9236 nuke spa_dbgmsg
[unleashed.git] / usr / src / uts / common / fs / zfs / zio.c
blobdc14ad07c29aa036d1ac4dc9891b98358612ec18
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 #include <sys/cityhash.h>
48 * ==========================================================================
49 * I/O type descriptions
50 * ==========================================================================
52 const char *zio_type_name[ZIO_TYPES] = {
53 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
54 "zio_ioctl"
57 boolean_t zio_dva_throttle_enabled = B_TRUE;
60 * ==========================================================================
61 * I/O kmem caches
62 * ==========================================================================
64 kmem_cache_t *zio_cache;
65 kmem_cache_t *zio_link_cache;
66 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
69 #ifdef _KERNEL
70 extern vmem_t *zio_alloc_arena;
71 #endif
73 #define ZIO_PIPELINE_CONTINUE 0x100
74 #define ZIO_PIPELINE_STOP 0x101
76 #define BP_SPANB(indblkshift, level) \
77 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
78 #define COMPARE_META_LEVEL 0x80000000ul
80 * The following actions directly effect the spa's sync-to-convergence logic.
81 * The values below define the sync pass when we start performing the action.
82 * Care should be taken when changing these values as they directly impact
83 * spa_sync() performance. Tuning these values may introduce subtle performance
84 * pathologies and should only be done in the context of performance analysis.
85 * These tunables will eventually be removed and replaced with #defines once
86 * enough analysis has been done to determine optimal values.
88 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
89 * regular blocks are not deferred.
91 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
92 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
93 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
96 * An allocating zio is one that either currently has the DVA allocate
97 * stage set or will have it later in its lifetime.
99 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
101 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
103 #ifdef ZFS_DEBUG
104 int zio_buf_debug_limit = 16384;
105 #else
106 int zio_buf_debug_limit = 0;
107 #endif
109 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
111 void
112 zio_init(void)
114 size_t c;
115 vmem_t *data_alloc_arena = NULL;
117 #ifdef _KERNEL
118 data_alloc_arena = zio_alloc_arena;
119 #endif
120 zio_cache = kmem_cache_create("zio_cache",
121 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
122 zio_link_cache = kmem_cache_create("zio_link_cache",
123 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 * For small buffers, we want a cache for each multiple of
127 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
128 * for each quarter-power of 2.
130 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
131 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
132 size_t p2 = size;
133 size_t align = 0;
134 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
136 while (!ISP2(p2))
137 p2 &= p2 - 1;
139 #ifndef _KERNEL
141 * If we are using watchpoints, put each buffer on its own page,
142 * to eliminate the performance overhead of trapping to the
143 * kernel when modifying a non-watched buffer that shares the
144 * page with a watched buffer.
146 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
147 continue;
148 #endif
149 if (size <= 4 * SPA_MINBLOCKSIZE) {
150 align = SPA_MINBLOCKSIZE;
151 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
152 align = MIN(p2 >> 2, PAGESIZE);
155 if (align != 0) {
156 char name[36];
157 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
158 zio_buf_cache[c] = kmem_cache_create(name, size,
159 align, NULL, NULL, NULL, NULL, NULL, cflags);
162 * Since zio_data bufs do not appear in crash dumps, we
163 * pass KMC_NOTOUCH so that no allocator metadata is
164 * stored with the buffers.
166 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
167 zio_data_buf_cache[c] = kmem_cache_create(name, size,
168 align, NULL, NULL, NULL, NULL, data_alloc_arena,
169 cflags | KMC_NOTOUCH);
173 while (--c != 0) {
174 ASSERT(zio_buf_cache[c] != NULL);
175 if (zio_buf_cache[c - 1] == NULL)
176 zio_buf_cache[c - 1] = zio_buf_cache[c];
178 ASSERT(zio_data_buf_cache[c] != NULL);
179 if (zio_data_buf_cache[c - 1] == NULL)
180 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
183 zio_inject_init();
186 void
187 zio_fini(void)
189 size_t c;
190 kmem_cache_t *last_cache = NULL;
191 kmem_cache_t *last_data_cache = NULL;
193 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
194 if (zio_buf_cache[c] != last_cache) {
195 last_cache = zio_buf_cache[c];
196 kmem_cache_destroy(zio_buf_cache[c]);
198 zio_buf_cache[c] = NULL;
200 if (zio_data_buf_cache[c] != last_data_cache) {
201 last_data_cache = zio_data_buf_cache[c];
202 kmem_cache_destroy(zio_data_buf_cache[c]);
204 zio_data_buf_cache[c] = NULL;
207 kmem_cache_destroy(zio_link_cache);
208 kmem_cache_destroy(zio_cache);
210 zio_inject_fini();
214 * ==========================================================================
215 * Allocate and free I/O buffers
216 * ==========================================================================
220 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
221 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
222 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
223 * excess / transient data in-core during a crashdump.
225 void *
226 zio_buf_alloc(size_t size)
228 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
230 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
232 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
236 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
237 * crashdump if the kernel panics. This exists so that we will limit the amount
238 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
239 * of kernel heap dumped to disk when the kernel panics)
241 void *
242 zio_data_buf_alloc(size_t size)
244 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
246 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
248 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
251 void
252 zio_buf_free(void *buf, size_t size)
254 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
256 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
258 kmem_cache_free(zio_buf_cache[c], buf);
261 void
262 zio_data_buf_free(void *buf, size_t size)
264 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
266 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
268 kmem_cache_free(zio_data_buf_cache[c], buf);
272 * ==========================================================================
273 * Push and pop I/O transform buffers
274 * ==========================================================================
276 void
277 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
278 zio_transform_func_t *transform)
280 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
283 * Ensure that anyone expecting this zio to contain a linear ABD isn't
284 * going to get a nasty surprise when they try to access the data.
286 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
288 zt->zt_orig_abd = zio->io_abd;
289 zt->zt_orig_size = zio->io_size;
290 zt->zt_bufsize = bufsize;
291 zt->zt_transform = transform;
293 zt->zt_next = zio->io_transform_stack;
294 zio->io_transform_stack = zt;
296 zio->io_abd = data;
297 zio->io_size = size;
300 void
301 zio_pop_transforms(zio_t *zio)
303 zio_transform_t *zt;
305 while ((zt = zio->io_transform_stack) != NULL) {
306 if (zt->zt_transform != NULL)
307 zt->zt_transform(zio,
308 zt->zt_orig_abd, zt->zt_orig_size);
310 if (zt->zt_bufsize != 0)
311 abd_free(zio->io_abd);
313 zio->io_abd = zt->zt_orig_abd;
314 zio->io_size = zt->zt_orig_size;
315 zio->io_transform_stack = zt->zt_next;
317 kmem_free(zt, sizeof (zio_transform_t));
322 * ==========================================================================
323 * I/O transform callbacks for subblocks and decompression
324 * ==========================================================================
326 static void
327 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
329 ASSERT(zio->io_size > size);
331 if (zio->io_type == ZIO_TYPE_READ)
332 abd_copy(data, zio->io_abd, size);
335 static void
336 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
338 if (zio->io_error == 0) {
339 void *tmp = abd_borrow_buf(data, size);
340 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
341 zio->io_abd, tmp, zio->io_size, size);
342 abd_return_buf_copy(data, tmp, size);
344 if (ret != 0)
345 zio->io_error = SET_ERROR(EIO);
350 * ==========================================================================
351 * I/O parent/child relationships and pipeline interlocks
352 * ==========================================================================
354 zio_t *
355 zio_walk_parents(zio_t *cio, zio_link_t **zl)
357 list_t *pl = &cio->io_parent_list;
359 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
360 if (*zl == NULL)
361 return (NULL);
363 ASSERT((*zl)->zl_child == cio);
364 return ((*zl)->zl_parent);
367 zio_t *
368 zio_walk_children(zio_t *pio, zio_link_t **zl)
370 list_t *cl = &pio->io_child_list;
372 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
373 if (*zl == NULL)
374 return (NULL);
376 ASSERT((*zl)->zl_parent == pio);
377 return ((*zl)->zl_child);
380 zio_t *
381 zio_unique_parent(zio_t *cio)
383 zio_link_t *zl = NULL;
384 zio_t *pio = zio_walk_parents(cio, &zl);
386 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
387 return (pio);
390 void
391 zio_add_child(zio_t *pio, zio_t *cio)
393 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
396 * Logical I/Os can have logical, gang, or vdev children.
397 * Gang I/Os can have gang or vdev children.
398 * Vdev I/Os can only have vdev children.
399 * The following ASSERT captures all of these constraints.
401 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
403 zl->zl_parent = pio;
404 zl->zl_child = cio;
406 mutex_enter(&cio->io_lock);
407 mutex_enter(&pio->io_lock);
409 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
411 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
412 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
414 list_insert_head(&pio->io_child_list, zl);
415 list_insert_head(&cio->io_parent_list, zl);
417 pio->io_child_count++;
418 cio->io_parent_count++;
420 mutex_exit(&pio->io_lock);
421 mutex_exit(&cio->io_lock);
424 static void
425 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
427 ASSERT(zl->zl_parent == pio);
428 ASSERT(zl->zl_child == cio);
430 mutex_enter(&cio->io_lock);
431 mutex_enter(&pio->io_lock);
433 list_remove(&pio->io_child_list, zl);
434 list_remove(&cio->io_parent_list, zl);
436 pio->io_child_count--;
437 cio->io_parent_count--;
439 mutex_exit(&pio->io_lock);
440 mutex_exit(&cio->io_lock);
442 kmem_cache_free(zio_link_cache, zl);
445 static boolean_t
446 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
448 boolean_t waiting = B_FALSE;
450 mutex_enter(&zio->io_lock);
451 ASSERT(zio->io_stall == NULL);
452 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
453 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
454 continue;
456 uint64_t *countp = &zio->io_children[c][wait];
457 if (*countp != 0) {
458 zio->io_stage >>= 1;
459 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
460 zio->io_stall = countp;
461 waiting = B_TRUE;
462 break;
465 mutex_exit(&zio->io_lock);
466 return (waiting);
469 static void
470 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
472 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
473 int *errorp = &pio->io_child_error[zio->io_child_type];
475 mutex_enter(&pio->io_lock);
476 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
477 *errorp = zio_worst_error(*errorp, zio->io_error);
478 pio->io_reexecute |= zio->io_reexecute;
479 ASSERT3U(*countp, >, 0);
481 (*countp)--;
483 if (*countp == 0 && pio->io_stall == countp) {
484 zio_taskq_type_t type =
485 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
486 ZIO_TASKQ_INTERRUPT;
487 pio->io_stall = NULL;
488 mutex_exit(&pio->io_lock);
490 * Dispatch the parent zio in its own taskq so that
491 * the child can continue to make progress. This also
492 * prevents overflowing the stack when we have deeply nested
493 * parent-child relationships.
