Merge commit 'b4bf0cf0458759c67920a031021a9d96cd683cfe'
[unleashed.git] / kernel / fs / zfs / vdev.c
blobb06792aa129c9591bc26c42a7e8db09312a46bba
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 #include <sys/vdev_initialize.h>
55 * Virtual device management.
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 &vdev_indirect_ops,
69 NULL
72 /* maximum scrub/resilver I/O queue per leaf vdev */
73 int zfs_scrub_limit = 10;
75 /* target number of metaslabs per top-level vdev */
76 int vdev_max_ms_count = 200;
78 /* minimum number of metaslabs per top-level vdev */
79 int vdev_min_ms_count = 16;
81 /* practical upper limit of total metaslabs per top-level vdev */
82 int vdev_ms_count_limit = 1ULL << 17;
84 /* lower limit for metaslab size (512M) */
85 int vdev_default_ms_shift = 29;
87 /* upper limit for metaslab size (256G) */
88 int vdev_max_ms_shift = 38;
90 boolean_t vdev_validate_skip = B_FALSE;
93 * Since the DTL space map of a vdev is not expected to have a lot of
94 * entries, we default its block size to 4K.
96 int vdev_dtl_sm_blksz = (1 << 12);
99 * vdev-wide space maps that have lots of entries written to them at
100 * the end of each transaction can benefit from a higher I/O bandwidth
101 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103 int vdev_standard_sm_blksz = (1 << 17);
105 int zfs_ashift_min;
107 /*PRINTFLIKE2*/
108 void
109 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
111 va_list adx;
112 char buf[256];
114 va_start(adx, fmt);
115 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
116 va_end(adx);
118 if (vd->vdev_path != NULL) {
119 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
120 vd->vdev_path, buf);
121 } else {
122 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
123 vd->vdev_ops->vdev_op_type,
124 (u_longlong_t)vd->vdev_id,
125 (u_longlong_t)vd->vdev_guid, buf);
129 void
130 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
132 char state[20];
134 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
135 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
136 vd->vdev_ops->vdev_op_type);
137 return;
140 switch (vd->vdev_state) {
141 case VDEV_STATE_UNKNOWN:
142 (void) snprintf(state, sizeof (state), "unknown");
143 break;
144 case VDEV_STATE_CLOSED:
145 (void) snprintf(state, sizeof (state), "closed");
146 break;
147 case VDEV_STATE_OFFLINE:
148 (void) snprintf(state, sizeof (state), "offline");
149 break;
150 case VDEV_STATE_REMOVED:
151 (void) snprintf(state, sizeof (state), "removed");
152 break;
153 case VDEV_STATE_CANT_OPEN:
154 (void) snprintf(state, sizeof (state), "can't open");
155 break;
156 case VDEV_STATE_FAULTED:
157 (void) snprintf(state, sizeof (state), "faulted");
158 break;
159 case VDEV_STATE_DEGRADED:
160 (void) snprintf(state, sizeof (state), "degraded");
161 break;
162 case VDEV_STATE_HEALTHY:
163 (void) snprintf(state, sizeof (state), "healthy");
164 break;
165 default:
166 (void) snprintf(state, sizeof (state), "<state %u>",
167 (uint_t)vd->vdev_state);
170 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
171 "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
172 vd->vdev_islog ? " (log)" : "",
173 (u_longlong_t)vd->vdev_guid,
174 vd->vdev_path ? vd->vdev_path : "N/A", state);
176 for (uint64_t i = 0; i < vd->vdev_children; i++)
177 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
181 * Given a vdev type, return the appropriate ops vector.
183 static vdev_ops_t *
184 vdev_getops(const char *type)
186 vdev_ops_t *ops, **opspp;
188 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
189 if (strcmp(ops->vdev_op_type, type) == 0)
190 break;
192 return (ops);
195 /* ARGSUSED */
196 void
197 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
199 res->rs_start = in->rs_start;
200 res->rs_end = in->rs_end;
204 * Default asize function: return the MAX of psize with the asize of
205 * all children. This is what's used by anything other than RAID-Z.
207 uint64_t
208 vdev_default_asize(vdev_t *vd, uint64_t psize)
210 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
211 uint64_t csize;
213 for (int c = 0; c < vd->vdev_children; c++) {
214 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
215 asize = MAX(asize, csize);
218 return (asize);
222 * Get the minimum allocatable size. We define the allocatable size as
223 * the vdev's asize rounded to the nearest metaslab. This allows us to
224 * replace or attach devices which don't have the same physical size but
225 * can still satisfy the same number of allocations.
227 uint64_t
228 vdev_get_min_asize(vdev_t *vd)
230 vdev_t *pvd = vd->vdev_parent;
233 * If our parent is NULL (inactive spare or cache) or is the root,
234 * just return our own asize.
236 if (pvd == NULL)
237 return (vd->vdev_asize);
240 * The top-level vdev just returns the allocatable size rounded
241 * to the nearest metaslab.
243 if (vd == vd->vdev_top)
244 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
247 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
248 * so each child must provide at least 1/Nth of its asize.
250 if (pvd->vdev_ops == &vdev_raidz_ops)
251 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
252 pvd->vdev_children);
254 return (pvd->vdev_min_asize);
257 void
258 vdev_set_min_asize(vdev_t *vd)
260 vd->vdev_min_asize = vdev_get_min_asize(vd);
262 for (int c = 0; c < vd->vdev_children; c++)
263 vdev_set_min_asize(vd->vdev_child[c]);
266 vdev_t *
267 vdev_lookup_top(spa_t *spa, uint64_t vdev)
269 vdev_t *rvd = spa->spa_root_vdev;
271 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
273 if (vdev < rvd->vdev_children) {
274 ASSERT(rvd->vdev_child[vdev] != NULL);
275 return (rvd->vdev_child[vdev]);
278 return (NULL);
281 vdev_t *
282 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
284 vdev_t *mvd;
286 if (vd->vdev_guid == guid)
287 return (vd);
289 for (int c = 0; c < vd->vdev_children; c++)
290 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
291 NULL)
292 return (mvd);
294 return (NULL);
297 static int
298 vdev_count_leaves_impl(vdev_t *vd)
300 int n = 0;
302 if (vd->vdev_ops->vdev_op_leaf)
303 return (1);
305 for (int c = 0; c < vd->vdev_children; c++)
306 n += vdev_count_leaves_impl(vd->vdev_child[c]);
308 return (n);
312 vdev_count_leaves(spa_t *spa)
314 return (vdev_count_leaves_impl(spa->spa_root_vdev));
317 void
318 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
320 size_t oldsize, newsize;
321 uint64_t id = cvd->vdev_id;
322 vdev_t **newchild;
323 spa_t *spa = cvd->vdev_spa;
325 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
326 ASSERT(cvd->vdev_parent == NULL);
328 cvd->vdev_parent = pvd;
330 if (pvd == NULL)
331 return;
333 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
335 oldsize = pvd->vdev_children * sizeof (vdev_t *);
336 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
337 newsize = pvd->vdev_children * sizeof (vdev_t *);
339 newchild = kmem_zalloc(newsize, KM_SLEEP);
340 if (pvd->vdev_child != NULL) {
341 bcopy(pvd->vdev_child, newchild, oldsize);
342 kmem_free(pvd->vdev_child, oldsize);
345 pvd->vdev_child = newchild;
346 pvd->vdev_child[id] = cvd;
348 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
349 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
352 * Walk up all ancestors to update guid sum.
354 for (; pvd != NULL; pvd = pvd->vdev_parent)
355 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
358 void
359 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
361 int c;
362 uint_t id = cvd->vdev_id;
364 ASSERT(cvd->vdev_parent == pvd);
366 if (pvd == NULL)
367 return;
369 ASSERT(id < pvd->vdev_children);
370 ASSERT(pvd->vdev_child[id] == cvd);
372 pvd->vdev_child[id] = NULL;
373 cvd->vdev_parent = NULL;
375 for (c = 0; c < pvd->vdev_children; c++)
376 if (pvd->vdev_child[c])
377 break;
379 if (c == pvd->vdev_children) {
380 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
381 pvd->vdev_child = NULL;
382 pvd->vdev_children = 0;
386 * Walk up all ancestors to update guid sum.
388 for (; pvd != NULL; pvd = pvd->vdev_parent)
389 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
393 * Remove any holes in the child array.
395 void
396 vdev_compact_children(vdev_t *pvd)
398 vdev_t **newchild, *cvd;
399 int oldc = pvd->vdev_children;
400 int newc;
402 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
404 for (int c = newc = 0; c < oldc; c++)
405 if (pvd->vdev_child[c])
406 newc++;
408 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
410 for (int c = newc = 0; c < oldc; c++) {
411 if ((cvd = pvd->vdev_child[c]) != NULL) {
412 newchild[newc] = cvd;
413 cvd->vdev_id = newc++;
417 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
418 pvd->vdev_child = newchild;
419 pvd->vdev_children = newc;
423 * Allocate and minimally initialize a vdev_t.
425 vdev_t *
426 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
428 vdev_t *vd;
429 vdev_indirect_config_t *vic;
431 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
432 vic = &vd->vdev_indirect_config;
434 if (spa->spa_root_vdev == NULL) {
435 ASSERT(ops == &vdev_root_ops);
436 spa->spa_root_vdev = vd;
437 spa->spa_load_guid = spa_generate_guid(NULL);
440 if (guid == 0 && ops != &vdev_hole_ops) {
441 if (spa->spa_root_vdev == vd) {
443 * The root vdev's guid will also be the pool guid,
444 * which must be unique among all pools.
446 guid = spa_generate_guid(NULL);
447 } else {
449 * Any other vdev's guid must be unique within the pool.
451 guid = spa_generate_guid(spa);
453 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
456 vd->vdev_spa = spa;
457 vd->vdev_id = id;
458 vd->vdev_guid = guid;
459 vd->vdev_guid_sum = guid;
460 vd->vdev_ops = ops;
461 vd->vdev_state = VDEV_STATE_CLOSED;
462 vd->vdev_ishole = (ops == &vdev_hole_ops);
463 vic->vic_prev_indirect_vdev = UINT64_MAX;
465 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
466 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
467 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
469 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
470 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
471 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
472 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
473 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
474 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
475 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
476 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
478 for (int t = 0; t < DTL_TYPES; t++) {
479 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
481 txg_list_create(&vd->vdev_ms_list, spa,
482 offsetof(struct metaslab, ms_txg_node));
483 txg_list_create(&vd->vdev_dtl_list, spa,
484 offsetof(struct vdev, vdev_dtl_node));
485 vd->vdev_stat.vs_timestamp = gethrtime();
486 vdev_queue_init(vd);
487 vdev_cache_init(vd);
489 return (vd);
493 * Allocate a new vdev. The 'alloctype' is used to control whether we are
494 * creating a new vdev or loading an existing one - the behavior is slightly
495 * different for each case.
498 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
499 int alloctype)
501 vdev_ops_t *ops;
502 char *type;
503 uint64_t guid = 0, islog, nparity;
504 vdev_t *vd;
505 vdev_indirect_config_t *vic;
507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
509 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
510 return (SET_ERROR(EINVAL));
512 if ((ops = vdev_getops(type)) == NULL)
513 return (SET_ERROR(EINVAL));
516 * If this is a load, get the vdev guid from the nvlist.
517 * Otherwise, vdev_alloc_common() will generate one for us.
519 if (alloctype == VDEV_ALLOC_LOAD) {
520 uint64_t label_id;
522 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
523 label_id != id)
524 return (SET_ERROR(EINVAL));
526 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
527 return (SET_ERROR(EINVAL));
528 } else if (alloctype == VDEV_ALLOC_SPARE) {
529 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
530 return (SET_ERROR(EINVAL));
531 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
532 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
533 return (SET_ERROR(EINVAL));
534 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
535 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
536 return (SET_ERROR(EINVAL));
540 * The first allocated vdev must be of type 'root'.
542 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
543 return (SET_ERROR(EINVAL));
546 * Determine whether we're a log vdev.
548 islog = 0;
549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
550 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
551 return (SET_ERROR(ENOTSUP));
553 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
554 return (SET_ERROR(ENOTSUP));
557 * Set the nparity property for RAID-Z vdevs.
559 nparity = -1ULL;
560 if (ops == &vdev_raidz_ops) {
561 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
562 &nparity) == 0) {
563 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
564 return (SET_ERROR(EINVAL));
566 * Previous versions could only support 1 or 2 parity
567 * device.
569 if (nparity > 1 &&
570 spa_version(spa) < SPA_VERSION_RAIDZ2)
571 return (SET_ERROR(ENOTSUP));
572 if (nparity > 2 &&
573 spa_version(spa) < SPA_VERSION_RAIDZ3)
574 return (SET_ERROR(ENOTSUP));
575 } else {
577 * We require the parity to be specified for SPAs that
578 * support multiple parity levels.
580 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
581 return (SET_ERROR(EINVAL));
583 * Otherwise, we default to 1 parity device for RAID-Z.
585 nparity = 1;
587 } else {
588 nparity = 0;
590 ASSERT(nparity != -1ULL);
592 vd = vdev_alloc_common(spa, id, guid, ops);
593 vic = &vd->vdev_indirect_config;
595 vd->vdev_islog = islog;
596 vd->vdev_nparity = nparity;
598 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
599 vd->vdev_path = spa_strdup(vd->vdev_path);
600 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
601 vd->vdev_devid = spa_strdup(vd->vdev_devid);
602 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
603 &vd->vdev_physpath) == 0)
604 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
605 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
606 vd->vdev_fru = spa_strdup(vd->vdev_fru);
609 * Set the whole_disk property. If it's not specified, leave the value
610 * as -1.
