want to grab both the original assoc and its peer.
990 * There might be a race for this, but if it's a real race, the times
991 * will be out-of-synch by at most a second, and since our time
992 * granularity is a second, this won't be a problem.
994 * If we need tight synchronization on the peer SA, then we need to
995 * reconsider.
998 /* Use address length to select IPv6/IPv4 */
999 isv6 = (assoc->ipsa_addrfam == AF_INET6);
1000 sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
1002 if (inbound) {
1003 inassoc = assoc;
1004 if (isv6) {
1005 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1006 &inassoc->ipsa_dstaddr));
1007 } else {
1008 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1009 &inassoc->ipsa_dstaddr));
1011 bucket = &sp->sdb_of[outhash];
1012 mutex_enter(&bucket->isaf_lock);
1013 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1014 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1015 inassoc->ipsa_addrfam);
1016 mutex_exit(&bucket->isaf_lock);
1017 if (outassoc == NULL) {
1018 /* Q: Do we wish to set haspeer == B_FALSE? */
1019 esp0dbg(("esp_set_usetime: "
1020 "can't find peer for inbound.\n"));
1021 sadb_set_usetime(inassoc);
1022 return;
1024 } else {
1025 outassoc = assoc;
1026 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1027 mutex_enter(&bucket->isaf_lock);
1028 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1029 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1030 outassoc->ipsa_addrfam);
1031 mutex_exit(&bucket->isaf_lock);
1032 if (inassoc == NULL) {
1033 /* Q: Do we wish to set haspeer == B_FALSE? */
1034 esp0dbg(("esp_set_usetime: "
1035 "can't find peer for outbound.\n"));
1036 sadb_set_usetime(outassoc);
1037 return;
1041 /* Update usetime on both. */
1042 sadb_set_usetime(inassoc);
1043 sadb_set_usetime(outassoc);
1046 * REFRELE any peer SA.
1048 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1049 * them in { }.
1051 if (inbound) {
1052 IPSA_REFRELE(outassoc);
1053 } else {
1054 IPSA_REFRELE(inassoc);
1059 * Handle ESP inbound data for IPv4 and IPv6.
1060 * On success returns B_TRUE, on failure returns B_FALSE and frees the
1061 * mblk chain data_mp.
1063 mblk_t *
1064 esp_inbound(mblk_t *data_mp, void *arg, ip_recv_attr_t *ira)
1066 esph_t *esph = (esph_t *)arg;
1067 ipsa_t *ipsa = ira->ira_ipsec_esp_sa;
1068 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1069 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1070 ipsec_stack_t *ipss = ns->netstack_ipsec;
1073 * We may wish to check replay in-range-only here as an optimization.
1074 * Include the reality check of ipsa->ipsa_replay >
1075 * ipsa->ipsa_replay_wsize for times when it's the first N packets,
1076 * where N == ipsa->ipsa_replay_wsize.
1078 * Another check that may come here later is the "collision" check.
1079 * If legitimate packets flow quickly enough, this won't be a problem,
1080 * but collisions may cause authentication algorithm crunching to
1081 * take place when it doesn't need to.
1083 if (!sadb_replay_peek(ipsa, esph->esph_replay)) {
1084 ESP_BUMP_STAT(espstack, replay_early_failures);
1085 IP_ESP_BUMP_STAT(ipss, in_discards);
1086 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1087 DROPPER(ipss, ipds_esp_early_replay),
1088 &espstack->esp_dropper);
1089 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1090 return (NULL);
1094 * Adjust the IP header's payload length to reflect the removal
1095 * of the ICV.
1097 if (!(ira->ira_flags & IRAF_IS_IPV4)) {
1098 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
1099 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
1100 ipsa->ipsa_mac_len);
1101 } else {
1102 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1103 ipha->ipha_length = htons(ntohs(ipha->ipha_length) -
1104 ipsa->ipsa_mac_len);
1107 /* submit the request to the crypto framework */
1108 return (esp_submit_req_inbound(data_mp, ira, ipsa,
1109 (uint8_t *)esph - data_mp->b_rptr));
1112 /* XXX refactor me */
1114 * Handle the SADB_GETSPI message. Create a larval SA.
1116 static void
1117 esp_getspi(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
1119 ipsa_t *newbie, *target;
1120 isaf_t *outbound, *inbound;
1121 int rc, diagnostic;
1122 sadb_sa_t *assoc;
1123 keysock_out_t *kso;
1124 uint32_t newspi;
1127 * Randomly generate a proposed SPI value
1129 if (cl_inet_getspi != NULL) {
1130 cl_inet_getspi(espstack->ipsecesp_netstack->netstack_stackid,
1131 IPPROTO_ESP, (uint8_t *)&newspi, sizeof (uint32_t), NULL);
1132 } else {
1133 (void) random_get_pseudo_bytes((uint8_t *)&newspi,
1134 sizeof (uint32_t));
1136 newbie = sadb_getspi(ksi, newspi, &diagnostic,
1137 espstack->ipsecesp_netstack, IPPROTO_ESP);
1139 if (newbie == NULL) {
1140 sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM, diagnostic,
1141 ksi->ks_in_serial);
1142 return;
1143 } else if (newbie == (ipsa_t *)-1) {
1144 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
1145 ksi->ks_in_serial);
1146 return;
1150 * XXX - We may randomly collide. We really should recover from this.
1151 * Unfortunately, that could require spending way-too-much-time
1152 * in here. For now, let the user retry.
1155 if (newbie->ipsa_addrfam == AF_INET6) {
1156 outbound = OUTBOUND_BUCKET_V6(&espstack->esp_sadb.s_v6,
1157 *(uint32_t *)(newbie->ipsa_dstaddr));
1158 inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v6,
1159 newbie->ipsa_spi);
1160 } else {
1161 ASSERT(newbie->ipsa_addrfam == AF_INET);
1162 outbound = OUTBOUND_BUCKET_V4(&espstack->esp_sadb.s_v4,
1163 *(uint32_t *)(newbie->ipsa_dstaddr));
1164 inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v4,
1165 newbie->ipsa_spi);
1168 mutex_enter(&outbound->isaf_lock);
1169 mutex_enter(&inbound->isaf_lock);
1172 * Check for collisions (i.e. did sadb_getspi() return with something
1173 * that already exists?).
1175 * Try outbound first. Even though SADB_GETSPI is traditionally
1176 * for inbound SAs, you never know what a user might do.
1178 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
1179 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
1180 if (target == NULL) {
1181 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
1182 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
1183 newbie->ipsa_addrfam);
1187 * I don't have collisions elsewhere!
1188 * (Nor will I because I'm still holding inbound/outbound locks.)
1191 if (target != NULL) {
1192 rc = EEXIST;
1193 IPSA_REFRELE(target);
1194 } else {
1196 * sadb_insertassoc() also checks for collisions, so
1197 * if there's a colliding entry, rc will be set
1198 * to EEXIST.
1200 rc = sadb_insertassoc(newbie, inbound);
1201 newbie->ipsa_hardexpiretime = gethrestime_sec();
1202 newbie->ipsa_hardexpiretime +=
1203 espstack->ipsecesp_larval_timeout;
1207 * Can exit outbound mutex. Hold inbound until we're done
1208 * with newbie.
1210 mutex_exit(&outbound->isaf_lock);
1212 if (rc != 0) {
1213 mutex_exit(&inbound->isaf_lock);
1214 IPSA_REFRELE(newbie);
1215 sadb_pfkey_error(espstack->esp_pfkey_q, mp, rc,
1216 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1217 return;
1221 /* Can write here because I'm still holding the bucket lock. */
1222 newbie->ipsa_type = SADB_SATYPE_ESP;
1225 * Construct successful return message. We have one thing going
1226 * for us in PF_KEY v2. That's the fact that
1227 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
1229 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
1230 assoc->sadb_sa_exttype = SADB_EXT_SA;
1231 assoc->sadb_sa_spi = newbie->ipsa_spi;
1232 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
1233 mutex_exit(&inbound->isaf_lock);
1235 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */
1236 kso = (keysock_out_t *)ksi;
1237 kso->ks_out_len = sizeof (*kso);
1238 kso->ks_out_serial = ksi->ks_in_serial;
1239 kso->ks_out_type = KEYSOCK_OUT;
1242 * Can safely putnext() to esp_pfkey_q, because this is a turnaround
1243 * from the esp_pfkey_q.
1245 putnext(espstack->esp_pfkey_q, mp);
1249 * Insert the ESP header into a packet. Duplicate an mblk, and insert a newly
1250 * allocated mblk with the ESP header in between the two.
1252 static boolean_t
1253 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint,
1254 ipsecesp_stack_t *espstack)
1256 mblk_t *split_mp = mp;
1257 uint_t wheretodiv = divpoint;
1259 while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) {
1260 wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr);
1261 split_mp = split_mp->b_cont;
1262 ASSERT(split_mp != NULL);
1265 if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) {
1266 mblk_t *scratch;
1268 /* "scratch" is the 2nd half, split_mp is the first. */
1269 scratch = dupb(split_mp);
1270 if (scratch == NULL) {
1271 esp1dbg(espstack,
1272 ("esp_insert_esp: can't allocate scratch.\n"));
1273 return (B_FALSE);
1275 /* NOTE: dupb() doesn't set b_cont appropriately. */
1276 scratch->b_cont = split_mp->b_cont;
1277 scratch->b_rptr += wheretodiv;
1278 split_mp->b_wptr = split_mp->b_rptr + wheretodiv;
1279 split_mp->b_cont = scratch;
1282 * At this point, split_mp is exactly "wheretodiv" bytes long, and
1283 * holds the end of the pre-ESP part of the datagram.
1285 esp_mp->b_cont = split_mp->b_cont;
1286 split_mp->b_cont = esp_mp;
1288 return (B_TRUE);
1292 * Section 7 of RFC 3947 says:
1294 * 7. Recovering from the Expiring NAT Mappings
1296 * There are cases where NAT box decides to remove mappings that are still
1297 * alive (for example, when the keepalive interval is too long, or when the
1298 * NAT box is rebooted). To recover from this, ends that are NOT behind
1299 * NAT SHOULD use the last valid UDP encapsulated IKE or IPsec packet from
1300 * the other end to determine which IP and port addresses should be used.
1301 * The host behind dynamic NAT MUST NOT do this, as otherwise it opens a
1302 * DoS attack possibility because the IP address or port of the other host
1303 * will not change (it is not behind NAT).
1305 * Keepalives cannot be used for these purposes, as they are not
1306 * authenticated, but any IKE authenticated IKE packet or ESP packet can be
1307 * used to detect whether the IP address or the port has changed.
1309 * The following function will check an SA and its explicitly-set pair to see
1310 * if the NAT-T remote port matches the received packet (which must have
1311 * passed ESP authentication, see esp_in_done() for the caller context). If
1312 * there is a mismatch, the SAs are updated. It is not important if we race
1313 * with a transmitting thread, as if there is a transmitting thread, it will
1314 * merely emit a packet that will most-likely be dropped.
1316 * "ports" are ordered src,dst, and assoc is an inbound SA, where src should
1317 * match ipsa_remote_nat_port and dst should match ipsa_local_nat_port.
1319 #ifdef _LITTLE_ENDIAN
1320 #define FIRST_16(x) ((x) & 0xFFFF)
1321 #define NEXT_16(x) (((x) >> 16) & 0xFFFF)
1322 #else
1323 #define FIRST_16(x) (((x) >> 16) & 0xFFFF)
1324 #define NEXT_16(x) ((x) & 0xFFFF)
1325 #endif
1326 static void
1327 esp_port_freshness(uint32_t ports, ipsa_t *assoc)
1329 uint16_t remote = FIRST_16(ports);
1330 uint16_t local = NEXT_16(ports);
1331 ipsa_t *outbound_peer;
1332 isaf_t *bucket;
1333 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp;
1335 /* We found a conn_t, therefore local != 0. */
1336 ASSERT(local != 0);
1337 /* Assume an IPv4 SA. */
1338 ASSERT(assoc->ipsa_addrfam == AF_INET);
1341 * On-the-wire rport == 0 means something's very wrong.
1342 * An unpaired SA is also useless to us.
1343 * If we are behind the NAT, don't bother.
1344 * A zero local NAT port defaults to 4500, so check that too.
1345 * And, of course, if the ports already match, we don't need to
1346 * bother.
