Merge commit 'bb1f424574ac8e08069d0ba993c2a41ffe796794'
[unleashed.git] / usr / src / uts / common / io / nvme / nvme.c
blob608d45790e20c7f126ee2594a98a9862a84c175f
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2018 Nexenta Systems, Inc.
14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 * Copyright 2017 Joyent, Inc.
20 * blkdev driver for NVMe compliant storage devices
22 * This driver was written to conform to version 1.2.1 of the NVMe
23 * specification. It may work with newer versions, but that is completely
24 * untested and disabled by default.
26 * The driver has only been tested on x86 systems and will not work on big-
27 * endian systems without changes to the code accessing registers and data
28 * structures used by the hardware.
31 * Interrupt Usage:
33 * The driver will use a single interrupt while configuring the device as the
34 * specification requires, but contrary to the specification it will try to use
35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 * have one interrupt vector per CPU, but it will work correctly if less are
38 * available. Interrupts can be shared by queues, the interrupt handler will
39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 * handler will retrieve completed commands from all queues sharing an interrupt
42 * vector and will post them to a taskq for completion processing.
45 * Command Processing:
47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 * available interrupt vector, with the queue length usually much smaller than
50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 * interrupt vectors will be used.
53 * Additionally the hardware provides a single special admin queue pair that can
54 * hold up to 4096 admin commands.
56 * From the hardware perspective both queues of a queue pair are independent,
57 * but they share some driver state: the command array (holding pointers to
58 * commands currently being processed by the hardware) and the active command
59 * counter. Access to a queue pair and the shared state is protected by
60 * nq_mutex.
62 * When a command is submitted to a queue pair the active command counter is
63 * incremented and a pointer to the command is stored in the command array. The
64 * array index is used as command identifier (CID) in the submission queue
65 * entry. Some commands may take a very long time to complete, and if the queue
66 * wraps around in that time a submission may find the next array slot to still
67 * be used by a long-running command. In this case the array is sequentially
68 * searched for the next free slot. The length of the command array is the same
69 * as the configured queue length. Queue overrun is prevented by the semaphore,
70 * so a command submission may block if the queue is full.
73 * Polled I/O Support:
75 * For kernel core dump support the driver can do polled I/O. As interrupts are
76 * turned off while dumping the driver will just submit a command in the regular
77 * way, and then repeatedly attempt a command retrieval until it gets the
78 * command back.
81 * Namespace Support:
83 * NVMe devices can have multiple namespaces, each being a independent data
84 * store. The driver supports multiple namespaces and creates a blkdev interface
85 * for each namespace found. Namespaces can have various attributes to support
86 * thin provisioning and protection information. This driver does not support
87 * any of this and ignores namespaces that have these attributes.
89 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90 * (EUI64). This driver uses the EUI64 if present to generate the devid and
91 * passes it to blkdev to use it in the device node names. As this is currently
92 * untested namespaces with EUI64 are ignored by default.
94 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95 * single controller. This is an artificial limit imposed by the driver to be
96 * able to address a reasonable number of controllers and namespaces using a
97 * 32bit minor node number.
100 * Minor nodes:
102 * For each NVMe device the driver exposes one minor node for the controller and
103 * one minor node for each namespace. The only operations supported by those
104 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105 * interface for the nvmeadm(8) utility.
108 * Blkdev Interface:
110 * This driver uses blkdev to do all the heavy lifting involved with presenting
111 * a disk device to the system. As a result, the processing of I/O requests is
112 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113 * setup, and splitting of transfers into manageable chunks.
115 * I/O requests coming in from blkdev are turned into NVM commands and posted to
116 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117 * queues. There is currently no timeout handling of I/O commands.
119 * Blkdev also supports querying device/media information and generating a
120 * devid. The driver reports the best block size as determined by the namespace
121 * format back to blkdev as physical block size to support partition and block
122 * alignment. The devid is either based on the namespace EUI64, if present, or
123 * composed using the device vendor ID, model number, serial number, and the
124 * namespace ID.
127 * Error Handling:
129 * Error handling is currently limited to detecting fatal hardware errors,
130 * either by asynchronous events, or synchronously through command status or
131 * admin command timeouts. In case of severe errors the device is fenced off,
132 * all further requests will return EIO. FMA is then called to fault the device.
134 * The hardware has a limit for outstanding asynchronous event requests. Before
135 * this limit is known the driver assumes it is at least 1 and posts a single
136 * asynchronous request. Later when the limit is known more asynchronous event
137 * requests are posted to allow quicker reception of error information. When an
138 * asynchronous event is posted by the hardware the driver will parse the error
139 * status fields and log information or fault the device, depending on the
140 * severity of the asynchronous event. The asynchronous event request is then
141 * reused and posted to the admin queue again.
143 * On command completion the command status is checked for errors. In case of
144 * errors indicating a driver bug the driver panics. Almost all other error
145 * status values just cause EIO to be returned.
147 * Command timeouts are currently detected for all admin commands except
148 * asynchronous event requests. If a command times out and the hardware appears
149 * to be healthy the driver attempts to abort the command. The original command
150 * timeout is also applied to the abort command. If the abort times out too the
151 * driver assumes the device to be dead, fences it off, and calls FMA to retire
152 * it. In all other cases the aborted command should return immediately with a
153 * status indicating it was aborted, and the driver will wait indefinitely for
154 * that to happen. No timeout handling of normal I/O commands is presently done.
156 * Any command that times out due to the controller dropping dead will be put on
157 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158 * memory being reused by the system and later be written to by a "dead" NVMe
159 * controller.
162 * Locking:
164 * Each queue pair has its own nq_mutex, which must be held when accessing the
165 * associated queue registers or the shared state of the queue pair. Callers of
166 * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168 * themselves.
170 * Each command also has its own nc_mutex, which is associated with the
171 * condition variable nc_cv. It is only used on admin commands which are run
172 * synchronously. In that case it must be held across calls to
173 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174 * nvme_admin_cmd(). It must also be held whenever the completion state of the
175 * command is changed or while a admin command timeout is handled.
177 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178 * More than one nc_mutex may only be held when aborting commands. In this case,
179 * the nc_mutex of the command to be aborted must be held across the call to
180 * nvme_abort_cmd() to prevent the command from completing while the abort is in
181 * progress.
183 * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184 * and exclusive-open flag nm_oexcl.
187 * Quiesce / Fast Reboot:
189 * The driver currently does not support fast reboot. A quiesce(9E) entry point
190 * is still provided which is used to send a shutdown notification to the
191 * device.
194 * Driver Configuration:
196 * The following driver properties can be changed to control some aspects of the
197 * drivers operation:
198 * - strict-version: can be set to 0 to allow devices conforming to newer
199 * versions or namespaces with EUI64 to be used
200 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201 * specific command status as a fatal error leading device faulting
202 * - admin-queue-len: the maximum length of the admin queue (16-4096)
203 * - io-queue-len: the maximum length of the I/O queues (16-65536)
204 * - async-event-limit: the maximum number of asynchronous event requests to be
205 * posted by the driver
206 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207 * cache
208 * - min-phys-block-size: the minimum physical block size to report to blkdev,
209 * which is among other things the basis for ZFS vdev ashift
212 * TODO:
213 * - figure out sane default for I/O queue depth reported to blkdev
214 * - FMA handling of media errors
215 * - support for devices supporting very large I/O requests using chained PRPs
216 * - support for configuring hardware parameters like interrupt coalescing
217 * - support for media formatting and hard partitioning into namespaces
218 * - support for big-endian systems
219 * - support for fast reboot
220 * - support for firmware updates
221 * - support for NVMe Subsystem Reset (1.1)
222 * - support for Scatter/Gather lists (1.1)
223 * - support for Reservations (1.1)
224 * - support for power management
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
252 #include <sys/nvme.h>
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
262 /* NVMe spec version supported */
263 static const int nvme_version_major = 1;
264 static const int nvme_version_minor = 2;
266 /* tunable for admin command timeout in seconds, default is 1s */
267 int nvme_admin_cmd_timeout = 1;
269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
270 int nvme_format_cmd_timeout = 600;
272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
274 static int nvme_quiesce(dev_info_t *);
275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
276 static int nvme_setup_interrupts(nvme_t *, int, int);
277 static void nvme_release_interrupts(nvme_t *);
278 static uint_t nvme_intr(caddr_t, caddr_t);
280 static void nvme_shutdown(nvme_t *, int, boolean_t);
281 static boolean_t nvme_reset(nvme_t *, boolean_t);
282 static int nvme_init(nvme_t *);
283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
284 static void nvme_free_cmd(nvme_cmd_t *);
285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
286 bd_xfer_t *);
287 static void nvme_admin_cmd(nvme_cmd_t *, int);
288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
294 static void nvme_wakeup_cmd(void *);
295 static void nvme_async_event_task(void *);
297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
300 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
301 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
302 static inline int nvme_check_cmd_status(nvme_cmd_t *);
304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
305 static void nvme_async_event(nvme_t *);
306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
307 boolean_t, uint8_t);
308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
309 static int nvme_identify(nvme_t *, uint32_t, void **);
310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
311 uint32_t *);
312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
313 void **, size_t *);
314 static int nvme_write_cache_set(nvme_t *, boolean_t);
315 static int nvme_set_nqueues(nvme_t *, uint16_t *);
317 static void nvme_free_dma(nvme_dma_t *);
318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
319 nvme_dma_t **);
320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
321 nvme_dma_t **);
322 static void nvme_free_qpair(nvme_qpair_t *);
323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
331 static boolean_t nvme_check_regs_hdl(nvme_t *);
332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
336 static void nvme_bd_xfer_done(void *);
337 static void nvme_bd_driveinfo(void *, bd_drive_t *);
338 static int nvme_bd_mediainfo(void *, bd_media_t *);
339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
340 static int nvme_bd_read(void *, bd_xfer_t *);
341 static int nvme_bd_write(void *, bd_xfer_t *);
342 static int nvme_bd_sync(void *, bd_xfer_t *);
343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
345 static int nvme_prp_dma_constructor(void *, void *, int);
346 static void nvme_prp_dma_destructor(void *, void *);
348 static void nvme_prepare_devid(nvme_t *, uint32_t);
350 static int nvme_open(dev_t *, int, int, cred_t *);
351 static int nvme_close(dev_t, int, int, cred_t *);
352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
354 #define NVME_MINOR_INST_SHIFT 9
355 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
356 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
357 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
358 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
360 static void *nvme_state;
361 static kmem_cache_t *nvme_cmd_cache;
364 * DMA attributes for queue DMA memory
366 * Queue DMA memory must be page aligned. The maximum length of a queue is
367 * 65536 entries, and an entry can be 64 bytes long.