495 zio_taskq_dispatch(pio, type, B_FALSE);
496 } else {
497 mutex_exit(&pio->io_lock);
501 static void
502 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
504 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
505 zio->io_error = zio->io_child_error[c];
509 zio_bookmark_compare(const void *x1, const void *x2)
511 const zio_t *z1 = x1;
512 const zio_t *z2 = x2;
514 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
515 return (-1);
516 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
517 return (1);
519 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
520 return (-1);
521 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
522 return (1);
524 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
525 return (-1);
526 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
527 return (1);
529 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
530 return (-1);
531 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
532 return (1);
534 if (z1 < z2)
535 return (-1);
536 if (z1 > z2)
537 return (1);
539 return (0);
543 * ==========================================================================
544 * Create the various types of I/O (read, write, free, etc)
545 * ==========================================================================
547 static zio_t *
548 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
549 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
550 void *private, zio_type_t type, zio_priority_t priority,
551 enum zio_flag flags, vdev_t *vd, uint64_t offset,
552 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
554 zio_t *zio;
556 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
557 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
558 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
560 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
561 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
562 ASSERT(vd || stage == ZIO_STAGE_OPEN);
564 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
566 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
567 bzero(zio, sizeof (zio_t));
569 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
570 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
572 list_create(&zio->io_parent_list, sizeof (zio_link_t),
573 offsetof(zio_link_t, zl_parent_node));
574 list_create(&zio->io_child_list, sizeof (zio_link_t),
575 offsetof(zio_link_t, zl_child_node));
576 metaslab_trace_init(&zio->io_alloc_list);
578 if (vd != NULL)
579 zio->io_child_type = ZIO_CHILD_VDEV;
580 else if (flags & ZIO_FLAG_GANG_CHILD)
581 zio->io_child_type = ZIO_CHILD_GANG;
582 else if (flags & ZIO_FLAG_DDT_CHILD)
583 zio->io_child_type = ZIO_CHILD_DDT;
584 else
585 zio->io_child_type = ZIO_CHILD_LOGICAL;
587 if (bp != NULL) {
588 zio->io_bp = (blkptr_t *)bp;
589 zio->io_bp_copy = *bp;
590 zio->io_bp_orig = *bp;
591 if (type != ZIO_TYPE_WRITE ||
592 zio->io_child_type == ZIO_CHILD_DDT)
593 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
594 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
595 zio->io_logical = zio;
596 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
597 pipeline |= ZIO_GANG_STAGES;
600 zio->io_spa = spa;
601 zio->io_txg = txg;
602 zio->io_done = done;
603 zio->io_private = private;
604 zio->io_type = type;
605 zio->io_priority = priority;
606 zio->io_vd = vd;
607 zio->io_offset = offset;
608 zio->io_orig_abd = zio->io_abd = data;
609 zio->io_orig_size = zio->io_size = psize;
610 zio->io_lsize = lsize;
611 zio->io_orig_flags = zio->io_flags = flags;
612 zio->io_orig_stage = zio->io_stage = stage;
613 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
614 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
616 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
619 if (zb != NULL)
620 zio->io_bookmark = *zb;
622 if (pio != NULL) {
623 if (zio->io_logical == NULL)
624 zio->io_logical = pio->io_logical;
625 if (zio->io_child_type == ZIO_CHILD_GANG)
626 zio->io_gang_leader = pio->io_gang_leader;
627 zio_add_child(pio, zio);
630 return (zio);
633 static void
634 zio_destroy(zio_t *zio)
636 metaslab_trace_fini(&zio->io_alloc_list);
637 list_destroy(&zio->io_parent_list);
638 list_destroy(&zio->io_child_list);
639 mutex_destroy(&zio->io_lock);
640 cv_destroy(&zio->io_cv);
641 kmem_cache_free(zio_cache, zio);
644 zio_t *
645 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
646 void *private, enum zio_flag flags)
648 zio_t *zio;
650 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
651 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
652 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
654 return (zio);
657 zio_t *
658 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
660 return (zio_null(NULL, spa, NULL, done, private, flags));
663 void
664 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
666 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
667 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
668 bp, (longlong_t)BP_GET_TYPE(bp));
670 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
671 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
672 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
673 bp, (longlong_t)BP_GET_CHECKSUM(bp));
675 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
676 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
677 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
678 bp, (longlong_t)BP_GET_COMPRESS(bp));
680 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
681 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
682 bp, (longlong_t)BP_GET_LSIZE(bp));
684 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
685 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
686 bp, (longlong_t)BP_GET_PSIZE(bp));
689 if (BP_IS_EMBEDDED(bp)) {
690 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
691 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
692 bp, (longlong_t)BPE_GET_ETYPE(bp));
697 * Do not verify individual DVAs if the config is not trusted. This
698 * will be done once the zio is executed in vdev_mirror_map_alloc.
700 if (!spa->spa_trust_config)
701 return;
704 * Pool-specific checks.
706 * Note: it would be nice to verify that the blk_birth and
707 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
708 * allows the birth time of log blocks (and dmu_sync()-ed blocks
709 * that are in the log) to be arbitrarily large.
711 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
712 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
713 if (vdevid >= spa->spa_root_vdev->vdev_children) {
714 zfs_panic_recover("blkptr at %p DVA %u has invalid "
715 "VDEV %llu",
716 bp, i, (longlong_t)vdevid);
717 continue;
719 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
720 if (vd == NULL) {
721 zfs_panic_recover("blkptr at %p DVA %u has invalid "
722 "VDEV %llu",
723 bp, i, (longlong_t)vdevid);
724 continue;
726 if (vd->vdev_ops == &vdev_hole_ops) {
727 zfs_panic_recover("blkptr at %p DVA %u has hole "
728 "VDEV %llu",
729 bp, i, (longlong_t)vdevid);
730 continue;
732 if (vd->vdev_ops == &vdev_missing_ops) {
734 * "missing" vdevs are valid during import, but we
735 * don't have their detailed info (e.g. asize), so
736 * we can't perform any more checks on them.
738 continue;
740 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
741 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
742 if (BP_IS_GANG(bp))
743 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
744 if (offset + asize > vd->vdev_asize) {
745 zfs_panic_recover("blkptr at %p DVA %u has invalid "
746 "OFFSET %llu",
747 bp, i, (longlong_t)offset);
752 boolean_t
753 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
755 uint64_t vdevid = DVA_GET_VDEV(dva);
757 if (vdevid >= spa->spa_root_vdev->vdev_children)
758 return (B_FALSE);
760 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
761 if (vd == NULL)
762 return (B_FALSE);
764 if (vd->vdev_ops == &vdev_hole_ops)
765 return (B_FALSE);
767 if (vd->vdev_ops == &vdev_missing_ops) {
768 return (B_FALSE);
771 uint64_t offset = DVA_GET_OFFSET(dva);
772 uint64_t asize = DVA_GET_ASIZE(dva);
774 if (BP_IS_GANG(bp))
775 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
776 if (offset + asize > vd->vdev_asize)
777 return (B_FALSE);
779 return (B_TRUE);
782 zio_t *
783 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
784 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
785 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
787 zio_t *zio;
789 zfs_blkptr_verify(spa, bp);
791 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
792 data, size, size, done, private,
793 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
794 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
795 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
797 return (zio);
800 zio_t *
801 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
802 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
803 zio_done_func_t *ready, zio_done_func_t *children_ready,
804 zio_done_func_t *physdone, zio_done_func_t *done,
805 void *private, zio_priority_t priority, enum zio_flag flags,
806 const zbookmark_phys_t *zb)
808 zio_t *zio;
810 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
811 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
812 zp->zp_compress >= ZIO_COMPRESS_OFF &&
813 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
814 DMU_OT_IS_VALID(zp->zp_type) &&
815 zp->zp_level < 32 &&
816 zp->zp_copies > 0 &&
817 zp->zp_copies <= spa_max_replication(spa));
819 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
820 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
821 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
822 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
824 zio->io_ready = ready;
825 zio->io_children_ready = children_ready;
826 zio->io_physdone = physdone;
827 zio->io_prop = *zp;
830 * Data can be NULL if we are going to call zio_write_override() to
831 * provide the already-allocated BP. But we may need the data to
832 * verify a dedup hit (if requested). In this case, don't try to
833 * dedup (just take the already-allocated BP verbatim).
835 if (data == NULL && zio->io_prop.zp_dedup_verify) {
836 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
839 return (zio);
842 zio_t *
843 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
844 uint64_t size, zio_done_func_t *done, void *private,
845 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
847 zio_t *zio;
849 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
850 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
851 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
853 return (zio);
856 void
857 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
859 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
860 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
861 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
862 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
865 * We must reset the io_prop to match the values that existed
866 * when the bp was first written by dmu_sync() keeping in mind
867 * that nopwrite and dedup are mutually exclusive.
869 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
870 zio->io_prop.zp_nopwrite = nopwrite;
871 zio->io_prop.zp_copies = copies;
872 zio->io_bp_override = bp;
875 void
876 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
879 zfs_blkptr_verify(spa, bp);
882 * The check for EMBEDDED is a performance optimization. We
883 * process the free here (by ignoring it) rather than
884 * putting it on the list and then processing it in zio_free_sync().
886 if (BP_IS_EMBEDDED(bp))
887 return;
888 metaslab_check_free(spa, bp);
891 * Frees that are for the currently-syncing txg, are not going to be
892 * deferred, and which will not need to do a read (i.e. not GANG or
893 * DEDUP), can be processed immediately. Otherwise, put them on the
894 * in-memory list for later processing.
896 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
897 txg != spa->spa_syncing_txg ||
898 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
899 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
900 } else {
901 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
905 zio_t *
906 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
907 enum zio_flag flags)
909 zio_t *zio;
910 enum zio_stage stage = ZIO_FREE_PIPELINE;
912 ASSERT(!BP_IS_HOLE(bp));
913 ASSERT(spa_syncing_txg(spa) == txg);
914 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
916 if (BP_IS_EMBEDDED(bp))
917 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
919 metaslab_check_free(spa, bp);
920 arc_freed(spa, bp);
923 * GANG and DEDUP blocks can induce a read (for the gang block header,
924 * or the DDT), so issue them asynchronously so that this thread is
925 * not tied up.
927 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
928 stage |= ZIO_STAGE_ISSUE_ASYNC;
930 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
931 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
932 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
934 return (zio);
937 zio_t *
938 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
939 zio_done_func_t *done, void *private, enum zio_flag flags)
941 zio_t *zio;
943 zfs_blkptr_verify(spa, bp);
945 if (BP_IS_EMBEDDED(bp))
946 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
949 * A claim is an allocation of a specific block. Claims are needed
950 * to support immediate writes in the intent log. The issue is that
951 * immediate writes contain committed data, but in a txg that was
952 * *not* committed. Upon opening the pool after an unclean shutdown,
953 * the intent log claims all blocks that contain immediate write data
954 * so that the SPA knows they're in use.
956 * All claims *must* be resolved in the first txg -- before the SPA
957 * starts allocating blocks -- so that nothing is allocated twice.
958 * If txg == 0 we just verify that the block is claimable.
960 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
961 spa_min_claim_txg(spa));
962 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
963 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
965 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
966 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
967 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
968 ASSERT0(zio->io_queued_timestamp);
970 return (zio);
973 zio_t *
974 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
975 zio_done_func_t *done, void *private, enum zio_flag flags)
977 zio_t *zio;
978 int c;
980 if (vd->vdev_children == 0) {
981 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
982 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
983 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
985 zio->io_cmd = cmd;
986 } else {
987 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
989 for (c = 0; c < vd->vdev_children; c++)
990 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
991 done, private, flags));
994 return (zio);
997 zio_t *
998 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
999 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1000 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1002 zio_t *zio;
1004 ASSERT(vd->vdev_children == 0);
1005 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1006 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1007 ASSERT3U(offset + size, <=, vd->vdev_psize);
1009 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1010 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1011 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1013 zio->io_prop.zp_checksum = checksum;
1015 return (zio);
1018 zio_t *
1019 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1020 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1021 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1023 zio_t *zio;
1025 ASSERT(vd->vdev_children == 0);
1026 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1027 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1028 ASSERT3U(offset + size, <=, vd->vdev_psize);
1030 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1031 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1032 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1034 zio->io_prop.zp_checksum = checksum;
1036 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1038 * zec checksums are necessarily destructive -- they modify
1039 * the end of the write buffer to hold the verifier/checksum.
1040 * Therefore, we must make a local copy in case the data is
1041 * being written to multiple places in parallel.
1043 abd_t *wbuf = abd_alloc_sametype(data, size);
1044 abd_copy(wbuf, data, size);
1046 zio_push_transform(zio, wbuf, size, size, NULL);
1049 return (zio);
1053 * Create a child I/O to do some work for us.
1055 zio_t *
1056 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1057 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1058 enum zio_flag flags, zio_done_func_t *done, void *private)
1060 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1061 zio_t *zio;
1064 * vdev child I/Os do not propagate their error to the parent.
1065 * Therefore, for correct operation the caller *must* check for
1066 * and handle the error in the child i/o's done callback.
1067 * The only exceptions are i/os that we don't care about
1068 * (OPTIONAL or REPAIR).
1070 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1071 done != NULL);
1073 if (type == ZIO_TYPE_READ && bp != NULL) {
1075 * If we have the bp, then the child should perform the
1076 * checksum and the parent need not. This pushes error
1077 * detection as close to the leaves as possible and
1078 * eliminates redundant checksums in the interior nodes.
1080 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1081 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1084 if (vd->vdev_ops->vdev_op_leaf) {
1085 ASSERT0(vd->vdev_children);
1086 offset += VDEV_LABEL_START_SIZE;
1089 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1092 * If we've decided to do a repair, the write is not speculative --
1093 * even if the original read was.
1095 if (flags & ZIO_FLAG_IO_REPAIR)
1096 flags &= ~ZIO_FLAG_SPECULATIVE;
1099 * If we're creating a child I/O that is not associated with a
1100 * top-level vdev, then the child zio is not an allocating I/O.
1101 * If this is a retried I/O then we ignore it since we will
1102 * have already processed the original allocating I/O.
1104 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1105 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1106 metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1108 ASSERT(mc->mc_alloc_throttle_enabled);
1109 ASSERT(type == ZIO_TYPE_WRITE);
1110 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1111 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1112 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1113 pio->io_child_type == ZIO_CHILD_GANG);
1115 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1118 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1119 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1120 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1121 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1123 zio->io_physdone = pio->io_physdone;
1124 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1125 zio->io_logical->io_phys_children++;
1127 return (zio);
1130 zio_t *
1131 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1132 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1133 zio_done_func_t *done, void *private)
1135 zio_t *zio;
1137 ASSERT(vd->vdev_ops->vdev_op_leaf);
1139 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1140 data, size, size, done, private, type, priority,
1141 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1142 vd, offset, NULL,
1143 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1145 return (zio);
1148 void
1149 zio_flush(zio_t *zio, vdev_t *vd)
1151 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1152 NULL, NULL,
1153 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1156 void
1157 zio_shrink(zio_t *zio, uint64_t size)
1159 ASSERT3P(zio->io_executor, ==, NULL);
1160 ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1161 ASSERT3U(size, <=, zio->io_size);
1164 * We don't shrink for raidz because of problems with the
1165 * reconstruction when reading back less than the block size.
