9236 nuke spa_dbgmsg
[unleashed.git] / usr / src / uts / common / fs / zfs / metaslab.c
blobd8cdccf9122a854c74b9e741b9418a820188fe73
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
40 #define GANG_ALLOCATION(flags) \
41 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
43 uint64_t metaslab_aliquot = 512ULL << 10;
44 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
47 * Since we can touch multiple metaslabs (and their respective space maps)
48 * with each transaction group, we benefit from having a smaller space map
49 * block size since it allows us to issue more I/O operations scattered
50 * around the disk.
52 int zfs_metaslab_sm_blksz = (1 << 12);
55 * The in-core space map representation is more compact than its on-disk form.
56 * The zfs_condense_pct determines how much more compact the in-core
57 * space map representation must be before we compact it on-disk.
58 * Values should be greater than or equal to 100.
60 int zfs_condense_pct = 200;
63 * Condensing a metaslab is not guaranteed to actually reduce the amount of
64 * space used on disk. In particular, a space map uses data in increments of
65 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
66 * same number of blocks after condensing. Since the goal of condensing is to
67 * reduce the number of IOPs required to read the space map, we only want to
68 * condense when we can be sure we will reduce the number of blocks used by the
69 * space map. Unfortunately, we cannot precisely compute whether or not this is
70 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
71 * we apply the following heuristic: do not condense a spacemap unless the
72 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
73 * blocks.
75 int zfs_metaslab_condense_block_threshold = 4;
78 * The zfs_mg_noalloc_threshold defines which metaslab groups should
79 * be eligible for allocation. The value is defined as a percentage of
80 * free space. Metaslab groups that have more free space than
81 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
82 * a metaslab group's free space is less than or equal to the
83 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
84 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
85 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
86 * groups are allowed to accept allocations. Gang blocks are always
87 * eligible to allocate on any metaslab group. The default value of 0 means
88 * no metaslab group will be excluded based on this criterion.
90 int zfs_mg_noalloc_threshold = 0;
93 * Metaslab groups are considered eligible for allocations if their
94 * fragmenation metric (measured as a percentage) is less than or equal to
95 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
96 * then it will be skipped unless all metaslab groups within the metaslab
97 * class have also crossed this threshold.
99 int zfs_mg_fragmentation_threshold = 85;
102 * Allow metaslabs to keep their active state as long as their fragmentation
103 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
104 * active metaslab that exceeds this threshold will no longer keep its active
105 * status allowing better metaslabs to be selected.
107 int zfs_metaslab_fragmentation_threshold = 70;
110 * When set will load all metaslabs when pool is first opened.
112 int metaslab_debug_load = 0;
115 * When set will prevent metaslabs from being unloaded.
117 int metaslab_debug_unload = 0;
120 * Minimum size which forces the dynamic allocator to change
121 * it's allocation strategy. Once the space map cannot satisfy
122 * an allocation of this size then it switches to using more
123 * aggressive strategy (i.e search by size rather than offset).
125 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
128 * The minimum free space, in percent, which must be available
129 * in a space map to continue allocations in a first-fit fashion.
130 * Once the space map's free space drops below this level we dynamically
131 * switch to using best-fit allocations.
133 int metaslab_df_free_pct = 4;
136 * A metaslab is considered "free" if it contains a contiguous
137 * segment which is greater than metaslab_min_alloc_size.
139 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
142 * Percentage of all cpus that can be used by the metaslab taskq.
144 int metaslab_load_pct = 50;
147 * Determines how many txgs a metaslab may remain loaded without having any
148 * allocations from it. As long as a metaslab continues to be used we will
149 * keep it loaded.
151 int metaslab_unload_delay = TXG_SIZE * 2;
154 * Max number of metaslabs per group to preload.
156 int metaslab_preload_limit = SPA_DVAS_PER_BP;
159 * Enable/disable preloading of metaslab.
161 boolean_t metaslab_preload_enabled = B_TRUE;
164 * Enable/disable fragmentation weighting on metaslabs.
166 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
169 * Enable/disable lba weighting (i.e. outer tracks are given preference).
171 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
174 * Enable/disable metaslab group biasing.
176 boolean_t metaslab_bias_enabled = B_TRUE;
179 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
181 boolean_t zfs_remap_blkptr_enable = B_TRUE;
184 * Enable/disable segment-based metaslab selection.
186 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
189 * When using segment-based metaslab selection, we will continue
190 * allocating from the active metaslab until we have exhausted
191 * zfs_metaslab_switch_threshold of its buckets.
193 int zfs_metaslab_switch_threshold = 2;
196 * Internal switch to enable/disable the metaslab allocation tracing
197 * facility.
199 boolean_t metaslab_trace_enabled = B_TRUE;
202 * Maximum entries that the metaslab allocation tracing facility will keep
203 * in a given list when running in non-debug mode. We limit the number
204 * of entries in non-debug mode to prevent us from using up too much memory.
205 * The limit should be sufficiently large that we don't expect any allocation
206 * to every exceed this value. In debug mode, the system will panic if this
207 * limit is ever reached allowing for further investigation.
209 uint64_t metaslab_trace_max_entries = 5000;
211 static uint64_t metaslab_weight(metaslab_t *);
212 static void metaslab_set_fragmentation(metaslab_t *);
213 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
214 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
215 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
216 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
218 kmem_cache_t *metaslab_alloc_trace_cache;
221 * ==========================================================================
222 * Metaslab classes
223 * ==========================================================================
225 metaslab_class_t *
226 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
228 metaslab_class_t *mc;
230 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
232 mc->mc_spa = spa;
233 mc->mc_rotor = NULL;
234 mc->mc_ops = ops;
235 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
236 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
237 sizeof (refcount_t), KM_SLEEP);
238 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
239 sizeof (uint64_t), KM_SLEEP);
240 for (int i = 0; i < spa->spa_alloc_count; i++)
241 refcount_create_tracked(&mc->mc_alloc_slots[i]);
243 return (mc);
246 void
247 metaslab_class_destroy(metaslab_class_t *mc)
249 ASSERT(mc->mc_rotor == NULL);
250 ASSERT(mc->mc_alloc == 0);
251 ASSERT(mc->mc_deferred == 0);
252 ASSERT(mc->mc_space == 0);
253 ASSERT(mc->mc_dspace == 0);
255 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
256 refcount_destroy(&mc->mc_alloc_slots[i]);
257 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
258 sizeof (refcount_t));
259 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
260 sizeof (uint64_t));
261 mutex_destroy(&mc->mc_lock);
262 kmem_free(mc, sizeof (metaslab_class_t));
266 metaslab_class_validate(metaslab_class_t *mc)
268 metaslab_group_t *mg;
269 vdev_t *vd;
272 * Must hold one of the spa_config locks.
274 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
275 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
277 if ((mg = mc->mc_rotor) == NULL)
278 return (0);
280 do {
281 vd = mg->mg_vd;
282 ASSERT(vd->vdev_mg != NULL);
283 ASSERT3P(vd->vdev_top, ==, vd);
284 ASSERT3P(mg->mg_class, ==, mc);
285 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
286 } while ((mg = mg->mg_next) != mc->mc_rotor);
288 return (0);
291 void
292 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
293 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
295 atomic_add_64(&mc->mc_alloc, alloc_delta);
296 atomic_add_64(&mc->mc_deferred, defer_delta);
297 atomic_add_64(&mc->mc_space, space_delta);
298 atomic_add_64(&mc->mc_dspace, dspace_delta);
301 uint64_t
302 metaslab_class_get_alloc(metaslab_class_t *mc)
304 return (mc->mc_alloc);
307 uint64_t
308 metaslab_class_get_deferred(metaslab_class_t *mc)
310 return (mc->mc_deferred);
313 uint64_t
314 metaslab_class_get_space(metaslab_class_t *mc)
316 return (mc->mc_space);
319 uint64_t
320 metaslab_class_get_dspace(metaslab_class_t *mc)
322 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
325 void
326 metaslab_class_histogram_verify(metaslab_class_t *mc)
328 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
329 uint64_t *mc_hist;
330 int i;
332 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
333 return;
335 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
336 KM_SLEEP);
338 for (int c = 0; c < rvd->vdev_children; c++) {
339 vdev_t *tvd = rvd->vdev_child[c];
340 metaslab_group_t *mg = tvd->vdev_mg;
343 * Skip any holes, uninitialized top-levels, or
344 * vdevs that are not in this metalab class.
346 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
347 mg->mg_class != mc) {
348 continue;
351 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
352 mc_hist[i] += mg->mg_histogram[i];
355 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
356 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
358 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
362 * Calculate the metaslab class's fragmentation metric. The metric
363 * is weighted based on the space contribution of each metaslab group.
364 * The return value will be a number between 0 and 100 (inclusive), or
365 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
366 * zfs_frag_table for more information about the metric.
368 uint64_t
369 metaslab_class_fragmentation(metaslab_class_t *mc)
371 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
372 uint64_t fragmentation = 0;
374 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
376 for (int c = 0; c < rvd->vdev_children; c++) {
377 vdev_t *tvd = rvd->vdev_child[c];
378 metaslab_group_t *mg = tvd->vdev_mg;
381 * Skip any holes, uninitialized top-levels,
382 * or vdevs that are not in this metalab class.
384 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
385 mg->mg_class != mc) {
386 continue;
390 * If a metaslab group does not contain a fragmentation
391 * metric then just bail out.
393 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
394 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
395 return (ZFS_FRAG_INVALID);
399 * Determine how much this metaslab_group is contributing
400 * to the overall pool fragmentation metric.
402 fragmentation += mg->mg_fragmentation *
403 metaslab_group_get_space(mg);
405 fragmentation /= metaslab_class_get_space(mc);
407 ASSERT3U(fragmentation, <=, 100);
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (fragmentation);
413 * Calculate the amount of expandable space that is available in
414 * this metaslab class. If a device is expanded then its expandable
415 * space will be the amount of allocatable space that is currently not
416 * part of this metaslab class.
418 uint64_t
419 metaslab_class_expandable_space(metaslab_class_t *mc)
421 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
422 uint64_t space = 0;
424 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
425 for (int c = 0; c < rvd->vdev_children; c++) {
426 uint64_t tspace;
427 vdev_t *tvd = rvd->vdev_child[c];
428 metaslab_group_t *mg = tvd->vdev_mg;
430 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
431 mg->mg_class != mc) {
432 continue;
436 * Calculate if we have enough space to add additional
437 * metaslabs. We report the expandable space in terms
438 * of the metaslab size since that's the unit of expansion.
439 * Adjust by efi system partition size.
441 tspace = tvd->vdev_max_asize - tvd->vdev_asize;
442 if (tspace > mc->mc_spa->spa_bootsize) {
443 tspace -= mc->mc_spa->spa_bootsize;
445 space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
447 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
448 return (space);
451 static int
452 metaslab_compare(const void *x1, const void *x2)
454 const metaslab_t *m1 = x1;
455 const metaslab_t *m2 = x2;
457 int sort1 = 0;
458 int sort2 = 0;
459 if (m1->ms_allocator != -1 && m1->ms_primary)
460 sort1 = 1;
461 else if (m1->ms_allocator != -1 && !m1->ms_primary)
462 sort1 = 2;
463 if (m2->ms_allocator != -1 && m2->ms_primary)
464 sort2 = 1;
465 else if (m2->ms_allocator != -1 && !m2->ms_primary)
466 sort2 = 2;
469 * Sort inactive metaslabs first, then primaries, then secondaries. When
470 * selecting a metaslab to allocate from, an allocator first tries its
471 * primary, then secondary active metaslab. If it doesn't have active
472 * metaslabs, or can't allocate from them, it searches for an inactive
473 * metaslab to activate. If it can't find a suitable one, it will steal
474 * a primary or secondary metaslab from another allocator.
476 if (sort1 < sort2)
477 return (-1);
478 if (sort1 > sort2)
479 return (1);
481 if (m1->ms_weight < m2->ms_weight)
482 return (1);
483 if (m1->ms_weight > m2->ms_weight)
484 return (-1);
487 * If the weights are identical, use the offset to force uniqueness.
489 if (m1->ms_start < m2->ms_start)
490 return (-1);
491 if (m1->ms_start > m2->ms_start)
492 return (1);
494 ASSERT3P(m1, ==, m2);
496 return (0);
500 * Verify that the space accounting on disk matches the in-core range_trees.
502 void
503 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
505 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
506 uint64_t allocated = 0;
507 uint64_t sm_free_space, msp_free_space;
509 ASSERT(MUTEX_HELD(&msp->ms_lock));
511 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
512 return;
515 * We can only verify the metaslab space when we're called
516 * from syncing context with a loaded metaslab that has an allocated
517 * space map. Calling this in non-syncing context does not
518 * provide a consistent view of the metaslab since we're performing
519 * allocations in the future.
521 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
522 !msp->ms_loaded)
523 return;
525 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
526 space_map_alloc_delta(msp->ms_sm);
529 * Account for future allocations since we would have already
530 * deducted that space from the ms_freetree.
532 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
533 allocated +=
534 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
537 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
538 msp->ms_deferspace + range_tree_space(msp->ms_freed);
540 VERIFY3U(sm_free_space, ==, msp_free_space);
544 * ==========================================================================
545 * Metaslab groups
546 * ==========================================================================
549 * Update the allocatable flag and the metaslab group's capacity.
550 * The allocatable flag is set to true if the capacity is below
551 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
552 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
553 * transitions from allocatable to non-allocatable or vice versa then the
554 * metaslab group's class is updated to reflect the transition.
556 static void
557 metaslab_group_alloc_update(metaslab_group_t *mg)
559 vdev_t *vd = mg->mg_vd;
560 metaslab_class_t *mc = mg->mg_class;
561 vdev_stat_t *vs = &vd->vdev_stat;
562 boolean_t was_allocatable;
563 boolean_t was_initialized;
565 ASSERT(vd == vd->vdev_top);
566 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
567 SCL_ALLOC);
569 mutex_enter(&mg->mg_lock);
570 was_allocatable = mg->mg_allocatable;
571 was_initialized = mg->mg_initialized;
573 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
574 (vs->vs_space + 1);
576 mutex_enter(&mc->mc_lock);
579 * If the metaslab group was just added then it won't
580 * have any space until we finish syncing out this txg.
581 * At that point we will consider it initialized and available
582 * for allocations. We also don't consider non-activated
583 * metaslab groups (e.g. vdevs that are in the middle of being removed)
584 * to be initialized, because they can't be used for allocation.