369 static ddi_dma_attr_t nvme_queue_dma_attr = {
370 .dma_attr_version = DMA_ATTR_V0,
371 .dma_attr_addr_lo = 0,
372 .dma_attr_addr_hi = 0xffffffffffffffffULL,
373 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
374 .dma_attr_align = 0x1000,
375 .dma_attr_burstsizes = 0x7ff,
376 .dma_attr_minxfer = 0x1000,
377 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
378 .dma_attr_seg = 0xffffffffffffffffULL,
379 .dma_attr_sgllen = 1,
380 .dma_attr_granular = 1,
381 .dma_attr_flags = 0,
385 * DMA attributes for transfers using Physical Region Page (PRP) entries
387 * A PRP entry describes one page of DMA memory using the page size specified
388 * in the controller configuration's memory page size register (CC.MPS). It uses
389 * a 64bit base address aligned to this page size. There is no limitation on
390 * chaining PRPs together for arbitrarily large DMA transfers.
392 static ddi_dma_attr_t nvme_prp_dma_attr = {
393 .dma_attr_version = DMA_ATTR_V0,
394 .dma_attr_addr_lo = 0,
395 .dma_attr_addr_hi = 0xffffffffffffffffULL,
396 .dma_attr_count_max = 0xfff,
397 .dma_attr_align = 0x1000,
398 .dma_attr_burstsizes = 0x7ff,
399 .dma_attr_minxfer = 0x1000,
400 .dma_attr_maxxfer = 0x1000,
401 .dma_attr_seg = 0xfff,
402 .dma_attr_sgllen = -1,
403 .dma_attr_granular = 1,
404 .dma_attr_flags = 0,
408 * DMA attributes for transfers using scatter/gather lists
410 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
411 * 32bit length field. SGL Segment and SGL Last Segment entries require the
412 * length to be a multiple of 16 bytes.
414 static ddi_dma_attr_t nvme_sgl_dma_attr = {
415 .dma_attr_version = DMA_ATTR_V0,
416 .dma_attr_addr_lo = 0,
417 .dma_attr_addr_hi = 0xffffffffffffffffULL,
418 .dma_attr_count_max = 0xffffffffUL,
419 .dma_attr_align = 1,
420 .dma_attr_burstsizes = 0x7ff,
421 .dma_attr_minxfer = 0x10,
422 .dma_attr_maxxfer = 0xfffffffffULL,
423 .dma_attr_seg = 0xffffffffffffffffULL,
424 .dma_attr_sgllen = -1,
425 .dma_attr_granular = 0x10,
426 .dma_attr_flags = 0
429 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
430 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
431 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
432 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
435 static struct cb_ops nvme_cb_ops = {
436 .cb_open = nvme_open,
437 .cb_close = nvme_close,
438 .cb_strategy = nodev,
439 .cb_print = nodev,
440 .cb_dump = nodev,
441 .cb_read = nodev,
442 .cb_write = nodev,
443 .cb_ioctl = nvme_ioctl,
444 .cb_devmap = nodev,
445 .cb_mmap = nodev,
446 .cb_segmap = nodev,
447 .cb_chpoll = nochpoll,
448 .cb_prop_op = ddi_prop_op,
449 .cb_str = 0,
450 .cb_flag = D_NEW | D_MP,
451 .cb_rev = CB_REV,
452 .cb_aread = nodev,
453 .cb_awrite = nodev
456 static struct dev_ops nvme_dev_ops = {
457 .devo_rev = DEVO_REV,
458 .devo_refcnt = 0,
459 .devo_getinfo = ddi_no_info,
460 .devo_identify = nulldev,
461 .devo_probe = nulldev,
462 .devo_attach = nvme_attach,
463 .devo_detach = nvme_detach,
464 .devo_reset = nodev,
465 .devo_cb_ops = &nvme_cb_ops,
466 .devo_bus_ops = NULL,
467 .devo_power = NULL,
468 .devo_quiesce = nvme_quiesce,
471 static struct modldrv nvme_modldrv = {
472 .drv_modops = &mod_driverops,
473 .drv_linkinfo = "NVMe v1.1b",
474 .drv_dev_ops = &nvme_dev_ops
477 static struct modlinkage nvme_modlinkage = {
478 .ml_rev = MODREV_1,
479 .ml_linkage = { &nvme_modldrv, NULL }
482 static bd_ops_t nvme_bd_ops = {
483 .o_version = BD_OPS_VERSION_0,
484 .o_drive_info = nvme_bd_driveinfo,
485 .o_media_info = nvme_bd_mediainfo,
486 .o_devid_init = nvme_bd_devid,
487 .o_sync_cache = nvme_bd_sync,
488 .o_read = nvme_bd_read,
489 .o_write = nvme_bd_write,
493 * This list will hold commands that have timed out and couldn't be aborted.
494 * As we don't know what the hardware may still do with the DMA memory we can't
495 * free them, so we'll keep them forever on this list where we can easily look
496 * at them with mdb.
498 static struct list nvme_lost_cmds;
499 static kmutex_t nvme_lc_mutex;
502 _init(void)
504 int error;
506 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
507 if (error != DDI_SUCCESS)
508 return (error);
510 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
511 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
513 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
514 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
515 offsetof(nvme_cmd_t, nc_list));
517 bd_mod_init(&nvme_dev_ops);
519 error = mod_install(&nvme_modlinkage);
520 if (error != DDI_SUCCESS) {
521 ddi_soft_state_fini(&nvme_state);
522 mutex_destroy(&nvme_lc_mutex);
523 list_destroy(&nvme_lost_cmds);
524 bd_mod_fini(&nvme_dev_ops);
527 return (error);
531 _fini(void)
533 int error;
535 if (!list_is_empty(&nvme_lost_cmds))
536 return (DDI_FAILURE);
538 error = mod_remove(&nvme_modlinkage);
539 if (error == DDI_SUCCESS) {
540 ddi_soft_state_fini(&nvme_state);
541 kmem_cache_destroy(nvme_cmd_cache);
542 mutex_destroy(&nvme_lc_mutex);
543 list_destroy(&nvme_lost_cmds);
544 bd_mod_fini(&nvme_dev_ops);
547 return (error);
551 _info(struct modinfo *modinfop)
553 return (mod_info(&nvme_modlinkage, modinfop));
556 static inline void
557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
559 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
561 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
562 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
565 static inline void
566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
568 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
570 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
571 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
574 static inline uint64_t
575 nvme_get64(nvme_t *nvme, uintptr_t reg)
577 uint64_t val;
579 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
581 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
582 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
584 return (val);
587 static inline uint32_t
588 nvme_get32(nvme_t *nvme, uintptr_t reg)
590 uint32_t val;
592 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
594 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
595 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
597 return (val);
600 static boolean_t
601 nvme_check_regs_hdl(nvme_t *nvme)
603 ddi_fm_error_t error;
605 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
607 if (error.fme_status != DDI_FM_OK)
608 return (B_TRUE);
610 return (B_FALSE);
613 static boolean_t
614 nvme_check_dma_hdl(nvme_dma_t *dma)
616 ddi_fm_error_t error;
618 if (dma == NULL)
619 return (B_FALSE);
621 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
623 if (error.fme_status != DDI_FM_OK)
624 return (B_TRUE);
626 return (B_FALSE);
629 static void
630 nvme_free_dma_common(nvme_dma_t *dma)
632 if (dma->nd_dmah != NULL)
633 (void) ddi_dma_unbind_handle(dma->nd_dmah);
634 if (dma->nd_acch != NULL)
635 ddi_dma_mem_free(&dma->nd_acch);
636 if (dma->nd_dmah != NULL)
637 ddi_dma_free_handle(&dma->nd_dmah);
640 static void
641 nvme_free_dma(nvme_dma_t *dma)
643 nvme_free_dma_common(dma);
644 kmem_free(dma, sizeof (*dma));
647 /* ARGSUSED */
648 static void
649 nvme_prp_dma_destructor(void *buf, void *private)
651 nvme_dma_t *dma = (nvme_dma_t *)buf;
653 nvme_free_dma_common(dma);
656 static int
657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
658 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
660 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
661 &dma->nd_dmah) != DDI_SUCCESS) {
663 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
664 * the only other possible error is DDI_DMA_BADATTR which
665 * indicates a driver bug which should cause a panic.
667 dev_err(nvme->n_dip, CE_PANIC,
668 "!failed to get DMA handle, check DMA attributes");
669 return (DDI_FAILURE);
673 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
674 * or the flags are conflicting, which isn't the case here.