1166 * Note, BP_IS_RAIDZ() assumes no compression.
1168 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1169 if (!BP_IS_RAIDZ(zio->io_bp)) {
1170 /* we are not doing a raw write */
1171 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1172 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1177 * ==========================================================================
1178 * Prepare to read and write logical blocks
1179 * ==========================================================================
1182 static int
1183 zio_read_bp_init(zio_t *zio)
1185 blkptr_t *bp = zio->io_bp;
1187 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1189 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1190 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1191 !(zio->io_flags & ZIO_FLAG_RAW)) {
1192 uint64_t psize =
1193 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1194 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1195 psize, psize, zio_decompress);
1198 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1199 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1201 int psize = BPE_GET_PSIZE(bp);
1202 void *data = abd_borrow_buf(zio->io_abd, psize);
1203 decode_embedded_bp_compressed(bp, data);
1204 abd_return_buf_copy(zio->io_abd, data, psize);
1205 } else {
1206 ASSERT(!BP_IS_EMBEDDED(bp));
1207 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1210 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1211 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1213 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1214 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1216 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1217 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1219 return (ZIO_PIPELINE_CONTINUE);
1222 static int
1223 zio_write_bp_init(zio_t *zio)
1225 if (!IO_IS_ALLOCATING(zio))
1226 return (ZIO_PIPELINE_CONTINUE);
1228 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1230 if (zio->io_bp_override) {
1231 blkptr_t *bp = zio->io_bp;
1232 zio_prop_t *zp = &zio->io_prop;
1234 ASSERT(bp->blk_birth != zio->io_txg);
1235 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1237 *bp = *zio->io_bp_override;
1238 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1240 if (BP_IS_EMBEDDED(bp))
1241 return (ZIO_PIPELINE_CONTINUE);
1244 * If we've been overridden and nopwrite is set then
1245 * set the flag accordingly to indicate that a nopwrite
1246 * has already occurred.
1248 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1249 ASSERT(!zp->zp_dedup);
1250 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1251 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1252 return (ZIO_PIPELINE_CONTINUE);
1255 ASSERT(!zp->zp_nopwrite);
1257 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1258 return (ZIO_PIPELINE_CONTINUE);
1260 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1261 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1263 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1264 BP_SET_DEDUP(bp, 1);
1265 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1266 return (ZIO_PIPELINE_CONTINUE);
1270 * We were unable to handle this as an override bp, treat
1271 * it as a regular write I/O.
1273 zio->io_bp_override = NULL;
1274 *bp = zio->io_bp_orig;
1275 zio->io_pipeline = zio->io_orig_pipeline;
1278 return (ZIO_PIPELINE_CONTINUE);
1281 static int
1282 zio_write_compress(zio_t *zio)
1284 spa_t *spa = zio->io_spa;
1285 zio_prop_t *zp = &zio->io_prop;
1286 enum zio_compress compress = zp->zp_compress;
1287 blkptr_t *bp = zio->io_bp;
1288 uint64_t lsize = zio->io_lsize;
1289 uint64_t psize = zio->io_size;
1290 int pass = 1;
1292 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1295 * If our children haven't all reached the ready stage,
1296 * wait for them and then repeat this pipeline stage.
1298 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1299 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1300 return (ZIO_PIPELINE_STOP);
1303 if (!IO_IS_ALLOCATING(zio))
1304 return (ZIO_PIPELINE_CONTINUE);
1306 if (zio->io_children_ready != NULL) {
1308 * Now that all our children are ready, run the callback
1309 * associated with this zio in case it wants to modify the
1310 * data to be written.
1312 ASSERT3U(zp->zp_level, >, 0);
1313 zio->io_children_ready(zio);
1316 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1317 ASSERT(zio->io_bp_override == NULL);
1319 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1321 * We're rewriting an existing block, which means we're
1322 * working on behalf of spa_sync(). For spa_sync() to
1323 * converge, it must eventually be the case that we don't
1324 * have to allocate new blocks. But compression changes
1325 * the blocksize, which forces a reallocate, and makes
1326 * convergence take longer. Therefore, after the first
1327 * few passes, stop compressing to ensure convergence.
1329 pass = spa_sync_pass(spa);
1331 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1332 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1333 ASSERT(!BP_GET_DEDUP(bp));
1335 if (pass >= zfs_sync_pass_dont_compress)
1336 compress = ZIO_COMPRESS_OFF;
1338 /* Make sure someone doesn't change their mind on overwrites */
1339 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1340 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1343 /* If it's a compressed write that is not raw, compress the buffer. */
1344 if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1345 void *cbuf = zio_buf_alloc(lsize);
1346 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1347 if (psize == 0 || psize == lsize) {
1348 compress = ZIO_COMPRESS_OFF;
1349 zio_buf_free(cbuf, lsize);
1350 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1351 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1352 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1353 encode_embedded_bp_compressed(bp,
1354 cbuf, compress, lsize, psize);
1355 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1356 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1357 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1358 zio_buf_free(cbuf, lsize);
1359 bp->blk_birth = zio->io_txg;
1360 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1361 ASSERT(spa_feature_is_active(spa,
1362 SPA_FEATURE_EMBEDDED_DATA));
1363 return (ZIO_PIPELINE_CONTINUE);
1364 } else {
1366 * Round up compressed size up to the ashift
1367 * of the smallest-ashift device, and zero the tail.
1368 * This ensures that the compressed size of the BP
1369 * (and thus compressratio property) are correct,
1370 * in that we charge for the padding used to fill out
1371 * the last sector.
1373 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1374 size_t rounded = (size_t)P2ROUNDUP(psize,
1375 1ULL << spa->spa_min_ashift);
1376 if (rounded >= lsize) {
1377 compress = ZIO_COMPRESS_OFF;
1378 zio_buf_free(cbuf, lsize);
1379 psize = lsize;
1380 } else {
1381 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1382 abd_take_ownership_of_buf(cdata, B_TRUE);
1383 abd_zero_off(cdata, psize, rounded - psize);
1384 psize = rounded;
1385 zio_push_transform(zio, cdata,
1386 psize, lsize, NULL);
1391 * We were unable to handle this as an override bp, treat
1392 * it as a regular write I/O.
1394 zio->io_bp_override = NULL;
1395 *bp = zio->io_bp_orig;
1396 zio->io_pipeline = zio->io_orig_pipeline;
1397 } else {
1398 ASSERT3U(psize, !=, 0);
1402 * The final pass of spa_sync() must be all rewrites, but the first
1403 * few passes offer a trade-off: allocating blocks defers convergence,
1404 * but newly allocated blocks are sequential, so they can be written
1405 * to disk faster. Therefore, we allow the first few passes of
1406 * spa_sync() to allocate new blocks, but force rewrites after that.
1407 * There should only be a handful of blocks after pass 1 in any case.
1409 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1410 BP_GET_PSIZE(bp) == psize &&
1411 pass >= zfs_sync_pass_rewrite) {
1412 ASSERT(psize != 0);
1413 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1414 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1415 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1416 } else {
1417 BP_ZERO(bp);
1418 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1421 if (psize == 0) {
1422 if (zio->io_bp_orig.blk_birth != 0 &&
1423 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1424 BP_SET_LSIZE(bp, lsize);
1425 BP_SET_TYPE(bp, zp->zp_type);
1426 BP_SET_LEVEL(bp, zp->zp_level);
1427 BP_SET_BIRTH(bp, zio->io_txg, 0);
1429 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1430 } else {
1431 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1432 BP_SET_LSIZE(bp, lsize);
1433 BP_SET_TYPE(bp, zp->zp_type);
1434 BP_SET_LEVEL(bp, zp->zp_level);
1435 BP_SET_PSIZE(bp, psize);
1436 BP_SET_COMPRESS(bp, compress);
1437 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1438 BP_SET_DEDUP(bp, zp->zp_dedup);
1439 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1440 if (zp->zp_dedup) {
1441 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1442 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1443 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1445 if (zp->zp_nopwrite) {
1446 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1447 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1448 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1451 return (ZIO_PIPELINE_CONTINUE);
1454 static int
1455 zio_free_bp_init(zio_t *zio)
1457 blkptr_t *bp = zio->io_bp;
1459 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1460 if (BP_GET_DEDUP(bp))
1461 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1464 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1466 return (ZIO_PIPELINE_CONTINUE);
1470 * ==========================================================================
1471 * Execute the I/O pipeline
1472 * ==========================================================================
1475 static void
1476 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1478 spa_t *spa = zio->io_spa;
1479 zio_type_t t = zio->io_type;
1480 int flags = (cutinline ? TQ_FRONT : 0);
1483 * If we're a config writer or a probe, the normal issue and
1484 * interrupt threads may all be blocked waiting for the config lock.
1485 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1487 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1488 t = ZIO_TYPE_NULL;
1491 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1493 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1494 t = ZIO_TYPE_NULL;
1497 * If this is a high priority I/O, then use the high priority taskq if
1498 * available.
1500 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1501 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1502 q++;
1504 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1507 * NB: We are assuming that the zio can only be dispatched
1508 * to a single taskq at a time. It would be a grievous error
1509 * to dispatch the zio to another taskq at the same time.
1511 ASSERT(zio->io_tqent.tqent_next == NULL);
1512 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1513 flags, &zio->io_tqent);
1516 static boolean_t
1517 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1519 kthread_t *executor = zio->io_executor;
1520 spa_t *spa = zio->io_spa;
1522 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1523 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1524 uint_t i;
1525 for (i = 0; i < tqs->stqs_count; i++) {
1526 if (taskq_member(tqs->stqs_taskq[i], executor))
1527 return (B_TRUE);
1531 return (B_FALSE);
1534 static int
1535 zio_issue_async(zio_t *zio)
1537 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1539 return (ZIO_PIPELINE_STOP);
1542 void
1543 zio_interrupt(zio_t *zio)
1545 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1548 void
1549 zio_delay_interrupt(zio_t *zio)
1552 * The timeout_generic() function isn't defined in userspace, so
1553 * rather than trying to implement the function, the zio delay
1554 * functionality has been disabled for userspace builds.
1557 #ifdef _KERNEL
1559 * If io_target_timestamp is zero, then no delay has been registered
1560 * for this IO, thus jump to the end of this function and "skip" the
1561 * delay; issuing it directly to the zio layer.
1563 if (zio->io_target_timestamp != 0) {
1564 hrtime_t now = gethrtime();
1566 if (now >= zio->io_target_timestamp) {
1568 * This IO has already taken longer than the target
1569 * delay to complete, so we don't want to delay it
1570 * any longer; we "miss" the delay and issue it
1571 * directly to the zio layer. This is likely due to
1572 * the target latency being set to a value less than
1573 * the underlying hardware can satisfy (e.g. delay
1574 * set to 1ms, but the disks take 10ms to complete an
1575 * IO request).
1578 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1579 hrtime_t, now);
1581 zio_interrupt(zio);
1582 } else {
1583 hrtime_t diff = zio->io_target_timestamp - now;
1585 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1586 hrtime_t, now, hrtime_t, diff);
1588 (void) timeout_generic(CALLOUT_NORMAL,
1589 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1592 return;
1594 #endif
1596 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1597 zio_interrupt(zio);
1601 * Execute the I/O pipeline until one of the following occurs:
1603 * (1) the I/O completes
1604 * (2) the pipeline stalls waiting for dependent child I/Os
1605 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1606 * (4) the I/O is delegated by vdev-level caching or aggregation
1607 * (5) the I/O is deferred due to vdev-level queueing
1608 * (6) the I/O is handed off to another thread.
1610 * In all cases, the pipeline stops whenever there's no CPU work; it never
1611 * burns a thread in cv_wait().
1613 * There's no locking on io_stage because there's no legitimate way
1614 * for multiple threads to be attempting to process the same I/O.
1616 static zio_pipe_stage_t *zio_pipeline[];
1618 void
1619 zio_execute(zio_t *zio)
1621 zio->io_executor = curthread;
1623 ASSERT3U(zio->io_queued_timestamp, >, 0);
1625 while (zio->io_stage < ZIO_STAGE_DONE) {
1626 enum zio_stage pipeline = zio->io_pipeline;
1627 enum zio_stage stage = zio->io_stage;
1628 int rv;
1630 ASSERT(!MUTEX_HELD(&zio->io_lock));
1631 ASSERT(ISP2(stage));
1632 ASSERT(zio->io_stall == NULL);
1634 do {
1635 stage <<= 1;
1636 } while ((stage & pipeline) == 0);
1638 ASSERT(stage <= ZIO_STAGE_DONE);
1641 * If we are in interrupt context and this pipeline stage
1642 * will grab a config lock that is held across I/O,
1643 * or may wait for an I/O that needs an interrupt thread
1644 * to complete, issue async to avoid deadlock.
1646 * For VDEV_IO_START, we cut in line so that the io will
1647 * be sent to disk promptly.