586 mg->mg_initialized = metaslab_group_initialized(mg);
587 if (!was_initialized && mg->mg_initialized) {
588 mc->mc_groups++;
589 } else if (was_initialized && !mg->mg_initialized) {
590 ASSERT3U(mc->mc_groups, >, 0);
591 mc->mc_groups--;
593 if (mg->mg_initialized)
594 mg->mg_no_free_space = B_FALSE;
597 * A metaslab group is considered allocatable if it has plenty
598 * of free space or is not heavily fragmented. We only take
599 * fragmentation into account if the metaslab group has a valid
600 * fragmentation metric (i.e. a value between 0 and 100).
602 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
603 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
604 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
605 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
608 * The mc_alloc_groups maintains a count of the number of
609 * groups in this metaslab class that are still above the
610 * zfs_mg_noalloc_threshold. This is used by the allocating
611 * threads to determine if they should avoid allocations to
612 * a given group. The allocator will avoid allocations to a group
613 * if that group has reached or is below the zfs_mg_noalloc_threshold
614 * and there are still other groups that are above the threshold.
615 * When a group transitions from allocatable to non-allocatable or
616 * vice versa we update the metaslab class to reflect that change.
617 * When the mc_alloc_groups value drops to 0 that means that all
618 * groups have reached the zfs_mg_noalloc_threshold making all groups
619 * eligible for allocations. This effectively means that all devices
620 * are balanced again.
622 if (was_allocatable && !mg->mg_allocatable)
623 mc->mc_alloc_groups--;
624 else if (!was_allocatable && mg->mg_allocatable)
625 mc->mc_alloc_groups++;
626 mutex_exit(&mc->mc_lock);
628 mutex_exit(&mg->mg_lock);
631 metaslab_group_t *
632 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
634 metaslab_group_t *mg;
636 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
637 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
638 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
639 KM_SLEEP);
640 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
641 KM_SLEEP);
642 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
643 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
644 mg->mg_vd = vd;
645 mg->mg_class = mc;
646 mg->mg_activation_count = 0;
647 mg->mg_initialized = B_FALSE;
648 mg->mg_no_free_space = B_TRUE;
649 mg->mg_allocators = allocators;
651 mg->mg_alloc_queue_depth = kmem_zalloc(allocators * sizeof (refcount_t),
652 KM_SLEEP);
653 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
654 sizeof (uint64_t), KM_SLEEP);
655 for (int i = 0; i < allocators; i++) {
656 refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
657 mg->mg_cur_max_alloc_queue_depth[i] = 0;
660 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
661 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
663 return (mg);
666 void
667 metaslab_group_destroy(metaslab_group_t *mg)
669 ASSERT(mg->mg_prev == NULL);
670 ASSERT(mg->mg_next == NULL);
672 * We may have gone below zero with the activation count
673 * either because we never activated in the first place or
674 * because we're done, and possibly removing the vdev.
676 ASSERT(mg->mg_activation_count <= 0);
678 taskq_destroy(mg->mg_taskq);
679 avl_destroy(&mg->mg_metaslab_tree);
680 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
681 kmem_free(mg->mg_secondaries, mg->mg_allocators *
682 sizeof (metaslab_t *));
683 mutex_destroy(&mg->mg_lock);
685 for (int i = 0; i < mg->mg_allocators; i++) {
686 refcount_destroy(&mg->mg_alloc_queue_depth[i]);
687 mg->mg_cur_max_alloc_queue_depth[i] = 0;
689 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
690 sizeof (refcount_t));
691 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
692 sizeof (uint64_t));
694 kmem_free(mg, sizeof (metaslab_group_t));
697 void
698 metaslab_group_activate(metaslab_group_t *mg)
700 metaslab_class_t *mc = mg->mg_class;
701 metaslab_group_t *mgprev, *mgnext;
703 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
705 ASSERT(mc->mc_rotor != mg);
706 ASSERT(mg->mg_prev == NULL);
707 ASSERT(mg->mg_next == NULL);
708 ASSERT(mg->mg_activation_count <= 0);
710 if (++mg->mg_activation_count <= 0)
711 return;
713 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
714 metaslab_group_alloc_update(mg);
716 if ((mgprev = mc->mc_rotor) == NULL) {
717 mg->mg_prev = mg;
718 mg->mg_next = mg;
719 } else {
720 mgnext = mgprev->mg_next;
721 mg->mg_prev = mgprev;
722 mg->mg_next = mgnext;
723 mgprev->mg_next = mg;
724 mgnext->mg_prev = mg;
726 mc->mc_rotor = mg;
730 * Passivate a metaslab group and remove it from the allocation rotor.
731 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
732 * a metaslab group. This function will momentarily drop spa_config_locks
733 * that are lower than the SCL_ALLOC lock (see comment below).
735 void
736 metaslab_group_passivate(metaslab_group_t *mg)
738 metaslab_class_t *mc = mg->mg_class;
739 spa_t *spa = mc->mc_spa;
740 metaslab_group_t *mgprev, *mgnext;
741 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
743 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
744 (SCL_ALLOC | SCL_ZIO));
746 if (--mg->mg_activation_count != 0) {
747 ASSERT(mc->mc_rotor != mg);
748 ASSERT(mg->mg_prev == NULL);
749 ASSERT(mg->mg_next == NULL);
750 ASSERT(mg->mg_activation_count < 0);
751 return;
755 * The spa_config_lock is an array of rwlocks, ordered as
756 * follows (from highest to lowest):
757 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
758 * SCL_ZIO > SCL_FREE > SCL_VDEV
759 * (For more information about the spa_config_lock see spa_misc.c)
760 * The higher the lock, the broader its coverage. When we passivate
761 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
762 * config locks. However, the metaslab group's taskq might be trying
763 * to preload metaslabs so we must drop the SCL_ZIO lock and any
764 * lower locks to allow the I/O to complete. At a minimum,
765 * we continue to hold the SCL_ALLOC lock, which prevents any future
766 * allocations from taking place and any changes to the vdev tree.
768 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
769 taskq_wait(mg->mg_taskq);
770 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
771 metaslab_group_alloc_update(mg);
772 for (int i = 0; i < mg->mg_allocators; i++) {
773 metaslab_t *msp = mg->mg_primaries[i];
774 if (msp != NULL) {
775 mutex_enter(&msp->ms_lock);
776 metaslab_passivate(msp,
777 metaslab_weight_from_range_tree(msp));
778 mutex_exit(&msp->ms_lock);
780 msp = mg->mg_secondaries[i];
781 if (msp != NULL) {
782 mutex_enter(&msp->ms_lock);
783 metaslab_passivate(msp,
784 metaslab_weight_from_range_tree(msp));
785 mutex_exit(&msp->ms_lock);
789 mgprev = mg->mg_prev;
790 mgnext = mg->mg_next;
792 if (mg == mgnext) {
793 mc->mc_rotor = NULL;
794 } else {
795 mc->mc_rotor = mgnext;
796 mgprev->mg_next = mgnext;
797 mgnext->mg_prev = mgprev;
800 mg->mg_prev = NULL;
801 mg->mg_next = NULL;
804 boolean_t
805 metaslab_group_initialized(metaslab_group_t *mg)
807 vdev_t *vd = mg->mg_vd;
808 vdev_stat_t *vs = &vd->vdev_stat;
810 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
813 uint64_t
814 metaslab_group_get_space(metaslab_group_t *mg)
816 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
819 void
820 metaslab_group_histogram_verify(metaslab_group_t *mg)
822 uint64_t *mg_hist;
823 vdev_t *vd = mg->mg_vd;
824 uint64_t ashift = vd->vdev_ashift;
825 int i;
827 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
828 return;
830 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
831 KM_SLEEP);
833 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
834 SPACE_MAP_HISTOGRAM_SIZE + ashift);
836 for (int m = 0; m < vd->vdev_ms_count; m++) {
837 metaslab_t *msp = vd->vdev_ms[m];
839 if (msp->ms_sm == NULL)
840 continue;
842 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
843 mg_hist[i + ashift] +=
844 msp->ms_sm->sm_phys->smp_histogram[i];
847 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
848 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
850 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
853 static void
854 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
856 metaslab_class_t *mc = mg->mg_class;
857 uint64_t ashift = mg->mg_vd->vdev_ashift;
859 ASSERT(MUTEX_HELD(&msp->ms_lock));
860 if (msp->ms_sm == NULL)
861 return;
863 mutex_enter(&mg->mg_lock);
864 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
865 mg->mg_histogram[i + ashift] +=
866 msp->ms_sm->sm_phys->smp_histogram[i];
867 mc->mc_histogram[i + ashift] +=
868 msp->ms_sm->sm_phys->smp_histogram[i];
870 mutex_exit(&mg->mg_lock);
873 void
874 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
876 metaslab_class_t *mc = mg->mg_class;
877 uint64_t ashift = mg->mg_vd->vdev_ashift;
879 ASSERT(MUTEX_HELD(&msp->ms_lock));
880 if (msp->ms_sm == NULL)
881 return;
883 mutex_enter(&mg->mg_lock);
884 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
885 ASSERT3U(mg->mg_histogram[i + ashift], >=,
886 msp->ms_sm->sm_phys->smp_histogram[i]);
887 ASSERT3U(mc->mc_histogram[i + ashift], >=,
888 msp->ms_sm->sm_phys->smp_histogram[i]);
890 mg->mg_histogram[i + ashift] -=
891 msp->ms_sm->sm_phys->smp_histogram[i];
892 mc->mc_histogram[i + ashift] -=
893 msp->ms_sm->sm_phys->smp_histogram[i];
895 mutex_exit(&mg->mg_lock);
898 static void
899 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
901 ASSERT(msp->ms_group == NULL);
902 mutex_enter(&mg->mg_lock);
903 msp->ms_group = mg;
904 msp->ms_weight = 0;
905 avl_add(&mg->mg_metaslab_tree, msp);
906 mutex_exit(&mg->mg_lock);
908 mutex_enter(&msp->ms_lock);
909 metaslab_group_histogram_add(mg, msp);
910 mutex_exit(&msp->ms_lock);
913 static void
914 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
916 mutex_enter(&msp->ms_lock);
917 metaslab_group_histogram_remove(mg, msp);
918 mutex_exit(&msp->ms_lock);
920 mutex_enter(&mg->mg_lock);
921 ASSERT(msp->ms_group == mg);
922 avl_remove(&mg->mg_metaslab_tree, msp);
923 msp->ms_group = NULL;
924 mutex_exit(&mg->mg_lock);
927 static void
928 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
930 ASSERT(MUTEX_HELD(&mg->mg_lock));
931 ASSERT(msp->ms_group == mg);
932 avl_remove(&mg->mg_metaslab_tree, msp);
933 msp->ms_weight = weight;
934 avl_add(&mg->mg_metaslab_tree, msp);
938 static void
939 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
942 * Although in principle the weight can be any value, in
943 * practice we do not use values in the range [1, 511].
945 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
946 ASSERT(MUTEX_HELD(&msp->ms_lock));
948 mutex_enter(&mg->mg_lock);
949 metaslab_group_sort_impl(mg, msp, weight);
950 mutex_exit(&mg->mg_lock);
954 * Calculate the fragmentation for a given metaslab group. We can use
955 * a simple average here since all metaslabs within the group must have
956 * the same size. The return value will be a value between 0 and 100
957 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
958 * group have a fragmentation metric.
960 uint64_t
961 metaslab_group_fragmentation(metaslab_group_t *mg)
963 vdev_t *vd = mg->mg_vd;
964 uint64_t fragmentation = 0;
965 uint64_t valid_ms = 0;
967 for (int m = 0; m < vd->vdev_ms_count; m++) {
968 metaslab_t *msp = vd->vdev_ms[m];
970 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
971 continue;
973 valid_ms++;
974 fragmentation += msp->ms_fragmentation;
977 if (valid_ms <= vd->vdev_ms_count / 2)
978 return (ZFS_FRAG_INVALID);
980 fragmentation /= valid_ms;
981 ASSERT3U(fragmentation, <=, 100);
982 return (fragmentation);
986 * Determine if a given metaslab group should skip allocations. A metaslab
987 * group should avoid allocations if its free capacity is less than the
988 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
989 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
990 * that can still handle allocations. If the allocation throttle is enabled
991 * then we skip allocations to devices that have reached their maximum
992 * allocation queue depth unless the selected metaslab group is the only
993 * eligible group remaining.
995 static boolean_t
996 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
997 uint64_t psize, int allocator)
999 spa_t *spa = mg->mg_vd->vdev_spa;
1000 metaslab_class_t *mc = mg->mg_class;
1003 * We can only consider skipping this metaslab group if it's
1004 * in the normal metaslab class and there are other metaslab
1005 * groups to select from. Otherwise, we always consider it eligible
1006 * for allocations.
1008 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
1009 return (B_TRUE);
1012 * If the metaslab group's mg_allocatable flag is set (see comments
1013 * in metaslab_group_alloc_update() for more information) and
1014 * the allocation throttle is disabled then allow allocations to this
1015 * device. However, if the allocation throttle is enabled then
1016 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1017 * to determine if we should allow allocations to this metaslab group.
1018 * If all metaslab groups are no longer considered allocatable
1019 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1020 * gang block size then we allow allocations on this metaslab group
1021 * regardless of the mg_allocatable or throttle settings.
1023 if (mg->mg_allocatable) {
1024 metaslab_group_t *mgp;
1025 int64_t qdepth;
1026 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1028 if (!mc->mc_alloc_throttle_enabled)
1029 return (B_TRUE);
1032 * If this metaslab group does not have any free space, then
1033 * there is no point in looking further.
1035 if (mg->mg_no_free_space)
1036 return (B_FALSE);
1038 qdepth = refcount_count(&mg->mg_alloc_queue_depth[allocator]);
1041 * If this metaslab group is below its qmax or it's
1042 * the only allocatable metasable group, then attempt
1043 * to allocate from it.
1045 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1046 return (B_TRUE);
1047 ASSERT3U(mc->mc_alloc_groups, >, 1);
1050 * Since this metaslab group is at or over its qmax, we
1051 * need to determine if there are metaslab groups after this
1052 * one that might be able to handle this allocation. This is
1053 * racy since we can't hold the locks for all metaslab
1054 * groups at the same time when we make this check.