612 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
613 &vd->vdev_wholedisk) != 0)
614 vd->vdev_wholedisk = -1ULL;
616 ASSERT0(vic->vic_mapping_object);
617 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
618 &vic->vic_mapping_object);
619 ASSERT0(vic->vic_births_object);
620 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
621 &vic->vic_births_object);
622 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
623 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
624 &vic->vic_prev_indirect_vdev);
627 * Look for the 'not present' flag. This will only be set if the device
628 * was not present at the time of import.
630 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
631 &vd->vdev_not_present);
634 * Get the alignment requirement.
636 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
639 * Retrieve the vdev creation time.
641 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
642 &vd->vdev_crtxg);
645 * If we're a top-level vdev, try to load the allocation parameters.
647 if (parent && !parent->vdev_parent &&
648 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
649 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
650 &vd->vdev_ms_array);
651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
652 &vd->vdev_ms_shift);
653 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
654 &vd->vdev_asize);
655 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
656 &vd->vdev_removing);
657 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
658 &vd->vdev_top_zap);
659 } else {
660 ASSERT0(vd->vdev_top_zap);
663 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
664 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
665 alloctype == VDEV_ALLOC_ADD ||
666 alloctype == VDEV_ALLOC_SPLIT ||
667 alloctype == VDEV_ALLOC_ROOTPOOL);
668 vd->vdev_mg = metaslab_group_create(islog ?
669 spa_log_class(spa) : spa_normal_class(spa), vd,
670 spa->spa_alloc_count);
673 if (vd->vdev_ops->vdev_op_leaf &&
674 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
675 (void) nvlist_lookup_uint64(nv,
676 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
677 } else {
678 ASSERT0(vd->vdev_leaf_zap);
682 * If we're a leaf vdev, try to load the DTL object and other state.
685 if (vd->vdev_ops->vdev_op_leaf &&
686 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
687 alloctype == VDEV_ALLOC_ROOTPOOL)) {
688 if (alloctype == VDEV_ALLOC_LOAD) {
689 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
690 &vd->vdev_dtl_object);
691 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
692 &vd->vdev_unspare);
695 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
696 uint64_t spare = 0;
698 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
699 &spare) == 0 && spare)
700 spa_spare_add(vd);
703 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
704 &vd->vdev_offline);
706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
707 &vd->vdev_resilver_txg);
710 * When importing a pool, we want to ignore the persistent fault
711 * state, as the diagnosis made on another system may not be
712 * valid in the current context. Local vdevs will
713 * remain in the faulted state.
715 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
716 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
717 &vd->vdev_faulted);
718 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
719 &vd->vdev_degraded);
720 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
721 &vd->vdev_removed);
723 if (vd->vdev_faulted || vd->vdev_degraded) {
724 char *aux;
726 vd->vdev_label_aux =
727 VDEV_AUX_ERR_EXCEEDED;
728 if (nvlist_lookup_string(nv,
729 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
730 strcmp(aux, "external") == 0)
731 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
737 * Add ourselves to the parent's list of children.
739 vdev_add_child(parent, vd);
741 *vdp = vd;
743 return (0);
746 void
747 vdev_free(vdev_t *vd)
749 spa_t *spa = vd->vdev_spa;
750 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
753 * vdev_free() implies closing the vdev first. This is simpler than
754 * trying to ensure complicated semantics for all callers.
756 vdev_close(vd);
758 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
759 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
762 * Free all children.
764 for (int c = 0; c < vd->vdev_children; c++)
765 vdev_free(vd->vdev_child[c]);
767 ASSERT(vd->vdev_child == NULL);
768 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
769 ASSERT(vd->vdev_initialize_thread == NULL);
772 * Discard allocation state.
774 if (vd->vdev_mg != NULL) {
775 vdev_metaslab_fini(vd);
776 metaslab_group_destroy(vd->vdev_mg);
779 ASSERT0(vd->vdev_stat.vs_space);
780 ASSERT0(vd->vdev_stat.vs_dspace);
781 ASSERT0(vd->vdev_stat.vs_alloc);
784 * Remove this vdev from its parent's child list.
786 vdev_remove_child(vd->vdev_parent, vd);
788 ASSERT(vd->vdev_parent == NULL);
791 * Clean up vdev structure.
793 vdev_queue_fini(vd);
794 vdev_cache_fini(vd);
796 if (vd->vdev_path)
797 spa_strfree(vd->vdev_path);
798 if (vd->vdev_devid)
799 spa_strfree(vd->vdev_devid);
800 if (vd->vdev_physpath)
801 spa_strfree(vd->vdev_physpath);
802 if (vd->vdev_fru)
803 spa_strfree(vd->vdev_fru);
805 if (vd->vdev_isspare)
806 spa_spare_remove(vd);
807 if (vd->vdev_isl2cache)
808 spa_l2cache_remove(vd);
810 txg_list_destroy(&vd->vdev_ms_list);
811 txg_list_destroy(&vd->vdev_dtl_list);
813 mutex_enter(&vd->vdev_dtl_lock);
814 space_map_close(vd->vdev_dtl_sm);
815 for (int t = 0; t < DTL_TYPES; t++) {
816 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
817 range_tree_destroy(vd->vdev_dtl[t]);
819 mutex_exit(&vd->vdev_dtl_lock);
821 EQUIV(vd->vdev_indirect_births != NULL,
822 vd->vdev_indirect_mapping != NULL);
823 if (vd->vdev_indirect_births != NULL) {
824 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
825 vdev_indirect_births_close(vd->vdev_indirect_births);
828 if (vd->vdev_obsolete_sm != NULL) {
829 ASSERT(vd->vdev_removing ||
830 vd->vdev_ops == &vdev_indirect_ops);
831 space_map_close(vd->vdev_obsolete_sm);
832 vd->vdev_obsolete_sm = NULL;
834 range_tree_destroy(vd->vdev_obsolete_segments);
835 rw_destroy(&vd->vdev_indirect_rwlock);
836 mutex_destroy(&vd->vdev_obsolete_lock);
838 mutex_destroy(&vd->vdev_queue_lock);
839 mutex_destroy(&vd->vdev_dtl_lock);
840 mutex_destroy(&vd->vdev_stat_lock);
841 mutex_destroy(&vd->vdev_probe_lock);
842 mutex_destroy(&vd->vdev_initialize_lock);
843 mutex_destroy(&vd->vdev_initialize_io_lock);
844 cv_destroy(&vd->vdev_initialize_io_cv);
845 cv_destroy(&vd->vdev_initialize_cv);
847 if (vd == spa->spa_root_vdev)
848 spa->spa_root_vdev = NULL;
850 kmem_free(vd, sizeof (vdev_t));
854 * Transfer top-level vdev state from svd to tvd.
856 static void
857 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
859 spa_t *spa = svd->vdev_spa;
860 metaslab_t *msp;
861 vdev_t *vd;
862 int t;
864 ASSERT(tvd == tvd->vdev_top);
866 tvd->vdev_ms_array = svd->vdev_ms_array;
867 tvd->vdev_ms_shift = svd->vdev_ms_shift;
868 tvd->vdev_ms_count = svd->vdev_ms_count;
869 tvd->vdev_top_zap = svd->vdev_top_zap;
871 svd->vdev_ms_array = 0;
872 svd->vdev_ms_shift = 0;
873 svd->vdev_ms_count = 0;
874 svd->vdev_top_zap = 0;
876 if (tvd->vdev_mg)
877 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
878 tvd->vdev_mg = svd->vdev_mg;
879 tvd->vdev_ms = svd->vdev_ms;
881 svd->vdev_mg = NULL;
882 svd->vdev_ms = NULL;
884 if (tvd->vdev_mg != NULL)
885 tvd->vdev_mg->mg_vd = tvd;
887 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
888 svd->vdev_checkpoint_sm = NULL;
890 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
891 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
892 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
894 svd->vdev_stat.vs_alloc = 0;
895 svd->vdev_stat.vs_space = 0;
896 svd->vdev_stat.vs_dspace = 0;
899 * State which may be set on a top-level vdev that's in the
900 * process of being removed.
902 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
903 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
904 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
905 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
906 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
907 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
908 ASSERT0(tvd->vdev_removing);
909 tvd->vdev_removing = svd->vdev_removing;
910 tvd->vdev_indirect_config = svd->vdev_indirect_config;
911 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
912 tvd->vdev_indirect_births = svd->vdev_indirect_births;
913 range_tree_swap(&svd->vdev_obsolete_segments,
914 &tvd->vdev_obsolete_segments);
915 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
916 svd->vdev_indirect_config.vic_mapping_object = 0;
917 svd->vdev_indirect_config.vic_births_object = 0;
918 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
919 svd->vdev_indirect_mapping = NULL;
920 svd->vdev_indirect_births = NULL;
921 svd->vdev_obsolete_sm = NULL;
922 svd->vdev_removing = 0;
924 for (t = 0; t < TXG_SIZE; t++) {
925 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
926 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
927 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
928 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
929 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
930 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
933 if (list_link_active(&svd->vdev_config_dirty_node)) {
934 vdev_config_clean(svd);
935 vdev_config_dirty(tvd);
938 if (list_link_active(&svd->vdev_state_dirty_node)) {
939 vdev_state_clean(svd);
940 vdev_state_dirty(tvd);
943 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
944 svd->vdev_deflate_ratio = 0;
946 tvd->vdev_islog = svd->vdev_islog;
947 svd->vdev_islog = 0;
950 static void
951 vdev_top_update(vdev_t *tvd, vdev_t *vd)
953 if (vd == NULL)
954 return;
956 vd->vdev_top = tvd;
958 for (int c = 0; c < vd->vdev_children; c++)
959 vdev_top_update(tvd, vd->vdev_child[c]);
963 * Add a mirror/replacing vdev above an existing vdev.
965 vdev_t *
966 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
968 spa_t *spa = cvd->vdev_spa;
969 vdev_t *pvd = cvd->vdev_parent;
970 vdev_t *mvd;
972 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
974 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
976 mvd->vdev_asize = cvd->vdev_asize;
977 mvd->vdev_min_asize = cvd->vdev_min_asize;
978 mvd->vdev_max_asize = cvd->vdev_max_asize;
979 mvd->vdev_psize = cvd->vdev_psize;
980 mvd->vdev_ashift = cvd->vdev_ashift;
981 mvd->vdev_state = cvd->vdev_state;
982 mvd->vdev_crtxg = cvd->vdev_crtxg;
984 vdev_remove_child(pvd, cvd);
985 vdev_add_child(pvd, mvd);
986 cvd->vdev_id = mvd->vdev_children;
987 vdev_add_child(mvd, cvd);
988 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
990 if (mvd == mvd->vdev_top)
991 vdev_top_transfer(cvd, mvd);
993 return (mvd);
997 * Remove a 1-way mirror/replacing vdev from the tree.
999 void
1000 vdev_remove_parent(vdev_t *cvd)
1002 vdev_t *mvd = cvd->vdev_parent;
1003 vdev_t *pvd = mvd->vdev_parent;
1005 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1007 ASSERT(mvd->vdev_children == 1);
1008 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1009 mvd->vdev_ops == &vdev_replacing_ops ||
1010 mvd->vdev_ops == &vdev_spare_ops);
1011 cvd->vdev_ashift = mvd->vdev_ashift;
1013 vdev_remove_child(mvd, cvd);
1014 vdev_remove_child(pvd, mvd);
1017 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1018 * Otherwise, we could have detached an offline device, and when we
1019 * go to import the pool we'll think we have two top-level vdevs,
1020 * instead of a different version of the same top-level vdev.
1022 if (mvd->vdev_top == mvd) {
1023 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1024 cvd->vdev_orig_guid = cvd->vdev_guid;
1025 cvd->vdev_guid += guid_delta;
1026 cvd->vdev_guid_sum += guid_delta;
1028 cvd->vdev_id = mvd->vdev_id;
1029 vdev_add_child(pvd, cvd);
1030 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1032 if (cvd == cvd->vdev_top)
1033 vdev_top_transfer(mvd, cvd);
1035 ASSERT(mvd->vdev_children == 0);
1036 vdev_free(mvd);
1040 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1042 spa_t *spa = vd->vdev_spa;
1043 objset_t *mos = spa->spa_meta_objset;
1044 uint64_t m;
1045 uint64_t oldc = vd->vdev_ms_count;
1046 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1047 metaslab_t **mspp;
1048 int error;
1050 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1053 * This vdev is not being allocated from yet or is a hole.
1055 if (vd->vdev_ms_shift == 0)
1056 return (0);
1058 ASSERT(!vd->vdev_ishole);
1060 ASSERT(oldc <= newc);
1062 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1064 if (oldc != 0) {
1065 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1066 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1069 vd->vdev_ms = mspp;
1070 vd->vdev_ms_count = newc;
1071 for (m = oldc; m < newc; m++) {
1072 uint64_t object = 0;
1075 * vdev_ms_array may be 0 if we are creating the "fake"
1076 * metaslabs for an indirect vdev for zdb's leak detection.
1077 * See zdb_leak_init().
1079 if (txg == 0 && vd->vdev_ms_array != 0) {
1080 error = dmu_read(mos, vd->vdev_ms_array,
1081 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1082 DMU_READ_PREFETCH);
1083 if (error != 0) {
1084 vdev_dbgmsg(vd, "unable to read the metaslab "
1085 "array [error=%d]", error);
1086 return (error);
1090 error = metaslab_init(vd->vdev_mg, m, object, txg,
1091 &(vd->vdev_ms[m]));
1092 if (error != 0) {
1093 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1094 error);
1095 return (error);
1099 if (txg == 0)
1100 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1103 * If the vdev is being removed we don't activate
1104 * the metaslabs since we want to ensure that no new
1105 * allocations are performed on this device.