1348 if (remote == 0 || assoc->ipsa_otherspi == 0 ||
1349 (assoc->ipsa_flags & IPSA_F_BEHIND_NAT) ||
1350 (assoc->ipsa_remote_nat_port == 0 &&
1351 remote == htons(IPPORT_IKE_NATT)) ||
1352 remote == assoc->ipsa_remote_nat_port)
1353 return;
1355 /* Try and snag the peer. NOTE: Assume IPv4 for now. */
1356 bucket = OUTBOUND_BUCKET_V4(&(espstack->esp_sadb.s_v4),
1357 assoc->ipsa_srcaddr[0]);
1358 mutex_enter(&bucket->isaf_lock);
1359 outbound_peer = ipsec_getassocbyspi(bucket, assoc->ipsa_otherspi,
1360 assoc->ipsa_dstaddr, assoc->ipsa_srcaddr, AF_INET);
1361 mutex_exit(&bucket->isaf_lock);
1363 /* We probably lost a race to a deleting or expiring thread. */
1364 if (outbound_peer == NULL)
1365 return;
1368 * Hold the mutexes for both SAs so we don't race another inbound
1369 * thread. A lock-entry order shouldn't matter, since all other
1370 * per-ipsa locks are individually held-then-released.
1372 * Luckily, this has nothing to do with the remote-NAT address,
1373 * so we don't have to re-scribble the cached-checksum differential.
1375 mutex_enter(&outbound_peer->ipsa_lock);
1376 mutex_enter(&assoc->ipsa_lock);
1377 outbound_peer->ipsa_remote_nat_port = assoc->ipsa_remote_nat_port =
1378 remote;
1379 mutex_exit(&assoc->ipsa_lock);
1380 mutex_exit(&outbound_peer->ipsa_lock);
1381 IPSA_REFRELE(outbound_peer);
1382 ESP_BUMP_STAT(espstack, sa_port_renumbers);
1385 * Finish processing of an inbound ESP packet after processing by the
1386 * crypto framework.
1387 * - Remove the ESP header.
1388 * - Send packet back to IP.
1389 * If authentication was performed on the packet, this function is called
1390 * only if the authentication succeeded.
1391 * On success returns B_TRUE, on failure returns B_FALSE and frees the
1392 * mblk chain data_mp.
1394 static mblk_t *
1395 esp_in_done(mblk_t *data_mp, ip_recv_attr_t *ira, ipsec_crypto_t *ic)
1397 ipsa_t *assoc;
1398 uint_t espstart;
1399 uint32_t ivlen = 0;
1400 uint_t processed_len;
1401 esph_t *esph;
1402 kstat_named_t *counter;
1403 boolean_t is_natt;
1404 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1405 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1406 ipsec_stack_t *ipss = ns->netstack_ipsec;
1408 assoc = ira->ira_ipsec_esp_sa;
1409 ASSERT(assoc != NULL);
1411 is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
1413 /* get the pointer to the ESP header */
1414 if (assoc->ipsa_encr_alg == SADB_EALG_NULL) {
1415 /* authentication-only ESP */
1416 espstart = ic->ic_crypto_data.cd_offset;
1417 processed_len = ic->ic_crypto_data.cd_length;
1418 } else {
1419 /* encryption present */
1420 ivlen = assoc->ipsa_iv_len;
1421 if (assoc->ipsa_auth_alg == SADB_AALG_NONE) {
1422 /* encryption-only ESP */
1423 espstart = ic->ic_crypto_data.cd_offset -
1424 sizeof (esph_t) - assoc->ipsa_iv_len;
1425 processed_len = ic->ic_crypto_data.cd_length +
1426 ivlen;
1427 } else {
1428 /* encryption with authentication */
1429 espstart = ic->ic_crypto_dual_data.dd_offset1;
1430 processed_len = ic->ic_crypto_dual_data.dd_len2 +
1431 ivlen;
1435 esph = (esph_t *)(data_mp->b_rptr + espstart);
1437 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE ||
1438 (assoc->ipsa_flags & IPSA_F_COMBINED)) {
1440 * Authentication passed if we reach this point.
1441 * Packets with authentication will have the ICV
1442 * after the crypto data. Adjust b_wptr before
1443 * making padlen checks.
1445 ESP_BUMP_STAT(espstack, good_auth);
1446 data_mp->b_wptr -= assoc->ipsa_mac_len;
1449 * Check replay window here!
1450 * For right now, assume keysock will set the replay window
1451 * size to zero for SAs that have an unspecified sender.
1452 * This may change...
1455 if (!sadb_replay_check(assoc, esph->esph_replay)) {
1457 * Log the event. As of now we print out an event.
1458 * Do not print the replay failure number, or else
1459 * syslog cannot collate the error messages. Printing
1460 * the replay number that failed opens a denial-of-
1461 * service attack.
1463 ipsec_assocfailure(info.mi_idnum, 0, 0,
1464 SL_ERROR | SL_WARN,
1465 "Replay failed for ESP spi 0x%x, dst %s.\n",
1466 assoc->ipsa_spi, assoc->ipsa_dstaddr,
1467 assoc->ipsa_addrfam, espstack->ipsecesp_netstack);
1468 ESP_BUMP_STAT(espstack, replay_failures);
1469 counter = DROPPER(ipss, ipds_esp_replay);
1470 goto drop_and_bail;
1473 if (is_natt) {
1474 ASSERT(ira->ira_flags & IRAF_ESP_UDP_PORTS);
1475 ASSERT(ira->ira_esp_udp_ports != 0);
1476 esp_port_freshness(ira->ira_esp_udp_ports, assoc);
1480 esp_set_usetime(assoc, B_TRUE);
1482 if (!esp_age_bytes(assoc, processed_len, B_TRUE)) {
1483 /* The ipsa has hit hard expiration, LOG and AUDIT. */
1484 ipsec_assocfailure(info.mi_idnum, 0, 0,
1485 SL_ERROR | SL_WARN,
1486 "ESP association 0x%x, dst %s had bytes expire.\n",
1487 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1488 espstack->ipsecesp_netstack);
1489 ESP_BUMP_STAT(espstack, bytes_expired);
1490 counter = DROPPER(ipss, ipds_esp_bytes_expire);
1491 goto drop_and_bail;
1495 * Remove ESP header and padding from packet. I hope the compiler
1496 * spews "branch, predict taken" code for this.
1499 if (esp_strip_header(data_mp, (ira->ira_flags & IRAF_IS_IPV4),
1500 ivlen, &counter, espstack)) {
1502 if (is_system_labeled() && assoc->ipsa_tsl != NULL) {
1503 if (!ip_recv_attr_replace_label(ira, assoc->ipsa_tsl)) {
1504 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1505 DROPPER(ipss, ipds_ah_nomem),
1506 &espstack->esp_dropper);
1507 BUMP_MIB(ira->ira_ill->ill_ip_mib,
1508 ipIfStatsInDiscards);
1509 return (NULL);
1512 if (is_natt)
1513 return (esp_fix_natt_checksums(data_mp, assoc));
1515 if (assoc->ipsa_state == IPSA_STATE_IDLE) {
1517 * Cluster buffering case. Tell caller that we're
1518 * handling the packet.
1520 sadb_buf_pkt(assoc, data_mp, ira);
1521 return (NULL);
1524 return (data_mp);
1527 esp1dbg(espstack, ("esp_in_done: esp_strip_header() failed\n"));
1528 drop_and_bail:
1529 IP_ESP_BUMP_STAT(ipss, in_discards);
1530 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill, counter,
1531 &espstack->esp_dropper);
1532 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1533 return (NULL);
1537 * Called upon failing the inbound ICV check. The message passed as
1538 * argument is freed.
1540 static void
1541 esp_log_bad_auth(mblk_t *mp, ip_recv_attr_t *ira)
1543 ipsa_t *assoc = ira->ira_ipsec_esp_sa;
1544 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1545 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1546 ipsec_stack_t *ipss = ns->netstack_ipsec;
1549 * Log the event. Don't print to the console, block
1550 * potential denial-of-service attack.
1552 ESP_BUMP_STAT(espstack, bad_auth);
1554 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
1555 "ESP Authentication failed for spi 0x%x, dst %s.\n",
1556 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1557 espstack->ipsecesp_netstack);
1559 IP_ESP_BUMP_STAT(ipss, in_discards);
1560 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
1561 DROPPER(ipss, ipds_esp_bad_auth),
1562 &espstack->esp_dropper);
1567 * Invoked for outbound packets after ESP processing. If the packet
1568 * also requires AH, performs the AH SA selection and AH processing.
1570 * Returns data_mp (possibly with AH added) unless data_mp was consumed
1571 * due to an error, or queued due to async. crypto or an ACQUIRE trigger.
1573 static mblk_t *
1574 esp_do_outbound_ah(mblk_t *data_mp, ip_xmit_attr_t *ixa)
1576 ipsec_action_t *ap;
1578 ap = ixa->ixa_ipsec_action;
1579 if (ap == NULL) {
1580 ipsec_policy_t *pp = ixa->ixa_ipsec_policy;
1581 ap = pp->ipsp_act;
1584 if (!ap->ipa_want_ah)
1585 return (data_mp);
1588 * Normally the AH SA would have already been put in place
1589 * but it could have been flushed so we need to look for it.
1591 if (ixa->ixa_ipsec_ah_sa == NULL) {
1592 if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_AH)) {
1593 sadb_acquire(data_mp, ixa, B_TRUE, B_FALSE);
1594 return (NULL);
1597 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
1599 data_mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(data_mp, ixa);
1600 return (data_mp);
1605 * Kernel crypto framework callback invoked after completion of async
1606 * crypto requests for outbound packets.
1608 static void
1609 esp_kcf_callback_outbound(void *arg, int status)
1611 mblk_t *mp = (mblk_t *)arg;
1612 mblk_t *async_mp;
1613 netstack_t *ns;
1614 ipsec_stack_t *ipss;
1615 ipsecesp_stack_t *espstack;
1616 mblk_t *data_mp;
1617 ip_xmit_attr_t ixas;
1618 ipsec_crypto_t *ic;
1619 ill_t *ill;
1622 * First remove the ipsec_crypto_t mblk
1623 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1625 async_mp = ipsec_remove_crypto_data(mp, &ic);
1626 ASSERT(async_mp != NULL);
1629 * Extract the ip_xmit_attr_t from the first mblk.
1630 * Verifies that the netstack and ill is still around; could
1631 * have vanished while kEf was doing its work.
1632 * On succesful return we have a nce_t and the ill/ipst can't
1633 * disappear until we do the nce_refrele in ixa_cleanup.
1635 data_mp = async_mp->b_cont;
1636 async_mp->b_cont = NULL;
1637 if (!ip_xmit_attr_from_mblk(async_mp, &ixas)) {
1638 /* Disappeared on us - no ill/ipst for MIB */
1639 /* We have nowhere to do stats since ixa_ipst could be NULL */
1640 if (ixas.ixa_nce != NULL) {
1641 ill = ixas.ixa_nce->nce_ill;
1642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1643 ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
1645 freemsg(data_mp);
1646 goto done;
1648 ns = ixas.ixa_ipst->ips_netstack;
1649 espstack = ns->netstack_ipsecesp;
1650 ipss = ns->netstack_ipsec;
1651 ill = ixas.ixa_nce->nce_ill;
1653 if (status == CRYPTO_SUCCESS) {
1655 * If a ICV was computed, it was stored by the
1656 * crypto framework at the end of the packet.
1658 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1660 esp_set_usetime(ixas.ixa_ipsec_esp_sa, B_FALSE);
1661 /* NAT-T packet. */
1662 if (IPH_HDR_VERSION(ipha) == IP_VERSION &&
1663 ipha->ipha_protocol == IPPROTO_UDP)
1664 esp_prepare_udp(ns, data_mp, ipha);
1666 /* do AH processing if needed */
1667 data_mp = esp_do_outbound_ah(data_mp, &ixas);
1668 if (data_mp == NULL)
1669 goto done;
1671 (void) ip_output_post_ipsec(data_mp, &ixas);
1672 } else {
1673 /* Outbound shouldn't see invalid MAC */
1674 ASSERT(status != CRYPTO_INVALID_MAC);
1676 esp1dbg(espstack,
1677 ("esp_kcf_callback_outbound: crypto failed with 0x%x\n",
1678 status));
1679 ESP_BUMP_STAT(espstack, crypto_failures);
1680 ESP_BUMP_STAT(espstack, out_discards);
1681 ip_drop_packet(data_mp, B_FALSE, ill,
1682 DROPPER(ipss, ipds_esp_crypto_failed),
1683 &espstack->esp_dropper);
1684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1686 done:
1687 ixa_cleanup(&ixas);
1688 (void) ipsec_free_crypto_data(mp);
1692 * Kernel crypto framework callback invoked after completion of async
1693 * crypto requests for inbound packets.