1056 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1057 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1059 qdepth = refcount_count(
1060 &mgp->mg_alloc_queue_depth[allocator]);
1063 * If there is another metaslab group that
1064 * might be able to handle the allocation, then
1065 * we return false so that we skip this group.
1067 if (qdepth < qmax && !mgp->mg_no_free_space)
1068 return (B_FALSE);
1072 * We didn't find another group to handle the allocation
1073 * so we can't skip this metaslab group even though
1074 * we are at or over our qmax.
1076 return (B_TRUE);
1078 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1079 return (B_TRUE);
1081 return (B_FALSE);
1085 * ==========================================================================
1086 * Range tree callbacks
1087 * ==========================================================================
1091 * Comparison function for the private size-ordered tree. Tree is sorted
1092 * by size, larger sizes at the end of the tree.
1094 static int
1095 metaslab_rangesize_compare(const void *x1, const void *x2)
1097 const range_seg_t *r1 = x1;
1098 const range_seg_t *r2 = x2;
1099 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1100 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1102 if (rs_size1 < rs_size2)
1103 return (-1);
1104 if (rs_size1 > rs_size2)
1105 return (1);
1107 if (r1->rs_start < r2->rs_start)
1108 return (-1);
1110 if (r1->rs_start > r2->rs_start)
1111 return (1);
1113 return (0);
1117 * Create any block allocator specific components. The current allocators
1118 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1120 static void
1121 metaslab_rt_create(range_tree_t *rt, void *arg)
1123 metaslab_t *msp = arg;
1125 ASSERT3P(rt->rt_arg, ==, msp);
1126 ASSERT(msp->ms_allocatable == NULL);
1128 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1129 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1133 * Destroy the block allocator specific components.
1135 static void
1136 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1138 metaslab_t *msp = arg;
1140 ASSERT3P(rt->rt_arg, ==, msp);
1141 ASSERT3P(msp->ms_allocatable, ==, rt);
1142 ASSERT0(avl_numnodes(&msp->ms_allocatable_by_size));
1144 avl_destroy(&msp->ms_allocatable_by_size);
1147 static void
1148 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1150 metaslab_t *msp = arg;
1152 ASSERT3P(rt->rt_arg, ==, msp);
1153 ASSERT3P(msp->ms_allocatable, ==, rt);
1154 VERIFY(!msp->ms_condensing);
1155 avl_add(&msp->ms_allocatable_by_size, rs);
1158 static void
1159 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1161 metaslab_t *msp = arg;
1163 ASSERT3P(rt->rt_arg, ==, msp);
1164 ASSERT3P(msp->ms_allocatable, ==, rt);
1165 VERIFY(!msp->ms_condensing);
1166 avl_remove(&msp->ms_allocatable_by_size, rs);
1169 static void
1170 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1172 metaslab_t *msp = arg;
1174 ASSERT3P(rt->rt_arg, ==, msp);
1175 ASSERT3P(msp->ms_allocatable, ==, rt);
1178 * Normally one would walk the tree freeing nodes along the way.
1179 * Since the nodes are shared with the range trees we can avoid
1180 * walking all nodes and just reinitialize the avl tree. The nodes
1181 * will be freed by the range tree, so we don't want to free them here.
1183 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1184 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1187 static range_tree_ops_t metaslab_rt_ops = {
1188 metaslab_rt_create,
1189 metaslab_rt_destroy,
1190 metaslab_rt_add,
1191 metaslab_rt_remove,
1192 metaslab_rt_vacate
1196 * ==========================================================================
1197 * Common allocator routines
1198 * ==========================================================================
1202 * Return the maximum contiguous segment within the metaslab.
1204 uint64_t
1205 metaslab_block_maxsize(metaslab_t *msp)
1207 avl_tree_t *t = &msp->ms_allocatable_by_size;
1208 range_seg_t *rs;
1210 if (t == NULL || (rs = avl_last(t)) == NULL)
1211 return (0ULL);
1213 return (rs->rs_end - rs->rs_start);
1216 static range_seg_t *
1217 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1219 range_seg_t *rs, rsearch;
1220 avl_index_t where;
1222 rsearch.rs_start = start;
1223 rsearch.rs_end = start + size;
1225 rs = avl_find(t, &rsearch, &where);
1226 if (rs == NULL) {
1227 rs = avl_nearest(t, where, AVL_AFTER);
1230 return (rs);
1234 * This is a helper function that can be used by the allocator to find
1235 * a suitable block to allocate. This will search the specified AVL
1236 * tree looking for a block that matches the specified criteria.
1238 static uint64_t
1239 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1240 uint64_t align)
1242 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1244 while (rs != NULL) {
1245 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1247 if (offset + size <= rs->rs_end) {
1248 *cursor = offset + size;
1249 return (offset);
1251 rs = AVL_NEXT(t, rs);
1255 * If we know we've searched the whole map (*cursor == 0), give up.
1256 * Otherwise, reset the cursor to the beginning and try again.
1258 if (*cursor == 0)
1259 return (-1ULL);
1261 *cursor = 0;
1262 return (metaslab_block_picker(t, cursor, size, align));
1266 * ==========================================================================
1267 * The first-fit block allocator
1268 * ==========================================================================
1270 static uint64_t
1271 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1274 * Find the largest power of 2 block size that evenly divides the
1275 * requested size. This is used to try to allocate blocks with similar
1276 * alignment from the same area of the metaslab (i.e. same cursor
1277 * bucket) but it does not guarantee that other allocations sizes
1278 * may exist in the same region.
1280 uint64_t align = size & -size;
1281 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1282 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1284 return (metaslab_block_picker(t, cursor, size, align));
1287 static metaslab_ops_t metaslab_ff_ops = {
1288 metaslab_ff_alloc
1292 * ==========================================================================
1293 * Dynamic block allocator -
1294 * Uses the first fit allocation scheme until space get low and then
1295 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1296 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1297 * ==========================================================================
1299 static uint64_t
1300 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1303 * Find the largest power of 2 block size that evenly divides the
1304 * requested size. This is used to try to allocate blocks with similar
1305 * alignment from the same area of the metaslab (i.e. same cursor
1306 * bucket) but it does not guarantee that other allocations sizes
1307 * may exist in the same region.
1309 uint64_t align = size & -size;
1310 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1311 range_tree_t *rt = msp->ms_allocatable;
1312 avl_tree_t *t = &rt->rt_root;
1313 uint64_t max_size = metaslab_block_maxsize(msp);
1314 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1316 ASSERT(MUTEX_HELD(&msp->ms_lock));
1317 ASSERT3U(avl_numnodes(t), ==,
1318 avl_numnodes(&msp->ms_allocatable_by_size));
1320 if (max_size < size)
1321 return (-1ULL);
1324 * If we're running low on space switch to using the size
1325 * sorted AVL tree (best-fit).
1327 if (max_size < metaslab_df_alloc_threshold ||
1328 free_pct < metaslab_df_free_pct) {
1329 t = &msp->ms_allocatable_by_size;
1330 *cursor = 0;
1333 return (metaslab_block_picker(t, cursor, size, 1ULL));
1336 static metaslab_ops_t metaslab_df_ops = {
1337 metaslab_df_alloc
1341 * ==========================================================================
1342 * Cursor fit block allocator -
1343 * Select the largest region in the metaslab, set the cursor to the beginning
1344 * of the range and the cursor_end to the end of the range. As allocations
1345 * are made advance the cursor. Continue allocating from the cursor until
1346 * the range is exhausted and then find a new range.
1347 * ==========================================================================
1349 static uint64_t
1350 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1352 range_tree_t *rt = msp->ms_allocatable;
1353 avl_tree_t *t = &msp->ms_allocatable_by_size;
1354 uint64_t *cursor = &msp->ms_lbas[0];
1355 uint64_t *cursor_end = &msp->ms_lbas[1];
1356 uint64_t offset = 0;
1358 ASSERT(MUTEX_HELD(&msp->ms_lock));
1359 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1361 ASSERT3U(*cursor_end, >=, *cursor);
1363 if ((*cursor + size) > *cursor_end) {
1364 range_seg_t *rs;
1366 rs = avl_last(&msp->ms_allocatable_by_size);
1367 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1368 return (-1ULL);
1370 *cursor = rs->rs_start;
1371 *cursor_end = rs->rs_end;
1374 offset = *cursor;
1375 *cursor += size;
1377 return (offset);
1380 static metaslab_ops_t metaslab_cf_ops = {
1381 metaslab_cf_alloc
1385 * ==========================================================================
1386 * New dynamic fit allocator -
1387 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1388 * contiguous blocks. If no region is found then just use the largest segment
1389 * that remains.
1390 * ==========================================================================
1394 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1395 * to request from the allocator.
1397 uint64_t metaslab_ndf_clump_shift = 4;
1399 static uint64_t
1400 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1402 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1403 avl_index_t where;
1404 range_seg_t *rs, rsearch;
1405 uint64_t hbit = highbit64(size);
1406 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1407 uint64_t max_size = metaslab_block_maxsize(msp);
1409 ASSERT(MUTEX_HELD(&msp->ms_lock));
1410 ASSERT3U(avl_numnodes(t), ==,
1411 avl_numnodes(&msp->ms_allocatable_by_size));
1413 if (max_size < size)
1414 return (-1ULL);
1416 rsearch.rs_start = *cursor;
1417 rsearch.rs_end = *cursor + size;
1419 rs = avl_find(t, &rsearch, &where);
1420 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1421 t = &msp->ms_allocatable_by_size;
1423 rsearch.rs_start = 0;
1424 rsearch.rs_end = MIN(max_size,
1425 1ULL << (hbit + metaslab_ndf_clump_shift));
1426 rs = avl_find(t, &rsearch, &where);
1427 if (rs == NULL)
1428 rs = avl_nearest(t, where, AVL_AFTER);
1429 ASSERT(rs != NULL);
1432 if ((rs->rs_end - rs->rs_start) >= size) {
1433 *cursor = rs->rs_start + size;
1434 return (rs->rs_start);
1436 return (-1ULL);
1439 static metaslab_ops_t metaslab_ndf_ops = {
1440 metaslab_ndf_alloc
1443 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1446 * ==========================================================================
1447 * Metaslabs
1448 * ==========================================================================
1452 * Wait for any in-progress metaslab loads to complete.
1454 void
1455 metaslab_load_wait(metaslab_t *msp)
1457 ASSERT(MUTEX_HELD(&msp->ms_lock));
1459 while (msp->ms_loading) {
1460 ASSERT(!msp->ms_loaded);
1461 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1466 metaslab_load(metaslab_t *msp)
1468 int error = 0;
1469 boolean_t success = B_FALSE;
1471 ASSERT(MUTEX_HELD(&msp->ms_lock));
1472 ASSERT(!msp->ms_loaded);
1473 ASSERT(!msp->ms_loading);
1475 msp->ms_loading = B_TRUE;
1477 * Nobody else can manipulate a loading metaslab, so it's now safe
1478 * to drop the lock. This way we don't have to hold the lock while
1479 * reading the spacemap from disk.
1481 mutex_exit(&msp->ms_lock);
1484 * If the space map has not been allocated yet, then treat
1485 * all the space in the metaslab as free and add it to ms_allocatable.
1487 if (msp->ms_sm != NULL) {
1488 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1489 SM_FREE);
1490 } else {
1491 range_tree_add(msp->ms_allocatable,
1492 msp->ms_start, msp->ms_size);
1495 success = (error == 0);
1497 mutex_enter(&msp->ms_lock);
1498 msp->ms_loading = B_FALSE;
1500 if (success) {
1501 ASSERT3P(msp->ms_group, !=, NULL);
1502 msp->ms_loaded = B_TRUE;
1505 * If the metaslab already has a spacemap, then we need to
1506 * remove all segments from the defer tree; otherwise, the
1507 * metaslab is completely empty and we can skip this.
1509 if (msp->ms_sm != NULL) {
1510 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1511 range_tree_walk(msp->ms_defer[t],
1512 range_tree_remove, msp->ms_allocatable);
1515 msp->ms_max_size = metaslab_block_maxsize(msp);
1517 cv_broadcast(&msp->ms_load_cv);
1518 return (error);
1521 void
1522 metaslab_unload(metaslab_t *msp)
1524 ASSERT(MUTEX_HELD(&msp->ms_lock));
1525 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1526 msp->ms_loaded = B_FALSE;
1527 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1528 msp->ms_max_size = 0;
1532 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1533 metaslab_t **msp)
1535 vdev_t *vd = mg->mg_vd;
1536 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1537 metaslab_t *ms;
1538 int error;
1540 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1541 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1542 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1543 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1544 ms->ms_id = id;
1545 ms->ms_start = id << vd->vdev_ms_shift;
1546 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1547 ms->ms_allocator = -1;
1548 ms->ms_new = B_TRUE;
1551 * We only open space map objects that already exist. All others
1552 * will be opened when we finally allocate an object for it.
1554 if (object != 0) {
1555 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1556 ms->ms_size, vd->vdev_ashift);
1558 if (error != 0) {
1559 kmem_free(ms, sizeof (metaslab_t));
1560 return (error);
1563 ASSERT(ms->ms_sm != NULL);
1567 * We create the main range tree here, but we don't create the
1568 * other range trees until metaslab_sync_done(). This serves
1569 * two purposes: it allows metaslab_sync_done() to detect the
1570 * addition of new space; and for debugging, it ensures that we'd
1571 * data fault on any attempt to use this metaslab before it's ready.
1573 ms->ms_allocatable = range_tree_create(&metaslab_rt_ops, ms);
1574 metaslab_group_add(mg, ms);
1576 metaslab_set_fragmentation(ms);
1579 * If we're opening an existing pool (txg == 0) or creating
1580 * a new one (txg == TXG_INITIAL), all space is available now.
1581 * If we're adding space to an existing pool, the new space
1582 * does not become available until after this txg has synced.
1583 * The metaslab's weight will also be initialized when we sync
1584 * out this txg. This ensures that we don't attempt to allocate
1585 * from it before we have initialized it completely.
1587 if (txg <= TXG_INITIAL)
1588 metaslab_sync_done(ms, 0);
1591 * If metaslab_debug_load is set and we're initializing a metaslab
1592 * that has an allocated space map object then load the its space
1593 * map so that can verify frees.