1107 if (oldc == 0 && !vd->vdev_removing)
1108 metaslab_group_activate(vd->vdev_mg);
1110 if (txg == 0)
1111 spa_config_exit(spa, SCL_ALLOC, FTAG);
1113 return (0);
1116 void
1117 vdev_metaslab_fini(vdev_t *vd)
1119 if (vd->vdev_checkpoint_sm != NULL) {
1120 ASSERT(spa_feature_is_active(vd->vdev_spa,
1121 SPA_FEATURE_POOL_CHECKPOINT));
1122 space_map_close(vd->vdev_checkpoint_sm);
1124 * Even though we close the space map, we need to set its
1125 * pointer to NULL. The reason is that vdev_metaslab_fini()
1126 * may be called multiple times for certain operations
1127 * (i.e. when destroying a pool) so we need to ensure that
1128 * this clause never executes twice. This logic is similar
1129 * to the one used for the vdev_ms clause below.
1131 vd->vdev_checkpoint_sm = NULL;
1134 if (vd->vdev_ms != NULL) {
1135 uint64_t count = vd->vdev_ms_count;
1137 metaslab_group_passivate(vd->vdev_mg);
1138 for (uint64_t m = 0; m < count; m++) {
1139 metaslab_t *msp = vd->vdev_ms[m];
1141 if (msp != NULL)
1142 metaslab_fini(msp);
1144 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1145 vd->vdev_ms = NULL;
1147 vd->vdev_ms_count = 0;
1149 ASSERT0(vd->vdev_ms_count);
1152 typedef struct vdev_probe_stats {
1153 boolean_t vps_readable;
1154 boolean_t vps_writeable;
1155 int vps_flags;
1156 } vdev_probe_stats_t;
1158 static void
1159 vdev_probe_done(zio_t *zio)
1161 spa_t *spa = zio->io_spa;
1162 vdev_t *vd = zio->io_vd;
1163 vdev_probe_stats_t *vps = zio->io_private;
1165 ASSERT(vd->vdev_probe_zio != NULL);
1167 if (zio->io_type == ZIO_TYPE_READ) {
1168 if (zio->io_error == 0)
1169 vps->vps_readable = 1;
1170 if (zio->io_error == 0 && spa_writeable(spa)) {
1171 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1172 zio->io_offset, zio->io_size, zio->io_abd,
1173 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1174 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1175 } else {
1176 abd_free(zio->io_abd);
1178 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1179 if (zio->io_error == 0)
1180 vps->vps_writeable = 1;
1181 abd_free(zio->io_abd);
1182 } else if (zio->io_type == ZIO_TYPE_NULL) {
1183 zio_t *pio;
1185 vd->vdev_cant_read |= !vps->vps_readable;
1186 vd->vdev_cant_write |= !vps->vps_writeable;
1188 if (vdev_readable(vd) &&
1189 (vdev_writeable(vd) || !spa_writeable(spa))) {
1190 zio->io_error = 0;
1191 } else {
1192 ASSERT(zio->io_error != 0);
1193 vdev_dbgmsg(vd, "failed probe");
1194 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1195 spa, vd, NULL, 0, 0);
1196 zio->io_error = SET_ERROR(ENXIO);
1199 mutex_enter(&vd->vdev_probe_lock);
1200 ASSERT(vd->vdev_probe_zio == zio);
1201 vd->vdev_probe_zio = NULL;
1202 mutex_exit(&vd->vdev_probe_lock);
1204 zio_link_t *zl = NULL;
1205 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1206 if (!vdev_accessible(vd, pio))
1207 pio->io_error = SET_ERROR(ENXIO);
1209 kmem_free(vps, sizeof (*vps));
1214 * Determine whether this device is accessible.
1216 * Read and write to several known locations: the pad regions of each
1217 * vdev label but the first, which we leave alone in case it contains
1218 * a VTOC.
1220 zio_t *
1221 vdev_probe(vdev_t *vd, zio_t *zio)
1223 spa_t *spa = vd->vdev_spa;
1224 vdev_probe_stats_t *vps = NULL;
1225 zio_t *pio;
1227 ASSERT(vd->vdev_ops->vdev_op_leaf);
1230 * Don't probe the probe.
1232 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1233 return (NULL);
1236 * To prevent 'probe storms' when a device fails, we create
1237 * just one probe i/o at a time. All zios that want to probe
1238 * this vdev will become parents of the probe io.
1240 mutex_enter(&vd->vdev_probe_lock);
1242 if ((pio = vd->vdev_probe_zio) == NULL) {
1243 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1245 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1246 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1247 ZIO_FLAG_TRYHARD;
1249 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1251 * vdev_cant_read and vdev_cant_write can only
1252 * transition from TRUE to FALSE when we have the
1253 * SCL_ZIO lock as writer; otherwise they can only
1254 * transition from FALSE to TRUE. This ensures that
1255 * any zio looking at these values can assume that
1256 * failures persist for the life of the I/O. That's
1257 * important because when a device has intermittent
1258 * connectivity problems, we want to ensure that
1259 * they're ascribed to the device (ENXIO) and not
1260 * the zio (EIO).
1262 * Since we hold SCL_ZIO as writer here, clear both
1263 * values so the probe can reevaluate from first
1264 * principles.
1266 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1267 vd->vdev_cant_read = B_FALSE;
1268 vd->vdev_cant_write = B_FALSE;
1271 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1272 vdev_probe_done, vps,
1273 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1276 * We can't change the vdev state in this context, so we
1277 * kick off an async task to do it on our behalf.
1279 if (zio != NULL) {
1280 vd->vdev_probe_wanted = B_TRUE;
1281 spa_async_request(spa, SPA_ASYNC_PROBE);
1285 if (zio != NULL)
1286 zio_add_child(zio, pio);
1288 mutex_exit(&vd->vdev_probe_lock);
1290 if (vps == NULL) {
1291 ASSERT(zio != NULL);
1292 return (NULL);
1295 for (int l = 1; l < VDEV_LABELS; l++) {
1296 zio_nowait(zio_read_phys(pio, vd,
1297 vdev_label_offset(vd->vdev_psize, l,
1298 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1299 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1300 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1301 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1304 if (zio == NULL)
1305 return (pio);
1307 zio_nowait(pio);
1308 return (NULL);
1311 static void
1312 vdev_open_child(void *arg)
1314 vdev_t *vd = arg;
1316 vd->vdev_open_thread = curthread;
1317 vd->vdev_open_error = vdev_open(vd);
1318 vd->vdev_open_thread = NULL;
1321 boolean_t
1322 vdev_uses_zvols(vdev_t *vd)
1324 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1325 strlen(ZVOL_DIR)) == 0)
1326 return (B_TRUE);
1327 for (int c = 0; c < vd->vdev_children; c++)
1328 if (vdev_uses_zvols(vd->vdev_child[c]))
1329 return (B_TRUE);
1330 return (B_FALSE);
1333 void
1334 vdev_open_children(vdev_t *vd)
1336 taskq_t *tq;
1337 int children = vd->vdev_children;
1340 * in order to handle pools on top of zvols, do the opens
1341 * in a single thread so that the same thread holds the
1342 * spa_namespace_lock
1344 if (vdev_uses_zvols(vd)) {
1345 for (int c = 0; c < children; c++)
1346 vd->vdev_child[c]->vdev_open_error =
1347 vdev_open(vd->vdev_child[c]);
1348 return;
1350 tq = taskq_create("vdev_open", children, minclsyspri,
1351 children, children, TASKQ_PREPOPULATE);
1353 for (int c = 0; c < children; c++)
1354 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1355 TQ_SLEEP) != 0);
1357 taskq_destroy(tq);
1361 * Compute the raidz-deflation ratio. Note, we hard-code
1362 * in 128k (1 << 17) because it is the "typical" blocksize.
1363 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1364 * otherwise it would inconsistently account for existing bp's.
1366 static void
1367 vdev_set_deflate_ratio(vdev_t *vd)
1369 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1370 vd->vdev_deflate_ratio = (1 << 17) /
1371 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1376 * Prepare a virtual device for access.
1379 vdev_open(vdev_t *vd)
1381 spa_t *spa = vd->vdev_spa;
1382 int error;
1383 uint64_t osize = 0;
1384 uint64_t max_osize = 0;
1385 uint64_t asize, max_asize, psize;
1386 uint64_t ashift = 0;
1388 ASSERT(vd->vdev_open_thread == curthread ||
1389 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1390 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1391 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1392 vd->vdev_state == VDEV_STATE_OFFLINE);
1394 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1395 vd->vdev_cant_read = B_FALSE;
1396 vd->vdev_cant_write = B_FALSE;
1397 vd->vdev_min_asize = vdev_get_min_asize(vd);
1400 * If this vdev is not removed, check its fault status. If it's
1401 * faulted, bail out of the open.
1403 if (!vd->vdev_removed && vd->vdev_faulted) {
1404 ASSERT(vd->vdev_children == 0);
1405 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1406 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1407 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1408 vd->vdev_label_aux);
1409 return (SET_ERROR(ENXIO));
1410 } else if (vd->vdev_offline) {
1411 ASSERT(vd->vdev_children == 0);
1412 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1413 return (SET_ERROR(ENXIO));
1416 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1419 * Reset the vdev_reopening flag so that we actually close
1420 * the vdev on error.
1422 vd->vdev_reopening = B_FALSE;
1423 if (zio_injection_enabled && error == 0)
1424 error = zio_handle_device_injection(vd, NULL, ENXIO);
1426 if (error) {
1427 if (vd->vdev_removed &&
1428 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1429 vd->vdev_removed = B_FALSE;
1431 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1432 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1433 vd->vdev_stat.vs_aux);
1434 } else {
1435 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1436 vd->vdev_stat.vs_aux);
1438 return (error);
1441 vd->vdev_removed = B_FALSE;
1444 * Recheck the faulted flag now that we have confirmed that
1445 * the vdev is accessible. If we're faulted, bail.
1447 if (vd->vdev_faulted) {
1448 ASSERT(vd->vdev_children == 0);
1449 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1450 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1451 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1452 vd->vdev_label_aux);
1453 return (SET_ERROR(ENXIO));
1456 if (vd->vdev_degraded) {
1457 ASSERT(vd->vdev_children == 0);
1458 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1459 VDEV_AUX_ERR_EXCEEDED);
1460 } else {
1461 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1465 * For hole or missing vdevs we just return success.
1467 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1468 return (0);
1470 for (int c = 0; c < vd->vdev_children; c++) {
1471 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1472 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1473 VDEV_AUX_NONE);
1474 break;
1478 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1479 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1481 if (vd->vdev_children == 0) {
1482 if (osize < SPA_MINDEVSIZE) {
1483 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1484 VDEV_AUX_TOO_SMALL);
1485 return (SET_ERROR(EOVERFLOW));
1487 psize = osize;
1488 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1489 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1490 VDEV_LABEL_END_SIZE);
1491 } else {
1492 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1493 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1494 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1495 VDEV_AUX_TOO_SMALL);
1496 return (SET_ERROR(EOVERFLOW));
1498 psize = 0;
1499 asize = osize;
1500 max_asize = max_osize;
1503 vd->vdev_psize = psize;
1506 * Make sure the allocatable size hasn't shrunk too much.
1508 if (asize < vd->vdev_min_asize) {
1509 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1510 VDEV_AUX_BAD_LABEL);
1511 return (SET_ERROR(EINVAL));
1514 if (vd->vdev_asize == 0) {
1516 * This is the first-ever open, so use the computed values.
1517 * For testing purposes, a higher ashift can be requested.
1519 vd->vdev_asize = asize;
1520 vd->vdev_max_asize = max_asize;
1521 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1522 vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift);
1523 } else {
1525 * Detect if the alignment requirement has increased.
1526 * We don't want to make the pool unavailable, just
1527 * issue a warning instead.
1529 if (ashift > vd->vdev_top->vdev_ashift &&
1530 vd->vdev_ops->vdev_op_leaf) {
1531 cmn_err(CE_WARN,
1532 "Disk, '%s', has a block alignment that is "
1533 "larger than the pool's alignment\n",
1534 vd->vdev_path);
1536 vd->vdev_max_asize = max_asize;
1540 * If all children are healthy we update asize if either:
1541 * The asize has increased, due to a device expansion caused by dynamic
1542 * LUN growth or vdev replacement, and automatic expansion is enabled;
1543 * making the additional space available.
1545 * The asize has decreased, due to a device shrink usually caused by a
1546 * vdev replace with a smaller device. This ensures that calculations
1547 * based of max_asize and asize e.g. esize are always valid. It's safe
1548 * to do this as we've already validated that asize is greater than
1549 * vdev_min_asize.
1551 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1552 ((asize > vd->vdev_asize &&
1553 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1554 (asize < vd->vdev_asize)))
1555 vd->vdev_asize = asize;
1557 vdev_set_min_asize(vd);
1560 * Ensure we can issue some IO before declaring the
1561 * vdev open for business.
1563 if (vd->vdev_ops->vdev_op_leaf &&
1564 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1565 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1566 VDEV_AUX_ERR_EXCEEDED);
1567 return (error);
1571 * Track the min and max ashift values for normal data devices.
1573 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1574 !vd->vdev_islog && vd->vdev_aux == NULL) {
1575 if (vd->vdev_ashift > spa->spa_max_ashift)
1576 spa->spa_max_ashift = vd->vdev_ashift;
1577 if (vd->vdev_ashift < spa->spa_min_ashift)
1578 spa->spa_min_ashift = vd->vdev_ashift;
1582 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1583 * resilver. But don't do this if we are doing a reopen for a scrub,
1584 * since this would just restart the scrub we are already doing.
1586 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1587 vdev_resilver_needed(vd, NULL, NULL))
1588 spa_async_request(spa, SPA_ASYNC_RESILVER);
1590 return (0);
1594 * Called once the vdevs are all opened, this routine validates the label
1595 * contents. This needs to be done before vdev_load() so that we don't
1596 * inadvertently do repair I/Os to the wrong device.