1695 static void
1696 esp_kcf_callback_inbound(void *arg, int status)
1698 mblk_t *mp = (mblk_t *)arg;
1699 mblk_t *async_mp;
1700 netstack_t *ns;
1701 ipsecesp_stack_t *espstack;
1702 ipsec_stack_t *ipss;
1703 mblk_t *data_mp;
1704 ip_recv_attr_t iras;
1705 ipsec_crypto_t *ic;
1708 * First remove the ipsec_crypto_t mblk
1709 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1711 async_mp = ipsec_remove_crypto_data(mp, &ic);
1712 ASSERT(async_mp != NULL);
1715 * Extract the ip_recv_attr_t from the first mblk.
1716 * Verifies that the netstack and ill is still around; could
1717 * have vanished while kEf was doing its work.
1719 data_mp = async_mp->b_cont;
1720 async_mp->b_cont = NULL;
1721 if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
1722 /* The ill or ip_stack_t disappeared on us */
1723 ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL);
1724 freemsg(data_mp);
1725 goto done;
1728 ns = iras.ira_ill->ill_ipst->ips_netstack;
1729 espstack = ns->netstack_ipsecesp;
1730 ipss = ns->netstack_ipsec;
1732 if (status == CRYPTO_SUCCESS) {
1733 data_mp = esp_in_done(data_mp, &iras, ic);
1734 if (data_mp == NULL)
1735 goto done;
1737 /* finish IPsec processing */
1738 ip_input_post_ipsec(data_mp, &iras);
1739 } else if (status == CRYPTO_INVALID_MAC) {
1740 esp_log_bad_auth(data_mp, &iras);
1741 } else {
1742 esp1dbg(espstack,
1743 ("esp_kcf_callback: crypto failed with 0x%x\n",
1744 status));
1745 ESP_BUMP_STAT(espstack, crypto_failures);
1746 IP_ESP_BUMP_STAT(ipss, in_discards);
1747 ip_drop_packet(data_mp, B_TRUE, iras.ira_ill,
1748 DROPPER(ipss, ipds_esp_crypto_failed),
1749 &espstack->esp_dropper);
1750 BUMP_MIB(iras.ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1752 done:
1753 ira_cleanup(&iras, B_TRUE);
1754 (void) ipsec_free_crypto_data(mp);
1758 * Invoked on crypto framework failure during inbound and outbound processing.
1760 static void
1761 esp_crypto_failed(mblk_t *data_mp, boolean_t is_inbound, int kef_rc,
1762 ill_t *ill, ipsecesp_stack_t *espstack)
1764 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
1766 esp1dbg(espstack, ("crypto failed for %s ESP with 0x%x\n",
1767 is_inbound ? "inbound" : "outbound", kef_rc));
1768 ip_drop_packet(data_mp, is_inbound, ill,
1769 DROPPER(ipss, ipds_esp_crypto_failed),
1770 &espstack->esp_dropper);
1771 ESP_BUMP_STAT(espstack, crypto_failures);
1772 if (is_inbound)
1773 IP_ESP_BUMP_STAT(ipss, in_discards);
1774 else
1775 ESP_BUMP_STAT(espstack, out_discards);
1779 * A statement-equivalent macro, _cr MUST point to a modifiable
1780 * crypto_call_req_t.
1782 #define ESP_INIT_CALLREQ(_cr, _mp, _callback) \
1783 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_ALWAYS_QUEUE; \
1784 (_cr)->cr_callback_arg = (_mp); \
1785 (_cr)->cr_callback_func = (_callback)
1787 #define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \
1788 (mac)->cd_format = CRYPTO_DATA_RAW; \
1789 (mac)->cd_offset = 0; \
1790 (mac)->cd_length = icvlen; \
1791 (mac)->cd_raw.iov_base = (char *)icvbuf; \
1792 (mac)->cd_raw.iov_len = icvlen; \
1795 #define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \
1796 if (MBLKL(mp) >= (len) + (off)) { \
1797 (data)->cd_format = CRYPTO_DATA_RAW; \
1798 (data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \
1799 (data)->cd_raw.iov_len = MBLKL(mp); \
1800 (data)->cd_offset = off; \
1801 } else { \
1802 (data)->cd_format = CRYPTO_DATA_MBLK; \
1803 (data)->cd_mp = mp; \
1804 (data)->cd_offset = off; \
1806 (data)->cd_length = len; \
1809 #define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \
1810 (data)->dd_format = CRYPTO_DATA_MBLK; \
1811 (data)->dd_mp = mp; \
1812 (data)->dd_len1 = len1; \
1813 (data)->dd_offset1 = off1; \
1814 (data)->dd_len2 = len2; \
1815 (data)->dd_offset2 = off2; \
1819 * Returns data_mp if successfully completed the request. Returns
1820 * NULL if it failed (and increments InDiscards) or if it is pending.
1822 static mblk_t *
1823 esp_submit_req_inbound(mblk_t *esp_mp, ip_recv_attr_t *ira,
1824 ipsa_t *assoc, uint_t esph_offset)
1826 uint_t auth_offset, msg_len, auth_len;
1827 crypto_call_req_t call_req, *callrp;
1828 mblk_t *mp;
1829 esph_t *esph_ptr;
1830 int kef_rc;
1831 uint_t icv_len = assoc->ipsa_mac_len;
1832 crypto_ctx_template_t auth_ctx_tmpl;
1833 boolean_t do_auth, do_encr, force;
1834 uint_t encr_offset, encr_len;
1835 uint_t iv_len = assoc->ipsa_iv_len;
1836 crypto_ctx_template_t encr_ctx_tmpl;
1837 ipsec_crypto_t *ic, icstack;
1838 uchar_t *iv_ptr;
1839 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1840 ipsec_stack_t *ipss = ns->netstack_ipsec;
1841 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1843 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
1844 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
1845 force = (assoc->ipsa_flags & IPSA_F_ASYNC);
1847 #ifdef IPSEC_LATENCY_TEST
1848 kef_rc = CRYPTO_SUCCESS;
1849 #else
1850 kef_rc = CRYPTO_FAILED;
1851 #endif
1854 * An inbound packet is of the form:
1855 * [IP,options,ESP,IV,data,ICV,pad]
1857 esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
1858 iv_ptr = (uchar_t *)(esph_ptr + 1);
1859 /* Packet length starting at IP header ending after ESP ICV. */
1860 msg_len = MBLKL(esp_mp);
1862 encr_offset = esph_offset + sizeof (esph_t) + iv_len;
1863 encr_len = msg_len - encr_offset;
1866 * Counter mode algs need a nonce. This is setup in sadb_common_add().
1867 * If for some reason we are using a SA which does not have a nonce
1868 * then we must fail here.
1870 if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
1871 (assoc->ipsa_nonce == NULL)) {
1872 ip_drop_packet(esp_mp, B_TRUE, ira->ira_ill,
1873 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
1874 return (NULL);
1877 if (force) {
1878 /* We are doing asynch; allocate mblks to hold state */
1879 if ((mp = ip_recv_attr_to_mblk(ira)) == NULL ||
1880 (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
1881 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1882 ip_drop_input("ipIfStatsInDiscards", esp_mp,
1883 ira->ira_ill);
1884 return (NULL);
1886 linkb(mp, esp_mp);
1887 callrp = &call_req;
1888 ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_inbound);
1889 } else {
1891 * If we know we are going to do sync then ipsec_crypto_t
1892 * should be on the stack.
1894 ic = &icstack;
1895 bzero(ic, sizeof (*ic));
1896 callrp = NULL;
1899 if (do_auth) {
1900 /* authentication context template */
1901 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
1902 auth_ctx_tmpl);
1904 /* ICV to be verified */
1905 ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
1906 icv_len, esp_mp->b_wptr - icv_len);
1908 /* authentication starts at the ESP header */
1909 auth_offset = esph_offset;
1910 auth_len = msg_len - auth_offset - icv_len;
1911 if (!do_encr) {
1912 /* authentication only */
1913 /* initialize input data argument */
1914 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
1915 esp_mp, auth_offset, auth_len);
1917 /* call the crypto framework */
1918 kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
1919 &ic->ic_crypto_data,
1920 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
1921 &ic->ic_crypto_mac, callrp);
1925 if (do_encr) {
1926 /* encryption template */
1927 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
1928 encr_ctx_tmpl);
1930 /* Call the nonce update function. Also passes in IV */
1931 (assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, encr_len,
1932 iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
1934 if (!do_auth) {
1935 /* decryption only */
1936 /* initialize input data argument */
1937 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
1938 esp_mp, encr_offset, encr_len);
1940 /* call the crypto framework */
1941 kef_rc = crypto_decrypt((crypto_mechanism_t *)
1942 &ic->ic_cmm, &ic->ic_crypto_data,
1943 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
1944 NULL, callrp);
1948 if (do_auth && do_encr) {
1949 /* dual operation */
1950 /* initialize input data argument */
1951 ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
1952 esp_mp, auth_offset, auth_len,
1953 encr_offset, encr_len - icv_len);
1955 /* specify IV */
1956 ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
1958 /* call the framework */
1959 kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech,
1960 &assoc->ipsa_emech, &ic->ic_crypto_dual_data,
1961 &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey,
1962 auth_ctx_tmpl, encr_ctx_tmpl, &ic->ic_crypto_mac,
1963 NULL, callrp);
1966 switch (kef_rc) {
1967 case CRYPTO_SUCCESS:
1968 ESP_BUMP_STAT(espstack, crypto_sync);
1969 esp_mp = esp_in_done(esp_mp, ira, ic);
1970 if (force) {
1971 /* Free mp after we are done with ic */
1972 mp = ipsec_free_crypto_data(mp);
1973 (void) ip_recv_attr_free_mblk(mp);
1975 return (esp_mp);
1976 case CRYPTO_QUEUED:
1977 /* esp_kcf_callback_inbound() will be invoked on completion */
1978 ESP_BUMP_STAT(espstack, crypto_async);
1979 return (NULL);
1980 case CRYPTO_INVALID_MAC:
1981 if (force) {
1982 mp = ipsec_free_crypto_data(mp);
1983 esp_mp = ip_recv_attr_free_mblk(mp);
1985 ESP_BUMP_STAT(espstack, crypto_sync);
1986 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1987 esp_log_bad_auth(esp_mp, ira);
1988 /* esp_mp was passed to ip_drop_packet */
1989 return (NULL);
1992 if (force) {
1993 mp = ipsec_free_crypto_data(mp);
1994 esp_mp = ip_recv_attr_free_mblk(mp);
1996 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1997 esp_crypto_failed(esp_mp, B_TRUE, kef_rc, ira->ira_ill, espstack);
1998 /* esp_mp was passed to ip_drop_packet */
1999 return (NULL);
2003 * Compute the IP and UDP checksums -- common code for both keepalives and
2004 * actual ESP-in-UDP packets. Be flexible with multiple mblks because ESP
2005 * uses mblk-insertion to insert the UDP header.
2006 * TODO - If there is an easy way to prep a packet for HW checksums, make
2007 * it happen here.
2008 * Note that this is used before both before calling ip_output_simple and
2009 * in the esp datapath. The former could use IXAF_SET_ULP_CKSUM but not the
2010 * latter.
2012 static void
2013 esp_prepare_udp(netstack_t *ns, mblk_t *mp, ipha_t *ipha)
2015 int offset;
2016 uint32_t cksum;
2017 uint16_t *arr;
2018 mblk_t *udpmp = mp;
2019 uint_t hlen = IPH_HDR_LENGTH(ipha);
2021 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
2023 ipha->ipha_hdr_checksum = 0;
2024 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
2026 if (ns->netstack_udp->us_do_checksum) {
2027 ASSERT(MBLKL(udpmp) >= sizeof (udpha_t));
2028 /* arr points to the IP header. */
2029 arr = (uint16_t *)ipha;
2030 IP_STAT(ns->netstack_ip, ip_out_sw_cksum);
2031 IP_STAT_UPDATE(ns->netstack_ip, ip_out_sw_cksum_bytes,
2032 ntohs(htons(ipha->ipha_length) - hlen));
2033 /* arr[6-9] are the IP addresses. */
2034 cksum = IP_UDP_CSUM_COMP + arr[6] + arr[7] + arr[8] + arr[9] +
2035 ntohs(htons(ipha->ipha_length) - hlen);
2036 cksum = IP_CSUM(mp, hlen, cksum);
2037 offset = hlen + UDP_CHECKSUM_OFFSET;
2038 while (offset >= MBLKL(udpmp)) {
2039 offset -= MBLKL(udpmp);
2040 udpmp = udpmp->b_cont;
2042 /* arr points to the UDP header's checksum field. */
2043 arr = (uint16_t *)(udpmp->b_rptr + offset);
2044 *arr = cksum;
2049 * taskq handler so we can send the NAT-T keepalive on a separate thread.