1649 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1650 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1651 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1652 zio_requeue_io_start_cut_in_line : B_FALSE;
1653 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1654 return;
1657 zio->io_stage = stage;
1658 zio->io_pipeline_trace |= zio->io_stage;
1659 rv = zio_pipeline[highbit64(stage) - 1](zio);
1661 if (rv == ZIO_PIPELINE_STOP)
1662 return;
1664 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1669 * ==========================================================================
1670 * Initiate I/O, either sync or async
1671 * ==========================================================================
1674 zio_wait(zio_t *zio)
1676 int error;
1678 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1679 ASSERT3P(zio->io_executor, ==, NULL);
1681 zio->io_waiter = curthread;
1682 ASSERT0(zio->io_queued_timestamp);
1683 zio->io_queued_timestamp = gethrtime();
1685 zio_execute(zio);
1687 mutex_enter(&zio->io_lock);
1688 while (zio->io_executor != NULL)
1689 cv_wait(&zio->io_cv, &zio->io_lock);
1690 mutex_exit(&zio->io_lock);
1692 error = zio->io_error;
1693 zio_destroy(zio);
1695 return (error);
1698 void
1699 zio_nowait(zio_t *zio)
1701 ASSERT3P(zio->io_executor, ==, NULL);
1703 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1704 zio_unique_parent(zio) == NULL) {
1706 * This is a logical async I/O with no parent to wait for it.
1707 * We add it to the spa_async_root_zio "Godfather" I/O which
1708 * will ensure they complete prior to unloading the pool.
1710 spa_t *spa = zio->io_spa;
1712 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1715 ASSERT0(zio->io_queued_timestamp);
1716 zio->io_queued_timestamp = gethrtime();
1717 zio_execute(zio);
1721 * ==========================================================================
1722 * Reexecute, cancel, or suspend/resume failed I/O
1723 * ==========================================================================
1726 static void
1727 zio_reexecute(zio_t *pio)
1729 zio_t *cio, *cio_next;
1731 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1732 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1733 ASSERT(pio->io_gang_leader == NULL);
1734 ASSERT(pio->io_gang_tree == NULL);
1736 pio->io_flags = pio->io_orig_flags;
1737 pio->io_stage = pio->io_orig_stage;
1738 pio->io_pipeline = pio->io_orig_pipeline;
1739 pio->io_reexecute = 0;
1740 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1741 pio->io_pipeline_trace = 0;
1742 pio->io_error = 0;
1743 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1744 pio->io_state[w] = 0;
1745 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1746 pio->io_child_error[c] = 0;
1748 if (IO_IS_ALLOCATING(pio))
1749 BP_ZERO(pio->io_bp);
1752 * As we reexecute pio's children, new children could be created.
1753 * New children go to the head of pio's io_child_list, however,
1754 * so we will (correctly) not reexecute them. The key is that
1755 * the remainder of pio's io_child_list, from 'cio_next' onward,
1756 * cannot be affected by any side effects of reexecuting 'cio'.
1758 zio_link_t *zl = NULL;
1759 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1760 cio_next = zio_walk_children(pio, &zl);
1761 mutex_enter(&pio->io_lock);
1762 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1763 pio->io_children[cio->io_child_type][w]++;
1764 mutex_exit(&pio->io_lock);
1765 zio_reexecute(cio);
1769 * Now that all children have been reexecuted, execute the parent.
1770 * We don't reexecute "The Godfather" I/O here as it's the
1771 * responsibility of the caller to wait on it.
1773 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1774 pio->io_queued_timestamp = gethrtime();
1775 zio_execute(pio);
1779 void
1780 zio_suspend(spa_t *spa, zio_t *zio)
1782 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1783 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1784 "failure and the failure mode property for this pool "
1785 "is set to panic.", spa_name(spa));
1787 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1789 mutex_enter(&spa->spa_suspend_lock);
1791 if (spa->spa_suspend_zio_root == NULL)
1792 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1793 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1794 ZIO_FLAG_GODFATHER);
1796 spa->spa_suspended = B_TRUE;
1798 if (zio != NULL) {
1799 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1800 ASSERT(zio != spa->spa_suspend_zio_root);
1801 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1802 ASSERT(zio_unique_parent(zio) == NULL);
1803 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1804 zio_add_child(spa->spa_suspend_zio_root, zio);
1807 mutex_exit(&spa->spa_suspend_lock);
1811 zio_resume(spa_t *spa)
1813 zio_t *pio;
1816 * Reexecute all previously suspended i/o.
1818 mutex_enter(&spa->spa_suspend_lock);
1819 spa->spa_suspended = B_FALSE;
1820 cv_broadcast(&spa->spa_suspend_cv);
1821 pio = spa->spa_suspend_zio_root;
1822 spa->spa_suspend_zio_root = NULL;
1823 mutex_exit(&spa->spa_suspend_lock);
1825 if (pio == NULL)
1826 return (0);
1828 zio_reexecute(pio);
1829 return (zio_wait(pio));
1832 void
1833 zio_resume_wait(spa_t *spa)
1835 mutex_enter(&spa->spa_suspend_lock);
1836 while (spa_suspended(spa))
1837 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1838 mutex_exit(&spa->spa_suspend_lock);
1842 * ==========================================================================
1843 * Gang blocks.
1845 * A gang block is a collection of small blocks that looks to the DMU
1846 * like one large block. When zio_dva_allocate() cannot find a block
1847 * of the requested size, due to either severe fragmentation or the pool
1848 * being nearly full, it calls zio_write_gang_block() to construct the
1849 * block from smaller fragments.
1851 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1852 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1853 * an indirect block: it's an array of block pointers. It consumes
1854 * only one sector and hence is allocatable regardless of fragmentation.
1855 * The gang header's bps point to its gang members, which hold the data.
1857 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1858 * as the verifier to ensure uniqueness of the SHA256 checksum.
1859 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1860 * not the gang header. This ensures that data block signatures (needed for
1861 * deduplication) are independent of how the block is physically stored.
1863 * Gang blocks can be nested: a gang member may itself be a gang block.
1864 * Thus every gang block is a tree in which root and all interior nodes are
1865 * gang headers, and the leaves are normal blocks that contain user data.
1866 * The root of the gang tree is called the gang leader.
1868 * To perform any operation (read, rewrite, free, claim) on a gang block,
1869 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1870 * in the io_gang_tree field of the original logical i/o by recursively
1871 * reading the gang leader and all gang headers below it. This yields
1872 * an in-core tree containing the contents of every gang header and the
1873 * bps for every constituent of the gang block.
1875 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1876 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1877 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1878 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1879 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1880 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1881 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1882 * of the gang header plus zio_checksum_compute() of the data to update the
1883 * gang header's blk_cksum as described above.
1885 * The two-phase assemble/issue model solves the problem of partial failure --
1886 * what if you'd freed part of a gang block but then couldn't read the
1887 * gang header for another part? Assembling the entire gang tree first
1888 * ensures that all the necessary gang header I/O has succeeded before
1889 * starting the actual work of free, claim, or write. Once the gang tree
1890 * is assembled, free and claim are in-memory operations that cannot fail.
1892 * In the event that a gang write fails, zio_dva_unallocate() walks the
1893 * gang tree to immediately free (i.e. insert back into the space map)
1894 * everything we've allocated. This ensures that we don't get ENOSPC
1895 * errors during repeated suspend/resume cycles due to a flaky device.
1897 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1898 * the gang tree, we won't modify the block, so we can safely defer the free
1899 * (knowing that the block is still intact). If we *can* assemble the gang
1900 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1901 * each constituent bp and we can allocate a new block on the next sync pass.
1903 * In all cases, the gang tree allows complete recovery from partial failure.
1904 * ==========================================================================
1907 static void
1908 zio_gang_issue_func_done(zio_t *zio)
1910 abd_put(zio->io_abd);
1913 static zio_t *
1914 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1915 uint64_t offset)
1917 if (gn != NULL)
1918 return (pio);
1920 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1921 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1922 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1923 &pio->io_bookmark));
1926 static zio_t *
1927 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1928 uint64_t offset)
1930 zio_t *zio;
1932 if (gn != NULL) {
1933 abd_t *gbh_abd =
1934 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1935 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1936 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1937 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1938 &pio->io_bookmark);
1940 * As we rewrite each gang header, the pipeline will compute
1941 * a new gang block header checksum for it; but no one will
1942 * compute a new data checksum, so we do that here. The one
1943 * exception is the gang leader: the pipeline already computed
1944 * its data checksum because that stage precedes gang assembly.
1945 * (Presently, nothing actually uses interior data checksums;
1946 * this is just good hygiene.)
1948 if (gn != pio->io_gang_leader->io_gang_tree) {
1949 abd_t *buf = abd_get_offset(data, offset);
1951 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1952 buf, BP_GET_PSIZE(bp));
1954 abd_put(buf);
1957 * If we are here to damage data for testing purposes,
1958 * leave the GBH alone so that we can detect the damage.
1960 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1961 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1962 } else {
1963 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1964 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1965 zio_gang_issue_func_done, NULL, pio->io_priority,
1966 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1969 return (zio);
1972 /* ARGSUSED */
1973 static zio_t *
1974 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1975 uint64_t offset)
1977 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1978 ZIO_GANG_CHILD_FLAGS(pio)));
1981 /* ARGSUSED */
1982 static zio_t *
1983 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1984 uint64_t offset)
1986 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1987 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1990 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1991 NULL,
1992 zio_read_gang,
1993 zio_rewrite_gang,
1994 zio_free_gang,
1995 zio_claim_gang,
1996 NULL
1999 static void zio_gang_tree_assemble_done(zio_t *zio);
2001 static zio_gang_node_t *
2002 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2004 zio_gang_node_t *gn;
2006 ASSERT(*gnpp == NULL);
2008 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2009 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2010 *gnpp = gn;
2012 return (gn);
2015 static void
2016 zio_gang_node_free(zio_gang_node_t **gnpp)
2018 zio_gang_node_t *gn = *gnpp;
2020 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2021 ASSERT(gn->gn_child[g] == NULL);
2023 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2024 kmem_free(gn, sizeof (*gn));
2025 *gnpp = NULL;
2028 static void
2029 zio_gang_tree_free(zio_gang_node_t **gnpp)
2031 zio_gang_node_t *gn = *gnpp;
2033 if (gn == NULL)
2034 return;
2036 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2037 zio_gang_tree_free(&gn->gn_child[g]);
2039 zio_gang_node_free(gnpp);
2042 static void
2043 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2045 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2046 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2048 ASSERT(gio->io_gang_leader == gio);
2049 ASSERT(BP_IS_GANG(bp));
2051 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2052 zio_gang_tree_assemble_done, gn, gio->io_priority,
2053 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2056 static void
2057 zio_gang_tree_assemble_done(zio_t *zio)
2059 zio_t *gio = zio->io_gang_leader;
2060 zio_gang_node_t *gn = zio->io_private;
2061 blkptr_t *bp = zio->io_bp;
2063 ASSERT(gio == zio_unique_parent(zio));
2064 ASSERT(zio->io_child_count == 0);
2066 if (zio->io_error)
2067 return;
2069 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2070 if (BP_SHOULD_BYTESWAP(bp))
2071 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2073 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2074 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2075 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2077 abd_put(zio->io_abd);
2079 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2080 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2081 if (!BP_IS_GANG(gbp))
2082 continue;
2083 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2087 static void
2088 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2089 uint64_t offset)
2091 zio_t *gio = pio->io_gang_leader;
2092 zio_t *zio;
2094 ASSERT(BP_IS_GANG(bp) == !!gn);
2095 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2096 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2099 * If you're a gang header, your data is in gn->gn_gbh.
2100 * If you're a gang member, your data is in 'data' and gn == NULL.