1598 * This function will only return failure if one of the vdevs indicates that it
1599 * has since been destroyed or exported. This is only possible if
1600 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1601 * will be updated but the function will return 0.
1604 vdev_validate(vdev_t *vd)
1606 spa_t *spa = vd->vdev_spa;
1607 nvlist_t *label;
1608 uint64_t guid = 0, aux_guid = 0, top_guid;
1609 uint64_t state;
1610 nvlist_t *nvl;
1611 uint64_t txg;
1613 if (vdev_validate_skip)
1614 return (0);
1616 for (uint64_t c = 0; c < vd->vdev_children; c++)
1617 if (vdev_validate(vd->vdev_child[c]) != 0)
1618 return (SET_ERROR(EBADF));
1621 * If the device has already failed, or was marked offline, don't do
1622 * any further validation. Otherwise, label I/O will fail and we will
1623 * overwrite the previous state.
1625 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1626 return (0);
1629 * If we are performing an extreme rewind, we allow for a label that
1630 * was modified at a point after the current txg.
1631 * If config lock is not held do not check for the txg. spa_sync could
1632 * be updating the vdev's label before updating spa_last_synced_txg.
1634 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1635 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1636 txg = UINT64_MAX;
1637 else
1638 txg = spa_last_synced_txg(spa);
1640 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1641 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1642 VDEV_AUX_BAD_LABEL);
1643 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1644 "txg %llu", (u_longlong_t)txg);
1645 return (0);
1649 * Determine if this vdev has been split off into another
1650 * pool. If so, then refuse to open it.
1652 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1653 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1654 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1655 VDEV_AUX_SPLIT_POOL);
1656 nvlist_free(label);
1657 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1658 return (0);
1661 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1662 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1663 VDEV_AUX_CORRUPT_DATA);
1664 nvlist_free(label);
1665 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1666 ZPOOL_CONFIG_POOL_GUID);
1667 return (0);
1671 * If config is not trusted then ignore the spa guid check. This is
1672 * necessary because if the machine crashed during a re-guid the new
1673 * guid might have been written to all of the vdev labels, but not the
1674 * cached config. The check will be performed again once we have the
1675 * trusted config from the MOS.
1677 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1678 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1679 VDEV_AUX_CORRUPT_DATA);
1680 nvlist_free(label);
1681 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1682 "match config (%llu != %llu)", (u_longlong_t)guid,
1683 (u_longlong_t)spa_guid(spa));
1684 return (0);
1687 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1688 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1689 &aux_guid) != 0)
1690 aux_guid = 0;
1692 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1693 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1694 VDEV_AUX_CORRUPT_DATA);
1695 nvlist_free(label);
1696 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1697 ZPOOL_CONFIG_GUID);
1698 return (0);
1701 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1702 != 0) {
1703 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1704 VDEV_AUX_CORRUPT_DATA);
1705 nvlist_free(label);
1706 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1707 ZPOOL_CONFIG_TOP_GUID);
1708 return (0);
1712 * If this vdev just became a top-level vdev because its sibling was
1713 * detached, it will have adopted the parent's vdev guid -- but the
1714 * label may or may not be on disk yet. Fortunately, either version
1715 * of the label will have the same top guid, so if we're a top-level
1716 * vdev, we can safely compare to that instead.
1717 * However, if the config comes from a cachefile that failed to update
1718 * after the detach, a top-level vdev will appear as a non top-level
1719 * vdev in the config. Also relax the constraints if we perform an
1720 * extreme rewind.
1722 * If we split this vdev off instead, then we also check the
1723 * original pool's guid. We don't want to consider the vdev
1724 * corrupt if it is partway through a split operation.
1726 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1727 boolean_t mismatch = B_FALSE;
1728 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1729 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1730 mismatch = B_TRUE;
1731 } else {
1732 if (vd->vdev_guid != top_guid &&
1733 vd->vdev_top->vdev_guid != guid)
1734 mismatch = B_TRUE;
1737 if (mismatch) {
1738 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1739 VDEV_AUX_CORRUPT_DATA);
1740 nvlist_free(label);
1741 vdev_dbgmsg(vd, "vdev_validate: config guid "
1742 "doesn't match label guid");
1743 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1744 (u_longlong_t)vd->vdev_guid,
1745 (u_longlong_t)vd->vdev_top->vdev_guid);
1746 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1747 "aux_guid %llu", (u_longlong_t)guid,
1748 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1749 return (0);
1753 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1754 &state) != 0) {
1755 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1756 VDEV_AUX_CORRUPT_DATA);
1757 nvlist_free(label);
1758 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1759 ZPOOL_CONFIG_POOL_STATE);
1760 return (0);
1763 nvlist_free(label);
1766 * If this is a verbatim import, no need to check the
1767 * state of the pool.
1769 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1770 spa_load_state(spa) == SPA_LOAD_OPEN &&
1771 state != POOL_STATE_ACTIVE) {
1772 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1773 "for spa %s", (u_longlong_t)state, spa->spa_name);
1774 return (SET_ERROR(EBADF));
1778 * If we were able to open and validate a vdev that was
1779 * previously marked permanently unavailable, clear that state
1780 * now.
1782 if (vd->vdev_not_present)
1783 vd->vdev_not_present = 0;
1785 return (0);
1788 static void
1789 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1791 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1792 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1793 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1794 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1795 dvd->vdev_path, svd->vdev_path);
1796 spa_strfree(dvd->vdev_path);
1797 dvd->vdev_path = spa_strdup(svd->vdev_path);
1799 } else if (svd->vdev_path != NULL) {
1800 dvd->vdev_path = spa_strdup(svd->vdev_path);
1801 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1802 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1807 * Recursively copy vdev paths from one vdev to another. Source and destination
1808 * vdev trees must have same geometry otherwise return error. Intended to copy
1809 * paths from userland config into MOS config.
1812 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1814 if ((svd->vdev_ops == &vdev_missing_ops) ||
1815 (svd->vdev_ishole && dvd->vdev_ishole) ||
1816 (dvd->vdev_ops == &vdev_indirect_ops))
1817 return (0);
1819 if (svd->vdev_ops != dvd->vdev_ops) {
1820 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1821 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1822 return (SET_ERROR(EINVAL));
1825 if (svd->vdev_guid != dvd->vdev_guid) {
1826 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1827 "%llu)", (u_longlong_t)svd->vdev_guid,
1828 (u_longlong_t)dvd->vdev_guid);
1829 return (SET_ERROR(EINVAL));
1832 if (svd->vdev_children != dvd->vdev_children) {
1833 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1834 "%llu != %llu", (u_longlong_t)svd->vdev_children,
1835 (u_longlong_t)dvd->vdev_children);
1836 return (SET_ERROR(EINVAL));
1839 for (uint64_t i = 0; i < svd->vdev_children; i++) {
1840 int error = vdev_copy_path_strict(svd->vdev_child[i],
1841 dvd->vdev_child[i]);
1842 if (error != 0)
1843 return (error);
1846 if (svd->vdev_ops->vdev_op_leaf)
1847 vdev_copy_path_impl(svd, dvd);
1849 return (0);
1852 static void
1853 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1855 ASSERT(stvd->vdev_top == stvd);
1856 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1858 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1859 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1862 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1863 return;
1866 * The idea here is that while a vdev can shift positions within
1867 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1868 * step outside of it.
1870 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1872 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1873 return;
1875 ASSERT(vd->vdev_ops->vdev_op_leaf);
1877 vdev_copy_path_impl(vd, dvd);
1881 * Recursively copy vdev paths from one root vdev to another. Source and
1882 * destination vdev trees may differ in geometry. For each destination leaf
1883 * vdev, search a vdev with the same guid and top vdev id in the source.
1884 * Intended to copy paths from userland config into MOS config.
1886 void
1887 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1889 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1890 ASSERT(srvd->vdev_ops == &vdev_root_ops);
1891 ASSERT(drvd->vdev_ops == &vdev_root_ops);
1893 for (uint64_t i = 0; i < children; i++) {
1894 vdev_copy_path_search(srvd->vdev_child[i],
1895 drvd->vdev_child[i]);
1900 * Close a virtual device.
1902 void
1903 vdev_close(vdev_t *vd)
1905 spa_t *spa = vd->vdev_spa;
1906 vdev_t *pvd = vd->vdev_parent;
1908 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1911 * If our parent is reopening, then we are as well, unless we are
1912 * going offline.
1914 if (pvd != NULL && pvd->vdev_reopening)
1915 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1917 vd->vdev_ops->vdev_op_close(vd);
1919 vdev_cache_purge(vd);
1922 * We record the previous state before we close it, so that if we are
1923 * doing a reopen(), we don't generate FMA ereports if we notice that
1924 * it's still faulted.
1926 vd->vdev_prevstate = vd->vdev_state;
1928 if (vd->vdev_offline)
1929 vd->vdev_state = VDEV_STATE_OFFLINE;
1930 else
1931 vd->vdev_state = VDEV_STATE_CLOSED;
1932 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1935 void
1936 vdev_hold(vdev_t *vd)
1938 spa_t *spa = vd->vdev_spa;
1940 ASSERT(spa_is_root(spa));
1941 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1942 return;
1944 for (int c = 0; c < vd->vdev_children; c++)
1945 vdev_hold(vd->vdev_child[c]);
1947 if (vd->vdev_ops->vdev_op_leaf)
1948 vd->vdev_ops->vdev_op_hold(vd);
1951 void
1952 vdev_rele(vdev_t *vd)
1954 spa_t *spa = vd->vdev_spa;
1956 ASSERT(spa_is_root(spa));
1957 for (int c = 0; c < vd->vdev_children; c++)
1958 vdev_rele(vd->vdev_child[c]);
1960 if (vd->vdev_ops->vdev_op_leaf)
1961 vd->vdev_ops->vdev_op_rele(vd);
1965 * Reopen all interior vdevs and any unopened leaves. We don't actually
1966 * reopen leaf vdevs which had previously been opened as they might deadlock
1967 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1968 * If the leaf has never been opened then open it, as usual.
1970 void
1971 vdev_reopen(vdev_t *vd)
1973 spa_t *spa = vd->vdev_spa;
1975 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1977 /* set the reopening flag unless we're taking the vdev offline */
1978 vd->vdev_reopening = !vd->vdev_offline;
1979 vdev_close(vd);
1980 (void) vdev_open(vd);
1983 * Call vdev_validate() here to make sure we have the same device.
1984 * Otherwise, a device with an invalid label could be successfully
1985 * opened in response to vdev_reopen().
1987 if (vd->vdev_aux) {
1988 (void) vdev_validate_aux(vd);
1989 if (vdev_readable(vd) && vdev_writeable(vd) &&
1990 vd->vdev_aux == &spa->spa_l2cache &&
1991 !l2arc_vdev_present(vd))
1992 l2arc_add_vdev(spa, vd);
1993 } else {
1994 (void) vdev_validate(vd);
1998 * Reassess parent vdev's health.
2000 vdev_propagate_state(vd);
2004 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2006 int error;
2009 * Normally, partial opens (e.g. of a mirror) are allowed.
2010 * For a create, however, we want to fail the request if
2011 * there are any components we can't open.
2013 error = vdev_open(vd);
2015 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2016 vdev_close(vd);
2017 return (error ? error : ENXIO);
2021 * Recursively load DTLs and initialize all labels.
2023 if ((error = vdev_dtl_load(vd)) != 0 ||
2024 (error = vdev_label_init(vd, txg, isreplacing ?
2025 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2026 vdev_close(vd);
2027 return (error);
2030 return (0);
2033 void
2034 vdev_metaslab_set_size(vdev_t *vd)
2036 uint64_t asize = vd->vdev_asize;
2037 uint64_t ms_count = asize >> vdev_default_ms_shift;
2038 uint64_t ms_shift;
2041 * There are two dimensions to the metaslab sizing calculation:
2042 * the size of the metaslab and the count of metaslabs per vdev.
2043 * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2044 * range of the dimensions are as follows:
2046 * 2^29 <= ms_size <= 2^38
2047 * 16 <= ms_count <= 131,072
2049 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2050 * at least 512MB (2^29) to minimize fragmentation effects when
2051 * testing with smaller devices. However, the count constraint
2052 * of at least 16 metaslabs will override this minimum size goal.
2054 * On the upper end of vdev sizes, we aim for a maximum metaslab
2055 * size of 256GB. However, we will cap the total count to 2^17
2056 * metaslabs to keep our memory footprint in check.
2058 * The net effect of applying above constrains is summarized below.
2060 * vdev size metaslab count
2061 * -------------|-----------------
2062 * < 8GB ~16
2063 * 8GB - 100GB one per 512MB
2064 * 100GB - 50TB ~200
2065 * 50TB - 32PB one per 256GB
2066 * > 32PB ~131,072
2067 * -------------------------------
2070 if (ms_count < vdev_min_ms_count)
2071 ms_shift = highbit64(asize / vdev_min_ms_count);
2072 else if (ms_count > vdev_max_ms_count)
2073 ms_shift = highbit64(asize / vdev_max_ms_count);
2074 else
2075 ms_shift = vdev_default_ms_shift;
2077 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2078 ms_shift = SPA_MAXBLOCKSHIFT;
2079 } else if (ms_shift > vdev_max_ms_shift) {
2080 ms_shift = vdev_max_ms_shift;
2081 /* cap the total count to constrain memory footprint */
2082 if ((asize >> ms_shift) > vdev_ms_count_limit)
2083 ms_shift = highbit64(asize / vdev_ms_count_limit);
2086 vd->vdev_ms_shift = ms_shift;
2087 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2090 void
2091 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2093 ASSERT(vd == vd->vdev_top);
2094 /* indirect vdevs don't have metaslabs or dtls */
2095 ASSERT(vdev_is_concrete(vd) || flags == 0);
2096 ASSERT(ISP2(flags));
2097 ASSERT(spa_writeable(vd->vdev_spa));
2099 if (flags & VDD_METASLAB)
2100 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2102 if (flags & VDD_DTL)
2103 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2105 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2108 void
2109 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2111 for (int c = 0; c < vd->vdev_children; c++)
2112 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2114 if (vd->vdev_ops->vdev_op_leaf)
2115 vdev_dirty(vd->vdev_top, flags, vd, txg);
2119 * DTLs.