2051 static void
2052 actually_send_keepalive(void *arg)
2054 mblk_t *mp = (mblk_t *)arg;
2055 ip_xmit_attr_t ixas;
2056 netstack_t *ns;
2057 netstackid_t stackid;
2059 stackid = (netstackid_t)(uintptr_t)mp->b_prev;
2060 mp->b_prev = NULL;
2061 ns = netstack_find_by_stackid(stackid);
2062 if (ns == NULL) {
2063 /* Disappeared */
2064 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2065 freemsg(mp);
2066 return;
2069 bzero(&ixas, sizeof (ixas));
2070 ixas.ixa_zoneid = ALL_ZONES;
2071 ixas.ixa_cred = kcred;
2072 ixas.ixa_cpid = NOPID;
2073 ixas.ixa_tsl = NULL;
2074 ixas.ixa_ipst = ns->netstack_ip;
2075 /* No ULP checksum; done by esp_prepare_udp */
2076 ixas.ixa_flags = (IXAF_IS_IPV4 | IXAF_NO_IPSEC | IXAF_VERIFY_SOURCE);
2078 (void) ip_output_simple(mp, &ixas);
2079 ixa_cleanup(&ixas);
2080 netstack_rele(ns);
2084 * Send a one-byte UDP NAT-T keepalive.
2086 void
2087 ipsecesp_send_keepalive(ipsa_t *assoc)
2089 mblk_t *mp;
2090 ipha_t *ipha;
2091 udpha_t *udpha;
2092 netstack_t *ns = assoc->ipsa_netstack;
2094 ASSERT(MUTEX_NOT_HELD(&assoc->ipsa_lock));
2096 mp = allocb(sizeof (ipha_t) + sizeof (udpha_t) + 1, BPRI_HI);
2097 if (mp == NULL)
2098 return;
2099 ipha = (ipha_t *)mp->b_rptr;
2100 ipha->ipha_version_and_hdr_length = IP_SIMPLE_HDR_VERSION;
2101 ipha->ipha_type_of_service = 0;
2102 ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (udpha_t) + 1);
2103 /* Use the low-16 of the SPI so we have some clue where it came from. */
2104 ipha->ipha_ident = *(((uint16_t *)(&assoc->ipsa_spi)) + 1);
2105 ipha->ipha_fragment_offset_and_flags = 0; /* Too small to fragment! */
2106 ipha->ipha_ttl = 0xFF;
2107 ipha->ipha_protocol = IPPROTO_UDP;
2108 ipha->ipha_hdr_checksum = 0;
2109 ipha->ipha_src = assoc->ipsa_srcaddr[0];
2110 ipha->ipha_dst = assoc->ipsa_dstaddr[0];
2111 udpha = (udpha_t *)(ipha + 1);
2112 udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2113 assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2114 udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2115 assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2116 udpha->uha_length = htons(sizeof (udpha_t) + 1);
2117 udpha->uha_checksum = 0;
2118 mp->b_wptr = (uint8_t *)(udpha + 1);
2119 *(mp->b_wptr++) = 0xFF;
2121 esp_prepare_udp(ns, mp, ipha);
2124 * We're holding an isaf_t bucket lock, so pawn off the actual
2125 * packet transmission to another thread. Just in case syncq
2126 * processing causes a same-bucket packet to be processed.
2128 mp->b_prev = (mblk_t *)(uintptr_t)ns->netstack_stackid;
2130 if (taskq_dispatch(esp_taskq, actually_send_keepalive, mp,
2131 TQ_NOSLEEP) == 0) {
2132 /* Assume no memory if taskq_dispatch() fails. */
2133 mp->b_prev = NULL;
2134 ip_drop_packet(mp, B_FALSE, NULL,
2135 DROPPER(ns->netstack_ipsec, ipds_esp_nomem),
2136 &ns->netstack_ipsecesp->esp_dropper);
2141 * Returns mp if successfully completed the request. Returns
2142 * NULL if it failed (and increments InDiscards) or if it is pending.
2144 static mblk_t *
2145 esp_submit_req_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa, ipsa_t *assoc,
2146 uchar_t *icv_buf, uint_t payload_len)
2148 uint_t auth_len;
2149 crypto_call_req_t call_req, *callrp;
2150 mblk_t *esp_mp;
2151 esph_t *esph_ptr;
2152 mblk_t *mp;
2153 int kef_rc = CRYPTO_FAILED;
2154 uint_t icv_len = assoc->ipsa_mac_len;
2155 crypto_ctx_template_t auth_ctx_tmpl;
2156 boolean_t do_auth, do_encr, force;
2157 uint_t iv_len = assoc->ipsa_iv_len;
2158 crypto_ctx_template_t encr_ctx_tmpl;
2159 boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
2160 size_t esph_offset = (is_natt ? UDPH_SIZE : 0);
2161 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
2162 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2163 ipsec_crypto_t *ic, icstack;
2164 uchar_t *iv_ptr;
2165 crypto_data_t *cd_ptr = NULL;
2166 ill_t *ill = ixa->ixa_nce->nce_ill;
2167 ipsec_stack_t *ipss = ns->netstack_ipsec;
2169 esp3dbg(espstack, ("esp_submit_req_outbound:%s",
2170 is_natt ? "natt" : "not natt"));
2172 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2173 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2174 force = (assoc->ipsa_flags & IPSA_F_ASYNC);
2176 #ifdef IPSEC_LATENCY_TEST
2177 kef_rc = CRYPTO_SUCCESS;
2178 #else
2179 kef_rc = CRYPTO_FAILED;
2180 #endif
2183 * Outbound IPsec packets are of the form:
2184 * [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV]
2185 * unless it's NATT, then it's
2186 * [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV]
2187 * Get a pointer to the mblk containing the ESP header.
2189 ASSERT(data_mp->b_cont != NULL);
2190 esp_mp = data_mp->b_cont;
2191 esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
2192 iv_ptr = (uchar_t *)(esph_ptr + 1);
2195 * Combined mode algs need a nonce. This is setup in sadb_common_add().
2196 * If for some reason we are using a SA which does not have a nonce
2197 * then we must fail here.
2199 if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
2200 (assoc->ipsa_nonce == NULL)) {
2201 ip_drop_packet(data_mp, B_FALSE, NULL,
2202 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2203 return (NULL);
2206 if (force) {
2207 /* We are doing asynch; allocate mblks to hold state */
2208 if ((mp = ip_xmit_attr_to_mblk(ixa)) == NULL ||
2209 (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
2210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2211 ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
2212 freemsg(data_mp);
2213 return (NULL);
2216 linkb(mp, data_mp);
2217 callrp = &call_req;
2218 ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_outbound);
2219 } else {
2221 * If we know we are going to do sync then ipsec_crypto_t
2222 * should be on the stack.
2224 ic = &icstack;
2225 bzero(ic, sizeof (*ic));
2226 callrp = NULL;
2230 if (do_auth) {
2231 /* authentication context template */
2232 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2233 auth_ctx_tmpl);
2235 /* where to store the computed mac */
2236 ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
2237 icv_len, icv_buf);
2239 /* authentication starts at the ESP header */
2240 auth_len = payload_len + iv_len + sizeof (esph_t);
2241 if (!do_encr) {
2242 /* authentication only */
2243 /* initialize input data argument */
2244 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2245 esp_mp, esph_offset, auth_len);
2247 /* call the crypto framework */
2248 kef_rc = crypto_mac(&assoc->ipsa_amech,
2249 &ic->ic_crypto_data,
2250 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2251 &ic->ic_crypto_mac, callrp);
2255 if (do_encr) {
2256 /* encryption context template */
2257 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2258 encr_ctx_tmpl);
2259 /* Call the nonce update function. */
2260 (assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, payload_len,
2261 iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
2263 if (!do_auth) {
2264 /* encryption only, skip mblk that contains ESP hdr */
2265 /* initialize input data argument */
2266 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2267 esp_mp->b_cont, 0, payload_len);
2270 * For combined mode ciphers, the ciphertext is the same
2271 * size as the clear text, the ICV should follow the
2272 * ciphertext. To convince the kcf to allow in-line
2273 * encryption, with an ICV, use ipsec_out_crypto_mac
2274 * to point to the same buffer as the data. The calling
2275 * function need to ensure the buffer is large enough to
2276 * include the ICV.
2278 * The IV is already written to the packet buffer, the
2279 * nonce setup function copied it to the params struct
2280 * for the cipher to use.
2282 if (assoc->ipsa_flags & IPSA_F_COMBINED) {
2283 bcopy(&ic->ic_crypto_data,
2284 &ic->ic_crypto_mac,
2285 sizeof (crypto_data_t));
2286 ic->ic_crypto_mac.cd_length =
2287 payload_len + icv_len;
2288 cd_ptr = &ic->ic_crypto_mac;
2291 /* call the crypto framework */
2292 kef_rc = crypto_encrypt((crypto_mechanism_t *)
2293 &ic->ic_cmm, &ic->ic_crypto_data,
2294 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2295 cd_ptr, callrp);
2300 if (do_auth && do_encr) {
2302 * Encryption and authentication:
2303 * Pass the pointer to the mblk chain starting at the ESP
2304 * header to the framework. Skip the ESP header mblk
2305 * for encryption, which is reflected by an encryption
2306 * offset equal to the length of that mblk. Start
2307 * the authentication at the ESP header, i.e. use an
2308 * authentication offset of zero.
2310 ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
2311 esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len);
2313 /* specify IV */
2314 ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
2316 /* call the framework */
2317 kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech,
2318 &assoc->ipsa_amech, NULL,
2319 &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey,
2320 encr_ctx_tmpl, auth_ctx_tmpl,
2321 &ic->ic_crypto_dual_data,
2322 &ic->ic_crypto_mac, callrp);
2325 switch (kef_rc) {
2326 case CRYPTO_SUCCESS:
2327 ESP_BUMP_STAT(espstack, crypto_sync);
2328 esp_set_usetime(assoc, B_FALSE);
2329 if (force) {
2330 mp = ipsec_free_crypto_data(mp);
2331 data_mp = ip_xmit_attr_free_mblk(mp);
2333 if (is_natt)
2334 esp_prepare_udp(ns, data_mp, (ipha_t *)data_mp->b_rptr);
2335 return (data_mp);
2336 case CRYPTO_QUEUED:
2337 /* esp_kcf_callback_outbound() will be invoked on completion */
2338 ESP_BUMP_STAT(espstack, crypto_async);
2339 return (NULL);
2342 if (force) {
2343 mp = ipsec_free_crypto_data(mp);
2344 data_mp = ip_xmit_attr_free_mblk(mp);
2346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2347 esp_crypto_failed(data_mp, B_FALSE, kef_rc, NULL, espstack);
2348 /* data_mp was passed to ip_drop_packet */
2349 return (NULL);
2353 * Handle outbound IPsec processing for IPv4 and IPv6
2355 * Returns data_mp if successfully completed the request. Returns
2356 * NULL if it failed (and increments InDiscards) or if it is pending.
2358 static mblk_t *
2359 esp_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa)
2361 mblk_t *espmp, *tailmp;
2362 ipha_t *ipha;
2363 ip6_t *ip6h;
2364 esph_t *esph_ptr, *iv_ptr;
2365 uint_t af;
2366 uint8_t *nhp;
2367 uintptr_t divpoint, datalen, adj, padlen, i, alloclen;
2368 uintptr_t esplen = sizeof (esph_t);
2369 uint8_t protocol;
2370 ipsa_t *assoc;
2371 uint_t iv_len, block_size, mac_len = 0;
2372 uchar_t *icv_buf;
2373 udpha_t *udpha;
2374 boolean_t is_natt = B_FALSE;
2375 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
2376 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2377 ipsec_stack_t *ipss = ns->netstack_ipsec;
2378 ill_t *ill = ixa->ixa_nce->nce_ill;
2379 boolean_t need_refrele = B_FALSE;
2381 ESP_BUMP_STAT(espstack, out_requests);
2384 * <sigh> We have to copy the message here, because TCP (for example)
2385 * keeps a dupb() of the message lying around for retransmission.