2102 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2104 if (gn != NULL) {
2105 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2107 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2108 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2109 if (BP_IS_HOLE(gbp))
2110 continue;
2111 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2112 offset);
2113 offset += BP_GET_PSIZE(gbp);
2117 if (gn == gio->io_gang_tree)
2118 ASSERT3U(gio->io_size, ==, offset);
2120 if (zio != pio)
2121 zio_nowait(zio);
2124 static int
2125 zio_gang_assemble(zio_t *zio)
2127 blkptr_t *bp = zio->io_bp;
2129 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2130 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2132 zio->io_gang_leader = zio;
2134 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2136 return (ZIO_PIPELINE_CONTINUE);
2139 static int
2140 zio_gang_issue(zio_t *zio)
2142 blkptr_t *bp = zio->io_bp;
2144 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2145 return (ZIO_PIPELINE_STOP);
2148 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2149 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2151 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2152 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2154 else
2155 zio_gang_tree_free(&zio->io_gang_tree);
2157 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2159 return (ZIO_PIPELINE_CONTINUE);
2162 static void
2163 zio_write_gang_member_ready(zio_t *zio)
2165 zio_t *pio = zio_unique_parent(zio);
2166 zio_t *gio = zio->io_gang_leader;
2167 dva_t *cdva = zio->io_bp->blk_dva;
2168 dva_t *pdva = pio->io_bp->blk_dva;
2169 uint64_t asize;
2171 if (BP_IS_HOLE(zio->io_bp))
2172 return;
2174 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2176 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2177 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2178 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2179 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2180 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2182 mutex_enter(&pio->io_lock);
2183 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2184 ASSERT(DVA_GET_GANG(&pdva[d]));
2185 asize = DVA_GET_ASIZE(&pdva[d]);
2186 asize += DVA_GET_ASIZE(&cdva[d]);
2187 DVA_SET_ASIZE(&pdva[d], asize);
2189 mutex_exit(&pio->io_lock);
2192 static void
2193 zio_write_gang_done(zio_t *zio)
2195 abd_put(zio->io_abd);
2198 static int
2199 zio_write_gang_block(zio_t *pio)
2201 spa_t *spa = pio->io_spa;
2202 metaslab_class_t *mc = spa_normal_class(spa);
2203 blkptr_t *bp = pio->io_bp;
2204 zio_t *gio = pio->io_gang_leader;
2205 zio_t *zio;
2206 zio_gang_node_t *gn, **gnpp;
2207 zio_gbh_phys_t *gbh;
2208 abd_t *gbh_abd;
2209 uint64_t txg = pio->io_txg;
2210 uint64_t resid = pio->io_size;
2211 uint64_t lsize;
2212 int copies = gio->io_prop.zp_copies;
2213 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2214 zio_prop_t zp;
2215 int error;
2217 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2218 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2219 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2220 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2222 flags |= METASLAB_ASYNC_ALLOC;
2223 VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2224 pio));
2227 * The logical zio has already placed a reservation for
2228 * 'copies' allocation slots but gang blocks may require
2229 * additional copies. These additional copies
2230 * (i.e. gbh_copies - copies) are guaranteed to succeed
2231 * since metaslab_class_throttle_reserve() always allows
2232 * additional reservations for gang blocks.
2234 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2235 pio->io_allocator, pio, flags));
2238 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2239 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2240 &pio->io_alloc_list, pio, pio->io_allocator);
2241 if (error) {
2242 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2243 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2244 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2247 * If we failed to allocate the gang block header then
2248 * we remove any additional allocation reservations that
2249 * we placed here. The original reservation will
2250 * be removed when the logical I/O goes to the ready
2251 * stage.
2253 metaslab_class_throttle_unreserve(mc,
2254 gbh_copies - copies, pio->io_allocator, pio);
2256 pio->io_error = error;
2257 return (ZIO_PIPELINE_CONTINUE);
2260 if (pio == gio) {
2261 gnpp = &gio->io_gang_tree;
2262 } else {
2263 gnpp = pio->io_private;
2264 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2267 gn = zio_gang_node_alloc(gnpp);
2268 gbh = gn->gn_gbh;
2269 bzero(gbh, SPA_GANGBLOCKSIZE);
2270 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2273 * Create the gang header.
2275 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2276 zio_write_gang_done, NULL, pio->io_priority,
2277 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2280 * Create and nowait the gang children.
2282 for (int g = 0; resid != 0; resid -= lsize, g++) {
2283 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2284 SPA_MINBLOCKSIZE);
2285 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2287 zp.zp_checksum = gio->io_prop.zp_checksum;
2288 zp.zp_compress = ZIO_COMPRESS_OFF;
2289 zp.zp_type = DMU_OT_NONE;
2290 zp.zp_level = 0;
2291 zp.zp_copies = gio->io_prop.zp_copies;
2292 zp.zp_dedup = B_FALSE;
2293 zp.zp_dedup_verify = B_FALSE;
2294 zp.zp_nopwrite = B_FALSE;
2296 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2297 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2298 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2299 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2300 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2302 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2303 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2304 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2307 * Gang children won't throttle but we should
2308 * account for their work, so reserve an allocation
2309 * slot for them here.
2311 VERIFY(metaslab_class_throttle_reserve(mc,
2312 zp.zp_copies, cio->io_allocator, cio, flags));
2314 zio_nowait(cio);
2318 * Set pio's pipeline to just wait for zio to finish.
2320 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2322 zio_nowait(zio);
2324 return (ZIO_PIPELINE_CONTINUE);
2328 * The zio_nop_write stage in the pipeline determines if allocating a
2329 * new bp is necessary. The nopwrite feature can handle writes in
2330 * either syncing or open context (i.e. zil writes) and as a result is
2331 * mutually exclusive with dedup.
2333 * By leveraging a cryptographically secure checksum, such as SHA256, we
2334 * can compare the checksums of the new data and the old to determine if
2335 * allocating a new block is required. Note that our requirements for
2336 * cryptographic strength are fairly weak: there can't be any accidental
2337 * hash collisions, but we don't need to be secure against intentional
2338 * (malicious) collisions. To trigger a nopwrite, you have to be able
2339 * to write the file to begin with, and triggering an incorrect (hash
2340 * collision) nopwrite is no worse than simply writing to the file.
2341 * That said, there are no known attacks against the checksum algorithms
2342 * used for nopwrite, assuming that the salt and the checksums
2343 * themselves remain secret.
2345 static int
2346 zio_nop_write(zio_t *zio)
2348 blkptr_t *bp = zio->io_bp;
2349 blkptr_t *bp_orig = &zio->io_bp_orig;
2350 zio_prop_t *zp = &zio->io_prop;
2352 ASSERT(BP_GET_LEVEL(bp) == 0);
2353 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2354 ASSERT(zp->zp_nopwrite);
2355 ASSERT(!zp->zp_dedup);
2356 ASSERT(zio->io_bp_override == NULL);
2357 ASSERT(IO_IS_ALLOCATING(zio));
2360 * Check to see if the original bp and the new bp have matching
2361 * characteristics (i.e. same checksum, compression algorithms, etc).
2362 * If they don't then just continue with the pipeline which will
2363 * allocate a new bp.
2365 if (BP_IS_HOLE(bp_orig) ||
2366 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2367 ZCHECKSUM_FLAG_NOPWRITE) ||
2368 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2369 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2370 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2371 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2372 return (ZIO_PIPELINE_CONTINUE);
2375 * If the checksums match then reset the pipeline so that we
2376 * avoid allocating a new bp and issuing any I/O.
2378 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2379 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2380 ZCHECKSUM_FLAG_NOPWRITE);
2381 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2382 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2383 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2384 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2385 sizeof (uint64_t)) == 0);
2387 *bp = *bp_orig;
2388 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2389 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2392 return (ZIO_PIPELINE_CONTINUE);
2396 * ==========================================================================
2397 * Dedup
2398 * ==========================================================================
2400 static void
2401 zio_ddt_child_read_done(zio_t *zio)
2403 blkptr_t *bp = zio->io_bp;
2404 ddt_entry_t *dde = zio->io_private;
2405 ddt_phys_t *ddp;
2406 zio_t *pio = zio_unique_parent(zio);
2408 mutex_enter(&pio->io_lock);
2409 ddp = ddt_phys_select(dde, bp);
2410 if (zio->io_error == 0)
2411 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2413 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2414 dde->dde_repair_abd = zio->io_abd;
2415 else
2416 abd_free(zio->io_abd);
2417 mutex_exit(&pio->io_lock);
2420 static int
2421 zio_ddt_read_start(zio_t *zio)
2423 blkptr_t *bp = zio->io_bp;
2425 ASSERT(BP_GET_DEDUP(bp));
2426 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2427 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2429 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2430 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2431 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2432 ddt_phys_t *ddp = dde->dde_phys;
2433 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2434 blkptr_t blk;
2436 ASSERT(zio->io_vsd == NULL);
2437 zio->io_vsd = dde;
2439 if (ddp_self == NULL)
2440 return (ZIO_PIPELINE_CONTINUE);
2442 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2443 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2444 continue;
2445 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2446 &blk);
2447 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2448 abd_alloc_for_io(zio->io_size, B_TRUE),
2449 zio->io_size, zio_ddt_child_read_done, dde,
2450 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2451 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2453 return (ZIO_PIPELINE_CONTINUE);
2456 zio_nowait(zio_read(zio, zio->io_spa, bp,
2457 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2458 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2460 return (ZIO_PIPELINE_CONTINUE);
2463 static int
2464 zio_ddt_read_done(zio_t *zio)
2466 blkptr_t *bp = zio->io_bp;
2468 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2469 return (ZIO_PIPELINE_STOP);
2472 ASSERT(BP_GET_DEDUP(bp));
2473 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2474 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2476 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2477 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2478 ddt_entry_t *dde = zio->io_vsd;
2479 if (ddt == NULL) {
2480 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2481 return (ZIO_PIPELINE_CONTINUE);
2483 if (dde == NULL) {
2484 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2485 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2486 return (ZIO_PIPELINE_STOP);
2488 if (dde->dde_repair_abd != NULL) {
2489 abd_copy(zio->io_abd, dde->dde_repair_abd,
2490 zio->io_size);
2491 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2493 ddt_repair_done(ddt, dde);
2494 zio->io_vsd = NULL;
2497 ASSERT(zio->io_vsd == NULL);
2499 return (ZIO_PIPELINE_CONTINUE);
2502 static boolean_t
2503 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2505 spa_t *spa = zio->io_spa;
2506 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2508 /* We should never get a raw, override zio */
2509 ASSERT(!(zio->io_bp_override && do_raw));
2512 * Note: we compare the original data, not the transformed data,
2513 * because when zio->io_bp is an override bp, we will not have
2514 * pushed the I/O transforms. That's an important optimization
2515 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2517 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2518 zio_t *lio = dde->dde_lead_zio[p];
2520 if (lio != NULL) {
2521 return (lio->io_orig_size != zio->io_orig_size ||
2522 abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2523 zio->io_orig_size) != 0);
2527 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2528 ddt_phys_t *ddp = &dde->dde_phys[p];
2530 if (ddp->ddp_phys_birth != 0) {
2531 arc_buf_t *abuf = NULL;
2532 arc_flags_t aflags = ARC_FLAG_WAIT;
2533 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2534 blkptr_t blk = *zio->io_bp;
2535 int error;
2537 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2539 ddt_exit(ddt);
2542 * Intuitively, it would make more sense to compare
2543 * io_abd than io_orig_abd in the raw case since you
2544 * don't want to look at any transformations that have
2545 * happened to the data. However, for raw I/Os the
2546 * data will actually be the same in io_abd and
2547 * io_orig_abd, so all we have to do is issue this as
2548 * a raw ARC read.
2550 if (do_raw) {
2551 zio_flags |= ZIO_FLAG_RAW;
2552 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2553 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2554 zio->io_size));
2555 ASSERT3P(zio->io_transform_stack, ==, NULL);
2558 error = arc_read(NULL, spa, &blk,
2559 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2560 zio_flags, &aflags, &zio->io_bookmark);
2562 if (error == 0) {
2563 if (arc_buf_size(abuf) != zio->io_orig_size ||
2564 abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2565 zio->io_orig_size) != 0)
2566 error = SET_ERROR(EEXIST);
2567 arc_buf_destroy(abuf, &abuf);
2570 ddt_enter(ddt);
2571 return (error != 0);
2575 return (B_FALSE);
2578 static void
2579 zio_ddt_child_write_ready(zio_t *zio)
2581 int p = zio->io_prop.zp_copies;
2582 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2583 ddt_entry_t *dde = zio->io_private;
2584 ddt_phys_t *ddp = &dde->dde_phys[p];
2585 zio_t *pio;
2587 if (zio->io_error)
2588 return;
2590 ddt_enter(ddt);
2592 ASSERT(dde->dde_lead_zio[p] == zio);
2594 ddt_phys_fill(ddp, zio->io_bp);
2596 zio_link_t *zl = NULL;
2597 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2598 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2600 ddt_exit(ddt);
2603 static void
2604 zio_ddt_child_write_done(zio_t *zio)
2606 int p = zio->io_prop.zp_copies;
2607 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2608 ddt_entry_t *dde = zio->io_private;
2609 ddt_phys_t *ddp = &dde->dde_phys[p];
2611 ddt_enter(ddt);
2613 ASSERT(ddp->ddp_refcnt == 0);
2614 ASSERT(dde->dde_lead_zio[p] == zio);
2615 dde->dde_lead_zio[p] = NULL;
2617 if (zio->io_error == 0) {
2618 zio_link_t *zl = NULL;
2619 while (zio_walk_parents(zio, &zl) != NULL)
2620 ddt_phys_addref(ddp);
2621 } else {
2622 ddt_phys_clear(ddp);
2625 ddt_exit(ddt);
2628 static void
2629 zio_ddt_ditto_write_done(zio_t *zio)
2631 int p = DDT_PHYS_DITTO;
2632 zio_prop_t *zp = &zio->io_prop;
2633 blkptr_t *bp = zio->io_bp;
2634 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2635 ddt_entry_t *dde = zio->io_private;
2636 ddt_phys_t *ddp = &dde->dde_phys[p];
2637 ddt_key_t *ddk = &dde->dde_key;
2639 ddt_enter(ddt);
2641 ASSERT(ddp->ddp_refcnt == 0);
2642 ASSERT(dde->dde_lead_zio[p] == zio);
2643 dde->dde_lead_zio[p] = NULL;
2645 if (zio->io_error == 0) {
2646 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2647 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2648 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2649 if (ddp->ddp_phys_birth != 0)
2650 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2651 ddt_phys_fill(ddp, bp);
2654 ddt_exit(ddt);
2657 static int
2658 zio_ddt_write(zio_t *zio)
2660 spa_t *spa = zio->io_spa;
2661 blkptr_t *bp = zio->io_bp;
2662 uint64_t txg = zio->io_txg;
2663 zio_prop_t *zp = &zio->io_prop;
2664 int p = zp->zp_copies;
2665 int ditto_copies;
2666 zio_t *cio = NULL;
2667 zio_t *dio = NULL;
2668 ddt_t *ddt = ddt_select(spa, bp);
2669 ddt_entry_t *dde;
2670 ddt_phys_t *ddp;
2672 ASSERT(BP_GET_DEDUP(bp));
2673 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2674 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2675 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2677 ddt_enter(ddt);
2678 dde = ddt_lookup(ddt, bp, B_TRUE);
2679 ddp = &dde->dde_phys[p];
2681 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2683 * If we're using a weak checksum, upgrade to a strong checksum
2684 * and try again. If we're already using a strong checksum,
2685 * we can't resolve it, so just convert to an ordinary write.