2121 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2122 * the vdev has less than perfect replication. There are four kinds of DTL:
2124 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2126 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2128 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2129 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2130 * txgs that was scrubbed.
2132 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2133 * persistent errors or just some device being offline.
2134 * Unlike the other three, the DTL_OUTAGE map is not generally
2135 * maintained; it's only computed when needed, typically to
2136 * determine whether a device can be detached.
2138 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2139 * either has the data or it doesn't.
2141 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2142 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2143 * if any child is less than fully replicated, then so is its parent.
2144 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2145 * comprising only those txgs which appear in 'maxfaults' or more children;
2146 * those are the txgs we don't have enough replication to read. For example,
2147 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2148 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2149 * two child DTL_MISSING maps.
2151 * It should be clear from the above that to compute the DTLs and outage maps
2152 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2153 * Therefore, that is all we keep on disk. When loading the pool, or after
2154 * a configuration change, we generate all other DTLs from first principles.
2156 void
2157 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2159 range_tree_t *rt = vd->vdev_dtl[t];
2161 ASSERT(t < DTL_TYPES);
2162 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2163 ASSERT(spa_writeable(vd->vdev_spa));
2165 mutex_enter(&vd->vdev_dtl_lock);
2166 if (!range_tree_contains(rt, txg, size))
2167 range_tree_add(rt, txg, size);
2168 mutex_exit(&vd->vdev_dtl_lock);
2171 boolean_t
2172 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2174 range_tree_t *rt = vd->vdev_dtl[t];
2175 boolean_t dirty = B_FALSE;
2177 ASSERT(t < DTL_TYPES);
2178 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2181 * While we are loading the pool, the DTLs have not been loaded yet.
2182 * Ignore the DTLs and try all devices. This avoids a recursive
2183 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2184 * when loading the pool (relying on the checksum to ensure that
2185 * we get the right data -- note that we while loading, we are
2186 * only reading the MOS, which is always checksummed).
2188 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2189 return (B_FALSE);
2191 mutex_enter(&vd->vdev_dtl_lock);
2192 if (!range_tree_is_empty(rt))
2193 dirty = range_tree_contains(rt, txg, size);
2194 mutex_exit(&vd->vdev_dtl_lock);
2196 return (dirty);
2199 boolean_t
2200 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2202 range_tree_t *rt = vd->vdev_dtl[t];
2203 boolean_t empty;
2205 mutex_enter(&vd->vdev_dtl_lock);
2206 empty = range_tree_is_empty(rt);
2207 mutex_exit(&vd->vdev_dtl_lock);
2209 return (empty);
2213 * Returns the lowest txg in the DTL range.
2215 static uint64_t
2216 vdev_dtl_min(vdev_t *vd)
2218 range_seg_t *rs;
2220 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2221 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2222 ASSERT0(vd->vdev_children);
2224 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2225 return (rs->rs_start - 1);
2229 * Returns the highest txg in the DTL.
2231 static uint64_t
2232 vdev_dtl_max(vdev_t *vd)
2234 range_seg_t *rs;
2236 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2237 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2238 ASSERT0(vd->vdev_children);
2240 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2241 return (rs->rs_end);
2245 * Determine if a resilvering vdev should remove any DTL entries from
2246 * its range. If the vdev was resilvering for the entire duration of the
2247 * scan then it should excise that range from its DTLs. Otherwise, this
2248 * vdev is considered partially resilvered and should leave its DTL
2249 * entries intact. The comment in vdev_dtl_reassess() describes how we
2250 * excise the DTLs.
2252 static boolean_t
2253 vdev_dtl_should_excise(vdev_t *vd)
2255 spa_t *spa = vd->vdev_spa;
2256 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2258 ASSERT0(scn->scn_phys.scn_errors);
2259 ASSERT0(vd->vdev_children);
2261 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2262 return (B_FALSE);
2264 if (vd->vdev_resilver_txg == 0 ||
2265 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2266 return (B_TRUE);
2269 * When a resilver is initiated the scan will assign the scn_max_txg
2270 * value to the highest txg value that exists in all DTLs. If this
2271 * device's max DTL is not part of this scan (i.e. it is not in
2272 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2273 * for excision.
2275 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2276 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2277 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2278 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2279 return (B_TRUE);
2281 return (B_FALSE);
2285 * Reassess DTLs after a config change or scrub completion.
2287 void
2288 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2290 spa_t *spa = vd->vdev_spa;
2291 avl_tree_t reftree;
2292 int minref;
2294 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2296 for (int c = 0; c < vd->vdev_children; c++)
2297 vdev_dtl_reassess(vd->vdev_child[c], txg,
2298 scrub_txg, scrub_done);
2300 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2301 return;
2303 if (vd->vdev_ops->vdev_op_leaf) {
2304 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2306 mutex_enter(&vd->vdev_dtl_lock);
2309 * If we've completed a scan cleanly then determine
2310 * if this vdev should remove any DTLs. We only want to
2311 * excise regions on vdevs that were available during
2312 * the entire duration of this scan.
2314 if (scrub_txg != 0 &&
2315 (spa->spa_scrub_started ||
2316 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2317 vdev_dtl_should_excise(vd)) {
2319 * We completed a scrub up to scrub_txg. If we
2320 * did it without rebooting, then the scrub dtl
2321 * will be valid, so excise the old region and
2322 * fold in the scrub dtl. Otherwise, leave the
2323 * dtl as-is if there was an error.
2325 * There's little trick here: to excise the beginning
2326 * of the DTL_MISSING map, we put it into a reference
2327 * tree and then add a segment with refcnt -1 that
2328 * covers the range [0, scrub_txg). This means
2329 * that each txg in that range has refcnt -1 or 0.
2330 * We then add DTL_SCRUB with a refcnt of 2, so that
2331 * entries in the range [0, scrub_txg) will have a
2332 * positive refcnt -- either 1 or 2. We then convert
2333 * the reference tree into the new DTL_MISSING map.
2335 space_reftree_create(&reftree);
2336 space_reftree_add_map(&reftree,
2337 vd->vdev_dtl[DTL_MISSING], 1);
2338 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2339 space_reftree_add_map(&reftree,
2340 vd->vdev_dtl[DTL_SCRUB], 2);
2341 space_reftree_generate_map(&reftree,
2342 vd->vdev_dtl[DTL_MISSING], 1);
2343 space_reftree_destroy(&reftree);
2345 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2346 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2347 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2348 if (scrub_done)
2349 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2350 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2351 if (!vdev_readable(vd))
2352 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2353 else
2354 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2355 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2358 * If the vdev was resilvering and no longer has any
2359 * DTLs then reset its resilvering flag.
2361 if (vd->vdev_resilver_txg != 0 &&
2362 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2363 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2364 vd->vdev_resilver_txg = 0;
2366 mutex_exit(&vd->vdev_dtl_lock);
2368 if (txg != 0)
2369 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2370 return;
2373 mutex_enter(&vd->vdev_dtl_lock);
2374 for (int t = 0; t < DTL_TYPES; t++) {
2375 /* account for child's outage in parent's missing map */
2376 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2377 if (t == DTL_SCRUB)
2378 continue; /* leaf vdevs only */
2379 if (t == DTL_PARTIAL)
2380 minref = 1; /* i.e. non-zero */
2381 else if (vd->vdev_nparity != 0)
2382 minref = vd->vdev_nparity + 1; /* RAID-Z */
2383 else
2384 minref = vd->vdev_children; /* any kind of mirror */
2385 space_reftree_create(&reftree);
2386 for (int c = 0; c < vd->vdev_children; c++) {
2387 vdev_t *cvd = vd->vdev_child[c];
2388 mutex_enter(&cvd->vdev_dtl_lock);
2389 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2390 mutex_exit(&cvd->vdev_dtl_lock);
2392 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2393 space_reftree_destroy(&reftree);
2395 mutex_exit(&vd->vdev_dtl_lock);
2399 vdev_dtl_load(vdev_t *vd)
2401 spa_t *spa = vd->vdev_spa;
2402 objset_t *mos = spa->spa_meta_objset;
2403 int error = 0;
2405 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2406 ASSERT(vdev_is_concrete(vd));
2408 error = space_map_open(&vd->vdev_dtl_sm, mos,
2409 vd->vdev_dtl_object, 0, -1ULL, 0);
2410 if (error)
2411 return (error);
2412 ASSERT(vd->vdev_dtl_sm != NULL);
2414 mutex_enter(&vd->vdev_dtl_lock);
2417 * Now that we've opened the space_map we need to update
2418 * the in-core DTL.
2420 space_map_update(vd->vdev_dtl_sm);
2422 error = space_map_load(vd->vdev_dtl_sm,
2423 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2424 mutex_exit(&vd->vdev_dtl_lock);
2426 return (error);
2429 for (int c = 0; c < vd->vdev_children; c++) {
2430 error = vdev_dtl_load(vd->vdev_child[c]);
2431 if (error != 0)
2432 break;
2435 return (error);
2438 void
2439 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2441 spa_t *spa = vd->vdev_spa;
2443 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2444 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2445 zapobj, tx));
2448 uint64_t
2449 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2451 spa_t *spa = vd->vdev_spa;
2452 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2453 DMU_OT_NONE, 0, tx);
2455 ASSERT(zap != 0);
2456 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2457 zap, tx));
2459 return (zap);
2462 void
2463 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2465 if (vd->vdev_ops != &vdev_hole_ops &&
2466 vd->vdev_ops != &vdev_missing_ops &&
2467 vd->vdev_ops != &vdev_root_ops &&
2468 !vd->vdev_top->vdev_removing) {
2469 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2470 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2472 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2473 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2476 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2477 vdev_construct_zaps(vd->vdev_child[i], tx);
2481 void
2482 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2484 spa_t *spa = vd->vdev_spa;
2485 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2486 objset_t *mos = spa->spa_meta_objset;
2487 range_tree_t *rtsync;
2488 dmu_tx_t *tx;
2489 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2491 ASSERT(vdev_is_concrete(vd));
2492 ASSERT(vd->vdev_ops->vdev_op_leaf);
2494 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2496 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2497 mutex_enter(&vd->vdev_dtl_lock);
2498 space_map_free(vd->vdev_dtl_sm, tx);
2499 space_map_close(vd->vdev_dtl_sm);
2500 vd->vdev_dtl_sm = NULL;
2501 mutex_exit(&vd->vdev_dtl_lock);
2504 * We only destroy the leaf ZAP for detached leaves or for
2505 * removed log devices. Removed data devices handle leaf ZAP
2506 * cleanup later, once cancellation is no longer possible.
2508 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2509 vd->vdev_top->vdev_islog)) {
2510 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2511 vd->vdev_leaf_zap = 0;
2514 dmu_tx_commit(tx);
2515 return;
2518 if (vd->vdev_dtl_sm == NULL) {
2519 uint64_t new_object;
2521 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2522 VERIFY3U(new_object, !=, 0);
2524 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2525 0, -1ULL, 0));
2526 ASSERT(vd->vdev_dtl_sm != NULL);
2529 rtsync = range_tree_create(NULL, NULL);
2531 mutex_enter(&vd->vdev_dtl_lock);
2532 range_tree_walk(rt, range_tree_add, rtsync);
2533 mutex_exit(&vd->vdev_dtl_lock);
2535 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2536 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2537 range_tree_vacate(rtsync, NULL, NULL);
2539 range_tree_destroy(rtsync);
2542 * If the object for the space map has changed then dirty
2543 * the top level so that we update the config.
2545 if (object != space_map_object(vd->vdev_dtl_sm)) {
2546 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2547 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2548 (u_longlong_t)object,
2549 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2550 vdev_config_dirty(vd->vdev_top);
2553 dmu_tx_commit(tx);
2555 mutex_enter(&vd->vdev_dtl_lock);
2556 space_map_update(vd->vdev_dtl_sm);
2557 mutex_exit(&vd->vdev_dtl_lock);
2561 * Determine whether the specified vdev can be offlined/detached/removed
2562 * without losing data.
2564 boolean_t
2565 vdev_dtl_required(vdev_t *vd)
2567 spa_t *spa = vd->vdev_spa;
2568 vdev_t *tvd = vd->vdev_top;
2569 uint8_t cant_read = vd->vdev_cant_read;
2570 boolean_t required;
2572 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2574 if (vd == spa->spa_root_vdev || vd == tvd)
2575 return (B_TRUE);
2578 * Temporarily mark the device as unreadable, and then determine
2579 * whether this results in any DTL outages in the top-level vdev.
2580 * If not, we can safely offline/detach/remove the device.
2582 vd->vdev_cant_read = B_TRUE;
2583 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2584 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2585 vd->vdev_cant_read = cant_read;
2586 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2588 if (!required && zio_injection_enabled)
2589 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2591 return (required);
2595 * Determine if resilver is needed, and if so the txg range.
2597 boolean_t
2598 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2600 boolean_t needed = B_FALSE;
2601 uint64_t thismin = UINT64_MAX;
2602 uint64_t thismax = 0;
2604 if (vd->vdev_children == 0) {
2605 mutex_enter(&vd->vdev_dtl_lock);
2606 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2607 vdev_writeable(vd)) {
2609 thismin = vdev_dtl_min(vd);
2610 thismax = vdev_dtl_max(vd);
2611 needed = B_TRUE;
2613 mutex_exit(&vd->vdev_dtl_lock);
2614 } else {
2615 for (int c = 0; c < vd->vdev_children; c++) {
2616 vdev_t *cvd = vd->vdev_child[c];
2617 uint64_t cmin, cmax;
2619 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2620 thismin = MIN(thismin, cmin);
2621 thismax = MAX(thismax, cmax);
2622 needed = B_TRUE;
2627 if (needed && minp) {
2628 *minp = thismin;
2629 *maxp = thismax;
2631 return (needed);
2635 * Gets the checkpoint space map object from the vdev's ZAP.