676 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
677 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
678 &dma->nd_len, &dma->nd_acch);
680 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
681 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
682 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
683 dev_err(nvme->n_dip, CE_WARN,
684 "!failed to bind DMA memory");
685 atomic_inc_32(&nvme->n_dma_bind_err);
686 nvme_free_dma_common(dma);
687 return (DDI_FAILURE);
690 return (DDI_SUCCESS);
693 static int
694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
695 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
697 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
699 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
700 DDI_SUCCESS) {
701 *ret = NULL;
702 kmem_free(dma, sizeof (nvme_dma_t));
703 return (DDI_FAILURE);
706 bzero(dma->nd_memp, dma->nd_len);
708 *ret = dma;
709 return (DDI_SUCCESS);
712 /* ARGSUSED */
713 static int
714 nvme_prp_dma_constructor(void *buf, void *private, int flags)
716 nvme_dma_t *dma = (nvme_dma_t *)buf;
717 nvme_t *nvme = (nvme_t *)private;
719 dma->nd_dmah = NULL;
720 dma->nd_acch = NULL;
722 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
723 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
724 return (-1);
727 ASSERT(dma->nd_ncookie == 1);
729 dma->nd_cached = B_TRUE;
731 return (0);
734 static int
735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
736 uint_t flags, nvme_dma_t **dma)
738 uint32_t len = nentry * qe_len;
739 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
741 len = roundup(len, nvme->n_pagesize);
743 q_dma_attr.dma_attr_minxfer = len;
745 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
746 != DDI_SUCCESS) {
747 dev_err(nvme->n_dip, CE_WARN,
748 "!failed to get DMA memory for queue");
749 goto fail;
752 if ((*dma)->nd_ncookie != 1) {
753 dev_err(nvme->n_dip, CE_WARN,
754 "!got too many cookies for queue DMA");
755 goto fail;
758 return (DDI_SUCCESS);
760 fail:
761 if (*dma) {
762 nvme_free_dma(*dma);
763 *dma = NULL;
766 return (DDI_FAILURE);
769 static void
770 nvme_free_qpair(nvme_qpair_t *qp)
772 int i;
774 mutex_destroy(&qp->nq_mutex);
775 sema_destroy(&qp->nq_sema);
777 if (qp->nq_sqdma != NULL)
778 nvme_free_dma(qp->nq_sqdma);
779 if (qp->nq_cqdma != NULL)
780 nvme_free_dma(qp->nq_cqdma);
782 if (qp->nq_active_cmds > 0)
783 for (i = 0; i != qp->nq_nentry; i++)
784 if (qp->nq_cmd[i] != NULL)
785 nvme_free_cmd(qp->nq_cmd[i]);
787 if (qp->nq_cmd != NULL)
788 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
790 kmem_free(qp, sizeof (nvme_qpair_t));
793 static int
794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
795 int idx)
797 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
799 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
800 DDI_INTR_PRI(nvme->n_intr_pri));
801 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
803 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
804 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
805 goto fail;
807 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
808 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
809 goto fail;
811 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
812 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
813 qp->nq_nentry = nentry;
815 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
816 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
818 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
819 qp->nq_next_cmd = 0;
821 *nqp = qp;
822 return (DDI_SUCCESS);
824 fail:
825 nvme_free_qpair(qp);
826 *nqp = NULL;
828 return (DDI_FAILURE);
831 static nvme_cmd_t *
832 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
834 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
836 if (cmd == NULL)
837 return (cmd);
839 bzero(cmd, sizeof (nvme_cmd_t));
841 cmd->nc_nvme = nvme;
843 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
844 DDI_INTR_PRI(nvme->n_intr_pri));
845 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
847 return (cmd);
850 static void
851 nvme_free_cmd(nvme_cmd_t *cmd)
853 /* Don't free commands on the lost commands list. */
854 if (list_link_active(&cmd->nc_list))
855 return;
857 if (cmd->nc_dma) {
858 if (cmd->nc_dma->nd_cached)
859 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
860 cmd->nc_dma);
861 else
862 nvme_free_dma(cmd->nc_dma);
863 cmd->nc_dma = NULL;
866 cv_destroy(&cmd->nc_cv);
867 mutex_destroy(&cmd->nc_mutex);
869 kmem_cache_free(nvme_cmd_cache, cmd);
872 static void
873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
875 sema_p(&qp->nq_sema);
876 nvme_submit_cmd_common(qp, cmd);
879 static int
880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
882 if (sema_tryp(&qp->nq_sema) == 0)
883 return (EAGAIN);
885 nvme_submit_cmd_common(qp, cmd);
886 return (0);
889 static void
890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
892 nvme_reg_sqtdbl_t tail = { 0 };
894 mutex_enter(&qp->nq_mutex);
895 cmd->nc_completed = B_FALSE;
898 * Try to insert the cmd into the active cmd array at the nq_next_cmd
899 * slot. If the slot is already occupied advance to the next slot and
900 * try again. This can happen for long running commands like async event
901 * requests.
903 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
904 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
905 qp->nq_cmd[qp->nq_next_cmd] = cmd;
907 qp->nq_active_cmds++;
909 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
910 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
911 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
912 sizeof (nvme_sqe_t) * qp->nq_sqtail,
913 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
914 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
916 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
917 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
919 mutex_exit(&qp->nq_mutex);
922 static nvme_cmd_t *
923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
925 nvme_cmd_t *cmd;
927 ASSERT(mutex_owned(&qp->nq_mutex));
928 ASSERT3S(cid, <, qp->nq_nentry);
930 cmd = qp->nq_cmd[cid];
931 qp->nq_cmd[cid] = NULL;
932 ASSERT3U(qp->nq_active_cmds, >, 0);
933 qp->nq_active_cmds--;
934 sema_v(&qp->nq_sema);
936 ASSERT3P(cmd, !=, NULL);
937 ASSERT3P(cmd->nc_nvme, ==, nvme);
938 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
940 return (cmd);
943 static nvme_cmd_t *
944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
946 nvme_reg_cqhdbl_t head = { 0 };
948 nvme_cqe_t *cqe;
949 nvme_cmd_t *cmd;
951 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
952 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
954 mutex_enter(&qp->nq_mutex);
955 cqe = &qp->nq_cq[qp->nq_cqhead];
957 /* Check phase tag of CQE. Hardware inverts it for new entries. */
958 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
959 mutex_exit(&qp->nq_mutex);
960 return (NULL);
963 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
965 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
967 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
968 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
970 qp->nq_sqhead = cqe->cqe_sqhd;
972 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
974 /* Toggle phase on wrap-around. */
975 if (qp->nq_cqhead == 0)
976 qp->nq_phase = qp->nq_phase ? 0 : 1;
978 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
979 mutex_exit(&qp->nq_mutex);
981 return (cmd);
984 static int
985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
987 nvme_cqe_t *cqe = &cmd->nc_cqe;
989 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
990 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
991 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
992 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
993 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
995 if (cmd->nc_xfer != NULL)
996 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
998 if (cmd->nc_nvme->n_strict_version) {
999 cmd->nc_nvme->n_dead = B_TRUE;
1000 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1003 return (EIO);
1006 static int
1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1009 nvme_cqe_t *cqe = &cmd->nc_cqe;
1011 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 cmd->nc_nvme->n_dead = B_TRUE;
1018 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1021 return (EIO);
1024 static int
1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1027 nvme_cqe_t *cqe = &cmd->nc_cqe;
1029 switch (cqe->cqe_sf.sf_sc) {
1030 case NVME_CQE_SC_INT_NVM_WRITE:
1031 /* write fail */
1032 /* TODO: post ereport */
1033 if (cmd->nc_xfer != NULL)
1034 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 return (EIO);
1037 case NVME_CQE_SC_INT_NVM_READ:
1038 /* read fail */
1039 /* TODO: post ereport */
1040 if (cmd->nc_xfer != NULL)
1041 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 return (EIO);
1044 default:
1045 return (nvme_check_unknown_cmd_status(cmd));
1049 static int
1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1052 nvme_cqe_t *cqe = &cmd->nc_cqe;
1054 switch (cqe->cqe_sf.sf_sc) {
1055 case NVME_CQE_SC_GEN_SUCCESS:
1056 return (0);
1059 * Errors indicating a bug in the driver should cause a panic.
1061 case NVME_CQE_SC_GEN_INV_OPC:
1062 /* Invalid Command Opcode */
1063 if (!cmd->nc_dontpanic)
1064 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1065 "programming error: invalid opcode in cmd %p",
1066 (void *)cmd);
1067 return (EINVAL);
1069 case NVME_CQE_SC_GEN_INV_FLD:
1070 /* Invalid Field in Command */
1071 if (!cmd->nc_dontpanic)
1072 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1073 "programming error: invalid field in cmd %p",
1074 (void *)cmd);
1075 return (EIO);
1077 case NVME_CQE_SC_GEN_ID_CNFL:
1078 /* Command ID Conflict */
1079 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1080 "cmd ID conflict in cmd %p", (void *)cmd);
1081 return (0);
1083 case NVME_CQE_SC_GEN_INV_NS:
1084 /* Invalid Namespace or Format */
1085 if (!cmd->nc_dontpanic)
1086 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 "programming error: invalid NS/format in cmd %p",
1088 (void *)cmd);
1089 return (EINVAL);
1091 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1092 /* LBA Out Of Range */
1093 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1094 "LBA out of range in cmd %p", (void *)cmd);
1095 return (0);
1098 * Non-fatal errors, handle gracefully.
1100 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1101 /* Data Transfer Error (DMA) */
1102 /* TODO: post ereport */
1103 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1104 if (cmd->nc_xfer != NULL)
1105 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1106 return (EIO);
1108 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1110 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1111 * detailed error information is returned as async event,
1112 * so we pretty much ignore the error here and handle it
1113 * in the async event handler.
1115 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1116 if (cmd->nc_xfer != NULL)
1117 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1118 return (EIO);
1120 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1122 * Command Abort Requested. This normally happens only when a
1123 * command times out.