2686 * (And automatically e-mail a paper to Nature?)
2688 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2689 ZCHECKSUM_FLAG_DEDUP)) {
2690 zp->zp_checksum = spa_dedup_checksum(spa);
2691 zio_pop_transforms(zio);
2692 zio->io_stage = ZIO_STAGE_OPEN;
2693 BP_ZERO(bp);
2694 } else {
2695 zp->zp_dedup = B_FALSE;
2696 BP_SET_DEDUP(bp, B_FALSE);
2698 ASSERT(!BP_GET_DEDUP(bp));
2699 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2700 ddt_exit(ddt);
2701 return (ZIO_PIPELINE_CONTINUE);
2704 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2705 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2707 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2708 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2709 zio_prop_t czp = *zp;
2711 czp.zp_copies = ditto_copies;
2714 * If we arrived here with an override bp, we won't have run
2715 * the transform stack, so we won't have the data we need to
2716 * generate a child i/o. So, toss the override bp and restart.
2717 * This is safe, because using the override bp is just an
2718 * optimization; and it's rare, so the cost doesn't matter.
2720 if (zio->io_bp_override) {
2721 zio_pop_transforms(zio);
2722 zio->io_stage = ZIO_STAGE_OPEN;
2723 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2724 zio->io_bp_override = NULL;
2725 BP_ZERO(bp);
2726 ddt_exit(ddt);
2727 return (ZIO_PIPELINE_CONTINUE);
2730 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2731 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2732 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2733 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2735 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2736 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2739 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2740 if (ddp->ddp_phys_birth != 0)
2741 ddt_bp_fill(ddp, bp, txg);
2742 if (dde->dde_lead_zio[p] != NULL)
2743 zio_add_child(zio, dde->dde_lead_zio[p]);
2744 else
2745 ddt_phys_addref(ddp);
2746 } else if (zio->io_bp_override) {
2747 ASSERT(bp->blk_birth == txg);
2748 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2749 ddt_phys_fill(ddp, bp);
2750 ddt_phys_addref(ddp);
2751 } else {
2752 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2753 zio->io_orig_size, zio->io_orig_size, zp,
2754 zio_ddt_child_write_ready, NULL, NULL,
2755 zio_ddt_child_write_done, dde, zio->io_priority,
2756 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2758 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2759 dde->dde_lead_zio[p] = cio;
2762 ddt_exit(ddt);
2764 if (cio)
2765 zio_nowait(cio);
2766 if (dio)
2767 zio_nowait(dio);
2769 return (ZIO_PIPELINE_CONTINUE);
2772 ddt_entry_t *freedde; /* for debugging */
2774 static int
2775 zio_ddt_free(zio_t *zio)
2777 spa_t *spa = zio->io_spa;
2778 blkptr_t *bp = zio->io_bp;
2779 ddt_t *ddt = ddt_select(spa, bp);
2780 ddt_entry_t *dde;
2781 ddt_phys_t *ddp;
2783 ASSERT(BP_GET_DEDUP(bp));
2784 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2786 ddt_enter(ddt);
2787 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2788 ddp = ddt_phys_select(dde, bp);
2789 ddt_phys_decref(ddp);
2790 ddt_exit(ddt);
2792 return (ZIO_PIPELINE_CONTINUE);
2796 * ==========================================================================
2797 * Allocate and free blocks
2798 * ==========================================================================
2801 static zio_t *
2802 zio_io_to_allocate(spa_t *spa, int allocator)
2804 zio_t *zio;
2806 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2808 zio = avl_first(&spa->spa_alloc_trees[allocator]);
2809 if (zio == NULL)
2810 return (NULL);
2812 ASSERT(IO_IS_ALLOCATING(zio));
2815 * Try to place a reservation for this zio. If we're unable to
2816 * reserve then we throttle.
2818 ASSERT3U(zio->io_allocator, ==, allocator);
2819 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2820 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2821 return (NULL);
2824 avl_remove(&spa->spa_alloc_trees[allocator], zio);
2825 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2827 return (zio);
2830 static int
2831 zio_dva_throttle(zio_t *zio)
2833 spa_t *spa = zio->io_spa;
2834 zio_t *nio;
2836 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2837 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2838 zio->io_child_type == ZIO_CHILD_GANG ||
2839 zio->io_flags & ZIO_FLAG_NODATA) {
2840 return (ZIO_PIPELINE_CONTINUE);
2843 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2845 ASSERT3U(zio->io_queued_timestamp, >, 0);
2846 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2848 zbookmark_phys_t *bm = &zio->io_bookmark;
2850 * We want to try to use as many allocators as possible to help improve
2851 * performance, but we also want logically adjacent IOs to be physically
2852 * adjacent to improve sequential read performance. We chunk each object
2853 * into 2^20 block regions, and then hash based on the objset, object,
2854 * level, and region to accomplish both of these goals.
2856 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2857 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2858 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2860 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2861 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2863 nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
2864 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2866 if (nio == zio)
2867 return (ZIO_PIPELINE_CONTINUE);
2869 if (nio != NULL) {
2870 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2872 * We are passing control to a new zio so make sure that
2873 * it is processed by a different thread. We do this to
2874 * avoid stack overflows that can occur when parents are
2875 * throttled and children are making progress. We allow
2876 * it to go to the head of the taskq since it's already
2877 * been waiting.
2879 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2881 return (ZIO_PIPELINE_STOP);
2884 void
2885 zio_allocate_dispatch(spa_t *spa, int allocator)
2887 zio_t *zio;
2889 mutex_enter(&spa->spa_alloc_locks[allocator]);
2890 zio = zio_io_to_allocate(spa, allocator);
2891 mutex_exit(&spa->spa_alloc_locks[allocator]);
2892 if (zio == NULL)
2893 return;
2895 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2896 ASSERT0(zio->io_error);
2897 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2900 static int
2901 zio_dva_allocate(zio_t *zio)
2903 spa_t *spa = zio->io_spa;
2904 metaslab_class_t *mc = spa_normal_class(spa);
2905 blkptr_t *bp = zio->io_bp;
2906 int error;
2907 int flags = 0;
2909 if (zio->io_gang_leader == NULL) {
2910 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2911 zio->io_gang_leader = zio;
2914 ASSERT(BP_IS_HOLE(bp));
2915 ASSERT0(BP_GET_NDVAS(bp));
2916 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2917 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2918 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2920 if (zio->io_flags & ZIO_FLAG_NODATA) {
2921 flags |= METASLAB_DONT_THROTTLE;
2923 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2924 flags |= METASLAB_GANG_CHILD;
2926 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2927 flags |= METASLAB_ASYNC_ALLOC;
2930 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2931 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2932 &zio->io_alloc_list, zio, zio->io_allocator);
2934 if (error != 0) {
2935 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
2936 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2937 error);
2938 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2939 return (zio_write_gang_block(zio));
2940 zio->io_error = error;
2943 return (ZIO_PIPELINE_CONTINUE);
2946 static int
2947 zio_dva_free(zio_t *zio)
2949 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2951 return (ZIO_PIPELINE_CONTINUE);
2954 static int
2955 zio_dva_claim(zio_t *zio)
2957 int error;
2959 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2960 if (error)
2961 zio->io_error = error;
2963 return (ZIO_PIPELINE_CONTINUE);
2967 * Undo an allocation. This is used by zio_done() when an I/O fails
2968 * and we want to give back the block we just allocated.
2969 * This handles both normal blocks and gang blocks.
2971 static void
2972 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2974 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2975 ASSERT(zio->io_bp_override == NULL);
2977 if (!BP_IS_HOLE(bp))
2978 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2980 if (gn != NULL) {
2981 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2982 zio_dva_unallocate(zio, gn->gn_child[g],
2983 &gn->gn_gbh->zg_blkptr[g]);
2989 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2992 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
2993 blkptr_t *old_bp, uint64_t size, boolean_t *slog)
2995 int error = 1;
2996 zio_alloc_list_t io_alloc_list;
2998 ASSERT(txg > spa_syncing_txg(spa));
3000 metaslab_trace_init(&io_alloc_list);
3002 * When allocating a zil block, we don't have information about
3003 * the final destination of the block except the objset it's part
3004 * of, so we just hash the objset ID to pick the allocator to get
3005 * some parallelism.
3007 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3008 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3009 cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3010 if (error == 0) {
3011 *slog = TRUE;
3012 } else {
3013 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3014 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3015 &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3016 spa->spa_alloc_count);
3017 if (error == 0)
3018 *slog = FALSE;
3020 metaslab_trace_fini(&io_alloc_list);
3022 if (error == 0) {
3023 BP_SET_LSIZE(new_bp, size);
3024 BP_SET_PSIZE(new_bp, size);
3025 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3026 BP_SET_CHECKSUM(new_bp,
3027 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3028 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3029 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3030 BP_SET_LEVEL(new_bp, 0);
3031 BP_SET_DEDUP(new_bp, 0);
3032 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3033 } else {
3034 zfs_dbgmsg("%s: zil block allocation failure: "
3035 "size %llu, error %d", spa_name(spa), size, error);
3038 return (error);
3042 * ==========================================================================
3043 * Read and write to physical devices
3044 * ==========================================================================
3049 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3050 * stops after this stage and will resume upon I/O completion.
3051 * However, there are instances where the vdev layer may need to
3052 * continue the pipeline when an I/O was not issued. Since the I/O
3053 * that was sent to the vdev layer might be different than the one
3054 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3055 * force the underlying vdev layers to call either zio_execute() or
3056 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3058 static int
3059 zio_vdev_io_start(zio_t *zio)
3061 vdev_t *vd = zio->io_vd;
3062 uint64_t align;
3063 spa_t *spa = zio->io_spa;
3065 ASSERT(zio->io_error == 0);
3066 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3068 if (vd == NULL) {
3069 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3070 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3073 * The mirror_ops handle multiple DVAs in a single BP.
3075 vdev_mirror_ops.vdev_op_io_start(zio);
3076 return (ZIO_PIPELINE_STOP);
3079 ASSERT3P(zio->io_logical, !=, zio);
3080 if (zio->io_type == ZIO_TYPE_WRITE) {
3081 ASSERT(spa->spa_trust_config);
3083 if (zio->io_vd->vdev_removing) {
3085 * Note: the code can handle other kinds of writes,
3086 * but we don't expect them.
3088 ASSERT(zio->io_flags &
3089 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3090 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3095 * We keep track of time-sensitive I/Os so that the scan thread
3096 * can quickly react to certain workloads. In particular, we care
3097 * about non-scrubbing, top-level reads and writes with the following
3098 * characteristics:
3099 * - synchronous writes of user data to non-slog devices
3100 * - any reads of user data
3101 * When these conditions are met, adjust the timestamp of spa_last_io
3102 * which allows the scan thread to adjust its workload accordingly.
3104 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3105 vd == vd->vdev_top && !vd->vdev_islog &&
3106 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3107 zio->io_txg != spa_syncing_txg(spa)) {
3108 uint64_t old = spa->spa_last_io;
3109 uint64_t new = ddi_get_lbolt64();
3110 if (old != new)
3111 (void) atomic_cas_64(&spa->spa_last_io, old, new);
3114 align = 1ULL << vd->vdev_top->vdev_ashift;
3116 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3117 P2PHASE(zio->io_size, align) != 0) {
3118 /* Transform logical writes to be a full physical block size. */
3119 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3120 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3121 ASSERT(vd == vd->vdev_top);
3122 if (zio->io_type == ZIO_TYPE_WRITE) {
3123 abd_copy(abuf, zio->io_abd, zio->io_size);
3124 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3126 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3130 * If this is not a physical io, make sure that it is properly aligned
3131 * before proceeding.