2636 * Returns the spacemap object, or 0 if it wasn't in the ZAP
2637 * or the ZAP doesn't exist yet.
2640 vdev_checkpoint_sm_object(vdev_t *vd)
2642 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2643 if (vd->vdev_top_zap == 0) {
2644 return (0);
2647 uint64_t sm_obj = 0;
2648 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2649 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2651 ASSERT(err == 0 || err == ENOENT);
2653 return (sm_obj);
2657 vdev_load(vdev_t *vd)
2659 int error = 0;
2661 * Recursively load all children.
2663 for (int c = 0; c < vd->vdev_children; c++) {
2664 error = vdev_load(vd->vdev_child[c]);
2665 if (error != 0) {
2666 return (error);
2670 vdev_set_deflate_ratio(vd);
2673 * If this is a top-level vdev, initialize its metaslabs.
2675 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2676 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2677 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2678 VDEV_AUX_CORRUPT_DATA);
2679 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2680 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2681 (u_longlong_t)vd->vdev_asize);
2682 return (SET_ERROR(ENXIO));
2683 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2684 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2685 "[error=%d]", error);
2686 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2687 VDEV_AUX_CORRUPT_DATA);
2688 return (error);
2691 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2692 if (checkpoint_sm_obj != 0) {
2693 objset_t *mos = spa_meta_objset(vd->vdev_spa);
2694 ASSERT(vd->vdev_asize != 0);
2695 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2697 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2698 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2699 vd->vdev_ashift))) {
2700 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2701 "failed for checkpoint spacemap (obj %llu) "
2702 "[error=%d]",
2703 (u_longlong_t)checkpoint_sm_obj, error);
2704 return (error);
2706 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2707 space_map_update(vd->vdev_checkpoint_sm);
2710 * Since the checkpoint_sm contains free entries
2711 * exclusively we can use sm_alloc to indicate the
2712 * culmulative checkpointed space that has been freed.
2714 vd->vdev_stat.vs_checkpoint_space =
2715 -vd->vdev_checkpoint_sm->sm_alloc;
2716 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2717 vd->vdev_stat.vs_checkpoint_space;
2722 * If this is a leaf vdev, load its DTL.
2724 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2725 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2726 VDEV_AUX_CORRUPT_DATA);
2727 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2728 "[error=%d]", error);
2729 return (error);
2732 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2733 if (obsolete_sm_object != 0) {
2734 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2735 ASSERT(vd->vdev_asize != 0);
2736 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2738 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2739 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2740 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2741 VDEV_AUX_CORRUPT_DATA);
2742 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2743 "obsolete spacemap (obj %llu) [error=%d]",
2744 (u_longlong_t)obsolete_sm_object, error);
2745 return (error);
2747 space_map_update(vd->vdev_obsolete_sm);
2750 return (0);
2754 * The special vdev case is used for hot spares and l2cache devices. Its
2755 * sole purpose it to set the vdev state for the associated vdev. To do this,
2756 * we make sure that we can open the underlying device, then try to read the
2757 * label, and make sure that the label is sane and that it hasn't been
2758 * repurposed to another pool.
2761 vdev_validate_aux(vdev_t *vd)
2763 nvlist_t *label;
2764 uint64_t guid, version;
2765 uint64_t state;
2767 if (!vdev_readable(vd))
2768 return (0);
2770 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2771 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2772 VDEV_AUX_CORRUPT_DATA);
2773 return (-1);
2776 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2777 !SPA_VERSION_IS_SUPPORTED(version) ||
2778 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2779 guid != vd->vdev_guid ||
2780 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2781 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2782 VDEV_AUX_CORRUPT_DATA);
2783 nvlist_free(label);
2784 return (-1);
2788 * We don't actually check the pool state here. If it's in fact in
2789 * use by another pool, we update this fact on the fly when requested.
2791 nvlist_free(label);
2792 return (0);
2796 * Free the objects used to store this vdev's spacemaps, and the array
2797 * that points to them.
2799 void
2800 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2802 if (vd->vdev_ms_array == 0)
2803 return;
2805 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2806 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2807 size_t array_bytes = array_count * sizeof (uint64_t);
2808 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2809 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2810 array_bytes, smobj_array, 0));
2812 for (uint64_t i = 0; i < array_count; i++) {
2813 uint64_t smobj = smobj_array[i];
2814 if (smobj == 0)
2815 continue;
2817 space_map_free_obj(mos, smobj, tx);
2820 kmem_free(smobj_array, array_bytes);
2821 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2822 vd->vdev_ms_array = 0;
2825 static void
2826 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2828 spa_t *spa = vd->vdev_spa;
2829 dmu_tx_t *tx;
2831 ASSERT(vd == vd->vdev_top);
2832 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2834 if (vd->vdev_ms != NULL) {
2835 metaslab_group_t *mg = vd->vdev_mg;
2837 metaslab_group_histogram_verify(mg);
2838 metaslab_class_histogram_verify(mg->mg_class);
2840 for (int m = 0; m < vd->vdev_ms_count; m++) {
2841 metaslab_t *msp = vd->vdev_ms[m];
2843 if (msp == NULL || msp->ms_sm == NULL)
2844 continue;
2846 mutex_enter(&msp->ms_lock);
2848 * If the metaslab was not loaded when the vdev
2849 * was removed then the histogram accounting may
2850 * not be accurate. Update the histogram information
2851 * here so that we ensure that the metaslab group
2852 * and metaslab class are up-to-date.
2854 metaslab_group_histogram_remove(mg, msp);
2856 VERIFY0(space_map_allocated(msp->ms_sm));
2857 space_map_close(msp->ms_sm);
2858 msp->ms_sm = NULL;
2859 mutex_exit(&msp->ms_lock);
2862 if (vd->vdev_checkpoint_sm != NULL) {
2863 ASSERT(spa_has_checkpoint(spa));
2864 space_map_close(vd->vdev_checkpoint_sm);
2865 vd->vdev_checkpoint_sm = NULL;
2868 metaslab_group_histogram_verify(mg);
2869 metaslab_class_histogram_verify(mg->mg_class);
2870 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2871 ASSERT0(mg->mg_histogram[i]);
2874 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2875 vdev_destroy_spacemaps(vd, tx);
2877 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2878 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2879 vd->vdev_top_zap = 0;
2881 dmu_tx_commit(tx);
2884 void
2885 vdev_sync_done(vdev_t *vd, uint64_t txg)
2887 metaslab_t *msp;
2888 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2890 ASSERT(vdev_is_concrete(vd));
2892 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2893 != NULL)
2894 metaslab_sync_done(msp, txg);
2896 if (reassess)
2897 metaslab_sync_reassess(vd->vdev_mg);
2900 void
2901 vdev_sync(vdev_t *vd, uint64_t txg)
2903 spa_t *spa = vd->vdev_spa;
2904 vdev_t *lvd;
2905 metaslab_t *msp;
2906 dmu_tx_t *tx;
2908 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2909 dmu_tx_t *tx;
2911 ASSERT(vd->vdev_removing ||
2912 vd->vdev_ops == &vdev_indirect_ops);
2914 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2915 vdev_indirect_sync_obsolete(vd, tx);
2916 dmu_tx_commit(tx);
2919 * If the vdev is indirect, it can't have dirty
2920 * metaslabs or DTLs.
2922 if (vd->vdev_ops == &vdev_indirect_ops) {
2923 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2924 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2925 return;
2929 ASSERT(vdev_is_concrete(vd));
2931 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2932 !vd->vdev_removing) {
2933 ASSERT(vd == vd->vdev_top);
2934 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2935 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2936 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2937 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2938 ASSERT(vd->vdev_ms_array != 0);
2939 vdev_config_dirty(vd);
2940 dmu_tx_commit(tx);
2943 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2944 metaslab_sync(msp, txg);
2945 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2948 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2949 vdev_dtl_sync(lvd, txg);
2952 * Remove the metadata associated with this vdev once it's empty.
2953 * Note that this is typically used for log/cache device removal;
2954 * we don't empty toplevel vdevs when removing them. But if
2955 * a toplevel happens to be emptied, this is not harmful.
2957 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2958 vdev_remove_empty(vd, txg);
2961 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2964 uint64_t
2965 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2967 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2971 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2972 * not be opened, and no I/O is attempted.
2975 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2977 vdev_t *vd, *tvd;
2979 spa_vdev_state_enter(spa, SCL_NONE);
2981 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2982 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2984 if (!vd->vdev_ops->vdev_op_leaf)
2985 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2987 tvd = vd->vdev_top;
2990 * We don't directly use the aux state here, but if we do a
2991 * vdev_reopen(), we need this value to be present to remember why we
2992 * were faulted.
2994 vd->vdev_label_aux = aux;
2997 * Faulted state takes precedence over degraded.
2999 vd->vdev_delayed_close = B_FALSE;
3000 vd->vdev_faulted = 1ULL;
3001 vd->vdev_degraded = 0ULL;
3002 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3005 * If this device has the only valid copy of the data, then
3006 * back off and simply mark the vdev as degraded instead.
3008 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3009 vd->vdev_degraded = 1ULL;
3010 vd->vdev_faulted = 0ULL;
3013 * If we reopen the device and it's not dead, only then do we
3014 * mark it degraded.
3016 vdev_reopen(tvd);
3018 if (vdev_readable(vd))
3019 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3022 return (spa_vdev_state_exit(spa, vd, 0));
3026 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3027 * user that something is wrong. The vdev continues to operate as normal as far
3028 * as I/O is concerned.
3031 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3033 vdev_t *vd;
3035 spa_vdev_state_enter(spa, SCL_NONE);
3037 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3038 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3040 if (!vd->vdev_ops->vdev_op_leaf)
3041 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3044 * If the vdev is already faulted, then don't do anything.
3046 if (vd->vdev_faulted || vd->vdev_degraded)
3047 return (spa_vdev_state_exit(spa, NULL, 0));
3049 vd->vdev_degraded = 1ULL;
3050 if (!vdev_is_dead(vd))
3051 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3052 aux);
3054 return (spa_vdev_state_exit(spa, vd, 0));
3058 * Online the given vdev.
3060 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3061 * spare device should be detached when the device finishes resilvering.
3062 * Second, the online should be treated like a 'test' online case, so no FMA
3063 * events are generated if the device fails to open.
3066 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3068 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3069 boolean_t wasoffline;
3070 vdev_state_t oldstate;
3072 spa_vdev_state_enter(spa, SCL_NONE);
3074 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3075 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3077 if (!vd->vdev_ops->vdev_op_leaf)
3078 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3080 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3081 oldstate = vd->vdev_state;
3083 tvd = vd->vdev_top;
3084 vd->vdev_offline = B_FALSE;
3085 vd->vdev_tmpoffline = B_FALSE;
3086 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3087 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3089 /* XXX - L2ARC 1.0 does not support expansion */
3090 if (!vd->vdev_aux) {
3091 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3092 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3095 vdev_reopen(tvd);
3096 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3098 if (!vd->vdev_aux) {
3099 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3100 pvd->vdev_expanding = B_FALSE;
3103 if (newstate)
3104 *newstate = vd->vdev_state;
3105 if ((flags & ZFS_ONLINE_UNSPARE) &&
3106 !vdev_is_dead(vd) && vd->vdev_parent &&
3107 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3108 vd->vdev_parent->vdev_child[0] == vd)
3109 vd->vdev_unspare = B_TRUE;
3111 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3113 /* XXX - L2ARC 1.0 does not support expansion */
3114 if (vd->vdev_aux)
3115 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3116 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3119 /* Restart initializing if necessary */
3120 mutex_enter(&vd->vdev_initialize_lock);
3121 if (vdev_writeable(vd) &&
3122 vd->vdev_initialize_thread == NULL &&
3123 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3124 (void) vdev_initialize(vd);
3126 mutex_exit(&vd->vdev_initialize_lock);
3128 if (wasoffline ||
3129 (oldstate < VDEV_STATE_DEGRADED &&
3130 vd->vdev_state >= VDEV_STATE_DEGRADED))
3131 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3133 return (spa_vdev_state_exit(spa, vd, 0));
3136 static int
3137 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3139 vdev_t *vd, *tvd;
3140 int error = 0;
3141 uint64_t generation;
3142 metaslab_group_t *mg;
3144 top:
3145 spa_vdev_state_enter(spa, SCL_ALLOC);
3147 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3148 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3150 if (!vd->vdev_ops->vdev_op_leaf)
3151 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3153 tvd = vd->vdev_top;
3154 mg = tvd->vdev_mg;
3155 generation = spa->spa_config_generation + 1;
3158 * If the device isn't already offline, try to offline it.
3160 if (!vd->vdev_offline) {
3162 * If this device has the only valid copy of some data,
3163 * don't allow it to be offlined. Log devices are always
3164 * expendable.
3166 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3167 vdev_dtl_required(vd))
3168 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3171 * If the top-level is a slog and it has had allocations
3172 * then proceed. We check that the vdev's metaslab group
3173 * is not NULL since it's possible that we may have just
3174 * added this vdev but not yet initialized its metaslabs.
3176 if (tvd->vdev_islog && mg != NULL) {
3178 * Prevent any future allocations.
3180 metaslab_group_passivate(mg);
3181 (void) spa_vdev_state_exit(spa, vd, 0);
3183 error = spa_reset_logs(spa);
3186 * If the log device was successfully reset but has
3187 * checkpointed data, do not offline it.