1125 /* TODO: post ereport or change blkdev to handle this? */
1126 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1127 return (ECANCELED);
1129 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1130 /* Command Aborted due to Power Loss Notification */
1131 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1132 cmd->nc_nvme->n_dead = B_TRUE;
1133 return (EIO);
1135 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1136 /* Command Aborted due to SQ Deletion */
1137 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1138 return (EIO);
1140 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1141 /* Capacity Exceeded */
1142 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1143 if (cmd->nc_xfer != NULL)
1144 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1145 return (EIO);
1147 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1148 /* Namespace Not Ready */
1149 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1150 if (cmd->nc_xfer != NULL)
1151 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1152 return (EIO);
1154 default:
1155 return (nvme_check_unknown_cmd_status(cmd));
1159 static int
1160 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1162 nvme_cqe_t *cqe = &cmd->nc_cqe;
1164 switch (cqe->cqe_sf.sf_sc) {
1165 case NVME_CQE_SC_SPC_INV_CQ:
1166 /* Completion Queue Invalid */
1167 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1168 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1169 return (EINVAL);
1171 case NVME_CQE_SC_SPC_INV_QID:
1172 /* Invalid Queue Identifier */
1173 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1174 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1175 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1176 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1177 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1178 return (EINVAL);
1180 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1181 /* Max Queue Size Exceeded */
1182 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1183 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1184 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1185 return (EINVAL);
1187 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1188 /* Abort Command Limit Exceeded */
1189 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1190 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1191 "abort command limit exceeded in cmd %p", (void *)cmd);
1192 return (0);
1194 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1195 /* Async Event Request Limit Exceeded */
1196 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1197 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1198 "async event request limit exceeded in cmd %p",
1199 (void *)cmd);
1200 return (0);
1202 case NVME_CQE_SC_SPC_INV_INT_VECT:
1203 /* Invalid Interrupt Vector */
1204 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1206 return (EINVAL);
1208 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1209 /* Invalid Log Page */
1210 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1211 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1212 return (EINVAL);
1214 case NVME_CQE_SC_SPC_INV_FORMAT:
1215 /* Invalid Format */
1216 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1217 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1218 if (cmd->nc_xfer != NULL)
1219 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1220 return (EINVAL);
1222 case NVME_CQE_SC_SPC_INV_Q_DEL:
1223 /* Invalid Queue Deletion */
1224 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1225 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1226 return (EINVAL);
1228 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1229 /* Conflicting Attributes */
1230 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1231 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1232 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1233 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1234 if (cmd->nc_xfer != NULL)
1235 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1236 return (EINVAL);
1238 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1239 /* Invalid Protection Information */
1240 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1241 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1242 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1243 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1244 if (cmd->nc_xfer != NULL)
1245 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1246 return (EINVAL);
1248 case NVME_CQE_SC_SPC_NVM_READONLY:
1249 /* Write to Read Only Range */
1250 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1251 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1252 if (cmd->nc_xfer != NULL)
1253 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1254 return (EROFS);
1256 default:
1257 return (nvme_check_unknown_cmd_status(cmd));
1261 static inline int
1262 nvme_check_cmd_status(nvme_cmd_t *cmd)
1264 nvme_cqe_t *cqe = &cmd->nc_cqe;
1267 * Take a shortcut if the controller is dead, or if
1268 * command status indicates no error.
1270 if (cmd->nc_nvme->n_dead)
1271 return (EIO);
1273 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1274 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1275 return (0);
1277 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1278 return (nvme_check_generic_cmd_status(cmd));
1279 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1280 return (nvme_check_specific_cmd_status(cmd));
1281 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1282 return (nvme_check_integrity_cmd_status(cmd));
1283 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1284 return (nvme_check_vendor_cmd_status(cmd));
1286 return (nvme_check_unknown_cmd_status(cmd));
1289 static int
1290 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1292 nvme_t *nvme = abort_cmd->nc_nvme;
1293 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1294 nvme_abort_cmd_t ac = { 0 };
1295 int ret = 0;
1297 sema_p(&nvme->n_abort_sema);
1299 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1300 ac.b.ac_sqid = abort_cmd->nc_sqid;
1302 cmd->nc_sqid = 0;
1303 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1304 cmd->nc_callback = nvme_wakeup_cmd;
1305 cmd->nc_sqe.sqe_cdw10 = ac.r;
1308 * Send the ABORT to the hardware. The ABORT command will return _after_
1309 * the aborted command has completed (aborted or otherwise), but since
1310 * we still hold the aborted command's mutex its callback hasn't been
1311 * processed yet.
1313 nvme_admin_cmd(cmd, sec);
1314 sema_v(&nvme->n_abort_sema);
1316 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1317 dev_err(nvme->n_dip, CE_WARN,
1318 "!ABORT failed with sct = %x, sc = %x",
1319 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1320 atomic_inc_32(&nvme->n_abort_failed);
1321 } else {
1322 dev_err(nvme->n_dip, CE_WARN,
1323 "!ABORT of command %d/%d %ssuccessful",
1324 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1325 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1326 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1327 atomic_inc_32(&nvme->n_cmd_aborted);
1330 nvme_free_cmd(cmd);
1331 return (ret);
1335 * nvme_wait_cmd -- wait for command completion or timeout
1337 * In case of a serious error or a timeout of the abort command the hardware
1338 * will be declared dead and FMA will be notified.
1340 static void
1341 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1343 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1344 nvme_t *nvme = cmd->nc_nvme;
1345 nvme_reg_csts_t csts;
1346 nvme_qpair_t *qp;
1348 ASSERT(mutex_owned(&cmd->nc_mutex));
1350 while (!cmd->nc_completed) {
1351 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1352 break;
1355 if (cmd->nc_completed)
1356 return;
1359 * The command timed out.
1361 * Check controller for fatal status, any errors associated with the
1362 * register or DMA handle, or for a double timeout (abort command timed
1363 * out). If necessary log a warning and call FMA.
1365 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1366 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1367 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1368 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1369 atomic_inc_32(&nvme->n_cmd_timeout);
1371 if (csts.b.csts_cfs ||
1372 nvme_check_regs_hdl(nvme) ||
1373 nvme_check_dma_hdl(cmd->nc_dma) ||
1374 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1375 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1376 nvme->n_dead = B_TRUE;
1377 } else if (nvme_abort_cmd(cmd, sec) == 0) {
1379 * If the abort succeeded the command should complete
1380 * immediately with an appropriate status.
1382 while (!cmd->nc_completed)
1383 cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1385 return;
1388 qp = nvme->n_ioq[cmd->nc_sqid];
1390 mutex_enter(&qp->nq_mutex);
1391 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1392 mutex_exit(&qp->nq_mutex);
1395 * As we don't know what the presumed dead hardware might still do with
1396 * the DMA memory, we'll put the command on the lost commands list if it
1397 * has any DMA memory.
1399 if (cmd->nc_dma != NULL) {
1400 mutex_enter(&nvme_lc_mutex);
1401 list_insert_head(&nvme_lost_cmds, cmd);
1402 mutex_exit(&nvme_lc_mutex);
1406 static void
1407 nvme_wakeup_cmd(void *arg)
1409 nvme_cmd_t *cmd = arg;
1411 mutex_enter(&cmd->nc_mutex);
1412 cmd->nc_completed = B_TRUE;
1413 cv_signal(&cmd->nc_cv);
1414 mutex_exit(&cmd->nc_mutex);
1417 static void
1418 nvme_async_event_task(void *arg)
1420 nvme_cmd_t *cmd = arg;
1421 nvme_t *nvme = cmd->nc_nvme;
1422 nvme_error_log_entry_t *error_log = NULL;
1423 nvme_health_log_t *health_log = NULL;
1424 size_t logsize = 0;
1425 nvme_async_event_t event;
1428 * Check for errors associated with the async request itself. The only
1429 * command-specific error is "async event limit exceeded", which
1430 * indicates a programming error in the driver and causes a panic in
1431 * nvme_check_cmd_status().
1433 * Other possible errors are various scenarios where the async request
1434 * was aborted, or internal errors in the device. Internal errors are
1435 * reported to FMA, the command aborts need no special handling here.
1437 * And finally, at least qemu nvme does not support async events,
1438 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1439 * will avoid posting async events.
1442 if (nvme_check_cmd_status(cmd) != 0) {
1443 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1444 "!async event request returned failure, sct = %x, "
1445 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1446 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1447 cmd->nc_cqe.cqe_sf.sf_m);
1449 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1450 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1451 cmd->nc_nvme->n_dead = B_TRUE;
1452 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1453 DDI_SERVICE_LOST);
1456 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1457 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1458 cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1459 nvme->n_async_event_supported = B_FALSE;
1462 nvme_free_cmd(cmd);
1463 return;
1467 event.r = cmd->nc_cqe.cqe_dw0;
1469 /* Clear CQE and re-submit the async request. */
1470 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1471 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1473 switch (event.b.ae_type) {
1474 case NVME_ASYNC_TYPE_ERROR:
1475 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1476 (void) nvme_get_logpage(nvme, (void **)&error_log,
1477 &logsize, event.b.ae_logpage);
1478 } else {
1479 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1480 "async event reply: %d", event.b.ae_logpage);
1481 atomic_inc_32(&nvme->n_wrong_logpage);
1484 switch (event.b.ae_info) {
1485 case NVME_ASYNC_ERROR_INV_SQ:
1486 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1487 "invalid submission queue");
1488 return;
1490 case NVME_ASYNC_ERROR_INV_DBL:
1491 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1492 "invalid doorbell write value");
1493 return;
1495 case NVME_ASYNC_ERROR_DIAGFAIL:
1496 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1497 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1498 nvme->n_dead = B_TRUE;
1499 atomic_inc_32(&nvme->n_diagfail_event);
1500 break;
1502 case NVME_ASYNC_ERROR_PERSISTENT:
1503 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1504 "device error");
1505 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1506 nvme->n_dead = B_TRUE;
1507 atomic_inc_32(&nvme->n_persistent_event);
1508 break;
1510 case NVME_ASYNC_ERROR_TRANSIENT:
1511 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1512 "device error");
1513 /* TODO: send ereport */
1514 atomic_inc_32(&nvme->n_transient_event);
1515 break;
1517 case NVME_ASYNC_ERROR_FW_LOAD:
1518 dev_err(nvme->n_dip, CE_WARN,
1519 "!firmware image load error");
1520 atomic_inc_32(&nvme->n_fw_load_event);
1521 break;
1523 break;
1525 case NVME_ASYNC_TYPE_HEALTH:
1526 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1527 (void) nvme_get_logpage(nvme, (void **)&health_log,
1528 &logsize, event.b.ae_logpage, -1);
1529 } else {
1530 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1531 "async event reply: %d", event.b.ae_logpage);
1532 atomic_inc_32(&nvme->n_wrong_logpage);
1535 switch (event.b.ae_info) {
1536 case NVME_ASYNC_HEALTH_RELIABILITY:
1537 dev_err(nvme->n_dip, CE_WARN,
1538 "!device reliability compromised");
1539 /* TODO: send ereport */
1540 atomic_inc_32(&nvme->n_reliability_event);
1541 break;
1543 case NVME_ASYNC_HEALTH_TEMPERATURE:
1544 dev_err(nvme->n_dip, CE_WARN,
1545 "!temperature above threshold");
1546 /* TODO: send ereport */
1547 atomic_inc_32(&nvme->n_temperature_event);
1548 break;
1550 case NVME_ASYNC_HEALTH_SPARE:
1551 dev_err(nvme->n_dip, CE_WARN,
1552 "!spare space below threshold");
1553 /* TODO: send ereport */
1554 atomic_inc_32(&nvme->n_spare_event);
1555 break;
1557 break;
1559 case NVME_ASYNC_TYPE_VENDOR:
1560 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1561 "received, info = %x, logpage = %x", event.b.ae_info,
1562 event.b.ae_logpage);
1563 atomic_inc_32(&nvme->n_vendor_event);
1564 break;
1566 default:
1567 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1568 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1569 event.b.ae_info, event.b.ae_logpage);
1570 atomic_inc_32(&nvme->n_unknown_event);
1571 break;
1574 if (error_log)
1575 kmem_free(error_log, logsize);
1577 if (health_log)
1578 kmem_free(health_log, logsize);
1581 static void
1582 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1584 mutex_enter(&cmd->nc_mutex);
1585 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1586 nvme_wait_cmd(cmd, sec);
1587 mutex_exit(&cmd->nc_mutex);
1590 static void
1591 nvme_async_event(nvme_t *nvme)
1593 nvme_cmd_t *cmd;
1595 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 cmd->nc_sqid = 0;
1597 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1598 cmd->nc_callback = nvme_async_event_task;
1599 cmd->nc_dontpanic = B_TRUE;
1601 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1604 static int
1605 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1606 uint8_t pi, boolean_t pil, uint8_t ses)
1608 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1609 nvme_format_nvm_t format_nvm = { 0 };
1610 int ret;
1612 format_nvm.b.fm_lbaf = lbaf & 0xf;
1613 format_nvm.b.fm_ms = ms ? 1 : 0;
1614 format_nvm.b.fm_pi = pi & 0x7;
1615 format_nvm.b.fm_pil = pil ? 1 : 0;
1616 format_nvm.b.fm_ses = ses & 0x7;
1618 cmd->nc_sqid = 0;
1619 cmd->nc_callback = nvme_wakeup_cmd;
1620 cmd->nc_sqe.sqe_nsid = nsid;
1621 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1622 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1625 * Some devices like Samsung SM951 don't allow formatting of all
1626 * namespaces in one command. Handle that gracefully.