1595 if (metaslab_debug_load && ms->ms_sm != NULL) {
1596 mutex_enter(&ms->ms_lock);
1597 VERIFY0(metaslab_load(ms));
1598 mutex_exit(&ms->ms_lock);
1601 if (txg != 0) {
1602 vdev_dirty(vd, 0, NULL, txg);
1603 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1606 *msp = ms;
1608 return (0);
1611 void
1612 metaslab_fini(metaslab_t *msp)
1614 metaslab_group_t *mg = msp->ms_group;
1616 metaslab_group_remove(mg, msp);
1618 mutex_enter(&msp->ms_lock);
1619 VERIFY(msp->ms_group == NULL);
1620 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1621 0, -msp->ms_size);
1622 space_map_close(msp->ms_sm);
1624 metaslab_unload(msp);
1625 range_tree_destroy(msp->ms_allocatable);
1626 range_tree_destroy(msp->ms_freeing);
1627 range_tree_destroy(msp->ms_freed);
1629 for (int t = 0; t < TXG_SIZE; t++) {
1630 range_tree_destroy(msp->ms_allocating[t]);
1633 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1634 range_tree_destroy(msp->ms_defer[t]);
1636 ASSERT0(msp->ms_deferspace);
1638 range_tree_destroy(msp->ms_checkpointing);
1640 mutex_exit(&msp->ms_lock);
1641 cv_destroy(&msp->ms_load_cv);
1642 mutex_destroy(&msp->ms_lock);
1643 mutex_destroy(&msp->ms_sync_lock);
1644 ASSERT3U(msp->ms_allocator, ==, -1);
1646 kmem_free(msp, sizeof (metaslab_t));
1649 #define FRAGMENTATION_TABLE_SIZE 17
1652 * This table defines a segment size based fragmentation metric that will
1653 * allow each metaslab to derive its own fragmentation value. This is done
1654 * by calculating the space in each bucket of the spacemap histogram and
1655 * multiplying that by the fragmetation metric in this table. Doing
1656 * this for all buckets and dividing it by the total amount of free
1657 * space in this metaslab (i.e. the total free space in all buckets) gives
1658 * us the fragmentation metric. This means that a high fragmentation metric
1659 * equates to most of the free space being comprised of small segments.
1660 * Conversely, if the metric is low, then most of the free space is in
1661 * large segments. A 10% change in fragmentation equates to approximately
1662 * double the number of segments.
1664 * This table defines 0% fragmented space using 16MB segments. Testing has
1665 * shown that segments that are greater than or equal to 16MB do not suffer
1666 * from drastic performance problems. Using this value, we derive the rest
1667 * of the table. Since the fragmentation value is never stored on disk, it
1668 * is possible to change these calculations in the future.
1670 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1671 100, /* 512B */
1672 100, /* 1K */
1673 98, /* 2K */
1674 95, /* 4K */
1675 90, /* 8K */
1676 80, /* 16K */
1677 70, /* 32K */
1678 60, /* 64K */
1679 50, /* 128K */
1680 40, /* 256K */
1681 30, /* 512K */
1682 20, /* 1M */
1683 15, /* 2M */
1684 10, /* 4M */
1685 5, /* 8M */
1686 0 /* 16M */
1690 * Calclate the metaslab's fragmentation metric. A return value
1691 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1692 * not support this metric. Otherwise, the return value should be in the
1693 * range [0, 100].
1695 static void
1696 metaslab_set_fragmentation(metaslab_t *msp)
1698 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1699 uint64_t fragmentation = 0;
1700 uint64_t total = 0;
1701 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1702 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1704 if (!feature_enabled) {
1705 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1706 return;
1710 * A null space map means that the entire metaslab is free
1711 * and thus is not fragmented.
1713 if (msp->ms_sm == NULL) {
1714 msp->ms_fragmentation = 0;
1715 return;
1719 * If this metaslab's space map has not been upgraded, flag it
1720 * so that we upgrade next time we encounter it.
1722 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1723 uint64_t txg = spa_syncing_txg(spa);
1724 vdev_t *vd = msp->ms_group->mg_vd;
1727 * If we've reached the final dirty txg, then we must
1728 * be shutting down the pool. We don't want to dirty
1729 * any data past this point so skip setting the condense
1730 * flag. We can retry this action the next time the pool
1731 * is imported.
1733 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1734 msp->ms_condense_wanted = B_TRUE;
1735 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1736 zfs_dbgmsg("txg %llu, requesting force condense: "
1737 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1738 vd->vdev_id);
1740 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1741 return;
1744 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1745 uint64_t space = 0;
1746 uint8_t shift = msp->ms_sm->sm_shift;
1748 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1749 FRAGMENTATION_TABLE_SIZE - 1);
1751 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1752 continue;
1754 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1755 total += space;
1757 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1758 fragmentation += space * zfs_frag_table[idx];
1761 if (total > 0)
1762 fragmentation /= total;
1763 ASSERT3U(fragmentation, <=, 100);
1765 msp->ms_fragmentation = fragmentation;
1769 * Compute a weight -- a selection preference value -- for the given metaslab.
1770 * This is based on the amount of free space, the level of fragmentation,
1771 * the LBA range, and whether the metaslab is loaded.
1773 static uint64_t
1774 metaslab_space_weight(metaslab_t *msp)
1776 metaslab_group_t *mg = msp->ms_group;
1777 vdev_t *vd = mg->mg_vd;
1778 uint64_t weight, space;
1780 ASSERT(MUTEX_HELD(&msp->ms_lock));
1781 ASSERT(!vd->vdev_removing);
1784 * The baseline weight is the metaslab's free space.
1786 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1788 if (metaslab_fragmentation_factor_enabled &&
1789 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1791 * Use the fragmentation information to inversely scale
1792 * down the baseline weight. We need to ensure that we
1793 * don't exclude this metaslab completely when it's 100%
1794 * fragmented. To avoid this we reduce the fragmented value
1795 * by 1.
1797 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1800 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1801 * this metaslab again. The fragmentation metric may have
1802 * decreased the space to something smaller than
1803 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1804 * so that we can consume any remaining space.
1806 if (space > 0 && space < SPA_MINBLOCKSIZE)
1807 space = SPA_MINBLOCKSIZE;
1809 weight = space;
1812 * Modern disks have uniform bit density and constant angular velocity.
1813 * Therefore, the outer recording zones are faster (higher bandwidth)
1814 * than the inner zones by the ratio of outer to inner track diameter,
1815 * which is typically around 2:1. We account for this by assigning
1816 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1817 * In effect, this means that we'll select the metaslab with the most
1818 * free bandwidth rather than simply the one with the most free space.
1820 if (metaslab_lba_weighting_enabled) {
1821 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1822 ASSERT(weight >= space && weight <= 2 * space);
1826 * If this metaslab is one we're actively using, adjust its
1827 * weight to make it preferable to any inactive metaslab so
1828 * we'll polish it off. If the fragmentation on this metaslab
1829 * has exceed our threshold, then don't mark it active.
1831 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1832 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1833 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1836 WEIGHT_SET_SPACEBASED(weight);
1837 return (weight);
1841 * Return the weight of the specified metaslab, according to the segment-based
1842 * weighting algorithm. The metaslab must be loaded. This function can
1843 * be called within a sync pass since it relies only on the metaslab's
1844 * range tree which is always accurate when the metaslab is loaded.
1846 static uint64_t
1847 metaslab_weight_from_range_tree(metaslab_t *msp)
1849 uint64_t weight = 0;
1850 uint32_t segments = 0;
1852 ASSERT(msp->ms_loaded);
1854 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1855 i--) {
1856 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1857 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1859 segments <<= 1;
1860 segments += msp->ms_allocatable->rt_histogram[i];
1863 * The range tree provides more precision than the space map
1864 * and must be downgraded so that all values fit within the
1865 * space map's histogram. This allows us to compare loaded
1866 * vs. unloaded metaslabs to determine which metaslab is
1867 * considered "best".
1869 if (i > max_idx)
1870 continue;
1872 if (segments != 0) {
1873 WEIGHT_SET_COUNT(weight, segments);
1874 WEIGHT_SET_INDEX(weight, i);
1875 WEIGHT_SET_ACTIVE(weight, 0);
1876 break;
1879 return (weight);
1883 * Calculate the weight based on the on-disk histogram. This should only
1884 * be called after a sync pass has completely finished since the on-disk
1885 * information is updated in metaslab_sync().
1887 static uint64_t
1888 metaslab_weight_from_spacemap(metaslab_t *msp)
1890 uint64_t weight = 0;
1892 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1893 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1894 WEIGHT_SET_COUNT(weight,
1895 msp->ms_sm->sm_phys->smp_histogram[i]);
1896 WEIGHT_SET_INDEX(weight, i +
1897 msp->ms_sm->sm_shift);
1898 WEIGHT_SET_ACTIVE(weight, 0);
1899 break;
1902 return (weight);
1906 * Compute a segment-based weight for the specified metaslab. The weight
1907 * is determined by highest bucket in the histogram. The information
1908 * for the highest bucket is encoded into the weight value.
1910 static uint64_t
1911 metaslab_segment_weight(metaslab_t *msp)
1913 metaslab_group_t *mg = msp->ms_group;
1914 uint64_t weight = 0;
1915 uint8_t shift = mg->mg_vd->vdev_ashift;
1917 ASSERT(MUTEX_HELD(&msp->ms_lock));
1920 * The metaslab is completely free.
1922 if (space_map_allocated(msp->ms_sm) == 0) {
1923 int idx = highbit64(msp->ms_size) - 1;
1924 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1926 if (idx < max_idx) {
1927 WEIGHT_SET_COUNT(weight, 1ULL);
1928 WEIGHT_SET_INDEX(weight, idx);
1929 } else {
1930 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1931 WEIGHT_SET_INDEX(weight, max_idx);
1933 WEIGHT_SET_ACTIVE(weight, 0);
1934 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1936 return (weight);
1939 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1942 * If the metaslab is fully allocated then just make the weight 0.
1944 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1945 return (0);
1947 * If the metaslab is already loaded, then use the range tree to
1948 * determine the weight. Otherwise, we rely on the space map information
1949 * to generate the weight.
1951 if (msp->ms_loaded) {
1952 weight = metaslab_weight_from_range_tree(msp);
1953 } else {
1954 weight = metaslab_weight_from_spacemap(msp);
1958 * If the metaslab was active the last time we calculated its weight
1959 * then keep it active. We want to consume the entire region that
1960 * is associated with this weight.
1962 if (msp->ms_activation_weight != 0 && weight != 0)
1963 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1964 return (weight);
1968 * Determine if we should attempt to allocate from this metaslab. If the
1969 * metaslab has a maximum size then we can quickly determine if the desired
1970 * allocation size can be satisfied. Otherwise, if we're using segment-based
1971 * weighting then we can determine the maximum allocation that this metaslab
1972 * can accommodate based on the index encoded in the weight. If we're using
1973 * space-based weights then rely on the entire weight (excluding the weight
1974 * type bit).
1976 boolean_t
1977 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1979 boolean_t should_allocate;
1981 if (msp->ms_max_size != 0)
1982 return (msp->ms_max_size >= asize);
1984 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1986 * The metaslab segment weight indicates segments in the
1987 * range [2^i, 2^(i+1)), where i is the index in the weight.
1988 * Since the asize might be in the middle of the range, we
1989 * should attempt the allocation if asize < 2^(i+1).
1991 should_allocate = (asize <
1992 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1993 } else {
1994 should_allocate = (asize <=
1995 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1997 return (should_allocate);
2000 static uint64_t
2001 metaslab_weight(metaslab_t *msp)
2003 vdev_t *vd = msp->ms_group->mg_vd;
2004 spa_t *spa = vd->vdev_spa;
2005 uint64_t weight;
2007 ASSERT(MUTEX_HELD(&msp->ms_lock));
2010 * If this vdev is in the process of being removed, there is nothing
2011 * for us to do here.
2013 if (vd->vdev_removing)
2014 return (0);
2016 metaslab_set_fragmentation(msp);
2019 * Update the maximum size if the metaslab is loaded. This will
2020 * ensure that we get an accurate maximum size if newly freed space
2021 * has been added back into the free tree.
2023 if (msp->ms_loaded)
2024 msp->ms_max_size = metaslab_block_maxsize(msp);
2027 * Segment-based weighting requires space map histogram support.
2029 if (zfs_metaslab_segment_weight_enabled &&
2030 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2031 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2032 sizeof (space_map_phys_t))) {
2033 weight = metaslab_segment_weight(msp);
2034 } else {
2035 weight = metaslab_space_weight(msp);
2037 return (weight);
2040 static int
2041 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2042 int allocator, uint64_t activation_weight)
2045 * If we're activating for the claim code, we don't want to actually
2046 * set the metaslab up for a specific allocator.
2048 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2049 return (0);
2050 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2051 mg->mg_primaries : mg->mg_secondaries);
2053 ASSERT(MUTEX_HELD(&msp->ms_lock));
2054 mutex_enter(&mg->mg_lock);
2055 if (arr[allocator] != NULL) {
2056 mutex_exit(&mg->mg_lock);
2057 return (EEXIST);
2060 arr[allocator] = msp;
2061 ASSERT3S(msp->ms_allocator, ==, -1);
2062 msp->ms_allocator = allocator;
2063 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2064 mutex_exit(&mg->mg_lock);
2066 return (0);
2069 static int
2070 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2072 ASSERT(MUTEX_HELD(&msp->ms_lock));
2074 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2075 int error = 0;
2076 metaslab_load_wait(msp);
2077 if (!msp->ms_loaded) {
2078 if ((error = metaslab_load(msp)) != 0) {
2079 metaslab_group_sort(msp->ms_group, msp, 0);
2080 return (error);
2083 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2085 * The metaslab was activated for another allocator
2086 * while we were waiting, we should reselect.
2088 return (EBUSY);
2090 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2091 allocator, activation_weight)) != 0) {
2092 return (error);
2095 msp->ms_activation_weight = msp->ms_weight;
2096 metaslab_group_sort(msp->ms_group, msp,
2097 msp->ms_weight | activation_weight);
2099 ASSERT(msp->ms_loaded);
2100 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2102 return (0);
2105 static void
2106 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2107 uint64_t weight)
2109 ASSERT(MUTEX_HELD(&msp->ms_lock));
2110 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2111 metaslab_group_sort(mg, msp, weight);
2112 return;
2115 mutex_enter(&mg->mg_lock);
2116 ASSERT3P(msp->ms_group, ==, mg);
2117 if (msp->ms_primary) {
2118 ASSERT3U(0, <=, msp->ms_allocator);
2119 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2120 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2121 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2122 mg->mg_primaries[msp->ms_allocator] = NULL;
2123 } else {
2124 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2125 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2126 mg->mg_secondaries[msp->ms_allocator] = NULL;
2128 msp->ms_allocator = -1;
2129 metaslab_group_sort_impl(mg, msp, weight);
2130 mutex_exit(&mg->mg_lock);
2133 static void
2134 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2136 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
2139 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2140 * this metaslab again. In that case, it had better be empty,
2141 * or we would be leaving space on the table.