3189 if (error == 0 &&
3190 tvd->vdev_checkpoint_sm != NULL) {
3191 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3192 !=, 0);
3193 error = ZFS_ERR_CHECKPOINT_EXISTS;
3196 spa_vdev_state_enter(spa, SCL_ALLOC);
3199 * Check to see if the config has changed.
3201 if (error || generation != spa->spa_config_generation) {
3202 metaslab_group_activate(mg);
3203 if (error)
3204 return (spa_vdev_state_exit(spa,
3205 vd, error));
3206 (void) spa_vdev_state_exit(spa, vd, 0);
3207 goto top;
3209 ASSERT0(tvd->vdev_stat.vs_alloc);
3213 * Offline this device and reopen its top-level vdev.
3214 * If the top-level vdev is a log device then just offline
3215 * it. Otherwise, if this action results in the top-level
3216 * vdev becoming unusable, undo it and fail the request.
3218 vd->vdev_offline = B_TRUE;
3219 vdev_reopen(tvd);
3221 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3222 vdev_is_dead(tvd)) {
3223 vd->vdev_offline = B_FALSE;
3224 vdev_reopen(tvd);
3225 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3229 * Add the device back into the metaslab rotor so that
3230 * once we online the device it's open for business.
3232 if (tvd->vdev_islog && mg != NULL)
3233 metaslab_group_activate(mg);
3236 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3238 return (spa_vdev_state_exit(spa, vd, 0));
3242 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3244 int error;
3246 mutex_enter(&spa->spa_vdev_top_lock);
3247 error = vdev_offline_locked(spa, guid, flags);
3248 mutex_exit(&spa->spa_vdev_top_lock);
3250 return (error);
3254 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3255 * vdev_offline(), we assume the spa config is locked. We also clear all
3256 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3258 void
3259 vdev_clear(spa_t *spa, vdev_t *vd)
3261 vdev_t *rvd = spa->spa_root_vdev;
3263 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3265 if (vd == NULL)
3266 vd = rvd;
3268 vd->vdev_stat.vs_read_errors = 0;
3269 vd->vdev_stat.vs_write_errors = 0;
3270 vd->vdev_stat.vs_checksum_errors = 0;
3272 for (int c = 0; c < vd->vdev_children; c++)
3273 vdev_clear(spa, vd->vdev_child[c]);
3276 * It makes no sense to "clear" an indirect vdev.
3278 if (!vdev_is_concrete(vd))
3279 return;
3282 * If we're in the FAULTED state or have experienced failed I/O, then
3283 * clear the persistent state and attempt to reopen the device. We
3284 * also mark the vdev config dirty, so that the new faulted state is
3285 * written out to disk.
3287 if (vd->vdev_faulted || vd->vdev_degraded ||
3288 !vdev_readable(vd) || !vdev_writeable(vd)) {
3291 * When reopening in reponse to a clear event, it may be due to
3292 * a fmadm repair request. In this case, if the device is
3293 * still broken, we want to still post the ereport again.
3295 vd->vdev_forcefault = B_TRUE;
3297 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3298 vd->vdev_cant_read = B_FALSE;
3299 vd->vdev_cant_write = B_FALSE;
3301 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3303 vd->vdev_forcefault = B_FALSE;
3305 if (vd != rvd && vdev_writeable(vd->vdev_top))
3306 vdev_state_dirty(vd->vdev_top);
3308 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3309 spa_async_request(spa, SPA_ASYNC_RESILVER);
3311 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3315 * When clearing a FMA-diagnosed fault, we always want to
3316 * unspare the device, as we assume that the original spare was
3317 * done in response to the FMA fault.
3319 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3320 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3321 vd->vdev_parent->vdev_child[0] == vd)
3322 vd->vdev_unspare = B_TRUE;
3325 boolean_t
3326 vdev_is_dead(vdev_t *vd)
3329 * Holes and missing devices are always considered "dead".
3330 * This simplifies the code since we don't have to check for
3331 * these types of devices in the various code paths.
3332 * Instead we rely on the fact that we skip over dead devices
3333 * before issuing I/O to them.
3335 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3336 vd->vdev_ops == &vdev_hole_ops ||
3337 vd->vdev_ops == &vdev_missing_ops);
3340 boolean_t
3341 vdev_readable(vdev_t *vd)
3343 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3346 boolean_t
3347 vdev_writeable(vdev_t *vd)
3349 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3350 vdev_is_concrete(vd));
3353 boolean_t
3354 vdev_allocatable(vdev_t *vd)
3356 uint64_t state = vd->vdev_state;
3359 * We currently allow allocations from vdevs which may be in the
3360 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3361 * fails to reopen then we'll catch it later when we're holding
3362 * the proper locks. Note that we have to get the vdev state
3363 * in a local variable because although it changes atomically,
3364 * we're asking two separate questions about it.
3366 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3367 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3368 vd->vdev_mg->mg_initialized);
3371 boolean_t
3372 vdev_accessible(vdev_t *vd, zio_t *zio)
3374 ASSERT(zio->io_vd == vd);
3376 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3377 return (B_FALSE);
3379 if (zio->io_type == ZIO_TYPE_READ)
3380 return (!vd->vdev_cant_read);
3382 if (zio->io_type == ZIO_TYPE_WRITE)
3383 return (!vd->vdev_cant_write);
3385 return (B_TRUE);
3388 boolean_t
3389 vdev_is_spacemap_addressable(vdev_t *vd)
3392 * Assuming 47 bits of the space map entry dedicated for the entry's
3393 * offset (see description in space_map.h), we calculate the maximum
3394 * address that can be described by a space map entry for the given
3395 * device.
3397 uint64_t shift = vd->vdev_ashift + 47;
3399 if (shift >= 63) /* detect potential overflow */
3400 return (B_TRUE);
3402 return (vd->vdev_asize < (1ULL << shift));
3406 * Get statistics for the given vdev.
3408 void
3409 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3411 spa_t *spa = vd->vdev_spa;
3412 vdev_t *rvd = spa->spa_root_vdev;
3413 vdev_t *tvd = vd->vdev_top;
3415 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3417 mutex_enter(&vd->vdev_stat_lock);
3418 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3419 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3420 vs->vs_state = vd->vdev_state;
3421 vs->vs_rsize = vdev_get_min_asize(vd);
3422 if (vd->vdev_ops->vdev_op_leaf) {
3423 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3425 * Report intializing progress. Since we don't have the
3426 * initializing locks held, this is only an estimate (although a
3427 * fairly accurate one).
3429 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3430 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3431 vs->vs_initialize_state = vd->vdev_initialize_state;
3432 vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3435 * Report expandable space on top-level, non-auxillary devices only.
3436 * The expandable space is reported in terms of metaslab sized units
3437 * since that determines how much space the pool can expand.
3439 if (vd->vdev_aux == NULL && tvd != NULL) {
3440 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3441 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3443 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3444 vdev_is_concrete(vd)) {
3445 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3449 * If we're getting stats on the root vdev, aggregate the I/O counts
3450 * over all top-level vdevs (i.e. the direct children of the root).
3452 if (vd == rvd) {
3453 for (int c = 0; c < rvd->vdev_children; c++) {
3454 vdev_t *cvd = rvd->vdev_child[c];
3455 vdev_stat_t *cvs = &cvd->vdev_stat;
3457 for (int t = 0; t < ZIO_TYPES; t++) {
3458 vs->vs_ops[t] += cvs->vs_ops[t];
3459 vs->vs_bytes[t] += cvs->vs_bytes[t];
3461 cvs->vs_scan_removing = cvd->vdev_removing;
3464 mutex_exit(&vd->vdev_stat_lock);
3467 void
3468 vdev_clear_stats(vdev_t *vd)
3470 mutex_enter(&vd->vdev_stat_lock);
3471 vd->vdev_stat.vs_space = 0;
3472 vd->vdev_stat.vs_dspace = 0;
3473 vd->vdev_stat.vs_alloc = 0;
3474 mutex_exit(&vd->vdev_stat_lock);
3477 void
3478 vdev_scan_stat_init(vdev_t *vd)
3480 vdev_stat_t *vs = &vd->vdev_stat;
3482 for (int c = 0; c < vd->vdev_children; c++)
3483 vdev_scan_stat_init(vd->vdev_child[c]);
3485 mutex_enter(&vd->vdev_stat_lock);
3486 vs->vs_scan_processed = 0;
3487 mutex_exit(&vd->vdev_stat_lock);
3490 void
3491 vdev_stat_update(zio_t *zio, uint64_t psize)
3493 spa_t *spa = zio->io_spa;
3494 vdev_t *rvd = spa->spa_root_vdev;
3495 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3496 vdev_t *pvd;
3497 uint64_t txg = zio->io_txg;
3498 vdev_stat_t *vs = &vd->vdev_stat;
3499 zio_type_t type = zio->io_type;
3500 int flags = zio->io_flags;
3503 * If this i/o is a gang leader, it didn't do any actual work.
3505 if (zio->io_gang_tree)
3506 return;
3508 if (zio->io_error == 0) {
3510 * If this is a root i/o, don't count it -- we've already
3511 * counted the top-level vdevs, and vdev_get_stats() will
3512 * aggregate them when asked. This reduces contention on
3513 * the root vdev_stat_lock and implicitly handles blocks
3514 * that compress away to holes, for which there is no i/o.
3515 * (Holes never create vdev children, so all the counters
3516 * remain zero, which is what we want.)
3518 * Note: this only applies to successful i/o (io_error == 0)
3519 * because unlike i/o counts, errors are not additive.
3520 * When reading a ditto block, for example, failure of
3521 * one top-level vdev does not imply a root-level error.
3523 if (vd == rvd)
3524 return;
3526 ASSERT(vd == zio->io_vd);
3528 if (flags & ZIO_FLAG_IO_BYPASS)
3529 return;
3531 mutex_enter(&vd->vdev_stat_lock);
3533 if (flags & ZIO_FLAG_IO_REPAIR) {
3534 if (flags & ZIO_FLAG_SCAN_THREAD) {
3535 dsl_scan_phys_t *scn_phys =
3536 &spa->spa_dsl_pool->dp_scan->scn_phys;
3537 uint64_t *processed = &scn_phys->scn_processed;
3539 /* XXX cleanup? */
3540 if (vd->vdev_ops->vdev_op_leaf)
3541 atomic_add_64(processed, psize);
3542 vs->vs_scan_processed += psize;
3545 if (flags & ZIO_FLAG_SELF_HEAL)
3546 vs->vs_self_healed += psize;
3549 vs->vs_ops[type]++;
3550 vs->vs_bytes[type] += psize;
3552 mutex_exit(&vd->vdev_stat_lock);
3553 return;
3556 if (flags & ZIO_FLAG_SPECULATIVE)
3557 return;
3560 * If this is an I/O error that is going to be retried, then ignore the
3561 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3562 * hard errors, when in reality they can happen for any number of
3563 * innocuous reasons (bus resets, MPxIO link failure, etc).
3565 if (zio->io_error == EIO &&
3566 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3567 return;
3570 * Intent logs writes won't propagate their error to the root
3571 * I/O so don't mark these types of failures as pool-level
3572 * errors.
3574 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3575 return;
3577 mutex_enter(&vd->vdev_stat_lock);
3578 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3579 if (zio->io_error == ECKSUM)
3580 vs->vs_checksum_errors++;
3581 else
3582 vs->vs_read_errors++;
3584 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3585 vs->vs_write_errors++;
3586 mutex_exit(&vd->vdev_stat_lock);
3588 if (spa->spa_load_state == SPA_LOAD_NONE &&
3589 type == ZIO_TYPE_WRITE && txg != 0 &&
3590 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3591 (flags & ZIO_FLAG_SCAN_THREAD) ||
3592 spa->spa_claiming)) {
3594 * This is either a normal write (not a repair), or it's
3595 * a repair induced by the scrub thread, or it's a repair
3596 * made by zil_claim() during spa_load() in the first txg.
3597 * In the normal case, we commit the DTL change in the same
3598 * txg as the block was born. In the scrub-induced repair
3599 * case, we know that scrubs run in first-pass syncing context,
3600 * so we commit the DTL change in spa_syncing_txg(spa).
3601 * In the zil_claim() case, we commit in spa_first_txg(spa).
3603 * We currently do not make DTL entries for failed spontaneous
3604 * self-healing writes triggered by normal (non-scrubbing)
3605 * reads, because we have no transactional context in which to
3606 * do so -- and it's not clear that it'd be desirable anyway.
3608 if (vd->vdev_ops->vdev_op_leaf) {
3609 uint64_t commit_txg = txg;
3610 if (flags & ZIO_FLAG_SCAN_THREAD) {
3611 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3612 ASSERT(spa_sync_pass(spa) == 1);
3613 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3614 commit_txg = spa_syncing_txg(spa);
3615 } else if (spa->spa_claiming) {
3616 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3617 commit_txg = spa_first_txg(spa);
3619 ASSERT(commit_txg >= spa_syncing_txg(spa));
3620 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3621 return;
3622 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3623 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3624 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3626 if (vd != rvd)
3627 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3632 * Update the in-core space usage stats for this vdev, its metaslab class,
3633 * and the root vdev.
3635 void
3636 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3637 int64_t space_delta)
3639 int64_t dspace_delta = space_delta;
3640 spa_t *spa = vd->vdev_spa;
3641 vdev_t *rvd = spa->spa_root_vdev;
3642 metaslab_group_t *mg = vd->vdev_mg;
3643 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3645 ASSERT(vd == vd->vdev_top);
3648 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3649 * factor. We must calculate this here and not at the root vdev
3650 * because the root vdev's psize-to-asize is simply the max of its
3651 * childrens', thus not accurate enough for us.