3133 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3134 ASSERT0(P2PHASE(zio->io_offset, align));
3135 ASSERT0(P2PHASE(zio->io_size, align));
3136 } else {
3138 * For physical writes, we allow 512b aligned writes and assume
3139 * the device will perform a read-modify-write as necessary.
3141 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3142 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3145 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3148 * If this is a repair I/O, and there's no self-healing involved --
3149 * that is, we're just resilvering what we expect to resilver --
3150 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3151 * This prevents spurious resilvering.
3153 * There are a few ways that we can end up creating these spurious
3154 * resilver i/os:
3156 * 1. A resilver i/o will be issued if any DVA in the BP has a
3157 * dirty DTL. The mirror code will issue resilver writes to
3158 * each DVA, including the one(s) that are not on vdevs with dirty
3159 * DTLs.
3161 * 2. With nested replication, which happens when we have a
3162 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3163 * For example, given mirror(replacing(A+B), C), it's likely that
3164 * only A is out of date (it's the new device). In this case, we'll
3165 * read from C, then use the data to resilver A+B -- but we don't
3166 * actually want to resilver B, just A. The top-level mirror has no
3167 * way to know this, so instead we just discard unnecessary repairs
3168 * as we work our way down the vdev tree.
3170 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3171 * The same logic applies to any form of nested replication: ditto
3172 * + mirror, RAID-Z + replacing, etc.
3174 * However, indirect vdevs point off to other vdevs which may have
3175 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3176 * will be properly bypassed instead.
3178 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3179 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3180 zio->io_txg != 0 && /* not a delegated i/o */
3181 vd->vdev_ops != &vdev_indirect_ops &&
3182 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3183 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3184 zio_vdev_io_bypass(zio);
3185 return (ZIO_PIPELINE_CONTINUE);
3188 if (vd->vdev_ops->vdev_op_leaf &&
3189 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3191 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3192 return (ZIO_PIPELINE_CONTINUE);
3194 if ((zio = vdev_queue_io(zio)) == NULL)
3195 return (ZIO_PIPELINE_STOP);
3197 if (!vdev_accessible(vd, zio)) {
3198 zio->io_error = SET_ERROR(ENXIO);
3199 zio_interrupt(zio);
3200 return (ZIO_PIPELINE_STOP);
3204 vd->vdev_ops->vdev_op_io_start(zio);
3205 return (ZIO_PIPELINE_STOP);
3208 static int
3209 zio_vdev_io_done(zio_t *zio)
3211 vdev_t *vd = zio->io_vd;
3212 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3213 boolean_t unexpected_error = B_FALSE;
3215 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3216 return (ZIO_PIPELINE_STOP);
3219 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3221 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3223 vdev_queue_io_done(zio);
3225 if (zio->io_type == ZIO_TYPE_WRITE)
3226 vdev_cache_write(zio);
3228 if (zio_injection_enabled && zio->io_error == 0)
3229 zio->io_error = zio_handle_device_injection(vd,
3230 zio, EIO);
3232 if (zio_injection_enabled && zio->io_error == 0)
3233 zio->io_error = zio_handle_label_injection(zio, EIO);
3235 if (zio->io_error) {
3236 if (!vdev_accessible(vd, zio)) {
3237 zio->io_error = SET_ERROR(ENXIO);
3238 } else {
3239 unexpected_error = B_TRUE;
3244 ops->vdev_op_io_done(zio);
3246 if (unexpected_error)
3247 VERIFY(vdev_probe(vd, zio) == NULL);
3249 return (ZIO_PIPELINE_CONTINUE);
3253 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3254 * disk, and use that to finish the checksum ereport later.
3256 static void
3257 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3258 const void *good_buf)
3260 /* no processing needed */
3261 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3264 /*ARGSUSED*/
3265 void
3266 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3268 void *buf = zio_buf_alloc(zio->io_size);
3270 abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3272 zcr->zcr_cbinfo = zio->io_size;
3273 zcr->zcr_cbdata = buf;
3274 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3275 zcr->zcr_free = zio_buf_free;
3278 static int
3279 zio_vdev_io_assess(zio_t *zio)
3281 vdev_t *vd = zio->io_vd;
3283 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3284 return (ZIO_PIPELINE_STOP);
3287 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3288 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3290 if (zio->io_vsd != NULL) {
3291 zio->io_vsd_ops->vsd_free(zio);
3292 zio->io_vsd = NULL;
3295 if (zio_injection_enabled && zio->io_error == 0)
3296 zio->io_error = zio_handle_fault_injection(zio, EIO);
3299 * If the I/O failed, determine whether we should attempt to retry it.
3301 * On retry, we cut in line in the issue queue, since we don't want
3302 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3304 if (zio->io_error && vd == NULL &&
3305 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3306 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3307 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3308 zio->io_error = 0;
3309 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3310 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3311 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3312 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3313 zio_requeue_io_start_cut_in_line);
3314 return (ZIO_PIPELINE_STOP);
3318 * If we got an error on a leaf device, convert it to ENXIO
3319 * if the device is not accessible at all.
3321 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3322 !vdev_accessible(vd, zio))
3323 zio->io_error = SET_ERROR(ENXIO);
3326 * If we can't write to an interior vdev (mirror or RAID-Z),
3327 * set vdev_cant_write so that we stop trying to allocate from it.
3329 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3330 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3331 vd->vdev_cant_write = B_TRUE;
3335 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3336 * attempts will ever succeed. In this case we set a persistent bit so
3337 * that we don't bother with it in the future.
3339 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3340 zio->io_type == ZIO_TYPE_IOCTL &&
3341 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3342 vd->vdev_nowritecache = B_TRUE;
3344 if (zio->io_error)
3345 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3347 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3348 zio->io_physdone != NULL) {
3349 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3350 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3351 zio->io_physdone(zio->io_logical);
3354 return (ZIO_PIPELINE_CONTINUE);
3357 void
3358 zio_vdev_io_reissue(zio_t *zio)
3360 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3361 ASSERT(zio->io_error == 0);
3363 zio->io_stage >>= 1;
3366 void
3367 zio_vdev_io_redone(zio_t *zio)
3369 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3371 zio->io_stage >>= 1;
3374 void
3375 zio_vdev_io_bypass(zio_t *zio)
3377 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3378 ASSERT(zio->io_error == 0);
3380 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3381 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3385 * ==========================================================================
3386 * Generate and verify checksums
3387 * ==========================================================================
3389 static int
3390 zio_checksum_generate(zio_t *zio)
3392 blkptr_t *bp = zio->io_bp;
3393 enum zio_checksum checksum;
3395 if (bp == NULL) {
3397 * This is zio_write_phys().
3398 * We're either generating a label checksum, or none at all.
3400 checksum = zio->io_prop.zp_checksum;
3402 if (checksum == ZIO_CHECKSUM_OFF)
3403 return (ZIO_PIPELINE_CONTINUE);
3405 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3406 } else {
3407 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3408 ASSERT(!IO_IS_ALLOCATING(zio));
3409 checksum = ZIO_CHECKSUM_GANG_HEADER;
3410 } else {
3411 checksum = BP_GET_CHECKSUM(bp);
3415 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3417 return (ZIO_PIPELINE_CONTINUE);
3420 static int
3421 zio_checksum_verify(zio_t *zio)
3423 zio_bad_cksum_t info;
3424 blkptr_t *bp = zio->io_bp;
3425 int error;
3427 ASSERT(zio->io_vd != NULL);
3429 if (bp == NULL) {
3431 * This is zio_read_phys().
3432 * We're either verifying a label checksum, or nothing at all.
3434 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3435 return (ZIO_PIPELINE_CONTINUE);
3437 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3440 if ((error = zio_checksum_error(zio, &info)) != 0) {
3441 zio->io_error = error;
3442 if (error == ECKSUM &&
3443 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3444 zfs_ereport_start_checksum(zio->io_spa,
3445 zio->io_vd, zio, zio->io_offset,
3446 zio->io_size, NULL, &info);
3450 return (ZIO_PIPELINE_CONTINUE);
3454 * Called by RAID-Z to ensure we don't compute the checksum twice.
3456 void
3457 zio_checksum_verified(zio_t *zio)
3459 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3463 * ==========================================================================
3464 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3465 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3466 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3467 * indicate errors that are specific to one I/O, and most likely permanent.
3468 * Any other error is presumed to be worse because we weren't expecting it.
3469 * ==========================================================================
3472 zio_worst_error(int e1, int e2)
3474 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3475 int r1, r2;
3477 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3478 if (e1 == zio_error_rank[r1])
3479 break;
3481 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3482 if (e2 == zio_error_rank[r2])
3483 break;
3485 return (r1 > r2 ? e1 : e2);
3489 * ==========================================================================
3490 * I/O completion
3491 * ==========================================================================
3493 static int
3494 zio_ready(zio_t *zio)
3496 blkptr_t *bp = zio->io_bp;
3497 zio_t *pio, *pio_next;
3498 zio_link_t *zl = NULL;
3500 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3501 ZIO_WAIT_READY)) {
3502 return (ZIO_PIPELINE_STOP);
3505 if (zio->io_ready) {
3506 ASSERT(IO_IS_ALLOCATING(zio));
3507 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3508 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3509 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3511 zio->io_ready(zio);
3514 if (bp != NULL && bp != &zio->io_bp_copy)
3515 zio->io_bp_copy = *bp;
3517 if (zio->io_error != 0) {
3518 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3520 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3521 ASSERT(IO_IS_ALLOCATING(zio));
3522 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3524 * We were unable to allocate anything, unreserve and
3525 * issue the next I/O to allocate.
3527 metaslab_class_throttle_unreserve(
3528 spa_normal_class(zio->io_spa),
3529 zio->io_prop.zp_copies, zio->io_allocator, zio);
3530 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3534 mutex_enter(&zio->io_lock);
3535 zio->io_state[ZIO_WAIT_READY] = 1;
3536 pio = zio_walk_parents(zio, &zl);
3537 mutex_exit(&zio->io_lock);
3540 * As we notify zio's parents, new parents could be added.
3541 * New parents go to the head of zio's io_parent_list, however,
3542 * so we will (correctly) not notify them. The remainder of zio's
3543 * io_parent_list, from 'pio_next' onward, cannot change because
3544 * all parents must wait for us to be done before they can be done.
3546 for (; pio != NULL; pio = pio_next) {
3547 pio_next = zio_walk_parents(zio, &zl);
3548 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3551 if (zio->io_flags & ZIO_FLAG_NODATA) {
3552 if (BP_IS_GANG(bp)) {
3553 zio->io_flags &= ~ZIO_FLAG_NODATA;
3554 } else {
3555 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3556 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3560 if (zio_injection_enabled &&
3561 zio->io_spa->spa_syncing_txg == zio->io_txg)
3562 zio_handle_ignored_writes(zio);
3564 return (ZIO_PIPELINE_CONTINUE);
3568 * Update the allocation throttle accounting.
3570 static void
3571 zio_dva_throttle_done(zio_t *zio)
3573 zio_t *lio = zio->io_logical;
3574 zio_t *pio = zio_unique_parent(zio);
3575 vdev_t *vd = zio->io_vd;
3576 int flags = METASLAB_ASYNC_ALLOC;
3578 ASSERT3P(zio->io_bp, !=, NULL);
3579 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3580 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3581 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3582 ASSERT(vd != NULL);
3583 ASSERT3P(vd, ==, vd->vdev_top);
3584 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3585 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3586 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3587 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3590 * Parents of gang children can have two flavors -- ones that
3591 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3592 * and ones that allocated the constituent blocks. The allocation
3593 * throttle needs to know the allocating parent zio so we must find
3594 * it here.
3596 if (pio->io_child_type == ZIO_CHILD_GANG) {
3598 * If our parent is a rewrite gang child then our grandparent
3599 * would have been the one that performed the allocation.
3601 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3602 pio = zio_unique_parent(pio);
3603 flags |= METASLAB_GANG_CHILD;
3606 ASSERT(IO_IS_ALLOCATING(pio));
3607 ASSERT3P(zio, !=, zio->io_logical);
3608 ASSERT(zio->io_logical != NULL);
3609 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3610 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3612 mutex_enter(&pio->io_lock);
3613 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3614 pio->io_allocator, B_TRUE);
3615 mutex_exit(&pio->io_lock);
3617 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3618 1, pio->io_allocator, pio);
3621 * Call into the pipeline to see if there is more work that
3622 * needs to be done. If there is work to be done it will be
3623 * dispatched to another taskq thread.
3625 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3628 static int
3629 zio_done(zio_t *zio)
3631 spa_t *spa = zio->io_spa;
3632 zio_t *lio = zio->io_logical;
3633 blkptr_t *bp = zio->io_bp;
3634 vdev_t *vd = zio->io_vd;
3635 uint64_t psize = zio->io_size;
3636 zio_t *pio, *pio_next;
3637 metaslab_class_t *mc = spa_normal_class(spa);
3638 zio_link_t *zl = NULL;
3641 * If our children haven't all completed,
3642 * wait for them and then repeat this pipeline stage.