2143 ASSERT(size >= SPA_MINBLOCKSIZE ||
2144 range_tree_is_empty(msp->ms_allocatable));
2145 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2147 msp->ms_activation_weight = 0;
2148 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2149 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2153 * Segment-based metaslabs are activated once and remain active until
2154 * we either fail an allocation attempt (similar to space-based metaslabs)
2155 * or have exhausted the free space in zfs_metaslab_switch_threshold
2156 * buckets since the metaslab was activated. This function checks to see
2157 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2158 * metaslab and passivates it proactively. This will allow us to select a
2159 * metaslabs with larger contiguous region if any remaining within this
2160 * metaslab group. If we're in sync pass > 1, then we continue using this
2161 * metaslab so that we don't dirty more block and cause more sync passes.
2163 void
2164 metaslab_segment_may_passivate(metaslab_t *msp)
2166 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2168 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2169 return;
2172 * Since we are in the middle of a sync pass, the most accurate
2173 * information that is accessible to us is the in-core range tree
2174 * histogram; calculate the new weight based on that information.
2176 uint64_t weight = metaslab_weight_from_range_tree(msp);
2177 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2178 int current_idx = WEIGHT_GET_INDEX(weight);
2180 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2181 metaslab_passivate(msp, weight);
2184 static void
2185 metaslab_preload(void *arg)
2187 metaslab_t *msp = arg;
2188 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2190 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2192 mutex_enter(&msp->ms_lock);
2193 metaslab_load_wait(msp);
2194 if (!msp->ms_loaded)
2195 (void) metaslab_load(msp);
2196 msp->ms_selected_txg = spa_syncing_txg(spa);
2197 mutex_exit(&msp->ms_lock);
2200 static void
2201 metaslab_group_preload(metaslab_group_t *mg)
2203 spa_t *spa = mg->mg_vd->vdev_spa;
2204 metaslab_t *msp;
2205 avl_tree_t *t = &mg->mg_metaslab_tree;
2206 int m = 0;
2208 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2209 taskq_wait(mg->mg_taskq);
2210 return;
2213 mutex_enter(&mg->mg_lock);
2216 * Load the next potential metaslabs
2218 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2219 ASSERT3P(msp->ms_group, ==, mg);
2222 * We preload only the maximum number of metaslabs specified
2223 * by metaslab_preload_limit. If a metaslab is being forced
2224 * to condense then we preload it too. This will ensure
2225 * that force condensing happens in the next txg.
2227 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2228 continue;
2231 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2232 msp, TQ_SLEEP) != NULL);
2234 mutex_exit(&mg->mg_lock);
2238 * Determine if the space map's on-disk footprint is past our tolerance
2239 * for inefficiency. We would like to use the following criteria to make
2240 * our decision:
2242 * 1. The size of the space map object should not dramatically increase as a
2243 * result of writing out the free space range tree.
2245 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2246 * times the size than the free space range tree representation
2247 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2249 * 3. The on-disk size of the space map should actually decrease.
2251 * Unfortunately, we cannot compute the on-disk size of the space map in this
2252 * context because we cannot accurately compute the effects of compression, etc.
2253 * Instead, we apply the heuristic described in the block comment for
2254 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2255 * is greater than a threshold number of blocks.
2257 static boolean_t
2258 metaslab_should_condense(metaslab_t *msp)
2260 space_map_t *sm = msp->ms_sm;
2261 vdev_t *vd = msp->ms_group->mg_vd;
2262 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2263 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2265 ASSERT(MUTEX_HELD(&msp->ms_lock));
2266 ASSERT(msp->ms_loaded);
2269 * Allocations and frees in early passes are generally more space
2270 * efficient (in terms of blocks described in space map entries)
2271 * than the ones in later passes (e.g. we don't compress after
2272 * sync pass 5) and condensing a metaslab multiple times in a txg
2273 * could degrade performance.
2275 * Thus we prefer condensing each metaslab at most once every txg at
2276 * the earliest sync pass possible. If a metaslab is eligible for
2277 * condensing again after being considered for condensing within the
2278 * same txg, it will hopefully be dirty in the next txg where it will
2279 * be condensed at an earlier pass.
2281 if (msp->ms_condense_checked_txg == current_txg)
2282 return (B_FALSE);
2283 msp->ms_condense_checked_txg = current_txg;
2286 * We always condense metaslabs that are empty and metaslabs for
2287 * which a condense request has been made.
2289 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2290 msp->ms_condense_wanted)
2291 return (B_TRUE);
2293 uint64_t object_size = space_map_length(msp->ms_sm);
2294 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2295 msp->ms_allocatable, SM_NO_VDEVID);
2297 dmu_object_info_t doi;
2298 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2299 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2301 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2302 object_size > zfs_metaslab_condense_block_threshold * record_size);
2306 * Condense the on-disk space map representation to its minimized form.
2307 * The minimized form consists of a small number of allocations followed by
2308 * the entries of the free range tree.
2310 static void
2311 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2313 range_tree_t *condense_tree;
2314 space_map_t *sm = msp->ms_sm;
2316 ASSERT(MUTEX_HELD(&msp->ms_lock));
2317 ASSERT(msp->ms_loaded);
2319 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2320 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2321 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2322 msp->ms_group->mg_vd->vdev_spa->spa_name,
2323 space_map_length(msp->ms_sm),
2324 avl_numnodes(&msp->ms_allocatable->rt_root),
2325 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2327 msp->ms_condense_wanted = B_FALSE;
2330 * Create an range tree that is 100% allocated. We remove segments
2331 * that have been freed in this txg, any deferred frees that exist,
2332 * and any allocation in the future. Removing segments should be
2333 * a relatively inexpensive operation since we expect these trees to
2334 * have a small number of nodes.
2336 condense_tree = range_tree_create(NULL, NULL);
2337 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2339 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2340 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2342 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2343 range_tree_walk(msp->ms_defer[t],
2344 range_tree_remove, condense_tree);
2347 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2348 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2349 range_tree_remove, condense_tree);
2353 * We're about to drop the metaslab's lock thus allowing
2354 * other consumers to change it's content. Set the
2355 * metaslab's ms_condensing flag to ensure that
2356 * allocations on this metaslab do not occur while we're
2357 * in the middle of committing it to disk. This is only critical
2358 * for ms_allocatable as all other range trees use per txg
2359 * views of their content.
2361 msp->ms_condensing = B_TRUE;
2363 mutex_exit(&msp->ms_lock);
2364 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2367 * While we would ideally like to create a space map representation
2368 * that consists only of allocation records, doing so can be
2369 * prohibitively expensive because the in-core free tree can be
2370 * large, and therefore computationally expensive to subtract
2371 * from the condense_tree. Instead we sync out two trees, a cheap
2372 * allocation only tree followed by the in-core free tree. While not
2373 * optimal, this is typically close to optimal, and much cheaper to
2374 * compute.
2376 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2377 range_tree_vacate(condense_tree, NULL, NULL);
2378 range_tree_destroy(condense_tree);
2380 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2381 mutex_enter(&msp->ms_lock);
2382 msp->ms_condensing = B_FALSE;
2386 * Write a metaslab to disk in the context of the specified transaction group.
2388 void
2389 metaslab_sync(metaslab_t *msp, uint64_t txg)
2391 metaslab_group_t *mg = msp->ms_group;
2392 vdev_t *vd = mg->mg_vd;
2393 spa_t *spa = vd->vdev_spa;
2394 objset_t *mos = spa_meta_objset(spa);
2395 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2396 dmu_tx_t *tx;
2397 uint64_t object = space_map_object(msp->ms_sm);
2399 ASSERT(!vd->vdev_ishole);
2402 * This metaslab has just been added so there's no work to do now.
2404 if (msp->ms_freeing == NULL) {
2405 ASSERT3P(alloctree, ==, NULL);
2406 return;
2409 ASSERT3P(alloctree, !=, NULL);
2410 ASSERT3P(msp->ms_freeing, !=, NULL);
2411 ASSERT3P(msp->ms_freed, !=, NULL);
2412 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2415 * Normally, we don't want to process a metaslab if there are no
2416 * allocations or frees to perform. However, if the metaslab is being
2417 * forced to condense and it's loaded, we need to let it through.
2419 if (range_tree_is_empty(alloctree) &&
2420 range_tree_is_empty(msp->ms_freeing) &&
2421 range_tree_is_empty(msp->ms_checkpointing) &&
2422 !(msp->ms_loaded && msp->ms_condense_wanted))
2423 return;
2426 VERIFY(txg <= spa_final_dirty_txg(spa));
2429 * The only state that can actually be changing concurrently with
2430 * metaslab_sync() is the metaslab's ms_allocatable. No other
2431 * thread can be modifying this txg's alloc, freeing,
2432 * freed, or space_map_phys_t. We drop ms_lock whenever we
2433 * could call into the DMU, because the DMU can call down to us
2434 * (e.g. via zio_free()) at any time.
2436 * The spa_vdev_remove_thread() can be reading metaslab state
2437 * concurrently, and it is locked out by the ms_sync_lock. Note
2438 * that the ms_lock is insufficient for this, because it is dropped
2439 * by space_map_write().
2441 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2443 if (msp->ms_sm == NULL) {
2444 uint64_t new_object;
2446 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2447 VERIFY3U(new_object, !=, 0);
2449 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2450 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2451 ASSERT(msp->ms_sm != NULL);
2454 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2455 vd->vdev_checkpoint_sm == NULL) {
2456 ASSERT(spa_has_checkpoint(spa));
2458 uint64_t new_object = space_map_alloc(mos,
2459 vdev_standard_sm_blksz, tx);
2460 VERIFY3U(new_object, !=, 0);
2462 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2463 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2464 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2467 * We save the space map object as an entry in vdev_top_zap
2468 * so it can be retrieved when the pool is reopened after an
2469 * export or through zdb.
2471 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2472 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2473 sizeof (new_object), 1, &new_object, tx));
2476 mutex_enter(&msp->ms_sync_lock);
2477 mutex_enter(&msp->ms_lock);
2480 * Note: metaslab_condense() clears the space map's histogram.
2481 * Therefore we must verify and remove this histogram before
2482 * condensing.
2484 metaslab_group_histogram_verify(mg);
2485 metaslab_class_histogram_verify(mg->mg_class);
2486 metaslab_group_histogram_remove(mg, msp);
2488 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2489 metaslab_condense(msp, txg, tx);
2490 } else {
2491 mutex_exit(&msp->ms_lock);
2492 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2493 SM_NO_VDEVID, tx);
2494 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2495 SM_NO_VDEVID, tx);
2496 mutex_enter(&msp->ms_lock);
2499 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2500 ASSERT(spa_has_checkpoint(spa));
2501 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2504 * Since we are doing writes to disk and the ms_checkpointing
2505 * tree won't be changing during that time, we drop the
2506 * ms_lock while writing to the checkpoint space map.
2508 mutex_exit(&msp->ms_lock);
2509 space_map_write(vd->vdev_checkpoint_sm,
2510 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2511 mutex_enter(&msp->ms_lock);
2512 space_map_update(vd->vdev_checkpoint_sm);
2514 spa->spa_checkpoint_info.sci_dspace +=
2515 range_tree_space(msp->ms_checkpointing);
2516 vd->vdev_stat.vs_checkpoint_space +=
2517 range_tree_space(msp->ms_checkpointing);
2518 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2519 -vd->vdev_checkpoint_sm->sm_alloc);
2521 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2524 if (msp->ms_loaded) {
2526 * When the space map is loaded, we have an accurate
2527 * histogram in the range tree. This gives us an opportunity
2528 * to bring the space map's histogram up-to-date so we clear
2529 * it first before updating it.
2531 space_map_histogram_clear(msp->ms_sm);
2532 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2535 * Since we've cleared the histogram we need to add back
2536 * any free space that has already been processed, plus
2537 * any deferred space. This allows the on-disk histogram
2538 * to accurately reflect all free space even if some space
2539 * is not yet available for allocation (i.e. deferred).
2541 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2544 * Add back any deferred free space that has not been
2545 * added back into the in-core free tree yet. This will
2546 * ensure that we don't end up with a space map histogram
2547 * that is completely empty unless the metaslab is fully
2548 * allocated.
2550 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2551 space_map_histogram_add(msp->ms_sm,
2552 msp->ms_defer[t], tx);
2557 * Always add the free space from this sync pass to the space
2558 * map histogram. We want to make sure that the on-disk histogram
2559 * accounts for all free space. If the space map is not loaded,
2560 * then we will lose some accuracy but will correct it the next
2561 * time we load the space map.
2563 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2565 metaslab_group_histogram_add(mg, msp);
2566 metaslab_group_histogram_verify(mg);
2567 metaslab_class_histogram_verify(mg->mg_class);
2570 * For sync pass 1, we avoid traversing this txg's free range tree
2571 * and instead will just swap the pointers for freeing and
2572 * freed. We can safely do this since the freed_tree is
2573 * guaranteed to be empty on the initial pass.
2575 if (spa_sync_pass(spa) == 1) {
2576 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2577 } else {
2578 range_tree_vacate(msp->ms_freeing,
2579 range_tree_add, msp->ms_freed);
2581 range_tree_vacate(alloctree, NULL, NULL);
2583 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2584 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2585 & TXG_MASK]));
2586 ASSERT0(range_tree_space(msp->ms_freeing));
2587 ASSERT0(range_tree_space(msp->ms_checkpointing));
2589 mutex_exit(&msp->ms_lock);
2591 if (object != space_map_object(msp->ms_sm)) {
2592 object = space_map_object(msp->ms_sm);
2593 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2594 msp->ms_id, sizeof (uint64_t), &object, tx);
2596 mutex_exit(&msp->ms_sync_lock);
2597 dmu_tx_commit(tx);
2601 * Called after a transaction group has completely synced to mark
2602 * all of the metaslab's free space as usable.