3653 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3654 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3655 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3656 vd->vdev_deflate_ratio;
3658 mutex_enter(&vd->vdev_stat_lock);
3659 vd->vdev_stat.vs_alloc += alloc_delta;
3660 vd->vdev_stat.vs_space += space_delta;
3661 vd->vdev_stat.vs_dspace += dspace_delta;
3662 mutex_exit(&vd->vdev_stat_lock);
3664 if (mc == spa_normal_class(spa)) {
3665 mutex_enter(&rvd->vdev_stat_lock);
3666 rvd->vdev_stat.vs_alloc += alloc_delta;
3667 rvd->vdev_stat.vs_space += space_delta;
3668 rvd->vdev_stat.vs_dspace += dspace_delta;
3669 mutex_exit(&rvd->vdev_stat_lock);
3672 if (mc != NULL) {
3673 ASSERT(rvd == vd->vdev_parent);
3674 ASSERT(vd->vdev_ms_count != 0);
3676 metaslab_class_space_update(mc,
3677 alloc_delta, defer_delta, space_delta, dspace_delta);
3682 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3683 * so that it will be written out next time the vdev configuration is synced.
3684 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3686 void
3687 vdev_config_dirty(vdev_t *vd)
3689 spa_t *spa = vd->vdev_spa;
3690 vdev_t *rvd = spa->spa_root_vdev;
3691 int c;
3693 ASSERT(spa_writeable(spa));
3696 * If this is an aux vdev (as with l2cache and spare devices), then we
3697 * update the vdev config manually and set the sync flag.
3699 if (vd->vdev_aux != NULL) {
3700 spa_aux_vdev_t *sav = vd->vdev_aux;
3701 nvlist_t **aux;
3702 uint_t naux;
3704 for (c = 0; c < sav->sav_count; c++) {
3705 if (sav->sav_vdevs[c] == vd)
3706 break;
3709 if (c == sav->sav_count) {
3711 * We're being removed. There's nothing more to do.
3713 ASSERT(sav->sav_sync == B_TRUE);
3714 return;
3717 sav->sav_sync = B_TRUE;
3719 if (nvlist_lookup_nvlist_array(sav->sav_config,
3720 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3721 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3722 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3725 ASSERT(c < naux);
3728 * Setting the nvlist in the middle if the array is a little
3729 * sketchy, but it will work.
3731 nvlist_free(aux[c]);
3732 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3734 return;
3738 * The dirty list is protected by the SCL_CONFIG lock. The caller
3739 * must either hold SCL_CONFIG as writer, or must be the sync thread
3740 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3741 * so this is sufficient to ensure mutual exclusion.
3743 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3744 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3745 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3747 if (vd == rvd) {
3748 for (c = 0; c < rvd->vdev_children; c++)
3749 vdev_config_dirty(rvd->vdev_child[c]);
3750 } else {
3751 ASSERT(vd == vd->vdev_top);
3753 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3754 vdev_is_concrete(vd)) {
3755 list_insert_head(&spa->spa_config_dirty_list, vd);
3760 void
3761 vdev_config_clean(vdev_t *vd)
3763 spa_t *spa = vd->vdev_spa;
3765 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3766 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3767 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3769 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3770 list_remove(&spa->spa_config_dirty_list, vd);
3774 * Mark a top-level vdev's state as dirty, so that the next pass of
3775 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3776 * the state changes from larger config changes because they require
3777 * much less locking, and are often needed for administrative actions.
3779 void
3780 vdev_state_dirty(vdev_t *vd)
3782 spa_t *spa = vd->vdev_spa;
3784 ASSERT(spa_writeable(spa));
3785 ASSERT(vd == vd->vdev_top);
3788 * The state list is protected by the SCL_STATE lock. The caller
3789 * must either hold SCL_STATE as writer, or must be the sync thread
3790 * (which holds SCL_STATE as reader). There's only one sync thread,
3791 * so this is sufficient to ensure mutual exclusion.
3793 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3794 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3795 spa_config_held(spa, SCL_STATE, RW_READER)));
3797 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3798 vdev_is_concrete(vd))
3799 list_insert_head(&spa->spa_state_dirty_list, vd);
3802 void
3803 vdev_state_clean(vdev_t *vd)
3805 spa_t *spa = vd->vdev_spa;
3807 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3808 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3809 spa_config_held(spa, SCL_STATE, RW_READER)));
3811 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3812 list_remove(&spa->spa_state_dirty_list, vd);
3816 * Propagate vdev state up from children to parent.
3818 void
3819 vdev_propagate_state(vdev_t *vd)
3821 spa_t *spa = vd->vdev_spa;
3822 vdev_t *rvd = spa->spa_root_vdev;
3823 int degraded = 0, faulted = 0;
3824 int corrupted = 0;
3825 vdev_t *child;
3827 if (vd->vdev_children > 0) {
3828 for (int c = 0; c < vd->vdev_children; c++) {
3829 child = vd->vdev_child[c];
3832 * Don't factor holes or indirect vdevs into the
3833 * decision.
3835 if (!vdev_is_concrete(child))
3836 continue;
3838 if (!vdev_readable(child) ||
3839 (!vdev_writeable(child) && spa_writeable(spa))) {
3841 * Root special: if there is a top-level log
3842 * device, treat the root vdev as if it were
3843 * degraded.
3845 if (child->vdev_islog && vd == rvd)
3846 degraded++;
3847 else
3848 faulted++;
3849 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3850 degraded++;
3853 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3854 corrupted++;
3857 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3860 * Root special: if there is a top-level vdev that cannot be
3861 * opened due to corrupted metadata, then propagate the root
3862 * vdev's aux state as 'corrupt' rather than 'insufficient
3863 * replicas'.
3865 if (corrupted && vd == rvd &&
3866 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3867 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3868 VDEV_AUX_CORRUPT_DATA);
3871 if (vd->vdev_parent)
3872 vdev_propagate_state(vd->vdev_parent);
3876 * Set a vdev's state. If this is during an open, we don't update the parent
3877 * state, because we're in the process of opening children depth-first.
3878 * Otherwise, we propagate the change to the parent.
3880 * If this routine places a device in a faulted state, an appropriate ereport is
3881 * generated.
3883 void
3884 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3886 uint64_t save_state;
3887 spa_t *spa = vd->vdev_spa;
3889 if (state == vd->vdev_state) {
3890 vd->vdev_stat.vs_aux = aux;
3891 return;
3894 save_state = vd->vdev_state;
3896 vd->vdev_state = state;
3897 vd->vdev_stat.vs_aux = aux;
3900 * If we are setting the vdev state to anything but an open state, then
3901 * always close the underlying device unless the device has requested
3902 * a delayed close (i.e. we're about to remove or fault the device).
3903 * Otherwise, we keep accessible but invalid devices open forever.
3904 * We don't call vdev_close() itself, because that implies some extra
3905 * checks (offline, etc) that we don't want here. This is limited to
3906 * leaf devices, because otherwise closing the device will affect other
3907 * children.
3909 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3910 vd->vdev_ops->vdev_op_leaf)
3911 vd->vdev_ops->vdev_op_close(vd);
3914 * If we have brought this vdev back into service, we need
3915 * to notify fmd so that it can gracefully repair any outstanding
3916 * cases due to a missing device. We do this in all cases, even those
3917 * that probably don't correlate to a repaired fault. This is sure to
3918 * catch all cases, and we let the zfs-retire agent sort it out. If
3919 * this is a transient state it's OK, as the retire agent will
3920 * double-check the state of the vdev before repairing it.
3922 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3923 vd->vdev_prevstate != state)
3924 zfs_post_state_change(spa, vd);
3926 if (vd->vdev_removed &&
3927 state == VDEV_STATE_CANT_OPEN &&
3928 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3930 * If the previous state is set to VDEV_STATE_REMOVED, then this
3931 * device was previously marked removed and someone attempted to
3932 * reopen it. If this failed due to a nonexistent device, then
3933 * keep the device in the REMOVED state. We also let this be if
3934 * it is one of our special test online cases, which is only
3935 * attempting to online the device and shouldn't generate an FMA
3936 * fault.
3938 vd->vdev_state = VDEV_STATE_REMOVED;
3939 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3940 } else if (state == VDEV_STATE_REMOVED) {
3941 vd->vdev_removed = B_TRUE;
3942 } else if (state == VDEV_STATE_CANT_OPEN) {
3944 * If we fail to open a vdev during an import or recovery, we
3945 * mark it as "not available", which signifies that it was
3946 * never there to begin with. Failure to open such a device
3947 * is not considered an error.
3949 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3950 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3951 vd->vdev_ops->vdev_op_leaf)
3952 vd->vdev_not_present = 1;
3955 * Post the appropriate ereport. If the 'prevstate' field is
3956 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3957 * that this is part of a vdev_reopen(). In this case, we don't
3958 * want to post the ereport if the device was already in the
3959 * CANT_OPEN state beforehand.
3961 * If the 'checkremove' flag is set, then this is an attempt to
3962 * online the device in response to an insertion event. If we
3963 * hit this case, then we have detected an insertion event for a
3964 * faulted or offline device that wasn't in the removed state.
3965 * In this scenario, we don't post an ereport because we are
3966 * about to replace the device, or attempt an online with
3967 * vdev_forcefault, which will generate the fault for us.
3969 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3970 !vd->vdev_not_present && !vd->vdev_checkremove &&
3971 vd != spa->spa_root_vdev) {
3972 const char *class;
3974 switch (aux) {
3975 case VDEV_AUX_OPEN_FAILED:
3976 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3977 break;
3978 case VDEV_AUX_CORRUPT_DATA:
3979 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3980 break;
3981 case VDEV_AUX_NO_REPLICAS:
3982 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3983 break;
3984 case VDEV_AUX_BAD_GUID_SUM:
3985 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3986 break;
3987 case VDEV_AUX_TOO_SMALL:
3988 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3989 break;
3990 case VDEV_AUX_BAD_LABEL:
3991 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3992 break;
3993 default:
3994 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3997 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4000 /* Erase any notion of persistent removed state */
4001 vd->vdev_removed = B_FALSE;
4002 } else {
4003 vd->vdev_removed = B_FALSE;
4006 if (!isopen && vd->vdev_parent)
4007 vdev_propagate_state(vd->vdev_parent);
4010 boolean_t
4011 vdev_children_are_offline(vdev_t *vd)
4013 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4015 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4016 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4017 return (B_FALSE);
4020 return (B_TRUE);
4024 * Check the vdev configuration to ensure that it's capable of supporting
4025 * a root pool. We do not support partial configuration.
4026 * In addition, only a single top-level vdev is allowed.
4028 boolean_t
4029 vdev_is_bootable(vdev_t *vd)
4031 if (!vd->vdev_ops->vdev_op_leaf) {
4032 char *vdev_type = vd->vdev_ops->vdev_op_type;
4034 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4035 vd->vdev_children > 1) {
4036 return (B_FALSE);
4037 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4038 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4039 return (B_FALSE);
4043 for (int c = 0; c < vd->vdev_children; c++) {
4044 if (!vdev_is_bootable(vd->vdev_child[c]))
4045 return (B_FALSE);
4047 return (B_TRUE);
4050 boolean_t
4051 vdev_is_concrete(vdev_t *vd)
4053 vdev_ops_t *ops = vd->vdev_ops;
4054 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4055 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4056 return (B_FALSE);
4057 } else {
4058 return (B_TRUE);
4063 * Determine if a log device has valid content. If the vdev was
4064 * removed or faulted in the MOS config then we know that
4065 * the content on the log device has already been written to the pool.
4067 boolean_t
4068 vdev_log_state_valid(vdev_t *vd)
4070 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4071 !vd->vdev_removed)
4072 return (B_TRUE);
4074 for (int c = 0; c < vd->vdev_children; c++)
4075 if (vdev_log_state_valid(vd->vdev_child[c]))
4076 return (B_TRUE);
4078 return (B_FALSE);
4082 * Expand a vdev if possible.
4084 void
4085 vdev_expand(vdev_t *vd, uint64_t txg)
4087 ASSERT(vd->vdev_top == vd);
4088 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4090 vdev_set_deflate_ratio(vd);
4092 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4093 vdev_is_concrete(vd)) {
4094 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4095 vdev_config_dirty(vd);
4100 * Split a vdev.
4102 void
4103 vdev_split(vdev_t *vd)
4105 vdev_t *cvd, *pvd = vd->vdev_parent;
4107 vdev_remove_child(pvd, vd);
4108 vdev_compact_children(pvd);
4110 cvd = pvd->vdev_child[0];
4111 if (pvd->vdev_children == 1) {
4112 vdev_remove_parent(cvd);
4113 cvd->vdev_splitting = B_TRUE;
4115 vdev_propagate_state(cvd);
4118 void
4119 vdev_deadman(vdev_t *vd)
4121 for (int c = 0; c < vd->vdev_children; c++) {
4122 vdev_t *cvd = vd->vdev_child[c];
4124 vdev_deadman(cvd);
4127 if (vd->vdev_ops->vdev_op_leaf) {
4128 vdev_queue_t *vq = &vd->vdev_queue;
4130 mutex_enter(&vq->vq_lock);
4131 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4132 spa_t *spa = vd->vdev_spa;
4133 zio_t *fio;
4134 uint64_t delta;
4137 * Look at the head of all the pending queues,
4138 * if any I/O has been outstanding for longer than
4139 * the spa_deadman_synctime we panic the system.
4141 fio = avl_first(&vq->vq_active_tree);
4142 delta = gethrtime() - fio->io_timestamp;
4143 if (delta > spa_deadman_synctime(spa)) {
4144 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4145 "%lluns, delta %lluns, last io %lluns",
4146 fio->io_timestamp, (u_longlong_t)delta,
4147 vq->vq_io_complete_ts);
4148 fm_panic("I/O to pool '%s' appears to be "
4149 "hung.", spa_name(spa));
4152 mutex_exit(&vq->vq_lock);