1628 if (nsid == (uint32_t)-1)
1629 cmd->nc_dontpanic = B_TRUE;
1631 nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1633 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1634 dev_err(nvme->n_dip, CE_WARN,
1635 "!FORMAT failed with sct = %x, sc = %x",
1636 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1639 nvme_free_cmd(cmd);
1640 return (ret);
1643 static int
1644 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1645 ...)
1647 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1648 nvme_getlogpage_t getlogpage = { 0 };
1649 va_list ap;
1650 int ret;
1652 va_start(ap, logpage);
1654 cmd->nc_sqid = 0;
1655 cmd->nc_callback = nvme_wakeup_cmd;
1656 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1658 getlogpage.b.lp_lid = logpage;
1660 switch (logpage) {
1661 case NVME_LOGPAGE_ERROR:
1662 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1664 * The GET LOG PAGE command can use at most 2 pages to return
1665 * data, PRP lists are not supported.
1667 *bufsize = MIN(2 * nvme->n_pagesize,
1668 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1669 break;
1671 case NVME_LOGPAGE_HEALTH:
1672 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1673 *bufsize = sizeof (nvme_health_log_t);
1674 break;
1676 case NVME_LOGPAGE_FWSLOT:
1677 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1678 *bufsize = sizeof (nvme_fwslot_log_t);
1679 break;
1681 default:
1682 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1683 logpage);
1684 atomic_inc_32(&nvme->n_unknown_logpage);
1685 ret = EINVAL;
1686 goto fail;
1689 va_end(ap);
1691 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1693 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1695 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1696 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1697 dev_err(nvme->n_dip, CE_WARN,
1698 "!nvme_zalloc_dma failed for GET LOG PAGE");
1699 ret = ENOMEM;
1700 goto fail;
1703 if (cmd->nc_dma->nd_ncookie > 2) {
1704 dev_err(nvme->n_dip, CE_WARN,
1705 "!too many DMA cookies for GET LOG PAGE");
1706 atomic_inc_32(&nvme->n_too_many_cookies);
1707 ret = ENOMEM;
1708 goto fail;
1711 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1712 if (cmd->nc_dma->nd_ncookie > 1) {
1713 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1714 &cmd->nc_dma->nd_cookie);
1715 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1716 cmd->nc_dma->nd_cookie.dmac_laddress;
1719 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1721 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1722 dev_err(nvme->n_dip, CE_WARN,
1723 "!GET LOG PAGE failed with sct = %x, sc = %x",
1724 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1725 goto fail;
1728 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1729 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1731 fail:
1732 nvme_free_cmd(cmd);
1734 return (ret);
1737 static int
1738 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1740 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1741 int ret;
1743 if (buf == NULL)
1744 return (EINVAL);
1746 cmd->nc_sqid = 0;
1747 cmd->nc_callback = nvme_wakeup_cmd;
1748 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1749 cmd->nc_sqe.sqe_nsid = nsid;
1750 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1752 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1753 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1754 dev_err(nvme->n_dip, CE_WARN,
1755 "!nvme_zalloc_dma failed for IDENTIFY");
1756 ret = ENOMEM;
1757 goto fail;
1760 if (cmd->nc_dma->nd_ncookie > 2) {
1761 dev_err(nvme->n_dip, CE_WARN,
1762 "!too many DMA cookies for IDENTIFY");
1763 atomic_inc_32(&nvme->n_too_many_cookies);
1764 ret = ENOMEM;
1765 goto fail;
1768 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1769 if (cmd->nc_dma->nd_ncookie > 1) {
1770 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1771 &cmd->nc_dma->nd_cookie);
1772 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1773 cmd->nc_dma->nd_cookie.dmac_laddress;
1776 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1778 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1779 dev_err(nvme->n_dip, CE_WARN,
1780 "!IDENTIFY failed with sct = %x, sc = %x",
1781 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1782 goto fail;
1785 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1786 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1788 fail:
1789 nvme_free_cmd(cmd);
1791 return (ret);
1794 static int
1795 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1796 uint32_t *res)
1798 _NOTE(ARGUNUSED(nsid));
1799 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1800 int ret = EINVAL;
1802 ASSERT(res != NULL);
1804 cmd->nc_sqid = 0;
1805 cmd->nc_callback = nvme_wakeup_cmd;
1806 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1807 cmd->nc_sqe.sqe_cdw10 = feature;
1808 cmd->nc_sqe.sqe_cdw11 = val;
1810 switch (feature) {
1811 case NVME_FEAT_WRITE_CACHE:
1812 if (!nvme->n_write_cache_present)
1813 goto fail;
1814 break;
1816 case NVME_FEAT_NQUEUES:
1817 break;
1819 default:
1820 goto fail;
1823 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1825 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1826 dev_err(nvme->n_dip, CE_WARN,
1827 "!SET FEATURES %d failed with sct = %x, sc = %x",
1828 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1829 cmd->nc_cqe.cqe_sf.sf_sc);
1830 goto fail;
1833 *res = cmd->nc_cqe.cqe_dw0;
1835 fail:
1836 nvme_free_cmd(cmd);
1837 return (ret);
1840 static int
1841 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1842 void **buf, size_t *bufsize)
1844 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1845 int ret = EINVAL;
1847 ASSERT(res != NULL);
1849 if (bufsize != NULL)
1850 *bufsize = 0;
1852 cmd->nc_sqid = 0;
1853 cmd->nc_callback = nvme_wakeup_cmd;
1854 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1855 cmd->nc_sqe.sqe_cdw10 = feature;
1856 cmd->nc_sqe.sqe_cdw11 = *res;
1859 * For some of the optional features there doesn't seem to be a method
1860 * of detecting whether it is supported other than using it. This will
1861 * cause "Invalid Field in Command" error, which is normally considered
1862 * a programming error. Set the nc_dontpanic flag to override the panic
1863 * in nvme_check_generic_cmd_status().