2386 * Since ESP changes the whole of the datagram, we have to create our
2387 * own copy lest we clobber TCP's data. Since we have to copy anyway,
2388 * we might as well make use of msgpullup() and get the mblk into one
2389 * contiguous piece!
2391 tailmp = msgpullup(data_mp, -1);
2392 if (tailmp == NULL) {
2393 esp0dbg(("esp_outbound: msgpullup() failed, "
2394 "dropping packet.\n"));
2395 ip_drop_packet(data_mp, B_FALSE, ill,
2396 DROPPER(ipss, ipds_esp_nomem),
2397 &espstack->esp_dropper);
2398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2399 return (NULL);
2401 freemsg(data_mp);
2402 data_mp = tailmp;
2404 assoc = ixa->ixa_ipsec_esp_sa;
2405 ASSERT(assoc != NULL);
2408 * Get the outer IP header in shape to escape this system..
2410 if (is_system_labeled() && (assoc->ipsa_otsl != NULL)) {
2412 * Need to update packet with any CIPSO option and update
2413 * ixa_tsl to capture the new label.
2414 * We allocate a separate ixa for that purpose.
2416 ixa = ip_xmit_attr_duplicate(ixa);
2417 if (ixa == NULL) {
2418 ip_drop_packet(data_mp, B_FALSE, ill,
2419 DROPPER(ipss, ipds_esp_nomem),
2420 &espstack->esp_dropper);
2421 return (NULL);
2423 need_refrele = B_TRUE;
2425 label_hold(assoc->ipsa_otsl);
2426 ip_xmit_attr_replace_tsl(ixa, assoc->ipsa_otsl);
2428 data_mp = sadb_whack_label(data_mp, assoc, ixa,
2429 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2430 if (data_mp == NULL) {
2431 /* Packet dropped by sadb_whack_label */
2432 ixa_refrele(ixa);
2433 return (NULL);
2438 * Reality check....
2440 ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */
2442 if (ixa->ixa_flags & IXAF_IS_IPV4) {
2443 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
2445 af = AF_INET;
2446 divpoint = IPH_HDR_LENGTH(ipha);
2447 datalen = ntohs(ipha->ipha_length) - divpoint;
2448 nhp = (uint8_t *)&ipha->ipha_protocol;
2449 } else {
2450 ip_pkt_t ipp;
2452 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
2454 af = AF_INET6;
2455 ip6h = (ip6_t *)ipha;
2456 bzero(&ipp, sizeof (ipp));
2457 divpoint = ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, NULL);
2458 if (ipp.ipp_dstopts != NULL &&
2459 ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) {
2461 * Destination options are tricky. If we get in here,
2462 * then we have a terminal header following the
2463 * destination options. We need to adjust backwards
2464 * so we insert ESP BEFORE the destination options
2465 * bag. (So that the dstopts get encrypted!)
2467 * Since this is for outbound packets only, we know
2468 * that non-terminal destination options only precede
2469 * routing headers.
2471 divpoint -= ipp.ipp_dstoptslen;
2473 datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint;
2475 if (ipp.ipp_rthdr != NULL) {
2476 nhp = &ipp.ipp_rthdr->ip6r_nxt;
2477 } else if (ipp.ipp_hopopts != NULL) {
2478 nhp = &ipp.ipp_hopopts->ip6h_nxt;
2479 } else {
2480 ASSERT(divpoint == sizeof (ip6_t));
2481 /* It's probably IP + ESP. */
2482 nhp = &ip6h->ip6_nxt;
2486 mac_len = assoc->ipsa_mac_len;
2488 if (assoc->ipsa_flags & IPSA_F_NATT) {
2489 /* wedge in UDP header */
2490 is_natt = B_TRUE;
2491 esplen += UDPH_SIZE;
2495 * Set up ESP header and encryption padding for ENCR PI request.
2498 /* Determine the padding length. Pad to 4-bytes for no-encryption. */
2499 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) {
2500 iv_len = assoc->ipsa_iv_len;
2501 block_size = assoc->ipsa_datalen;
2504 * Pad the data to the length of the cipher block size.
2505 * Include the two additional bytes (hence the - 2) for the
2506 * padding length and the next header. Take this into account
2507 * when calculating the actual length of the padding.
2509 ASSERT(ISP2(iv_len));
2510 padlen = ((unsigned)(block_size - datalen - 2)) &
2511 (block_size - 1);
2512 } else {
2513 iv_len = 0;
2514 padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) &
2515 (sizeof (uint32_t) - 1);
2518 /* Allocate ESP header and IV. */
2519 esplen += iv_len;
2522 * Update association byte-count lifetimes. Don't forget to take
2523 * into account the padding length and next-header (hence the + 2).
2525 * Use the amount of data fed into the "encryption algorithm". This
2526 * is the IV, the data length, the padding length, and the final two
2527 * bytes (padlen, and next-header).
2531 if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) {
2532 ip_drop_packet(data_mp, B_FALSE, ill,
2533 DROPPER(ipss, ipds_esp_bytes_expire),
2534 &espstack->esp_dropper);
2535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2536 if (need_refrele)
2537 ixa_refrele(ixa);
2538 return (NULL);
2541 espmp = allocb(esplen, BPRI_HI);
2542 if (espmp == NULL) {
2543 ESP_BUMP_STAT(espstack, out_discards);
2544 esp1dbg(espstack, ("esp_outbound: can't allocate espmp.\n"));
2545 ip_drop_packet(data_mp, B_FALSE, ill,
2546 DROPPER(ipss, ipds_esp_nomem),
2547 &espstack->esp_dropper);
2548 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2549 if (need_refrele)
2550 ixa_refrele(ixa);
2551 return (NULL);
2553 espmp->b_wptr += esplen;
2554 esph_ptr = (esph_t *)espmp->b_rptr;
2556 if (is_natt) {
2557 esp3dbg(espstack, ("esp_outbound: NATT"));
2559 udpha = (udpha_t *)espmp->b_rptr;
2560 udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2561 assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2562 udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2563 assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2565 * Set the checksum to 0, so that the esp_prepare_udp() call
2566 * can do the right thing.
2568 udpha->uha_checksum = 0;
2569 esph_ptr = (esph_t *)(udpha + 1);
2572 esph_ptr->esph_spi = assoc->ipsa_spi;
2574 esph_ptr->esph_replay = htonl(atomic_inc_32_nv(&assoc->ipsa_replay));
2575 if (esph_ptr->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) {
2577 * XXX We have replay counter wrapping.
2578 * We probably want to nuke this SA (and its peer).
2580 ipsec_assocfailure(info.mi_idnum, 0, 0,
2581 SL_ERROR | SL_CONSOLE | SL_WARN,
2582 "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n",
2583 esph_ptr->esph_spi, assoc->ipsa_dstaddr, af,
2584 espstack->ipsecesp_netstack);
2586 ESP_BUMP_STAT(espstack, out_discards);
2587 sadb_replay_delete(assoc);
2588 ip_drop_packet(data_mp, B_FALSE, ill,
2589 DROPPER(ipss, ipds_esp_replay),
2590 &espstack->esp_dropper);
2591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2592 if (need_refrele)
2593 ixa_refrele(ixa);
2594 return (NULL);
2597 iv_ptr = (esph_ptr + 1);
2599 * iv_ptr points to the mblk which will contain the IV once we have
2600 * written it there. This mblk will be part of a mblk chain that
2601 * will make up the packet.
2603 * For counter mode algorithms, the IV is a 64 bit quantity, it
2604 * must NEVER repeat in the lifetime of the SA, otherwise an
2605 * attacker who had recorded enough packets might be able to
2606 * determine some clear text.
2608 * To ensure this does not happen, the IV is stored in the SA and
2609 * incremented for each packet, the IV is then copied into the
2610 * "packet" for transmission to the receiving system. The IV will
2611 * also be copied into the nonce, when the packet is encrypted.
2613 * CBC mode algorithms use a random IV for each packet. We do not
2614 * require the highest quality random bits, but for best security
2615 * with CBC mode ciphers, the value must be unlikely to repeat and
2616 * must not be known in advance to an adversary capable of influencing
2617 * the clear text.
2619 if (!update_iv((uint8_t *)iv_ptr, espstack->esp_pfkey_q, assoc,
2620 espstack)) {
2621 ip_drop_packet(data_mp, B_FALSE, ill,
2622 DROPPER(ipss, ipds_esp_iv_wrap), &espstack->esp_dropper);
2623 if (need_refrele)
2624 ixa_refrele(ixa);
2625 return (NULL);
2628 /* Fix the IP header. */
2629 alloclen = padlen + 2 + mac_len;
2630 adj = alloclen + (espmp->b_wptr - espmp->b_rptr);
2632 protocol = *nhp;
2634 if (ixa->ixa_flags & IXAF_IS_IPV4) {
2635 ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj);
2636 if (is_natt) {
2637 *nhp = IPPROTO_UDP;
2638 udpha->uha_length = htons(ntohs(ipha->ipha_length) -
2639 IPH_HDR_LENGTH(ipha));
2640 } else {
2641 *nhp = IPPROTO_ESP;
2643 ipha->ipha_hdr_checksum = 0;
2644 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
2645 } else {
2646 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj);
2647 *nhp = IPPROTO_ESP;
2650 /* I've got the two ESP mblks, now insert them. */
2652 esp2dbg(espstack, ("data_mp before outbound ESP adjustment:\n"));
2653 esp2dbg(espstack, (dump_msg(data_mp)));
2655 if (!esp_insert_esp(data_mp, espmp, divpoint, espstack)) {
2656 ESP_BUMP_STAT(espstack, out_discards);
2657 /* NOTE: esp_insert_esp() only fails if there's no memory. */
2658 ip_drop_packet(data_mp, B_FALSE, ill,
2659 DROPPER(ipss, ipds_esp_nomem),
2660 &espstack->esp_dropper);
2661 freeb(espmp);
2662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2663 if (need_refrele)
2664 ixa_refrele(ixa);
2665 return (NULL);
2668 /* Append padding (and leave room for ICV). */
2669 for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont)
2671 if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) {
2672 tailmp->b_cont = allocb(alloclen, BPRI_HI);
2673 if (tailmp->b_cont == NULL) {
2674 ESP_BUMP_STAT(espstack, out_discards);
2675 esp0dbg(("esp_outbound: Can't allocate tailmp.\n"));
2676 ip_drop_packet(data_mp, B_FALSE, ill,
2677 DROPPER(ipss, ipds_esp_nomem),
2678 &espstack->esp_dropper);
2679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2680 if (need_refrele)
2681 ixa_refrele(ixa);
2682 return (NULL);
2684 tailmp = tailmp->b_cont;
2688 * If there's padding, N bytes of padding must be of the form 0x1,
2689 * 0x2, 0x3... 0xN.
2691 for (i = 0; i < padlen; ) {
2692 i++;
2693 *tailmp->b_wptr++ = i;
2695 *tailmp->b_wptr++ = i;
2696 *tailmp->b_wptr++ = protocol;
2698 esp2dbg(espstack, ("data_Mp before encryption:\n"));
2699 esp2dbg(espstack, (dump_msg(data_mp)));
2702 * Okay. I've set up the pre-encryption ESP. Let's do it!
2705 if (mac_len > 0) {
2706 ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim);
2707 icv_buf = tailmp->b_wptr;
2708 tailmp->b_wptr += mac_len;
2709 } else {
2710 icv_buf = NULL;
2713 data_mp = esp_submit_req_outbound(data_mp, ixa, assoc, icv_buf,
2714 datalen + padlen + 2);
2715 if (need_refrele)
2716 ixa_refrele(ixa);
2717 return (data_mp);
2721 * IP calls this to validate the ICMP errors that
2722 * we got from the network.
2724 mblk_t *
2725 ipsecesp_icmp_error(mblk_t *data_mp, ip_recv_attr_t *ira)
2727 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
2728 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2729 ipsec_stack_t *ipss = ns->netstack_ipsec;
2732 * Unless we get an entire packet back, this function is useless.
2733 * Why?
2735 * 1.) Partial packets are useless, because the "next header"
2736 * is at the end of the decrypted ESP packet. Without the
2737 * whole packet, this is useless.
2739 * 2.) If we every use a stateful cipher, such as a stream or a
2740 * one-time pad, we can't do anything.
2742 * Since the chances of us getting an entire packet back are very
2743 * very small, we discard here.