2604 void
2605 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2607 metaslab_group_t *mg = msp->ms_group;
2608 vdev_t *vd = mg->mg_vd;
2609 spa_t *spa = vd->vdev_spa;
2610 range_tree_t **defer_tree;
2611 int64_t alloc_delta, defer_delta;
2612 boolean_t defer_allowed = B_TRUE;
2614 ASSERT(!vd->vdev_ishole);
2616 mutex_enter(&msp->ms_lock);
2619 * If this metaslab is just becoming available, initialize its
2620 * range trees and add its capacity to the vdev.
2622 if (msp->ms_freed == NULL) {
2623 for (int t = 0; t < TXG_SIZE; t++) {
2624 ASSERT(msp->ms_allocating[t] == NULL);
2626 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2629 ASSERT3P(msp->ms_freeing, ==, NULL);
2630 msp->ms_freeing = range_tree_create(NULL, NULL);
2632 ASSERT3P(msp->ms_freed, ==, NULL);
2633 msp->ms_freed = range_tree_create(NULL, NULL);
2635 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2636 ASSERT(msp->ms_defer[t] == NULL);
2638 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2641 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2642 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2644 vdev_space_update(vd, 0, 0, msp->ms_size);
2646 ASSERT0(range_tree_space(msp->ms_freeing));
2647 ASSERT0(range_tree_space(msp->ms_checkpointing));
2649 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2651 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2652 metaslab_class_get_alloc(spa_normal_class(spa));
2653 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2654 defer_allowed = B_FALSE;
2657 defer_delta = 0;
2658 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2659 if (defer_allowed) {
2660 defer_delta = range_tree_space(msp->ms_freed) -
2661 range_tree_space(*defer_tree);
2662 } else {
2663 defer_delta -= range_tree_space(*defer_tree);
2666 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2669 * If there's a metaslab_load() in progress, wait for it to complete
2670 * so that we have a consistent view of the in-core space map.
2672 metaslab_load_wait(msp);
2675 * Move the frees from the defer_tree back to the free
2676 * range tree (if it's loaded). Swap the freed_tree and
2677 * the defer_tree -- this is safe to do because we've
2678 * just emptied out the defer_tree.
2680 range_tree_vacate(*defer_tree,
2681 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2682 if (defer_allowed) {
2683 range_tree_swap(&msp->ms_freed, defer_tree);
2684 } else {
2685 range_tree_vacate(msp->ms_freed,
2686 msp->ms_loaded ? range_tree_add : NULL,
2687 msp->ms_allocatable);
2689 space_map_update(msp->ms_sm);
2691 msp->ms_deferspace += defer_delta;
2692 ASSERT3S(msp->ms_deferspace, >=, 0);
2693 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2694 if (msp->ms_deferspace != 0) {
2696 * Keep syncing this metaslab until all deferred frees
2697 * are back in circulation.
2699 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2702 if (msp->ms_new) {
2703 msp->ms_new = B_FALSE;
2704 mutex_enter(&mg->mg_lock);
2705 mg->mg_ms_ready++;
2706 mutex_exit(&mg->mg_lock);
2709 * Calculate the new weights before unloading any metaslabs.
2710 * This will give us the most accurate weighting.
2712 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2713 (msp->ms_weight & METASLAB_ACTIVE_MASK));
2716 * If the metaslab is loaded and we've not tried to load or allocate
2717 * from it in 'metaslab_unload_delay' txgs, then unload it.
2719 if (msp->ms_loaded &&
2720 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2721 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2722 VERIFY0(range_tree_space(
2723 msp->ms_allocating[(txg + t) & TXG_MASK]));
2725 if (msp->ms_allocator != -1) {
2726 metaslab_passivate(msp, msp->ms_weight &
2727 ~METASLAB_ACTIVE_MASK);
2730 if (!metaslab_debug_unload)
2731 metaslab_unload(msp);
2734 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2735 ASSERT0(range_tree_space(msp->ms_freeing));
2736 ASSERT0(range_tree_space(msp->ms_freed));
2737 ASSERT0(range_tree_space(msp->ms_checkpointing));
2739 mutex_exit(&msp->ms_lock);
2742 void
2743 metaslab_sync_reassess(metaslab_group_t *mg)
2745 spa_t *spa = mg->mg_class->mc_spa;
2747 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2748 metaslab_group_alloc_update(mg);
2749 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2752 * Preload the next potential metaslabs but only on active
2753 * metaslab groups. We can get into a state where the metaslab
2754 * is no longer active since we dirty metaslabs as we remove a
2755 * a device, thus potentially making the metaslab group eligible
2756 * for preloading.
2758 if (mg->mg_activation_count > 0) {
2759 metaslab_group_preload(mg);
2761 spa_config_exit(spa, SCL_ALLOC, FTAG);
2764 static uint64_t
2765 metaslab_distance(metaslab_t *msp, dva_t *dva)
2767 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2768 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2769 uint64_t start = msp->ms_id;
2771 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2772 return (1ULL << 63);
2774 if (offset < start)
2775 return ((start - offset) << ms_shift);
2776 if (offset > start)
2777 return ((offset - start) << ms_shift);
2778 return (0);
2782 * ==========================================================================
2783 * Metaslab allocation tracing facility
2784 * ==========================================================================
2786 kstat_t *metaslab_trace_ksp;
2787 kstat_named_t metaslab_trace_over_limit;
2789 void
2790 metaslab_alloc_trace_init(void)
2792 ASSERT(metaslab_alloc_trace_cache == NULL);
2793 metaslab_alloc_trace_cache = kmem_cache_create(
2794 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2795 0, NULL, NULL, NULL, NULL, NULL, 0);
2796 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2797 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2798 if (metaslab_trace_ksp != NULL) {
2799 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2800 kstat_named_init(&metaslab_trace_over_limit,
2801 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2802 kstat_install(metaslab_trace_ksp);
2806 void
2807 metaslab_alloc_trace_fini(void)
2809 if (metaslab_trace_ksp != NULL) {
2810 kstat_delete(metaslab_trace_ksp);
2811 metaslab_trace_ksp = NULL;
2813 kmem_cache_destroy(metaslab_alloc_trace_cache);
2814 metaslab_alloc_trace_cache = NULL;
2818 * Add an allocation trace element to the allocation tracing list.
2820 static void
2821 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2822 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2823 int allocator)
2825 if (!metaslab_trace_enabled)
2826 return;
2829 * When the tracing list reaches its maximum we remove
2830 * the second element in the list before adding a new one.
2831 * By removing the second element we preserve the original
2832 * entry as a clue to what allocations steps have already been
2833 * performed.
2835 if (zal->zal_size == metaslab_trace_max_entries) {
2836 metaslab_alloc_trace_t *mat_next;
2837 #ifdef DEBUG
2838 panic("too many entries in allocation list");
2839 #endif
2840 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2841 zal->zal_size--;
2842 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2843 list_remove(&zal->zal_list, mat_next);
2844 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2847 metaslab_alloc_trace_t *mat =
2848 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2849 list_link_init(&mat->mat_list_node);
2850 mat->mat_mg = mg;
2851 mat->mat_msp = msp;
2852 mat->mat_size = psize;
2853 mat->mat_dva_id = dva_id;
2854 mat->mat_offset = offset;
2855 mat->mat_weight = 0;
2856 mat->mat_allocator = allocator;
2858 if (msp != NULL)
2859 mat->mat_weight = msp->ms_weight;
2862 * The list is part of the zio so locking is not required. Only
2863 * a single thread will perform allocations for a given zio.
2865 list_insert_tail(&zal->zal_list, mat);
2866 zal->zal_size++;
2868 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2871 void
2872 metaslab_trace_init(zio_alloc_list_t *zal)
2874 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2875 offsetof(metaslab_alloc_trace_t, mat_list_node));
2876 zal->zal_size = 0;
2879 void
2880 metaslab_trace_fini(zio_alloc_list_t *zal)
2882 metaslab_alloc_trace_t *mat;
2884 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2885 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2886 list_destroy(&zal->zal_list);
2887 zal->zal_size = 0;
2891 * ==========================================================================
2892 * Metaslab block operations
2893 * ==========================================================================
2896 static void
2897 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2898 int allocator)
2900 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2901 (flags & METASLAB_DONT_THROTTLE))
2902 return;
2904 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2905 if (!mg->mg_class->mc_alloc_throttle_enabled)
2906 return;
2908 (void) refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
2911 static void
2912 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2914 uint64_t max = mg->mg_max_alloc_queue_depth;
2915 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2916 while (cur < max) {
2917 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2918 cur, cur + 1) == cur) {
2919 atomic_inc_64(
2920 &mg->mg_class->mc_alloc_max_slots[allocator]);
2921 return;
2923 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2927 void
2928 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2929 int allocator, boolean_t io_complete)
2931 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2932 (flags & METASLAB_DONT_THROTTLE))
2933 return;
2935 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2936 if (!mg->mg_class->mc_alloc_throttle_enabled)
2937 return;
2939 (void) refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
2940 if (io_complete)
2941 metaslab_group_increment_qdepth(mg, allocator);
2944 void
2945 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2946 int allocator)
2948 #ifdef ZFS_DEBUG
2949 const dva_t *dva = bp->blk_dva;
2950 int ndvas = BP_GET_NDVAS(bp);
2952 for (int d = 0; d < ndvas; d++) {
2953 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2954 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2955 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth[allocator],
2956 tag));
2958 #endif
2961 static uint64_t
2962 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2964 uint64_t start;
2965 range_tree_t *rt = msp->ms_allocatable;
2966 metaslab_class_t *mc = msp->ms_group->mg_class;
2968 VERIFY(!msp->ms_condensing);
2970 start = mc->mc_ops->msop_alloc(msp, size);
2971 if (start != -1ULL) {
2972 metaslab_group_t *mg = msp->ms_group;
2973 vdev_t *vd = mg->mg_vd;
2975 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2976 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2977 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2978 range_tree_remove(rt, start, size);
2980 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
2981 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2983 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
2985 /* Track the last successful allocation */
2986 msp->ms_alloc_txg = txg;
2987 metaslab_verify_space(msp, txg);
2991 * Now that we've attempted the allocation we need to update the
2992 * metaslab's maximum block size since it may have changed.
2994 msp->ms_max_size = metaslab_block_maxsize(msp);
2995 return (start);
2999 * Find the metaslab with the highest weight that is less than what we've
3000 * already tried. In the common case, this means that we will examine each
3001 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3002 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3003 * activated by another thread, and we fail to allocate from the metaslab we
3004 * have selected, we may not try the newly-activated metaslab, and instead
3005 * activate another metaslab. This is not optimal, but generally does not cause
3006 * any problems (a possible exception being if every metaslab is completely full
3007 * except for the the newly-activated metaslab which we fail to examine).
3009 static metaslab_t *
3010 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3011 dva_t *dva, int d, uint64_t min_distance, uint64_t asize, int allocator,
3012 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3014 avl_index_t idx;
3015 avl_tree_t *t = &mg->mg_metaslab_tree;
3016 metaslab_t *msp = avl_find(t, search, &idx);
3017 if (msp == NULL)
3018 msp = avl_nearest(t, idx, AVL_AFTER);
3020 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3021 int i;
3022 if (!metaslab_should_allocate(msp, asize)) {
3023 metaslab_trace_add(zal, mg, msp, asize, d,
3024 TRACE_TOO_SMALL, allocator);
3025 continue;
3029 * If the selected metaslab is condensing, skip it.
3031 if (msp->ms_condensing)
3032 continue;
3034 *was_active = msp->ms_allocator != -1;
3036 * If we're activating as primary, this is our first allocation
3037 * from this disk, so we don't need to check how close we are.
3038 * If the metaslab under consideration was already active,
3039 * we're getting desperate enough to steal another allocator's
3040 * metaslab, so we still don't care about distances.
3042 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3043 break;
3045 uint64_t target_distance = min_distance
3046 + (space_map_allocated(msp->ms_sm) != 0 ? 0 :
3047 min_distance >> 1);
3049 for (i = 0; i < d; i++) {
3050 if (metaslab_distance(msp, &dva[i]) < target_distance)
3051 break;
3053 if (i == d)
3054 break;
3057 if (msp != NULL) {
3058 search->ms_weight = msp->ms_weight;
3059 search->ms_start = msp->ms_start + 1;
3060 search->ms_allocator = msp->ms_allocator;
3061 search->ms_primary = msp->ms_primary;
3063 return (msp);
3066 /* ARGSUSED */
3067 static uint64_t
3068 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3069 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3070 int allocator)
3072 metaslab_t *msp = NULL;
3073 uint64_t offset = -1ULL;
3074 uint64_t activation_weight;
3075 boolean_t tertiary = B_FALSE;
3077 activation_weight = METASLAB_WEIGHT_PRIMARY;
3078 for (int i = 0; i < d; i++) {
3079 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3080 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3081 activation_weight = METASLAB_WEIGHT_SECONDARY;
3082 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3083 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3084 tertiary = B_TRUE;
3085 break;
3090 * If we don't have enough metaslabs active to fill the entire array, we
3091 * just use the 0th slot.
3093 if (mg->mg_ms_ready < mg->mg_allocators * 2) {
3094 tertiary = B_FALSE;
3095 allocator = 0;
3098 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3100 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3101 search->ms_weight = UINT64_MAX;
3102 search->ms_start = 0;
3104 * At the end of the metaslab tree are the already-active metaslabs,
3105 * first the primaries, then the secondaries. When we resume searching
3106 * through the tree, we need to consider ms_allocator and ms_primary so
3107 * we start in the location right after where we left off, and don't
3108 * accidentally loop forever considering the same metaslabs.
3110 search->ms_allocator = -1;
3111 search->ms_primary = B_TRUE;
3112 for (;;) {
3113 boolean_t was_active = B_FALSE;
3115 mutex_enter(&mg->mg_lock);
3117 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3118 mg->mg_primaries[allocator] != NULL) {
3119 msp = mg->mg_primaries[allocator];
3120 was_active = B_TRUE;
3121 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3122 mg->mg_secondaries[allocator] != NULL && !tertiary) {
3123 msp = mg->mg_secondaries[allocator];
3124 was_active = B_TRUE;
3125 } else {
3126 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3127 min_distance, asize, allocator, zal, search,
3128 &was_active);
3131 mutex_exit(&mg->mg_lock);
3132 if (msp == NULL) {
3133 kmem_free(search, sizeof (*search));
3134 return (-1ULL);
3137 mutex_enter(&msp->ms_lock);
3139 * Ensure that the metaslab we have selected is still
3140 * capable of handling our request. It's possible that
3141 * another thread may have changed the weight while we
3142 * were blocked on the metaslab lock. We check the
3143 * active status first to see if we need to reselect
3144 * a new metaslab.