1865 switch (feature) {
1866 case NVME_FEAT_ARBITRATION:
1867 case NVME_FEAT_POWER_MGMT:
1868 case NVME_FEAT_TEMPERATURE:
1869 case NVME_FEAT_ERROR:
1870 case NVME_FEAT_NQUEUES:
1871 case NVME_FEAT_INTR_COAL:
1872 case NVME_FEAT_INTR_VECT:
1873 case NVME_FEAT_WRITE_ATOM:
1874 case NVME_FEAT_ASYNC_EVENT:
1875 break;
1877 case NVME_FEAT_WRITE_CACHE:
1878 if (!nvme->n_write_cache_present)
1879 goto fail;
1880 break;
1882 case NVME_FEAT_LBA_RANGE:
1883 if (!nvme->n_lba_range_supported)
1884 goto fail;
1886 cmd->nc_dontpanic = B_TRUE;
1887 cmd->nc_sqe.sqe_nsid = nsid;
1888 ASSERT(bufsize != NULL);
1889 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1890 break;
1892 case NVME_FEAT_AUTO_PST:
1893 if (!nvme->n_auto_pst_supported)
1894 goto fail;
1896 ASSERT(bufsize != NULL);
1897 *bufsize = NVME_AUTO_PST_BUFSIZE;
1898 break;
1900 case NVME_FEAT_PROGRESS:
1901 if (!nvme->n_progress_supported)
1902 goto fail;
1904 cmd->nc_dontpanic = B_TRUE;
1905 break;
1907 default:
1908 goto fail;
1911 if (bufsize != NULL && *bufsize != 0) {
1912 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1913 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1914 dev_err(nvme->n_dip, CE_WARN,
1915 "!nvme_zalloc_dma failed for GET FEATURES");
1916 ret = ENOMEM;
1917 goto fail;
1920 if (cmd->nc_dma->nd_ncookie > 2) {
1921 dev_err(nvme->n_dip, CE_WARN,
1922 "!too many DMA cookies for GET FEATURES");
1923 atomic_inc_32(&nvme->n_too_many_cookies);
1924 ret = ENOMEM;
1925 goto fail;
1928 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1929 cmd->nc_dma->nd_cookie.dmac_laddress;
1930 if (cmd->nc_dma->nd_ncookie > 1) {
1931 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1932 &cmd->nc_dma->nd_cookie);
1933 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1934 cmd->nc_dma->nd_cookie.dmac_laddress;
1938 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1940 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1941 boolean_t known = B_TRUE;
1943 /* Check if this is unsupported optional feature */
1944 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1945 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1946 switch (feature) {
1947 case NVME_FEAT_LBA_RANGE:
1948 nvme->n_lba_range_supported = B_FALSE;
1949 break;
1950 case NVME_FEAT_PROGRESS:
1951 nvme->n_progress_supported = B_FALSE;
1952 break;
1953 default:
1954 known = B_FALSE;
1955 break;
1957 } else {
1958 known = B_FALSE;
1961 /* Report the error otherwise */
1962 if (!known) {
1963 dev_err(nvme->n_dip, CE_WARN,
1964 "!GET FEATURES %d failed with sct = %x, sc = %x",
1965 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1966 cmd->nc_cqe.cqe_sf.sf_sc);
1969 goto fail;
1972 if (bufsize != NULL && *bufsize != 0) {
1973 ASSERT(buf != NULL);
1974 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1975 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1978 *res = cmd->nc_cqe.cqe_dw0;
1980 fail:
1981 nvme_free_cmd(cmd);
1982 return (ret);
1985 static int
1986 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1988 nvme_write_cache_t nwc = { 0 };
1990 if (enable)
1991 nwc.b.wc_wce = 1;
1993 return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1994 &nwc.r));
1997 static int
1998 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
2000 nvme_nqueues_t nq = { 0 };
2001 int ret;
2003 nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2005 ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
2007 if (ret == 0) {
2009 * Always use the same number of submission and completion
2010 * queues, and never use more than the requested number of
2011 * queues.
2013 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2016 return (ret);
2019 static int
2020 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2022 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2023 nvme_create_queue_dw10_t dw10 = { 0 };
2024 nvme_create_cq_dw11_t c_dw11 = { 0 };
2025 nvme_create_sq_dw11_t s_dw11 = { 0 };
2026 int ret;
2028 dw10.b.q_qid = idx;
2029 dw10.b.q_qsize = qp->nq_nentry - 1;
2031 c_dw11.b.cq_pc = 1;
2032 c_dw11.b.cq_ien = 1;
2033 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2035 cmd->nc_sqid = 0;
2036 cmd->nc_callback = nvme_wakeup_cmd;
2037 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2038 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2039 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2040 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2042 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2044 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2045 dev_err(nvme->n_dip, CE_WARN,
2046 "!CREATE CQUEUE failed with sct = %x, sc = %x",
2047 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2048 goto fail;
2051 nvme_free_cmd(cmd);
2053 s_dw11.b.sq_pc = 1;
2054 s_dw11.b.sq_cqid = idx;
2056 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2057 cmd->nc_sqid = 0;
2058 cmd->nc_callback = nvme_wakeup_cmd;
2059 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2060 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2061 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2062 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2064 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2066 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2067 dev_err(nvme->n_dip, CE_WARN,
2068 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2069 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2070 goto fail;
2073 fail:
2074 nvme_free_cmd(cmd);
2076 return (ret);
2079 static boolean_t
2080 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2082 nvme_reg_csts_t csts;
2083 int i;
2085 nvme_put32(nvme, NVME_REG_CC, 0);
2087 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2088 if (csts.b.csts_rdy == 1) {
2089 nvme_put32(nvme, NVME_REG_CC, 0);
2090 for (i = 0; i != nvme->n_timeout * 10; i++) {
2091 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2092 if (csts.b.csts_rdy == 0)
2093 break;
2095 if (quiesce)
2096 drv_usecwait(50000);
2097 else
2098 delay(drv_usectohz(50000));
2102 nvme_put32(nvme, NVME_REG_AQA, 0);
2103 nvme_put32(nvme, NVME_REG_ASQ, 0);
2104 nvme_put32(nvme, NVME_REG_ACQ, 0);
2106 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2107 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2110 static void
2111 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2113 nvme_reg_cc_t cc;
2114 nvme_reg_csts_t csts;
2115 int i;
2117 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2119 cc.r = nvme_get32(nvme, NVME_REG_CC);
2120 cc.b.cc_shn = mode & 0x3;
2121 nvme_put32(nvme, NVME_REG_CC, cc.r);
2123 for (i = 0; i != 10; i++) {
2124 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2125 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2126 break;
2128 if (quiesce)
2129 drv_usecwait(100000);
2130 else
2131 delay(drv_usectohz(100000));
2136 static void
2137 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2140 * Section 7.7 of the spec describes how to get a unique ID for
2141 * the controller: the vendor ID, the model name and the serial
2142 * number shall be unique when combined.
2144 * If a namespace has no EUI64 we use the above and add the hex
2145 * namespace ID to get a unique ID for the namespace.
2147 char model[sizeof (nvme->n_idctl->id_model) + 1];
2148 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2150 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2151 bcopy(nvme->n_idctl->id_serial, serial,
2152 sizeof (nvme->n_idctl->id_serial));
2154 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2155 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2157 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2158 nvme->n_idctl->id_vid, model, serial, nsid);
2161 static int
2162 nvme_init_ns(nvme_t *nvme, int nsid)
2164 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2165 nvme_identify_nsid_t *idns;
2166 int last_rp;
2168 ns->ns_nvme = nvme;
2170 if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2171 dev_err(nvme->n_dip, CE_WARN,
2172 "!failed to identify namespace %d", nsid);
2173 return (DDI_FAILURE);
2176 ns->ns_idns = idns;
2177 ns->ns_id = nsid;
2178 ns->ns_block_count = idns->id_nsize;
2179 ns->ns_block_size =
2180 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2181 ns->ns_best_block_size = ns->ns_block_size;
2184 * Get the EUI64 if present. Use it for devid and device node names.
2186 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2187 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2189 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2190 if (*(uint64_t *)ns->ns_eui64 != 0) {
2191 uint8_t *eui64 = ns->ns_eui64;
2193 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2194 "%02x%02x%02x%02x%02x%02x%02x%02x",
2195 eui64[0], eui64[1], eui64[2], eui64[3],
2196 eui64[4], eui64[5], eui64[6], eui64[7]);
2197 } else {
2198 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2199 ns->ns_id);
2201 nvme_prepare_devid(nvme, ns->ns_id);
2205 * Find the LBA format with no metadata and the best relative
2206 * performance. A value of 3 means "degraded", 0 is best.
2208 last_rp = 3;
2209 for (int j = 0; j <= idns->id_nlbaf; j++) {
2210 if (idns->id_lbaf[j].lbaf_lbads == 0)
2211 break;
2212 if (idns->id_lbaf[j].lbaf_ms != 0)
2213 continue;
2214 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2215 continue;
2216 last_rp = idns->id_lbaf[j].lbaf_rp;
2217 ns->ns_best_block_size =
2218 1 << idns->id_lbaf[j].lbaf_lbads;
2221 if (ns->ns_best_block_size < nvme->n_min_block_size)
2222 ns->ns_best_block_size = nvme->n_min_block_size;
2225 * We currently don't support namespaces that use either:
2226 * - thin provisioning
2227 * - protection information
2228 * - illegal block size (< 512)
2230 if (idns->id_nsfeat.f_thin ||
2231 idns->id_dps.dp_pinfo) {
2232 dev_err(nvme->n_dip, CE_WARN,
2233 "!ignoring namespace %d, unsupported features: "
2234 "thin = %d, pinfo = %d", nsid,
2235 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2236 ns->ns_ignore = B_TRUE;
2237 } else if (ns->ns_block_size < 512) {
2238 dev_err(nvme->n_dip, CE_WARN,
2239 "!ignoring namespace %d, unsupported block size %"PRIu64,
2240 nsid, (uint64_t)ns->ns_block_size);
2241 ns->ns_ignore = B_TRUE;
2242 } else {
2243 ns->ns_ignore = B_FALSE;
2246 return (DDI_SUCCESS);
2249 static int
2250 nvme_init(nvme_t *nvme)
2252 nvme_reg_cc_t cc = { 0 };
2253 nvme_reg_aqa_t aqa = { 0 };
2254 nvme_reg_asq_t asq = { 0 };
2255 nvme_reg_acq_t acq = { 0 };
2256 nvme_reg_cap_t cap;
2257 nvme_reg_vs_t vs;
2258 nvme_reg_csts_t csts;
2259 int i = 0;
2260 uint16_t nqueues;
2261 char model[sizeof (nvme->n_idctl->id_model) + 1];
2262 char *vendor, *product;
2264 /* Check controller version */
2265 vs.r = nvme_get32(nvme, NVME_REG_VS);
2266 nvme->n_version.v_major = vs.b.vs_mjr;
2267 nvme->n_version.v_minor = vs.b.vs_mnr;
2268 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2269 nvme->n_version.v_major, nvme->n_version.v_minor);
2271 if (NVME_VERSION_HIGHER(&nvme->n_version,
2272 nvme_version_major, nvme_version_minor)) {
2273 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2274 nvme_version_major, nvme_version_minor);
2275 if (nvme->n_strict_version)
2276 goto fail;
2279 /* retrieve controller configuration */
2280 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2282 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2283 dev_err(nvme->n_dip, CE_WARN,
2284 "!NVM command set not supported by hardware");
2285 goto fail;
2288 nvme->n_nssr_supported = cap.b.cap_nssrs;
2289 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2290 nvme->n_timeout = cap.b.cap_to;
2291 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2292 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2293 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2296 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2297 * the base page size of 4k (1<<12), so add 12 here to get the real
2298 * page size value.
2300 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2301 cap.b.cap_mpsmax + 12);
2302 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2305 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2307 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2308 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2311 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2312 * Maxxfer may be increased after we identified the controller limits.