2745 IP_ESP_BUMP_STAT(ipss, in_discards);
2746 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
2747 DROPPER(ipss, ipds_esp_icmp),
2748 &espstack->esp_dropper);
2749 return (NULL);
2753 * Construct an SADB_REGISTER message with the current algorithms.
2754 * This function gets called when 'ipsecalgs -s' is run or when
2755 * in.iked (or other KMD) starts.
2757 static boolean_t
2758 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial,
2759 ipsecesp_stack_t *espstack, cred_t *cr)
2761 mblk_t *pfkey_msg_mp, *keysock_out_mp;
2762 sadb_msg_t *samsg;
2763 sadb_supported_t *sasupp_auth = NULL;
2764 sadb_supported_t *sasupp_encr = NULL;
2765 sadb_alg_t *saalg;
2766 uint_t allocsize = sizeof (*samsg);
2767 uint_t i, numalgs_snap;
2768 int current_aalgs;
2769 ipsec_alginfo_t **authalgs;
2770 uint_t num_aalgs;
2771 int current_ealgs;
2772 ipsec_alginfo_t **encralgs;
2773 uint_t num_ealgs;
2774 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
2775 sadb_sens_t *sens;
2776 size_t sens_len = 0;
2777 sadb_ext_t *nextext;
2778 ts_label_t *sens_tsl = NULL;
2780 /* Allocate the KEYSOCK_OUT. */
2781 keysock_out_mp = sadb_keysock_out(serial);
2782 if (keysock_out_mp == NULL) {
2783 esp0dbg(("esp_register_out: couldn't allocate mblk.\n"));
2784 return (B_FALSE);
2787 if (is_system_labeled() && (cr != NULL)) {
2788 sens_tsl = crgetlabel(cr);
2789 if (sens_tsl != NULL) {
2790 sens_len = sadb_sens_len_from_label(sens_tsl);
2791 allocsize += sens_len;
2796 * Allocate the PF_KEY message that follows KEYSOCK_OUT.
2799 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
2801 * Fill SADB_REGISTER message's algorithm descriptors. Hold
2802 * down the lock while filling it.
2804 * Return only valid algorithms, so the number of algorithms
2805 * to send up may be less than the number of algorithm entries
2806 * in the table.
2808 authalgs = ipss->ipsec_alglists[IPSEC_ALG_AUTH];
2809 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2810 if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
2811 num_aalgs++;
2813 if (num_aalgs != 0) {
2814 allocsize += (num_aalgs * sizeof (*saalg));
2815 allocsize += sizeof (*sasupp_auth);
2817 encralgs = ipss->ipsec_alglists[IPSEC_ALG_ENCR];
2818 for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2819 if (encralgs[i] != NULL && ALG_VALID(encralgs[i]))
2820 num_ealgs++;
2822 if (num_ealgs != 0) {
2823 allocsize += (num_ealgs * sizeof (*saalg));
2824 allocsize += sizeof (*sasupp_encr);
2826 keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI);
2827 if (keysock_out_mp->b_cont == NULL) {
2828 rw_exit(&ipss->ipsec_alg_lock);
2829 freemsg(keysock_out_mp);
2830 return (B_FALSE);
2832 pfkey_msg_mp = keysock_out_mp->b_cont;
2833 pfkey_msg_mp->b_wptr += allocsize;
2835 nextext = (sadb_ext_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg));
2837 if (num_aalgs != 0) {
2838 sasupp_auth = (sadb_supported_t *)nextext;
2839 saalg = (sadb_alg_t *)(sasupp_auth + 1);
2841 ASSERT(((ulong_t)saalg & 0x7) == 0);
2843 numalgs_snap = 0;
2844 for (i = 0;
2845 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs));
2846 i++) {
2847 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
2848 continue;
2850 saalg->sadb_alg_id = authalgs[i]->alg_id;
2851 saalg->sadb_alg_ivlen = 0;
2852 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits;
2853 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits;
2854 saalg->sadb_x_alg_increment =
2855 authalgs[i]->alg_increment;
2856 saalg->sadb_x_alg_saltbits = SADB_8TO1(
2857 authalgs[i]->alg_saltlen);
2858 numalgs_snap++;
2859 saalg++;
2861 ASSERT(numalgs_snap == num_aalgs);
2862 #ifdef DEBUG
2864 * Reality check to make sure I snagged all of the
2865 * algorithms.
2867 for (; i < IPSEC_MAX_ALGS; i++) {
2868 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) {
2869 cmn_err(CE_PANIC, "esp_register_out()! "
2870 "Missed aalg #%d.\n", i);
2873 #endif /* DEBUG */
2874 nextext = (sadb_ext_t *)saalg;
2877 if (num_ealgs != 0) {
2878 sasupp_encr = (sadb_supported_t *)nextext;
2879 saalg = (sadb_alg_t *)(sasupp_encr + 1);
2881 numalgs_snap = 0;
2882 for (i = 0;
2883 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) {
2884 if (encralgs[i] == NULL || !ALG_VALID(encralgs[i]))
2885 continue;
2886 saalg->sadb_alg_id = encralgs[i]->alg_id;
2887 saalg->sadb_alg_ivlen = encralgs[i]->alg_ivlen;
2888 saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits;
2889 saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits;
2891 * We could advertise the ICV length, except there
2892 * is not a value in sadb_x_algb to do this.
2893 * saalg->sadb_alg_maclen = encralgs[i]->alg_maclen;
2895 saalg->sadb_x_alg_increment =
2896 encralgs[i]->alg_increment;
2897 saalg->sadb_x_alg_saltbits =
2898 SADB_8TO1(encralgs[i]->alg_saltlen);
2900 numalgs_snap++;
2901 saalg++;
2903 ASSERT(numalgs_snap == num_ealgs);
2904 #ifdef DEBUG
2906 * Reality check to make sure I snagged all of the
2907 * algorithms.
2909 for (; i < IPSEC_MAX_ALGS; i++) {
2910 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) {
2911 cmn_err(CE_PANIC, "esp_register_out()! "
2912 "Missed ealg #%d.\n", i);
2915 #endif /* DEBUG */
2916 nextext = (sadb_ext_t *)saalg;
2919 current_aalgs = num_aalgs;
2920 current_ealgs = num_ealgs;
2922 rw_exit(&ipss->ipsec_alg_lock);
2924 if (sens_tsl != NULL) {
2925 sens = (sadb_sens_t *)nextext;
2926 sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY,
2927 sens_tsl, sens_len);
2929 nextext = (sadb_ext_t *)(((uint8_t *)sens) + sens_len);
2932 /* Now fill the rest of the SADB_REGISTER message. */
2934 samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr;
2935 samsg->sadb_msg_version = PF_KEY_V2;
2936 samsg->sadb_msg_type = SADB_REGISTER;
2937 samsg->sadb_msg_errno = 0;
2938 samsg->sadb_msg_satype = SADB_SATYPE_ESP;
2939 samsg->sadb_msg_len = SADB_8TO64(allocsize);
2940 samsg->sadb_msg_reserved = 0;
2942 * Assume caller has sufficient sequence/pid number info. If it's one
2943 * from me over a new alg., I could give two hoots about sequence.
2945 samsg->sadb_msg_seq = sequence;
2946 samsg->sadb_msg_pid = pid;
2948 if (sasupp_auth != NULL) {
2949 sasupp_auth->sadb_supported_len = SADB_8TO64(
2950 sizeof (*sasupp_auth) + sizeof (*saalg) * current_aalgs);
2951 sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
2952 sasupp_auth->sadb_supported_reserved = 0;
2955 if (sasupp_encr != NULL) {
2956 sasupp_encr->sadb_supported_len = SADB_8TO64(
2957 sizeof (*sasupp_encr) + sizeof (*saalg) * current_ealgs);
2958 sasupp_encr->sadb_supported_exttype =
2959 SADB_EXT_SUPPORTED_ENCRYPT;
2960 sasupp_encr->sadb_supported_reserved = 0;
2963 if (espstack->esp_pfkey_q != NULL)
2964 putnext(espstack->esp_pfkey_q, keysock_out_mp);
2965 else {
2966 freemsg(keysock_out_mp);
2967 return (B_FALSE);
2970 return (B_TRUE);
2974 * Invoked when the algorithm table changes. Causes SADB_REGISTER
2975 * messages continaining the current list of algorithms to be
2976 * sent up to the ESP listeners.
2978 void
2979 ipsecesp_algs_changed(netstack_t *ns)
2981 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2984 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners
2985 * everywhere. (The function itself checks for NULL esp_pfkey_q.)
2987 (void) esp_register_out(0, 0, 0, espstack, NULL);
2991 * Stub function that taskq_dispatch() invokes to take the mblk (in arg)
2992 * and send() it into ESP and IP again.
2994 static void
2995 inbound_task(void *arg)
2997 mblk_t *mp = (mblk_t *)arg;
2998 mblk_t *async_mp;
2999 ip_recv_attr_t iras;
3001 async_mp = mp;
3002 mp = async_mp->b_cont;
3003 async_mp->b_cont = NULL;
3004 if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
3005 /* The ill or ip_stack_t disappeared on us */
3006 ip_drop_input("ip_recv_attr_from_mblk", mp, NULL);
3007 freemsg(mp);
3008 goto done;
3011 esp_inbound_restart(mp, &iras);
3012 done:
3013 ira_cleanup(&iras, B_TRUE);
3017 * Restart ESP after the SA has been added.
3019 static void
3020 esp_inbound_restart(mblk_t *mp, ip_recv_attr_t *ira)
3022 esph_t *esph;
3023 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
3024 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3026 esp2dbg(espstack, ("in ESP inbound_task"));
3027 ASSERT(espstack != NULL);
3029 mp = ipsec_inbound_esp_sa(mp, ira, &esph);
3030 if (mp == NULL)
3031 return;
3033 ASSERT(esph != NULL);
3034 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
3035 ASSERT(ira->ira_ipsec_esp_sa != NULL);
3037 mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph, ira);
3038 if (mp == NULL) {
3040 * Either it failed or is pending. In the former case
3041 * ipIfStatsInDiscards was increased.
3043 return;
3046 ip_input_post_ipsec(mp, ira);
3050 * Now that weak-key passed, actually ADD the security association, and
3051 * send back a reply ADD message.
3053 static int
3054 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi,
3055 int *diagnostic, ipsecesp_stack_t *espstack)
3057 isaf_t *primary = NULL, *secondary;
3058 boolean_t clone = B_FALSE, is_inbound = B_FALSE;
3059 ipsa_t *larval = NULL;
3060 ipsacq_t *acqrec;
3061 iacqf_t *acq_bucket;
3062 mblk_t *acq_msgs = NULL;
3063 int rc;
3064 mblk_t *lpkt;
3065 int error;
3066 ipsa_query_t sq;
3067 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
3070 * Locate the appropriate table(s).
3072 sq.spp = &espstack->esp_sadb; /* XXX */
3073 error = sadb_form_query(ksi, IPSA_Q_SA|IPSA_Q_DST,
3074 IPSA_Q_SA|IPSA_Q_DST|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND,
3075 &sq, diagnostic);
3076 if (error)
3077 return (error);
3080 * Use the direction flags provided by the KMD to determine
3081 * if the inbound or outbound table should be the primary
3082 * for this SA. If these flags were absent then make this
3083 * decision based on the addresses.
3085 if (sq.assoc->sadb_sa_flags & IPSA_F_INBOUND) {
3086 primary = sq.inbound;
3087 secondary = sq.outbound;
3088 is_inbound = B_TRUE;
3089 if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND)
3090 clone = B_TRUE;
3091 } else if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND) {
3092 primary = sq.outbound;
3093 secondary = sq.inbound;
3096 if (primary == NULL) {
3098 * The KMD did not set a direction flag, determine which
3099 * table to insert the SA into based on addresses.
3101 switch (ksi->ks_in_dsttype) {
3102 case KS_IN_ADDR_MBCAST:
3103 clone = B_TRUE; /* All mcast SAs can be bidirectional */
3104 sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3105 /* FALLTHRU */
3107 * If the source address is either one of mine, or unspecified
3108 * (which is best summed up by saying "not 'not mine'"),
3109 * then the association is potentially bi-directional,
3110 * in that it can be used for inbound traffic and outbound
3111 * traffic. The best example of such an SA is a multicast
3112 * SA (which allows me to receive the outbound traffic).
3114 case KS_IN_ADDR_ME:
3115 sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3116 primary = sq.inbound;
3117 secondary = sq.outbound;
3118 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
3119 clone = B_TRUE;
3120 is_inbound = B_TRUE;
3121 break;
3123 * If the source address literally not mine (either
3124 * unspecified or not mine), then this SA may have an
3125 * address that WILL be mine after some configuration.