3644 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3645 return (ZIO_PIPELINE_STOP);
3649 * If the allocation throttle is enabled, then update the accounting.
3650 * We only track child I/Os that are part of an allocating async
3651 * write. We must do this since the allocation is performed
3652 * by the logical I/O but the actual write is done by child I/Os.
3654 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3655 zio->io_child_type == ZIO_CHILD_VDEV) {
3656 ASSERT(mc->mc_alloc_throttle_enabled);
3657 zio_dva_throttle_done(zio);
3661 * If the allocation throttle is enabled, verify that
3662 * we have decremented the refcounts for every I/O that was throttled.
3664 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3665 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3666 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3667 ASSERT(bp != NULL);
3668 metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3669 zio->io_allocator);
3670 VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
3671 zio));
3674 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3675 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3676 ASSERT(zio->io_children[c][w] == 0);
3678 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3679 ASSERT(bp->blk_pad[0] == 0);
3680 ASSERT(bp->blk_pad[1] == 0);
3681 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3682 (bp == zio_unique_parent(zio)->io_bp));
3683 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3684 zio->io_bp_override == NULL &&
3685 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3686 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3687 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3688 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3689 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3691 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3692 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3696 * If there were child vdev/gang/ddt errors, they apply to us now.
3698 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3699 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3700 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3703 * If the I/O on the transformed data was successful, generate any
3704 * checksum reports now while we still have the transformed data.
3706 if (zio->io_error == 0) {
3707 while (zio->io_cksum_report != NULL) {
3708 zio_cksum_report_t *zcr = zio->io_cksum_report;
3709 uint64_t align = zcr->zcr_align;
3710 uint64_t asize = P2ROUNDUP(psize, align);
3711 char *abuf = NULL;
3712 abd_t *adata = zio->io_abd;
3714 if (asize != psize) {
3715 adata = abd_alloc_linear(asize, B_TRUE);
3716 abd_copy(adata, zio->io_abd, psize);
3717 abd_zero_off(adata, psize, asize - psize);
3720 if (adata != NULL)
3721 abuf = abd_borrow_buf_copy(adata, asize);
3723 zio->io_cksum_report = zcr->zcr_next;
3724 zcr->zcr_next = NULL;
3725 zcr->zcr_finish(zcr, abuf);
3726 zfs_ereport_free_checksum(zcr);
3728 if (adata != NULL)
3729 abd_return_buf(adata, abuf, asize);
3731 if (asize != psize)
3732 abd_free(adata);
3736 zio_pop_transforms(zio); /* note: may set zio->io_error */
3738 vdev_stat_update(zio, psize);
3740 if (zio->io_error) {
3742 * If this I/O is attached to a particular vdev,
3743 * generate an error message describing the I/O failure
3744 * at the block level. We ignore these errors if the
3745 * device is currently unavailable.
3747 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3748 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3750 if ((zio->io_error == EIO || !(zio->io_flags &
3751 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3752 zio == lio) {
3754 * For logical I/O requests, tell the SPA to log the
3755 * error and generate a logical data ereport.
3757 spa_log_error(spa, zio);
3758 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3759 0, 0);
3763 if (zio->io_error && zio == lio) {
3765 * Determine whether zio should be reexecuted. This will
3766 * propagate all the way to the root via zio_notify_parent().
3768 ASSERT(vd == NULL && bp != NULL);
3769 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3771 if (IO_IS_ALLOCATING(zio) &&
3772 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3773 if (zio->io_error != ENOSPC)
3774 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3775 else
3776 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3779 if ((zio->io_type == ZIO_TYPE_READ ||
3780 zio->io_type == ZIO_TYPE_FREE) &&
3781 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3782 zio->io_error == ENXIO &&
3783 spa_load_state(spa) == SPA_LOAD_NONE &&
3784 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3785 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3787 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3788 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3791 * Here is a possibly good place to attempt to do
3792 * either combinatorial reconstruction or error correction
3793 * based on checksums. It also might be a good place
3794 * to send out preliminary ereports before we suspend
3795 * processing.
3800 * If there were logical child errors, they apply to us now.
3801 * We defer this until now to avoid conflating logical child
3802 * errors with errors that happened to the zio itself when
3803 * updating vdev stats and reporting FMA events above.
3805 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3807 if ((zio->io_error || zio->io_reexecute) &&
3808 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3809 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3810 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3812 zio_gang_tree_free(&zio->io_gang_tree);
3815 * Godfather I/Os should never suspend.
3817 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3818 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3819 zio->io_reexecute = 0;
3821 if (zio->io_reexecute) {
3823 * This is a logical I/O that wants to reexecute.
3825 * Reexecute is top-down. When an i/o fails, if it's not
3826 * the root, it simply notifies its parent and sticks around.
3827 * The parent, seeing that it still has children in zio_done(),
3828 * does the same. This percolates all the way up to the root.
3829 * The root i/o will reexecute or suspend the entire tree.
3831 * This approach ensures that zio_reexecute() honors
3832 * all the original i/o dependency relationships, e.g.
3833 * parents not executing until children are ready.
3835 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3837 zio->io_gang_leader = NULL;
3839 mutex_enter(&zio->io_lock);
3840 zio->io_state[ZIO_WAIT_DONE] = 1;
3841 mutex_exit(&zio->io_lock);
3844 * "The Godfather" I/O monitors its children but is
3845 * not a true parent to them. It will track them through
3846 * the pipeline but severs its ties whenever they get into
3847 * trouble (e.g. suspended). This allows "The Godfather"
3848 * I/O to return status without blocking.
3850 zl = NULL;
3851 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3852 pio = pio_next) {
3853 zio_link_t *remove_zl = zl;
3854 pio_next = zio_walk_parents(zio, &zl);
3856 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3857 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3858 zio_remove_child(pio, zio, remove_zl);
3859 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3863 if ((pio = zio_unique_parent(zio)) != NULL) {
3865 * We're not a root i/o, so there's nothing to do
3866 * but notify our parent. Don't propagate errors
3867 * upward since we haven't permanently failed yet.
3869 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3870 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3871 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3872 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3874 * We'd fail again if we reexecuted now, so suspend
3875 * until conditions improve (e.g. device comes online).
3877 zio_suspend(spa, zio);
3878 } else {
3880 * Reexecution is potentially a huge amount of work.
3881 * Hand it off to the otherwise-unused claim taskq.
3883 ASSERT(zio->io_tqent.tqent_next == NULL);
3884 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3885 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3886 0, &zio->io_tqent);
3888 return (ZIO_PIPELINE_STOP);
3891 ASSERT(zio->io_child_count == 0);
3892 ASSERT(zio->io_reexecute == 0);
3893 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3896 * Report any checksum errors, since the I/O is complete.
3898 while (zio->io_cksum_report != NULL) {
3899 zio_cksum_report_t *zcr = zio->io_cksum_report;
3900 zio->io_cksum_report = zcr->zcr_next;
3901 zcr->zcr_next = NULL;
3902 zcr->zcr_finish(zcr, NULL);
3903 zfs_ereport_free_checksum(zcr);
3907 * It is the responsibility of the done callback to ensure that this
3908 * particular zio is no longer discoverable for adoption, and as
3909 * such, cannot acquire any new parents.
3911 if (zio->io_done)
3912 zio->io_done(zio);
3914 mutex_enter(&zio->io_lock);
3915 zio->io_state[ZIO_WAIT_DONE] = 1;
3916 mutex_exit(&zio->io_lock);
3918 zl = NULL;
3919 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3920 zio_link_t *remove_zl = zl;
3921 pio_next = zio_walk_parents(zio, &zl);
3922 zio_remove_child(pio, zio, remove_zl);
3923 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3926 if (zio->io_waiter != NULL) {
3927 mutex_enter(&zio->io_lock);
3928 zio->io_executor = NULL;
3929 cv_broadcast(&zio->io_cv);
3930 mutex_exit(&zio->io_lock);
3931 } else {
3932 zio_destroy(zio);
3935 return (ZIO_PIPELINE_STOP);
3939 * ==========================================================================
3940 * I/O pipeline definition
3941 * ==========================================================================
3943 static zio_pipe_stage_t *zio_pipeline[] = {
3944 NULL,
3945 zio_read_bp_init,
3946 zio_write_bp_init,
3947 zio_free_bp_init,
3948 zio_issue_async,
3949 zio_write_compress,
3950 zio_checksum_generate,
3951 zio_nop_write,
3952 zio_ddt_read_start,
3953 zio_ddt_read_done,
3954 zio_ddt_write,
3955 zio_ddt_free,
3956 zio_gang_assemble,
3957 zio_gang_issue,
3958 zio_dva_throttle,
3959 zio_dva_allocate,
3960 zio_dva_free,
3961 zio_dva_claim,
3962 zio_ready,
3963 zio_vdev_io_start,
3964 zio_vdev_io_done,
3965 zio_vdev_io_assess,
3966 zio_checksum_verify,
3967 zio_done
3974 * Compare two zbookmark_phys_t's to see which we would reach first in a
3975 * pre-order traversal of the object tree.
3977 * This is simple in every case aside from the meta-dnode object. For all other
3978 * objects, we traverse them in order (object 1 before object 2, and so on).
3979 * However, all of these objects are traversed while traversing object 0, since
3980 * the data it points to is the list of objects. Thus, we need to convert to a
3981 * canonical representation so we can compare meta-dnode bookmarks to
3982 * non-meta-dnode bookmarks.
3984 * We do this by calculating "equivalents" for each field of the zbookmark.
3985 * zbookmarks outside of the meta-dnode use their own object and level, and
3986 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3987 * blocks this bookmark refers to) by multiplying their blkid by their span
3988 * (the number of L0 blocks contained within one block at their level).
3989 * zbookmarks inside the meta-dnode calculate their object equivalent
3990 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3991 * level + 1<<31 (any value larger than a level could ever be) for their level.
3992 * This causes them to always compare before a bookmark in their object
3993 * equivalent, compare appropriately to bookmarks in other objects, and to
3994 * compare appropriately to other bookmarks in the meta-dnode.
3997 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3998 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4001 * These variables represent the "equivalent" values for the zbookmark,
4002 * after converting zbookmarks inside the meta dnode to their
4003 * normal-object equivalents.
4005 uint64_t zb1obj, zb2obj;
4006 uint64_t zb1L0, zb2L0;
4007 uint64_t zb1level, zb2level;
4009 if (zb1->zb_object == zb2->zb_object &&
4010 zb1->zb_level == zb2->zb_level &&
4011 zb1->zb_blkid == zb2->zb_blkid)
4012 return (0);
4015 * BP_SPANB calculates the span in blocks.
4017 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4018 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4020 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4021 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4022 zb1L0 = 0;
4023 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4024 } else {
4025 zb1obj = zb1->zb_object;
4026 zb1level = zb1->zb_level;
4029 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4030 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4031 zb2L0 = 0;
4032 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4033 } else {
4034 zb2obj = zb2->zb_object;
4035 zb2level = zb2->zb_level;
4038 /* Now that we have a canonical representation, do the comparison. */
4039 if (zb1obj != zb2obj)
4040 return (zb1obj < zb2obj ? -1 : 1);
4041 else if (zb1L0 != zb2L0)
4042 return (zb1L0 < zb2L0 ? -1 : 1);
4043 else if (zb1level != zb2level)
4044 return (zb1level > zb2level ? -1 : 1);
4046 * This can (theoretically) happen if the bookmarks have the same object
4047 * and level, but different blkids, if the block sizes are not the same.
4048 * There is presently no way to change the indirect block sizes
4050 return (0);
4054 * This function checks the following: given that last_block is the place that
4055 * our traversal stopped last time, does that guarantee that we've visited
4056 * every node under subtree_root? Therefore, we can't just use the raw output
4057 * of zbookmark_compare. We have to pass in a modified version of
4058 * subtree_root; by incrementing the block id, and then checking whether
4059 * last_block is before or equal to that, we can tell whether or not having
4060 * visited last_block implies that all of subtree_root's children have been
4061 * visited.
4063 boolean_t
4064 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4065 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4067 zbookmark_phys_t mod_zb = *subtree_root;
4068 mod_zb.zb_blkid++;
4069 ASSERT(last_block->zb_level == 0);
4071 /* The objset_phys_t isn't before anything. */
4072 if (dnp == NULL)
4073 return (B_FALSE);
4076 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4077 * data block size in sectors, because that variable is only used if
4078 * the bookmark refers to a block in the meta-dnode. Since we don't
4079 * know without examining it what object it refers to, and there's no
4080 * harm in passing in this value in other cases, we always pass it in.
4082 * We pass in 0 for the indirect block size shift because zb2 must be
4083 * level 0. The indirect block size is only used to calculate the span
4084 * of the bookmark, but since the bookmark must be level 0, the span is
4085 * always 1, so the math works out.
4087 * If you make changes to how the zbookmark_compare code works, be sure
4088 * to make sure that this code still works afterwards.
4090 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4091 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4092 last_block) <= 0);