2314 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2315 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2316 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2317 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2320 * Reset controller if it's still in ready state.
2322 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2323 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2324 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2325 nvme->n_dead = B_TRUE;
2326 goto fail;
2330 * Create the admin queue pair.
2332 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2333 != DDI_SUCCESS) {
2334 dev_err(nvme->n_dip, CE_WARN,
2335 "!unable to allocate admin qpair");
2336 goto fail;
2338 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2339 nvme->n_ioq[0] = nvme->n_adminq;
2341 nvme->n_progress |= NVME_ADMIN_QUEUE;
2343 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2344 "admin-queue-len", nvme->n_admin_queue_len);
2346 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2347 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2348 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2350 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2351 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2353 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2354 nvme_put64(nvme, NVME_REG_ASQ, asq);
2355 nvme_put64(nvme, NVME_REG_ACQ, acq);
2357 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2358 cc.b.cc_css = 0; /* use NVM command set */
2359 cc.b.cc_mps = nvme->n_pageshift - 12;
2360 cc.b.cc_shn = 0; /* no shutdown in progress */
2361 cc.b.cc_en = 1; /* enable controller */
2362 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2363 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2365 nvme_put32(nvme, NVME_REG_CC, cc.r);
2368 * Wait for the controller to become ready.
2370 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2371 if (csts.b.csts_rdy == 0) {
2372 for (i = 0; i != nvme->n_timeout * 10; i++) {
2373 delay(drv_usectohz(50000));
2374 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2376 if (csts.b.csts_cfs == 1) {
2377 dev_err(nvme->n_dip, CE_WARN,
2378 "!controller fatal status at init");
2379 ddi_fm_service_impact(nvme->n_dip,
2380 DDI_SERVICE_LOST);
2381 nvme->n_dead = B_TRUE;
2382 goto fail;
2385 if (csts.b.csts_rdy == 1)
2386 break;
2390 if (csts.b.csts_rdy == 0) {
2391 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2392 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2393 nvme->n_dead = B_TRUE;
2394 goto fail;
2398 * Assume an abort command limit of 1. We'll destroy and re-init
2399 * that later when we know the true abort command limit.
2401 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2404 * Setup initial interrupt for admin queue.
2406 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2407 != DDI_SUCCESS) &&
2408 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2409 != DDI_SUCCESS) &&
2410 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2411 != DDI_SUCCESS)) {
2412 dev_err(nvme->n_dip, CE_WARN,
2413 "!failed to setup initial interrupt");
2414 goto fail;
2418 * Post an asynchronous event command to catch errors.
2419 * We assume the asynchronous events are supported as required by
2420 * specification (Figure 40 in section 5 of NVMe 1.2).
2421 * However, since at least qemu does not follow the specification,
2422 * we need a mechanism to protect ourselves.
2424 nvme->n_async_event_supported = B_TRUE;
2425 nvme_async_event(nvme);
2428 * Identify Controller
2430 if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2431 dev_err(nvme->n_dip, CE_WARN,
2432 "!failed to identify controller");
2433 goto fail;
2437 * Get Vendor & Product ID
2439 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2440 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2441 sata_split_model(model, &vendor, &product);
2443 if (vendor == NULL)
2444 nvme->n_vendor = strdup("NVMe");
2445 else
2446 nvme->n_vendor = strdup(vendor);
2448 nvme->n_product = strdup(product);
2451 * Get controller limits.
2453 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2454 MIN(nvme->n_admin_queue_len / 10,
2455 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2457 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2458 "async-event-limit", nvme->n_async_event_limit);
2460 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2463 * Reinitialize the semaphore with the true abort command limit
2464 * supported by the hardware. It's not necessary to disable interrupts
2465 * as only command aborts use the semaphore, and no commands are
2466 * executed or aborted while we're here.
2468 sema_destroy(&nvme->n_abort_sema);
2469 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2470 SEMA_DRIVER, NULL);
2472 nvme->n_progress |= NVME_CTRL_LIMITS;
2474 if (nvme->n_idctl->id_mdts == 0)
2475 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2476 else
2477 nvme->n_max_data_transfer_size =
2478 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2480 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2483 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2484 * Chained PRPs are currently unsupported.
2486 * This is a no-op on hardware which doesn't support a transfer size
2487 * big enough to require chained PRPs.
2489 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2490 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2492 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2495 * Make sure the minimum/maximum queue entry sizes are not
2496 * larger/smaller than the default.
2499 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2500 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2501 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2502 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2503 goto fail;
2506 * Check for the presence of a Volatile Write Cache. If present,
2507 * enable or disable based on the value of the property
2508 * volatile-write-cache-enable (default is enabled).
2510 nvme->n_write_cache_present =
2511 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2513 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2514 "volatile-write-cache-present",
2515 nvme->n_write_cache_present ? 1 : 0);
2517 if (!nvme->n_write_cache_present) {
2518 nvme->n_write_cache_enabled = B_FALSE;
2519 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2520 != 0) {
2521 dev_err(nvme->n_dip, CE_WARN,
2522 "!failed to %sable volatile write cache",
2523 nvme->n_write_cache_enabled ? "en" : "dis");
2525 * Assume the cache is (still) enabled.
2527 nvme->n_write_cache_enabled = B_TRUE;
2530 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2531 "volatile-write-cache-enable",
2532 nvme->n_write_cache_enabled ? 1 : 0);
2535 * Assume LBA Range Type feature is supported. If it isn't this
2536 * will be set to B_FALSE by nvme_get_features().
2538 nvme->n_lba_range_supported = B_TRUE;
2541 * Check support for Autonomous Power State Transition.
2543 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2544 nvme->n_auto_pst_supported =
2545 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2548 * Assume Software Progress Marker feature is supported. If it isn't
2549 * this will be set to B_FALSE by nvme_get_features().
2551 nvme->n_progress_supported = B_TRUE;
2554 * Identify Namespaces
2556 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2558 if (nvme->n_namespace_count == 0) {
2559 dev_err(nvme->n_dip, CE_WARN,
2560 "!controllers without namespaces are not supported");
2561 goto fail;
2564 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2565 dev_err(nvme->n_dip, CE_WARN,
2566 "!too many namespaces: %d, limiting to %d\n",
2567 nvme->n_namespace_count, NVME_MINOR_MAX);
2568 nvme->n_namespace_count = NVME_MINOR_MAX;
2571 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2572 nvme->n_namespace_count, KM_SLEEP);
2574 for (i = 0; i != nvme->n_namespace_count; i++) {
2575 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2576 NULL);
2577 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2578 goto fail;
2582 * Try to set up MSI/MSI-X interrupts.
2584 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2585 != 0) {
2586 nvme_release_interrupts(nvme);
2588 nqueues = MIN(UINT16_MAX, ncpus);
2590 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2591 nqueues) != DDI_SUCCESS) &&
2592 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2593 nqueues) != DDI_SUCCESS)) {
2594 dev_err(nvme->n_dip, CE_WARN,
2595 "!failed to setup MSI/MSI-X interrupts");
2596 goto fail;
2600 nqueues = nvme->n_intr_cnt;
2603 * Create I/O queue pairs.
2606 if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2607 dev_err(nvme->n_dip, CE_WARN,
2608 "!failed to set number of I/O queues to %d",
2609 nvme->n_intr_cnt);
2610 goto fail;
2614 * Reallocate I/O queue array
2616 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2617 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2618 (nqueues + 1), KM_SLEEP);
2619 nvme->n_ioq[0] = nvme->n_adminq;
2621 nvme->n_ioq_count = nqueues;
2624 * If we got less queues than we asked for we might as well give
2625 * some of the interrupt vectors back to the system.
2627 if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2628 nvme_release_interrupts(nvme);
2630 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2631 nvme->n_ioq_count) != DDI_SUCCESS) {
2632 dev_err(nvme->n_dip, CE_WARN,
2633 "!failed to reduce number of interrupts");
2634 goto fail;
2639 * Alloc & register I/O queue pairs
2641 nvme->n_io_queue_len =
2642 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2643 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2644 nvme->n_io_queue_len);
2646 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2647 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2648 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2649 dev_err(nvme->n_dip, CE_WARN,
2650 "!unable to allocate I/O qpair %d", i);
2651 goto fail;
2654 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2655 dev_err(nvme->n_dip, CE_WARN,
2656 "!unable to create I/O qpair %d", i);
2657 goto fail;
2662 * Post more asynchronous events commands to reduce event reporting
2663 * latency as suggested by the spec.
2665 if (nvme->n_async_event_supported) {
2666 for (i = 1; i != nvme->n_async_event_limit; i++)
2667 nvme_async_event(nvme);
2670 return (DDI_SUCCESS);
2672 fail:
2673 (void) nvme_reset(nvme, B_FALSE);
2674 return (DDI_FAILURE);
2677 static uint_t
2678 nvme_intr(caddr_t arg1, caddr_t arg2)
2680 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2681 nvme_t *nvme = (nvme_t *)arg1;
2682 int inum = (int)(uintptr_t)arg2;
2683 int ccnt = 0;
2684 int qnum;
2685 nvme_cmd_t *cmd;
2687 if (inum >= nvme->n_intr_cnt)
2688 return (DDI_INTR_UNCLAIMED);
2690 if (nvme->n_dead)
2691 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2692 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2695 * The interrupt vector a queue uses is calculated as queue_idx %
2696 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2697 * in steps of n_intr_cnt to process all queues using this vector.