3146 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3147 mutex_exit(&msp->ms_lock);
3148 continue;
3152 * If the metaslab is freshly activated for an allocator that
3153 * isn't the one we're allocating from, or if it's a primary and
3154 * we're seeking a secondary (or vice versa), we go back and
3155 * select a new metaslab.
3157 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3158 (msp->ms_allocator != -1) &&
3159 (msp->ms_allocator != allocator || ((activation_weight ==
3160 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3161 mutex_exit(&msp->ms_lock);
3162 continue;
3165 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3166 metaslab_passivate(msp, msp->ms_weight &
3167 ~METASLAB_WEIGHT_CLAIM);
3168 mutex_exit(&msp->ms_lock);
3169 continue;
3172 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3173 mutex_exit(&msp->ms_lock);
3174 continue;
3177 msp->ms_selected_txg = txg;
3180 * Now that we have the lock, recheck to see if we should
3181 * continue to use this metaslab for this allocation. The
3182 * the metaslab is now loaded so metaslab_should_allocate() can
3183 * accurately determine if the allocation attempt should
3184 * proceed.
3186 if (!metaslab_should_allocate(msp, asize)) {
3187 /* Passivate this metaslab and select a new one. */
3188 metaslab_trace_add(zal, mg, msp, asize, d,
3189 TRACE_TOO_SMALL, allocator);
3190 goto next;
3194 * If this metaslab is currently condensing then pick again as
3195 * we can't manipulate this metaslab until it's committed
3196 * to disk.
3198 if (msp->ms_condensing) {
3199 metaslab_trace_add(zal, mg, msp, asize, d,
3200 TRACE_CONDENSING, allocator);
3201 metaslab_passivate(msp, msp->ms_weight &
3202 ~METASLAB_ACTIVE_MASK);
3203 mutex_exit(&msp->ms_lock);
3204 continue;
3207 offset = metaslab_block_alloc(msp, asize, txg);
3208 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3210 if (offset != -1ULL) {
3211 /* Proactively passivate the metaslab, if needed */
3212 metaslab_segment_may_passivate(msp);
3213 break;
3215 next:
3216 ASSERT(msp->ms_loaded);
3219 * We were unable to allocate from this metaslab so determine
3220 * a new weight for this metaslab. Now that we have loaded
3221 * the metaslab we can provide a better hint to the metaslab
3222 * selector.
3224 * For space-based metaslabs, we use the maximum block size.
3225 * This information is only available when the metaslab
3226 * is loaded and is more accurate than the generic free
3227 * space weight that was calculated by metaslab_weight().
3228 * This information allows us to quickly compare the maximum
3229 * available allocation in the metaslab to the allocation
3230 * size being requested.
3232 * For segment-based metaslabs, determine the new weight
3233 * based on the highest bucket in the range tree. We
3234 * explicitly use the loaded segment weight (i.e. the range
3235 * tree histogram) since it contains the space that is
3236 * currently available for allocation and is accurate
3237 * even within a sync pass.
3239 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3240 uint64_t weight = metaslab_block_maxsize(msp);
3241 WEIGHT_SET_SPACEBASED(weight);
3242 metaslab_passivate(msp, weight);
3243 } else {
3244 metaslab_passivate(msp,
3245 metaslab_weight_from_range_tree(msp));
3249 * We have just failed an allocation attempt, check
3250 * that metaslab_should_allocate() agrees. Otherwise,
3251 * we may end up in an infinite loop retrying the same
3252 * metaslab.
3254 ASSERT(!metaslab_should_allocate(msp, asize));
3255 mutex_exit(&msp->ms_lock);
3257 mutex_exit(&msp->ms_lock);
3258 kmem_free(search, sizeof (*search));
3259 return (offset);
3262 static uint64_t
3263 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3264 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3265 int allocator)
3267 uint64_t offset;
3268 ASSERT(mg->mg_initialized);
3270 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
3271 min_distance, dva, d, allocator);
3273 mutex_enter(&mg->mg_lock);
3274 if (offset == -1ULL) {
3275 mg->mg_failed_allocations++;
3276 metaslab_trace_add(zal, mg, NULL, asize, d,
3277 TRACE_GROUP_FAILURE, allocator);
3278 if (asize == SPA_GANGBLOCKSIZE) {
3280 * This metaslab group was unable to allocate
3281 * the minimum gang block size so it must be out of
3282 * space. We must notify the allocation throttle
3283 * to start skipping allocation attempts to this
3284 * metaslab group until more space becomes available.
3285 * Note: this failure cannot be caused by the
3286 * allocation throttle since the allocation throttle
3287 * is only responsible for skipping devices and
3288 * not failing block allocations.
3290 mg->mg_no_free_space = B_TRUE;
3293 mg->mg_allocations++;
3294 mutex_exit(&mg->mg_lock);
3295 return (offset);
3299 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
3300 * on the same vdev as an existing DVA of this BP, then try to allocate it
3301 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
3302 * existing DVAs.
3304 int ditto_same_vdev_distance_shift = 3;
3307 * Allocate a block for the specified i/o.
3310 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3311 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3312 zio_alloc_list_t *zal, int allocator)
3314 metaslab_group_t *mg, *rotor;
3315 vdev_t *vd;
3316 boolean_t try_hard = B_FALSE;
3318 ASSERT(!DVA_IS_VALID(&dva[d]));
3321 * For testing, make some blocks above a certain size be gang blocks.
3323 if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
3324 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3325 allocator);
3326 return (SET_ERROR(ENOSPC));
3330 * Start at the rotor and loop through all mgs until we find something.
3331 * Note that there's no locking on mc_rotor or mc_aliquot because
3332 * nothing actually breaks if we miss a few updates -- we just won't
3333 * allocate quite as evenly. It all balances out over time.
3335 * If we are doing ditto or log blocks, try to spread them across
3336 * consecutive vdevs. If we're forced to reuse a vdev before we've
3337 * allocated all of our ditto blocks, then try and spread them out on
3338 * that vdev as much as possible. If it turns out to not be possible,
3339 * gradually lower our standards until anything becomes acceptable.
3340 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3341 * gives us hope of containing our fault domains to something we're
3342 * able to reason about. Otherwise, any two top-level vdev failures
3343 * will guarantee the loss of data. With consecutive allocation,
3344 * only two adjacent top-level vdev failures will result in data loss.
3346 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3347 * ourselves on the same vdev as our gang block header. That
3348 * way, we can hope for locality in vdev_cache, plus it makes our
3349 * fault domains something tractable.
3351 if (hintdva) {
3352 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3355 * It's possible the vdev we're using as the hint no
3356 * longer exists or its mg has been closed (e.g. by
3357 * device removal). Consult the rotor when
3358 * all else fails.
3360 if (vd != NULL && vd->vdev_mg != NULL) {
3361 mg = vd->vdev_mg;
3363 if (flags & METASLAB_HINTBP_AVOID &&
3364 mg->mg_next != NULL)
3365 mg = mg->mg_next;
3366 } else {
3367 mg = mc->mc_rotor;
3369 } else if (d != 0) {
3370 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3371 mg = vd->vdev_mg->mg_next;
3372 } else {
3373 mg = mc->mc_rotor;
3377 * If the hint put us into the wrong metaslab class, or into a
3378 * metaslab group that has been passivated, just follow the rotor.
3380 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3381 mg = mc->mc_rotor;
3383 rotor = mg;
3384 top:
3385 do {
3386 boolean_t allocatable;
3388 ASSERT(mg->mg_activation_count == 1);
3389 vd = mg->mg_vd;
3392 * Don't allocate from faulted devices.
3394 if (try_hard) {
3395 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3396 allocatable = vdev_allocatable(vd);
3397 spa_config_exit(spa, SCL_ZIO, FTAG);
3398 } else {
3399 allocatable = vdev_allocatable(vd);
3403 * Determine if the selected metaslab group is eligible
3404 * for allocations. If we're ganging then don't allow
3405 * this metaslab group to skip allocations since that would
3406 * inadvertently return ENOSPC and suspend the pool
3407 * even though space is still available.
3409 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3410 allocatable = metaslab_group_allocatable(mg, rotor,
3411 psize, allocator);
3414 if (!allocatable) {
3415 metaslab_trace_add(zal, mg, NULL, psize, d,
3416 TRACE_NOT_ALLOCATABLE, allocator);
3417 goto next;
3420 ASSERT(mg->mg_initialized);
3423 * Avoid writing single-copy data to a failing,
3424 * non-redundant vdev, unless we've already tried all
3425 * other vdevs.
3427 if ((vd->vdev_stat.vs_write_errors > 0 ||
3428 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3429 d == 0 && !try_hard && vd->vdev_children == 0) {
3430 metaslab_trace_add(zal, mg, NULL, psize, d,
3431 TRACE_VDEV_ERROR, allocator);
3432 goto next;
3435 ASSERT(mg->mg_class == mc);
3438 * If we don't need to try hard, then require that the
3439 * block be 1/8th of the device away from any other DVAs
3440 * in this BP. If we are trying hard, allow any offset
3441 * to be used (distance=0).
3443 uint64_t distance = 0;
3444 if (!try_hard) {
3445 distance = vd->vdev_asize >>
3446 ditto_same_vdev_distance_shift;
3447 if (distance <= (1ULL << vd->vdev_ms_shift))
3448 distance = 0;
3451 uint64_t asize = vdev_psize_to_asize(vd, psize);
3452 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3454 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3455 distance, dva, d, allocator);
3457 if (offset != -1ULL) {
3459 * If we've just selected this metaslab group,
3460 * figure out whether the corresponding vdev is
3461 * over- or under-used relative to the pool,
3462 * and set an allocation bias to even it out.
3464 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3465 vdev_stat_t *vs = &vd->vdev_stat;
3466 int64_t vu, cu;
3468 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
3469 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
3472 * Calculate how much more or less we should
3473 * try to allocate from this device during
3474 * this iteration around the rotor.
3475 * For example, if a device is 80% full
3476 * and the pool is 20% full then we should
3477 * reduce allocations by 60% on this device.
3479 * mg_bias = (20 - 80) * 512K / 100 = -307K
3481 * This reduces allocations by 307K for this
3482 * iteration.
3484 mg->mg_bias = ((cu - vu) *
3485 (int64_t)mg->mg_aliquot) / 100;
3486 } else if (!metaslab_bias_enabled) {
3487 mg->mg_bias = 0;
3490 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3491 mg->mg_aliquot + mg->mg_bias) {
3492 mc->mc_rotor = mg->mg_next;
3493 mc->mc_aliquot = 0;
3496 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3497 DVA_SET_OFFSET(&dva[d], offset);
3498 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
3499 DVA_SET_ASIZE(&dva[d], asize);
3501 return (0);
3503 next:
3504 mc->mc_rotor = mg->mg_next;
3505 mc->mc_aliquot = 0;
3506 } while ((mg = mg->mg_next) != rotor);
3509 * If we haven't tried hard, do so now.
3511 if (!try_hard) {
3512 try_hard = B_TRUE;
3513 goto top;
3516 bzero(&dva[d], sizeof (dva_t));
3518 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3519 return (SET_ERROR(ENOSPC));
3522 void
3523 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3524 boolean_t checkpoint)
3526 metaslab_t *msp;
3527 spa_t *spa = vd->vdev_spa;
3529 ASSERT(vdev_is_concrete(vd));
3530 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3531 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3533 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3535 VERIFY(!msp->ms_condensing);
3536 VERIFY3U(offset, >=, msp->ms_start);
3537 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3538 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3539 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3541 metaslab_check_free_impl(vd, offset, asize);
3543 mutex_enter(&msp->ms_lock);
3544 if (range_tree_is_empty(msp->ms_freeing) &&
3545 range_tree_is_empty(msp->ms_checkpointing)) {
3546 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3549 if (checkpoint) {
3550 ASSERT(spa_has_checkpoint(spa));
3551 range_tree_add(msp->ms_checkpointing, offset, asize);
3552 } else {
3553 range_tree_add(msp->ms_freeing, offset, asize);
3555 mutex_exit(&msp->ms_lock);
3558 /* ARGSUSED */
3559 void
3560 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3561 uint64_t size, void *arg)
3563 boolean_t *checkpoint = arg;
3565 ASSERT3P(checkpoint, !=, NULL);
3567 if (vd->vdev_ops->vdev_op_remap != NULL)
3568 vdev_indirect_mark_obsolete(vd, offset, size);
3569 else
3570 metaslab_free_impl(vd, offset, size, *checkpoint);
3573 static void
3574 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3575 boolean_t checkpoint)
3577 spa_t *spa = vd->vdev_spa;
3579 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3581 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3582 return;
3584 if (spa->spa_vdev_removal != NULL &&
3585 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3586 vdev_is_concrete(vd)) {
3588 * Note: we check if the vdev is concrete because when
3589 * we complete the removal, we first change the vdev to be
3590 * an indirect vdev (in open context), and then (in syncing
3591 * context) clear spa_vdev_removal.
3593 free_from_removing_vdev(vd, offset, size);
3594 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3595 vdev_indirect_mark_obsolete(vd, offset, size);
3596 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3597 metaslab_free_impl_cb, &checkpoint);
3598 } else {
3599 metaslab_free_concrete(vd, offset, size, checkpoint);
3603 typedef struct remap_blkptr_cb_arg {
3604 blkptr_t *rbca_bp;
3605 spa_remap_cb_t rbca_cb;
3606 vdev_t *rbca_remap_vd;
3607 uint64_t rbca_remap_offset;
3608 void *rbca_cb_arg;
3609 } remap_blkptr_cb_arg_t;
3611 void
3612 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3613 uint64_t size, void *arg)
3615 remap_blkptr_cb_arg_t *rbca = arg;
3616 blkptr_t *bp = rbca->rbca_bp;
3618 /* We can not remap split blocks. */
3619 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3620 return;
3621 ASSERT0(inner_offset);
3623 if (rbca->rbca_cb != NULL) {
3625 * At this point we know that we are not handling split
3626 * blocks and we invoke the callback on the previous
3627 * vdev which must be indirect.