3126 * We pay the price for this by making it a bi-directional
3127 * SA.
3129 case KS_IN_ADDR_NOTME:
3130 sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3131 primary = sq.outbound;
3132 secondary = sq.inbound;
3133 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) {
3134 sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3135 clone = B_TRUE;
3137 break;
3138 default:
3139 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
3140 return (EINVAL);
3145 * Find a ACQUIRE list entry if possible. If we've added an SA that
3146 * suits the needs of an ACQUIRE list entry, we can eliminate the
3147 * ACQUIRE list entry and transmit the enqueued packets. Use the
3148 * high-bit of the sequence number to queue it. Key off destination
3149 * addr, and change acqrec's state.
3152 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
3153 acq_bucket = &(sq.sp->sdb_acq[sq.outhash]);
3154 mutex_enter(&acq_bucket->iacqf_lock);
3155 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
3156 acqrec = acqrec->ipsacq_next) {
3157 mutex_enter(&acqrec->ipsacq_lock);
3159 * Q: I only check sequence. Should I check dst?
3160 * A: Yes, check dest because those are the packets
3161 * that are queued up.
3163 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
3164 IPSA_ARE_ADDR_EQUAL(sq.dstaddr,
3165 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
3166 break;
3167 mutex_exit(&acqrec->ipsacq_lock);
3169 if (acqrec != NULL) {
3171 * AHA! I found an ACQUIRE record for this SA.
3172 * Grab the msg list, and free the acquire record.
3173 * I already am holding the lock for this record,
3174 * so all I have to do is free it.
3176 acq_msgs = acqrec->ipsacq_mp;
3177 acqrec->ipsacq_mp = NULL;
3178 mutex_exit(&acqrec->ipsacq_lock);
3179 sadb_destroy_acquire(acqrec,
3180 espstack->ipsecesp_netstack);
3182 mutex_exit(&acq_bucket->iacqf_lock);
3186 * Find PF_KEY message, and see if I'm an update. If so, find entry
3187 * in larval list (if there).
3189 if (samsg->sadb_msg_type == SADB_UPDATE) {
3190 mutex_enter(&sq.inbound->isaf_lock);
3191 larval = ipsec_getassocbyspi(sq.inbound, sq.assoc->sadb_sa_spi,
3192 ALL_ZEROES_PTR, sq.dstaddr, sq.dst->sin_family);
3193 mutex_exit(&sq.inbound->isaf_lock);
3195 if ((larval == NULL) ||
3196 (larval->ipsa_state != IPSA_STATE_LARVAL)) {
3197 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
3198 if (larval != NULL) {
3199 IPSA_REFRELE(larval);
3201 esp0dbg(("Larval update, but larval disappeared.\n"));
3202 return (ESRCH);
3203 } /* Else sadb_common_add unlinks it for me! */
3206 if (larval != NULL) {
3208 * Hold again, because sadb_common_add() consumes a reference,
3209 * and we don't want to clear_lpkt() without a reference.
3211 IPSA_REFHOLD(larval);
3214 rc = sadb_common_add(espstack->esp_pfkey_q,
3215 mp, samsg, ksi, primary, secondary, larval, clone, is_inbound,
3216 diagnostic, espstack->ipsecesp_netstack, &espstack->esp_sadb);
3218 if (larval != NULL) {
3219 if (rc == 0) {
3220 lpkt = sadb_clear_lpkt(larval);
3221 if (lpkt != NULL) {
3222 rc = !taskq_dispatch(esp_taskq, inbound_task,
3223 lpkt, TQ_NOSLEEP);
3226 IPSA_REFRELE(larval);
3230 * How much more stack will I create with all of these
3231 * esp_outbound() calls?
3234 /* Handle the packets queued waiting for the SA */
3235 while (acq_msgs != NULL) {
3236 mblk_t *asyncmp;
3237 mblk_t *data_mp;
3238 ip_xmit_attr_t ixas;
3239 ill_t *ill;
3241 asyncmp = acq_msgs;
3242 acq_msgs = acq_msgs->b_next;
3243 asyncmp->b_next = NULL;
3246 * Extract the ip_xmit_attr_t from the first mblk.
3247 * Verifies that the netstack and ill is still around; could
3248 * have vanished while iked was doing its work.
3249 * On succesful return we have a nce_t and the ill/ipst can't
3250 * disappear until we do the nce_refrele in ixa_cleanup.
3252 data_mp = asyncmp->b_cont;
3253 asyncmp->b_cont = NULL;
3254 if (!ip_xmit_attr_from_mblk(asyncmp, &ixas)) {
3255 ESP_BUMP_STAT(espstack, out_discards);
3256 ip_drop_packet(data_mp, B_FALSE, NULL,
3257 DROPPER(ipss, ipds_sadb_acquire_timeout),
3258 &espstack->esp_dropper);
3259 } else if (rc != 0) {
3260 ill = ixas.ixa_nce->nce_ill;
3261 ESP_BUMP_STAT(espstack, out_discards);
3262 ip_drop_packet(data_mp, B_FALSE, ill,
3263 DROPPER(ipss, ipds_sadb_acquire_timeout),
3264 &espstack->esp_dropper);
3265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3266 } else {
3267 esp_outbound_finish(data_mp, &ixas);
3269 ixa_cleanup(&ixas);
3272 return (rc);
3276 * Process one of the queued messages (from ipsacq_mp) once the SA
3277 * has been added.
3279 static void
3280 esp_outbound_finish(mblk_t *data_mp, ip_xmit_attr_t *ixa)
3282 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
3283 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3284 ipsec_stack_t *ipss = ns->netstack_ipsec;
3285 ill_t *ill = ixa->ixa_nce->nce_ill;
3287 if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_ESP)) {
3288 ESP_BUMP_STAT(espstack, out_discards);
3289 ip_drop_packet(data_mp, B_FALSE, ill,
3290 DROPPER(ipss, ipds_sadb_acquire_timeout),
3291 &espstack->esp_dropper);
3292 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3293 return;
3296 data_mp = esp_outbound(data_mp, ixa);
3297 if (data_mp == NULL)
3298 return;
3300 /* do AH processing if needed */
3301 data_mp = esp_do_outbound_ah(data_mp, ixa);
3302 if (data_mp == NULL)
3303 return;
3305 (void) ip_output_post_ipsec(data_mp, ixa);
3309 * Add new ESP security association. This may become a generic AH/ESP
3310 * routine eventually.
3312 static int
3313 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic, netstack_t *ns)
3315 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3316 sadb_address_t *srcext =
3317 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3318 sadb_address_t *dstext =
3319 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3320 sadb_address_t *isrcext =
3321 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
3322 sadb_address_t *idstext =
3323 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
3324 sadb_address_t *nttext_loc =
3325 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
3326 sadb_address_t *nttext_rem =
3327 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
3328 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3329 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3330 struct sockaddr_in *src, *dst;
3331 struct sockaddr_in *natt_loc, *natt_rem;
3332 struct sockaddr_in6 *natt_loc6, *natt_rem6;
3333 sadb_lifetime_t *soft =
3334 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3335 sadb_lifetime_t *hard =
3336 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3337 sadb_lifetime_t *idle =
3338 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
3339 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3340 ipsec_stack_t *ipss = ns->netstack_ipsec;
3344 /* I need certain extensions present for an ADD message. */
3345 if (srcext == NULL) {
3346 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3347 return (EINVAL);
3349 if (dstext == NULL) {
3350 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3351 return (EINVAL);
3353 if (isrcext == NULL && idstext != NULL) {
3354 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
3355 return (EINVAL);
3357 if (isrcext != NULL && idstext == NULL) {
3358 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
3359 return (EINVAL);
3361 if (assoc == NULL) {
3362 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3363 return (EINVAL);
3365 if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) {
3366 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY;
3367 return (EINVAL);
3370 src = (struct sockaddr_in *)(srcext + 1);
3371 dst = (struct sockaddr_in *)(dstext + 1);
3372 natt_loc = (struct sockaddr_in *)(nttext_loc + 1);
3373 natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1);
3374 natt_rem = (struct sockaddr_in *)(nttext_rem + 1);
3375 natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1);
3377 /* Sundry ADD-specific reality checks. */
3378 /* XXX STATS : Logging/stats here? */
3380 if ((assoc->sadb_sa_state != SADB_SASTATE_MATURE) &&
3381 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) {
3382 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
3383 return (EINVAL);
3385 if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) {
3386 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3387 return (EINVAL);
3390 #ifndef IPSEC_LATENCY_TEST
3391 if (assoc->sadb_sa_encrypt == SADB_EALG_NULL &&
3392 assoc->sadb_sa_auth == SADB_AALG_NONE) {
3393 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3394 return (EINVAL);
3396 #endif
3398 if (assoc->sadb_sa_flags & ~espstack->esp_sadb.s_addflags) {
3399 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3400 return (EINVAL);
3403 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) {
3404 return (EINVAL);
3406 ASSERT(src->sin_family == dst->sin_family);
3408 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) {
3409 if (nttext_loc == NULL) {
3410 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC;
3411 return (EINVAL);
3414 if (natt_loc->sin_family == AF_INET6 &&
3415 !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
3416 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC;
3417 return (EINVAL);
3421 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) {
3422 if (nttext_rem == NULL) {
3423 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM;
3424 return (EINVAL);
3426 if (natt_rem->sin_family == AF_INET6 &&
3427 !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
3428 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM;
3429 return (EINVAL);
3434 /* Stuff I don't support, for now. XXX Diagnostic? */
3435 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL)
3436 return (EOPNOTSUPP);
3438 if ((*diagnostic = sadb_labelchk(ksi)) != 0)
3439 return (EINVAL);
3442 * XXX Policy : I'm not checking identities at this time,
3443 * but if I did, I'd do them here, before I sent
3444 * the weak key check up to the algorithm.
3447 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
3450 * First locate the authentication algorithm.
3452 #ifdef IPSEC_LATENCY_TEST
3453 if (akey != NULL && assoc->sadb_sa_auth != SADB_AALG_NONE) {
3454 #else
3455 if (akey != NULL) {
3456 #endif
3457 ipsec_alginfo_t *aalg;
3459 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
3460 [assoc->sadb_sa_auth];
3461 if (aalg == NULL || !ALG_VALID(aalg)) {
3462 rw_exit(&ipss->ipsec_alg_lock);
3463 esp1dbg(espstack, ("Couldn't find auth alg #%d.\n",
3464 assoc->sadb_sa_auth));
3465 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3466 return (EINVAL);
3470 * Sanity check key sizes.
3471 * Note: It's not possible to use SADB_AALG_NONE because
3472 * this auth_alg is not defined with ALG_FLAG_VALID. If this
3473 * ever changes, the same check for SADB_AALG_NONE and
3474 * a auth_key != NULL should be made here ( see below).
3476 if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) {
3477 rw_exit(&ipss->ipsec_alg_lock);
3478 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
3479 return (EINVAL);
3481 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3483 /* check key and fix parity if needed */
3484 if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE,
3485 diagnostic) != 0) {
3486 rw_exit(&ipss->ipsec_alg_lock);
3487 return (EINVAL);
3492 * Then locate the encryption algorithm.
3494 if (ekey != NULL) {
3495 uint_t keybits;
3496 ipsec_alginfo_t *ealg;
3498 ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
3499 [assoc->sadb_sa_encrypt];
3500 if (ealg == NULL || !ALG_VALID(ealg)) {
3501 rw_exit(&ipss->ipsec_alg_lock);
3502 esp1dbg(espstack, ("Couldn't find encr alg #%d.\n",
3503 assoc->sadb_sa_encrypt));
3504 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3505 return (EINVAL);
3509 * Sanity check key sizes. If the encryption algorithm is
3510 * SADB_EALG_NULL but the encryption key is NOT
3511 * NULL then complain.
3513 * The keying material includes salt bits if required by
3514 * algorithm and optionally the Initial IV, check the
3515 * length of whats left.
3517 keybits = ekey->sadb_key_bits;
3518 keybits -= ekey->sadb_key_reserved;
3519 keybits -= SADB_8TO1(ealg->alg_saltlen);
3520 if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) ||
3521 (!ipsec_valid_key_size(keybits, ealg))) {
3522 rw_exit(&ipss->ipsec_alg_lock);
3523 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
3524 return (EINVAL);
3526 ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3528 /* check key */
3529 if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE,
3530 diagnostic) != 0) {
3531 rw_exit(&ipss->ipsec_alg_lock);
3532 return (EINVAL);
3535 rw_exit(&ipss->ipsec_alg_lock);
3537 return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
3538 diagnostic, espstack));
3542 * Update a security association. Updates come in two varieties. The first
3543 * is an update of lifetimes on a non-larval SA. The second is an update of
3544 * a larval SA, which ends up looking a lot more like an add.