3629 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3631 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3632 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3634 /* set up remap_blkptr_cb_arg for the next call */
3635 rbca->rbca_remap_vd = vd;
3636 rbca->rbca_remap_offset = offset;
3640 * The phys birth time is that of dva[0]. This ensures that we know
3641 * when each dva was written, so that resilver can determine which
3642 * blocks need to be scrubbed (i.e. those written during the time
3643 * the vdev was offline). It also ensures that the key used in
3644 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3645 * we didn't change the phys_birth, a lookup in the ARC for a
3646 * remapped BP could find the data that was previously stored at
3647 * this vdev + offset.
3649 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3650 DVA_GET_VDEV(&bp->blk_dva[0]));
3651 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3652 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3653 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3655 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3656 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3660 * If the block pointer contains any indirect DVAs, modify them to refer to
3661 * concrete DVAs. Note that this will sometimes not be possible, leaving
3662 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3663 * segments in the mapping (i.e. it is a "split block").
3665 * If the BP was remapped, calls the callback on the original dva (note the
3666 * callback can be called multiple times if the original indirect DVA refers
3667 * to another indirect DVA, etc).
3669 * Returns TRUE if the BP was remapped.
3671 boolean_t
3672 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3674 remap_blkptr_cb_arg_t rbca;
3676 if (!zfs_remap_blkptr_enable)
3677 return (B_FALSE);
3679 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3680 return (B_FALSE);
3683 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3684 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3686 if (BP_GET_DEDUP(bp))
3687 return (B_FALSE);
3690 * Gang blocks can not be remapped, because
3691 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3692 * the BP used to read the gang block header (GBH) being the same
3693 * as the DVA[0] that we allocated for the GBH.
3695 if (BP_IS_GANG(bp))
3696 return (B_FALSE);
3699 * Embedded BP's have no DVA to remap.
3701 if (BP_GET_NDVAS(bp) < 1)
3702 return (B_FALSE);
3705 * Note: we only remap dva[0]. If we remapped other dvas, we
3706 * would no longer know what their phys birth txg is.
3708 dva_t *dva = &bp->blk_dva[0];
3710 uint64_t offset = DVA_GET_OFFSET(dva);
3711 uint64_t size = DVA_GET_ASIZE(dva);
3712 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3714 if (vd->vdev_ops->vdev_op_remap == NULL)
3715 return (B_FALSE);
3717 rbca.rbca_bp = bp;
3718 rbca.rbca_cb = callback;
3719 rbca.rbca_remap_vd = vd;
3720 rbca.rbca_remap_offset = offset;
3721 rbca.rbca_cb_arg = arg;
3724 * remap_blkptr_cb() will be called in order for each level of
3725 * indirection, until a concrete vdev is reached or a split block is
3726 * encountered. old_vd and old_offset are updated within the callback
3727 * as we go from the one indirect vdev to the next one (either concrete
3728 * or indirect again) in that order.
3730 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3732 /* Check if the DVA wasn't remapped because it is a split block */
3733 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3734 return (B_FALSE);
3736 return (B_TRUE);
3740 * Undo the allocation of a DVA which happened in the given transaction group.
3742 void
3743 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3745 metaslab_t *msp;
3746 vdev_t *vd;
3747 uint64_t vdev = DVA_GET_VDEV(dva);
3748 uint64_t offset = DVA_GET_OFFSET(dva);
3749 uint64_t size = DVA_GET_ASIZE(dva);
3751 ASSERT(DVA_IS_VALID(dva));
3752 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3754 if (txg > spa_freeze_txg(spa))
3755 return;
3757 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3758 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3759 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
3760 (u_longlong_t)vdev, (u_longlong_t)offset);
3761 ASSERT(0);
3762 return;
3765 ASSERT(!vd->vdev_removing);
3766 ASSERT(vdev_is_concrete(vd));
3767 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3768 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3770 if (DVA_GET_GANG(dva))
3771 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3773 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3775 mutex_enter(&msp->ms_lock);
3776 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3777 offset, size);
3779 VERIFY(!msp->ms_condensing);
3780 VERIFY3U(offset, >=, msp->ms_start);
3781 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3782 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3783 msp->ms_size);
3784 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3785 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3786 range_tree_add(msp->ms_allocatable, offset, size);
3787 mutex_exit(&msp->ms_lock);
3791 * Free the block represented by the given DVA.
3793 void
3794 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3796 uint64_t vdev = DVA_GET_VDEV(dva);
3797 uint64_t offset = DVA_GET_OFFSET(dva);
3798 uint64_t size = DVA_GET_ASIZE(dva);
3799 vdev_t *vd = vdev_lookup_top(spa, vdev);
3801 ASSERT(DVA_IS_VALID(dva));
3802 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3804 if (DVA_GET_GANG(dva)) {
3805 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3808 metaslab_free_impl(vd, offset, size, checkpoint);
3812 * Reserve some allocation slots. The reservation system must be called
3813 * before we call into the allocator. If there aren't any available slots
3814 * then the I/O will be throttled until an I/O completes and its slots are
3815 * freed up. The function returns true if it was successful in placing
3816 * the reservation.
3818 boolean_t
3819 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3820 zio_t *zio, int flags)
3822 uint64_t available_slots = 0;
3823 boolean_t slot_reserved = B_FALSE;
3824 uint64_t max = mc->mc_alloc_max_slots[allocator];
3826 ASSERT(mc->mc_alloc_throttle_enabled);
3827 mutex_enter(&mc->mc_lock);
3829 uint64_t reserved_slots =
3830 refcount_count(&mc->mc_alloc_slots[allocator]);
3831 if (reserved_slots < max)
3832 available_slots = max - reserved_slots;
3834 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3836 * We reserve the slots individually so that we can unreserve
3837 * them individually when an I/O completes.
3839 for (int d = 0; d < slots; d++) {
3840 reserved_slots =
3841 refcount_add(&mc->mc_alloc_slots[allocator],
3842 zio);
3844 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3845 slot_reserved = B_TRUE;
3848 mutex_exit(&mc->mc_lock);
3849 return (slot_reserved);
3852 void
3853 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3854 int allocator, zio_t *zio)
3856 ASSERT(mc->mc_alloc_throttle_enabled);
3857 mutex_enter(&mc->mc_lock);
3858 for (int d = 0; d < slots; d++) {
3859 (void) refcount_remove(&mc->mc_alloc_slots[allocator],
3860 zio);
3862 mutex_exit(&mc->mc_lock);
3865 static int
3866 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3867 uint64_t txg)
3869 metaslab_t *msp;
3870 spa_t *spa = vd->vdev_spa;
3871 int error = 0;
3873 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3874 return (ENXIO);
3876 ASSERT3P(vd->vdev_ms, !=, NULL);
3877 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3879 mutex_enter(&msp->ms_lock);
3881 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3882 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
3884 * No need to fail in that case; someone else has activated the
3885 * metaslab, but that doesn't preclude us from using it.
3887 if (error == EBUSY)
3888 error = 0;
3890 if (error == 0 &&
3891 !range_tree_contains(msp->ms_allocatable, offset, size))
3892 error = SET_ERROR(ENOENT);
3894 if (error || txg == 0) { /* txg == 0 indicates dry run */
3895 mutex_exit(&msp->ms_lock);
3896 return (error);
3899 VERIFY(!msp->ms_condensing);
3900 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3901 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3902 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3903 msp->ms_size);
3904 range_tree_remove(msp->ms_allocatable, offset, size);
3906 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3907 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3908 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3909 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3910 offset, size);
3913 mutex_exit(&msp->ms_lock);
3915 return (0);
3918 typedef struct metaslab_claim_cb_arg_t {
3919 uint64_t mcca_txg;
3920 int mcca_error;
3921 } metaslab_claim_cb_arg_t;
3923 /* ARGSUSED */
3924 static void
3925 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3926 uint64_t size, void *arg)
3928 metaslab_claim_cb_arg_t *mcca_arg = arg;
3930 if (mcca_arg->mcca_error == 0) {
3931 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3932 size, mcca_arg->mcca_txg);
3937 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3939 if (vd->vdev_ops->vdev_op_remap != NULL) {
3940 metaslab_claim_cb_arg_t arg;
3943 * Only zdb(1M) can claim on indirect vdevs. This is used
3944 * to detect leaks of mapped space (that are not accounted
3945 * for in the obsolete counts, spacemap, or bpobj).
3947 ASSERT(!spa_writeable(vd->vdev_spa));
3948 arg.mcca_error = 0;
3949 arg.mcca_txg = txg;
3951 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3952 metaslab_claim_impl_cb, &arg);
3954 if (arg.mcca_error == 0) {
3955 arg.mcca_error = metaslab_claim_concrete(vd,
3956 offset, size, txg);
3958 return (arg.mcca_error);
3959 } else {
3960 return (metaslab_claim_concrete(vd, offset, size, txg));
3965 * Intent log support: upon opening the pool after a crash, notify the SPA
3966 * of blocks that the intent log has allocated for immediate write, but
3967 * which are still considered free by the SPA because the last transaction
3968 * group didn't commit yet.
3970 static int
3971 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3973 uint64_t vdev = DVA_GET_VDEV(dva);
3974 uint64_t offset = DVA_GET_OFFSET(dva);
3975 uint64_t size = DVA_GET_ASIZE(dva);
3976 vdev_t *vd;
3978 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
3979 return (SET_ERROR(ENXIO));
3982 ASSERT(DVA_IS_VALID(dva));
3984 if (DVA_GET_GANG(dva))
3985 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3987 return (metaslab_claim_impl(vd, offset, size, txg));
3991 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3992 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3993 zio_alloc_list_t *zal, zio_t *zio, int allocator)
3995 dva_t *dva = bp->blk_dva;
3996 dva_t *hintdva = hintbp->blk_dva;
3997 int error = 0;
3999 ASSERT(bp->blk_birth == 0);
4000 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4002 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4004 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4005 spa_config_exit(spa, SCL_ALLOC, FTAG);
4006 return (SET_ERROR(ENOSPC));
4009 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4010 ASSERT(BP_GET_NDVAS(bp) == 0);
4011 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4012 ASSERT3P(zal, !=, NULL);
4014 for (int d = 0; d < ndvas; d++) {
4015 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4016 txg, flags, zal, allocator);
4017 if (error != 0) {
4018 for (d--; d >= 0; d--) {
4019 metaslab_unalloc_dva(spa, &dva[d], txg);
4020 metaslab_group_alloc_decrement(spa,
4021 DVA_GET_VDEV(&dva[d]), zio, flags,
4022 allocator, B_FALSE);
4023 bzero(&dva[d], sizeof (dva_t));
4025 spa_config_exit(spa, SCL_ALLOC, FTAG);
4026 return (error);
4027 } else {
4029 * Update the metaslab group's queue depth
4030 * based on the newly allocated dva.
4032 metaslab_group_alloc_increment(spa,
4033 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4037 ASSERT(error == 0);
4038 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4040 spa_config_exit(spa, SCL_ALLOC, FTAG);
4042 BP_SET_BIRTH(bp, txg, txg);
4044 return (0);
4047 void
4048 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4050 const dva_t *dva = bp->blk_dva;
4051 int ndvas = BP_GET_NDVAS(bp);
4053 ASSERT(!BP_IS_HOLE(bp));
4054 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4057 * If we have a checkpoint for the pool we need to make sure that
4058 * the blocks that we free that are part of the checkpoint won't be
4059 * reused until the checkpoint is discarded or we revert to it.
4061 * The checkpoint flag is passed down the metaslab_free code path
4062 * and is set whenever we want to add a block to the checkpoint's
4063 * accounting. That is, we "checkpoint" blocks that existed at the
4064 * time the checkpoint was created and are therefore referenced by
4065 * the checkpointed uberblock.
4067 * Note that, we don't checkpoint any blocks if the current
4068 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4069 * normally as they will be referenced by the checkpointed uberblock.
4071 boolean_t checkpoint = B_FALSE;
4072 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4073 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4075 * At this point, if the block is part of the checkpoint
4076 * there is no way it was created in the current txg.
4078 ASSERT(!now);
4079 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4080 checkpoint = B_TRUE;
4083 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4085 for (int d = 0; d < ndvas; d++) {
4086 if (now) {
4087 metaslab_unalloc_dva(spa, &dva[d], txg);
4088 } else {
4089 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4090 metaslab_free_dva(spa, &dva[d], checkpoint);
4094 spa_config_exit(spa, SCL_FREE, FTAG);
4098 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4100 const dva_t *dva = bp->blk_dva;
4101 int ndvas = BP_GET_NDVAS(bp);
4102 int error = 0;
4104 ASSERT(!BP_IS_HOLE(bp));
4106 if (txg != 0) {
4108 * First do a dry run to make sure all DVAs are claimable,
4109 * so we don't have to unwind from partial failures below.
4111 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4112 return (error);
4115 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4117 for (int d = 0; d < ndvas; d++)
4118 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
4119 break;
4121 spa_config_exit(spa, SCL_ALLOC, FTAG);
4123 ASSERT(error == 0 || txg == 0);
4125 return (error);
4128 /* ARGSUSED */
4129 static void
4130 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4131 uint64_t size, void *arg)
4133 if (vd->vdev_ops == &vdev_indirect_ops)
4134 return;
4136 metaslab_check_free_impl(vd, offset, size);
4139 static void
4140 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4142 metaslab_t *msp;
4143 spa_t *spa = vd->vdev_spa;
4145 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4146 return;
4148 if (vd->vdev_ops->vdev_op_remap != NULL) {
4149 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4150 metaslab_check_free_impl_cb, NULL);
4151 return;
4154 ASSERT(vdev_is_concrete(vd));
4155 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4156 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4158 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4160 mutex_enter(&msp->ms_lock);
4161 if (msp->ms_loaded)
4162 range_tree_verify(msp->ms_allocatable, offset, size);
4164 range_tree_verify(msp->ms_freeing, offset, size);
4165 range_tree_verify(msp->ms_checkpointing, offset, size);
4166 range_tree_verify(msp->ms_freed, offset, size);
4167 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4168 range_tree_verify(msp->ms_defer[j], offset, size);
4169 mutex_exit(&msp->ms_lock);
4172 void
4173 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4175 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4176 return;
4178 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4179 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4180 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4181 vdev_t *vd = vdev_lookup_top(spa, vdev);
4182 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4183 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4185 if (DVA_GET_GANG(&bp->blk_dva[i]))
4186 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4188 ASSERT3P(vd, !=, NULL);
4190 metaslab_check_free_impl(vd, offset, size);
4192 spa_config_exit(spa, SCL_VDEV, FTAG);