3546 static int
3547 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3548 ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3550 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3551 mblk_t *buf_pkt;
3552 int rcode;
3554 sadb_address_t *dstext =
3555 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3557 if (dstext == NULL) {
3558 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3559 return (EINVAL);
3562 rcode = sadb_update_sa(mp, ksi, &buf_pkt, &espstack->esp_sadb,
3563 diagnostic, espstack->esp_pfkey_q, esp_add_sa,
3564 espstack->ipsecesp_netstack, sadb_msg_type);
3566 if ((assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE) ||
3567 (rcode != 0)) {
3568 return (rcode);
3571 HANDLE_BUF_PKT(esp_taskq, espstack->ipsecesp_netstack->netstack_ipsec,
3572 espstack->esp_dropper, buf_pkt);
3574 return (rcode);
3577 /* XXX refactor me */
3579 * Delete a security association. This is REALLY likely to be code common to
3580 * both AH and ESP. Find the association, then unlink it.
3582 static int
3583 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3584 ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3586 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3587 sadb_address_t *dstext =
3588 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3589 sadb_address_t *srcext =
3590 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3591 struct sockaddr_in *sin;
3593 if (assoc == NULL) {
3594 if (dstext != NULL) {
3595 sin = (struct sockaddr_in *)(dstext + 1);
3596 } else if (srcext != NULL) {
3597 sin = (struct sockaddr_in *)(srcext + 1);
3598 } else {
3599 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3600 return (EINVAL);
3602 return (sadb_purge_sa(mp, ksi,
3603 (sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
3604 &espstack->esp_sadb.s_v4, diagnostic,
3605 espstack->esp_pfkey_q));
3608 return (sadb_delget_sa(mp, ksi, &espstack->esp_sadb, diagnostic,
3609 espstack->esp_pfkey_q, sadb_msg_type));
3612 /* XXX refactor me */
3614 * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP
3615 * messages.
3617 static void
3618 esp_dump(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
3620 int error;
3621 sadb_msg_t *samsg;
3624 * Dump each fanout, bailing if error is non-zero.
3627 error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3628 &espstack->esp_sadb.s_v4);
3629 if (error != 0)
3630 goto bail;
3632 error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3633 &espstack->esp_sadb.s_v6);
3634 bail:
3635 ASSERT(mp->b_cont != NULL);
3636 samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3637 samsg->sadb_msg_errno = (uint8_t)error;
3638 sadb_pfkey_echo(espstack->esp_pfkey_q, mp,
3639 (sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL);
3643 * First-cut reality check for an inbound PF_KEY message.
3645 static boolean_t
3646 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi,
3647 ipsecesp_stack_t *espstack)
3649 int diagnostic;
3651 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
3652 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
3653 goto badmsg;
3655 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
3656 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
3657 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
3658 goto badmsg;
3660 return (B_FALSE); /* False ==> no failures */
3662 badmsg:
3663 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
3664 ksi->ks_in_serial);
3665 return (B_TRUE); /* True ==> failures */
3669 * ESP parsing of PF_KEY messages. Keysock did most of the really silly
3670 * error cases. What I receive is a fully-formed, syntactically legal
3671 * PF_KEY message. I then need to check semantics...
3673 * This code may become common to AH and ESP. Stay tuned.
3675 * I also make the assumption that db_ref's are cool. If this assumption
3676 * is wrong, this means that someone other than keysock or me has been
3677 * mucking with PF_KEY messages.
3679 static void
3680 esp_parse_pfkey(mblk_t *mp, ipsecesp_stack_t *espstack)
3682 mblk_t *msg = mp->b_cont;
3683 sadb_msg_t *samsg;
3684 keysock_in_t *ksi;
3685 int error;
3686 int diagnostic = SADB_X_DIAGNOSTIC_NONE;
3688 ASSERT(msg != NULL);
3690 samsg = (sadb_msg_t *)msg->b_rptr;
3691 ksi = (keysock_in_t *)mp->b_rptr;
3694 * If applicable, convert unspecified AF_INET6 to unspecified
3695 * AF_INET. And do other address reality checks.
3697 if (!sadb_addrfix(ksi, espstack->esp_pfkey_q, mp,
3698 espstack->ipsecesp_netstack) ||
3699 esp_pfkey_reality_failures(mp, ksi, espstack)) {
3700 return;
3703 switch (samsg->sadb_msg_type) {
3704 case SADB_ADD:
3705 error = esp_add_sa(mp, ksi, &diagnostic,
3706 espstack->ipsecesp_netstack);
3707 if (error != 0) {
3708 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3709 diagnostic, ksi->ks_in_serial);
3711 /* else esp_add_sa() took care of things. */
3712 break;
3713 case SADB_DELETE:
3714 case SADB_X_DELPAIR:
3715 case SADB_X_DELPAIR_STATE:
3716 error = esp_del_sa(mp, ksi, &diagnostic, espstack,
3717 samsg->sadb_msg_type);
3718 if (error != 0) {
3719 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3720 diagnostic, ksi->ks_in_serial);
3722 /* Else esp_del_sa() took care of things. */
3723 break;
3724 case SADB_GET:
3725 error = sadb_delget_sa(mp, ksi, &espstack->esp_sadb,
3726 &diagnostic, espstack->esp_pfkey_q, samsg->sadb_msg_type);
3727 if (error != 0) {
3728 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3729 diagnostic, ksi->ks_in_serial);
3731 /* Else sadb_get_sa() took care of things. */
3732 break;
3733 case SADB_FLUSH:
3734 sadbp_flush(&espstack->esp_sadb, espstack->ipsecesp_netstack);
3735 sadb_pfkey_echo(espstack->esp_pfkey_q, mp, samsg, ksi, NULL);
3736 break;
3737 case SADB_REGISTER:
3739 * Hmmm, let's do it! Check for extensions (there should
3740 * be none), extract the fields, call esp_register_out(),
3741 * then either free or report an error.
3743 * Keysock takes care of the PF_KEY bookkeeping for this.
3745 if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
3746 ksi->ks_in_serial, espstack, msg_getcred(mp, NULL))) {
3747 freemsg(mp);
3748 } else {
3750 * Only way this path hits is if there is a memory
3751 * failure. It will not return B_FALSE because of
3752 * lack of esp_pfkey_q if I am in wput().
3754 sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM,
3755 diagnostic, ksi->ks_in_serial);
3757 break;
3758 case SADB_UPDATE:
3759 case SADB_X_UPDATEPAIR:
3761 * Find a larval, if not there, find a full one and get
3762 * strict.
3764 error = esp_update_sa(mp, ksi, &diagnostic, espstack,
3765 samsg->sadb_msg_type);
3766 if (error != 0) {
3767 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3768 diagnostic, ksi->ks_in_serial);
3770 /* else esp_update_sa() took care of things. */
3771 break;
3772 case SADB_GETSPI:
3774 * Reserve a new larval entry.
3776 esp_getspi(mp, ksi, espstack);
3777 break;
3778 case SADB_ACQUIRE:
3780 * Find larval and/or ACQUIRE record and kill it (them), I'm
3781 * most likely an error. Inbound ACQUIRE messages should only
3782 * have the base header.
3784 sadb_in_acquire(samsg, &espstack->esp_sadb,
3785 espstack->esp_pfkey_q, espstack->ipsecesp_netstack);
3786 freemsg(mp);
3787 break;
3788 case SADB_DUMP:
3790 * Dump all entries.
3792 esp_dump(mp, ksi, espstack);
3793 /* esp_dump will take care of the return message, etc. */
3794 break;
3795 case SADB_EXPIRE:
3796 /* Should never reach me. */
3797 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EOPNOTSUPP,
3798 diagnostic, ksi->ks_in_serial);
3799 break;
3800 default:
3801 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL,
3802 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
3803 break;
3808 * Handle case where PF_KEY says it can't find a keysock for one of my
3809 * ACQUIRE messages.
3811 static void
3812 esp_keysock_no_socket(mblk_t *mp, ipsecesp_stack_t *espstack)
3814 sadb_msg_t *samsg;
3815 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
3817 if (mp->b_cont == NULL) {
3818 freemsg(mp);
3819 return;
3821 samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3824 * If keysock can't find any registered, delete the acquire record
3825 * immediately, and handle errors.
3827 if (samsg->sadb_msg_type == SADB_ACQUIRE) {
3828 samsg->sadb_msg_errno = kse->ks_err_errno;
3829 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
3831 * Use the write-side of the esp_pfkey_q
3833 sadb_in_acquire(samsg, &espstack->esp_sadb,
3834 WR(espstack->esp_pfkey_q), espstack->ipsecesp_netstack);
3837 freemsg(mp);
3841 * ESP module write put routine.
3843 static void
3844 ipsecesp_wput(queue_t *q, mblk_t *mp)
3846 ipsec_info_t *ii;
3847 struct iocblk *iocp;
3848 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
3850 esp3dbg(espstack, ("In esp_wput().\n"));
3852 /* NOTE: Each case must take care of freeing or passing mp. */
3853 switch (mp->b_datap->db_type) {
3854 case M_CTL:
3855 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
3856 /* Not big enough message. */
3857 freemsg(mp);
3858 break;
3860 ii = (ipsec_info_t *)mp->b_rptr;
3862 switch (ii->ipsec_info_type) {
3863 case KEYSOCK_OUT_ERR:
3864 esp1dbg(espstack, ("Got KEYSOCK_OUT_ERR message.\n"));
3865 esp_keysock_no_socket(mp, espstack);
3866 break;
3867 case KEYSOCK_IN:
3868 ESP_BUMP_STAT(espstack, keysock_in);
3869 esp3dbg(espstack, ("Got KEYSOCK_IN message.\n"));
3871 /* Parse the message. */
3872 esp_parse_pfkey(mp, espstack);
3873 break;
3874 case KEYSOCK_HELLO:
3875 sadb_keysock_hello(&espstack->esp_pfkey_q, q, mp,
3876 esp_ager, (void *)espstack, &espstack->esp_event,
3877 SADB_SATYPE_ESP);
3878 break;
3879 default:
3880 esp2dbg(espstack, ("Got M_CTL from above of 0x%x.\n",
3881 ii->ipsec_info_type));
3882 freemsg(mp);
3883 break;
3885 break;
3886 case M_IOCTL:
3887 iocp = (struct iocblk *)mp->b_rptr;
3888 switch (iocp->ioc_cmd) {
3889 case ND_SET:
3890 case ND_GET:
3891 if (nd_getset(q, espstack->ipsecesp_g_nd, mp)) {
3892 qreply(q, mp);
3893 return;
3894 } else {
3895 iocp->ioc_error = ENOENT;
3897 /* FALLTHRU */
3898 default:
3899 /* We really don't support any other ioctls, do we? */
3901 /* Return EINVAL */
3902 if (iocp->ioc_error != ENOENT)
3903 iocp->ioc_error = EINVAL;
3904 iocp->ioc_count = 0;
3905 mp->b_datap->db_type = M_IOCACK;
3906 qreply(q, mp);
3907 return;
3909 default:
3910 esp3dbg(espstack,
3911 ("Got default message, type %d, passing to IP.\n",
3912 mp->b_datap->db_type));
3913 putnext(q, mp);
3918 * Wrapper to allow IP to trigger an ESP association failure message
3919 * during inbound SA selection.
3921 void
3922 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
3923 uint32_t spi, void *addr, int af, ip_recv_attr_t *ira)
3925 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
3926 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3927 ipsec_stack_t *ipss = ns->netstack_ipsec;
3929 if (espstack->ipsecesp_log_unknown_spi) {
3930 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
3931 addr, af, espstack->ipsecesp_netstack);
3934 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
3935 DROPPER(ipss, ipds_esp_no_sa),
3936 &espstack->esp_dropper);
3940 * Initialize the ESP input and output processing functions.
3942 void
3943 ipsecesp_init_funcs(ipsa_t *sa)
3945 if (sa->ipsa_output_func == NULL)
3946 sa->ipsa_output_func = esp_outbound;
3947 if (sa->ipsa_input_func == NULL)
3948 sa->ipsa_input_func = esp_inbound;