2699 for (qnum = inum;
2700 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2701 qnum += nvme->n_intr_cnt) {
2702 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2703 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2704 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2705 ccnt++;
2709 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2712 static void
2713 nvme_release_interrupts(nvme_t *nvme)
2715 int i;
2717 for (i = 0; i < nvme->n_intr_cnt; i++) {
2718 if (nvme->n_inth[i] == NULL)
2719 break;
2721 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2722 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2723 else
2724 (void) ddi_intr_disable(nvme->n_inth[i]);
2726 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2727 (void) ddi_intr_free(nvme->n_inth[i]);
2730 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2731 nvme->n_inth = NULL;
2732 nvme->n_inth_sz = 0;
2734 nvme->n_progress &= ~NVME_INTERRUPTS;
2737 static int
2738 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2740 int nintrs, navail, count;
2741 int ret;
2742 int i;
2744 if (nvme->n_intr_types == 0) {
2745 ret = ddi_intr_get_supported_types(nvme->n_dip,
2746 &nvme->n_intr_types);
2747 if (ret != DDI_SUCCESS) {
2748 dev_err(nvme->n_dip, CE_WARN,
2749 "!%s: ddi_intr_get_supported types failed",
2750 __func__);
2751 return (ret);
2753 #ifdef __x86
2754 if (get_hwenv() == HW_VMWARE)
2755 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2756 #endif
2759 if ((nvme->n_intr_types & intr_type) == 0)
2760 return (DDI_FAILURE);
2762 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2763 if (ret != DDI_SUCCESS) {
2764 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2765 __func__);
2766 return (ret);
2769 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2770 if (ret != DDI_SUCCESS) {
2771 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2772 __func__);
2773 return (ret);
2776 /* We want at most one interrupt per queue pair. */
2777 if (navail > nqpairs)
2778 navail = nqpairs;
2780 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2781 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2783 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2784 &count, 0);
2785 if (ret != DDI_SUCCESS) {
2786 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2787 __func__);
2788 goto fail;
2791 nvme->n_intr_cnt = count;
2793 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2794 if (ret != DDI_SUCCESS) {
2795 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2796 __func__);
2797 goto fail;
2800 for (i = 0; i < count; i++) {
2801 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2802 (void *)nvme, (void *)(uintptr_t)i);
2803 if (ret != DDI_SUCCESS) {
2804 dev_err(nvme->n_dip, CE_WARN,
2805 "!%s: ddi_intr_add_handler failed", __func__);
2806 goto fail;
2810 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2812 for (i = 0; i < count; i++) {
2813 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2814 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2815 else
2816 ret = ddi_intr_enable(nvme->n_inth[i]);
2818 if (ret != DDI_SUCCESS) {
2819 dev_err(nvme->n_dip, CE_WARN,
2820 "!%s: enabling interrupt %d failed", __func__, i);
2821 goto fail;
2825 nvme->n_intr_type = intr_type;
2827 nvme->n_progress |= NVME_INTERRUPTS;
2829 return (DDI_SUCCESS);
2831 fail:
2832 nvme_release_interrupts(nvme);
2834 return (ret);
2837 static int
2838 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2840 _NOTE(ARGUNUSED(arg));
2842 pci_ereport_post(dip, fm_error, NULL);
2843 return (fm_error->fme_status);
2846 static int
2847 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2849 nvme_t *nvme;
2850 int instance;
2851 int nregs;
2852 off_t regsize;
2853 int i;
2854 char name[32];
2856 if (cmd != DDI_ATTACH)
2857 return (DDI_FAILURE);
2859 instance = ddi_get_instance(dip);
2861 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2862 return (DDI_FAILURE);
2864 nvme = ddi_get_soft_state(nvme_state, instance);
2865 ddi_set_driver_private(dip, nvme);
2866 nvme->n_dip = dip;
2868 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2870 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2871 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2872 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2873 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2874 B_TRUE : B_FALSE;
2875 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2876 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2877 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2878 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2879 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2880 DDI_PROP_DONTPASS, "async-event-limit",
2881 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2882 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2883 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2884 B_TRUE : B_FALSE;
2885 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2886 DDI_PROP_DONTPASS, "min-phys-block-size",
2887 NVME_DEFAULT_MIN_BLOCK_SIZE);
2889 if (!ISP2(nvme->n_min_block_size) ||
2890 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2891 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2892 "using default %d", ISP2(nvme->n_min_block_size) ?
2893 "too low" : "not a power of 2",
2894 NVME_DEFAULT_MIN_BLOCK_SIZE);
2895 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2898 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2899 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2900 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2901 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2903 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2904 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2906 if (nvme->n_async_event_limit < 1)
2907 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2909 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2910 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2911 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2912 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2915 * Setup FMA support.
2917 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2918 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2919 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2920 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2922 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2924 if (nvme->n_fm_cap) {
2925 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2926 nvme->n_reg_acc_attr.devacc_attr_access =
2927 DDI_FLAGERR_ACC;
2929 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2930 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2931 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2934 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2935 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2936 pci_ereport_setup(dip);
2938 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2939 ddi_fm_handler_register(dip, nvme_fm_errcb,
2940 (void *)nvme);
2943 nvme->n_progress |= NVME_FMA_INIT;
2946 * The spec defines several register sets. Only the controller
2947 * registers (set 1) are currently used.
2949 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2950 nregs < 2 ||
2951 ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2952 goto fail;
2954 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2955 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2956 dev_err(dip, CE_WARN, "!failed to map regset 1");
2957 goto fail;
2960 nvme->n_progress |= NVME_REGS_MAPPED;
2963 * Create taskq for command completion.
2965 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2966 ddi_driver_name(dip), ddi_get_instance(dip));
2967 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2968 TASKQ_DEFAULTPRI, 0);
2969 if (nvme->n_cmd_taskq == NULL) {
2970 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2971 goto fail;
2975 * Create PRP DMA cache
2977 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2978 ddi_driver_name(dip), ddi_get_instance(dip));
2979 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2980 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2981 NULL, (void *)nvme, NULL, 0);
2983 if (nvme_init(nvme) != DDI_SUCCESS)
2984 goto fail;
2987 * Attach the blkdev driver for each namespace.
2989 for (i = 0; i != nvme->n_namespace_count; i++) {
2990 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2991 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2992 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2993 dev_err(dip, CE_WARN,
2994 "!failed to create minor node for namespace %d", i);
2995 goto fail;
2998 if (nvme->n_ns[i].ns_ignore)
2999 continue;
3001 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3002 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3004 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3005 dev_err(dip, CE_WARN,
3006 "!failed to get blkdev handle for namespace %d", i);
3007 goto fail;
3010 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3011 != DDI_SUCCESS) {
3012 dev_err(dip, CE_WARN,
3013 "!failed to attach blkdev handle for namespace %d",
3015 goto fail;
3019 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3020 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3021 != DDI_SUCCESS) {
3022 dev_err(dip, CE_WARN, "nvme_attach: "
3023 "cannot create devctl minor node");
3024 goto fail;
3027 return (DDI_SUCCESS);
3029 fail:
3030 /* attach successful anyway so that FMA can retire the device */
3031 if (nvme->n_dead)
3032 return (DDI_SUCCESS);
3034 (void) nvme_detach(dip, DDI_DETACH);
3036 return (DDI_FAILURE);
3039 static int
3040 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3042 int instance, i;
3043 nvme_t *nvme;
3045 if (cmd != DDI_DETACH)
3046 return (DDI_FAILURE);
3048 instance = ddi_get_instance(dip);
3050 nvme = ddi_get_soft_state(nvme_state, instance);
3052 if (nvme == NULL)
3053 return (DDI_FAILURE);
3055 ddi_remove_minor_node(dip, "devctl");
3056 mutex_destroy(&nvme->n_minor.nm_mutex);
3058 if (nvme->n_ns) {
3059 for (i = 0; i != nvme->n_namespace_count; i++) {
3060 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3061 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3063 if (nvme->n_ns[i].ns_bd_hdl) {
3064 (void) bd_detach_handle(
3065 nvme->n_ns[i].ns_bd_hdl);
3066 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3069 if (nvme->n_ns[i].ns_idns)
3070 kmem_free(nvme->n_ns[i].ns_idns,
3071 sizeof (nvme_identify_nsid_t));
3072 if (nvme->n_ns[i].ns_devid)
3073 strfree(nvme->n_ns[i].ns_devid);
3076 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3077 nvme->n_namespace_count);
3080 if (nvme->n_progress & NVME_INTERRUPTS)
3081 nvme_release_interrupts(nvme);
3083 if (nvme->n_cmd_taskq)
3084 ddi_taskq_wait(nvme->n_cmd_taskq);
3086 if (nvme->n_ioq_count > 0) {
3087 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3088 if (nvme->n_ioq[i] != NULL) {
3089 /* TODO: send destroy queue commands */
3090 nvme_free_qpair(nvme->n_ioq[i]);
3094 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3095 (nvme->n_ioq_count + 1));
3098 if (nvme->n_prp_cache != NULL) {
3099 kmem_cache_destroy(nvme->n_prp_cache);
3102 if (nvme->n_progress & NVME_REGS_MAPPED) {
3103 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3104 (void) nvme_reset(nvme, B_FALSE);
3107 if (nvme->n_cmd_taskq)
3108 ddi_taskq_destroy(nvme->n_cmd_taskq);
3110 if (nvme->n_progress & NVME_CTRL_LIMITS)
3111 sema_destroy(&nvme->n_abort_sema);
3113 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3114 nvme_free_qpair(nvme->n_adminq);
3116 if (nvme->n_idctl)
3117 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3119 if (nvme->n_progress & NVME_REGS_MAPPED)
3120 ddi_regs_map_free(&nvme->n_regh);
3122 if (nvme->n_progress & NVME_FMA_INIT) {
3123 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3124 ddi_fm_handler_unregister(nvme->n_dip);
3126 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3127 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3128 pci_ereport_teardown(nvme->n_dip);
3130 ddi_fm_fini(nvme->n_dip);
3133 if (nvme->n_vendor != NULL)
3134 strfree(nvme->n_vendor);
3136 if (nvme->n_product != NULL)
3137 strfree(nvme->n_product);
3139 ddi_soft_state_free(nvme_state, instance);
3141 return (DDI_SUCCESS);
3144 static int
3145 nvme_quiesce(dev_info_t *dip)
3147 int instance;
3148 nvme_t *nvme;
3150 instance = ddi_get_instance(dip);
3152 nvme = ddi_get_soft_state(nvme_state, instance);
3154 if (nvme == NULL)
3155 return (DDI_FAILURE);
3157 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3159 (void) nvme_reset(nvme, B_TRUE);
3161 return (DDI_FAILURE);
3164 static int
3165 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3167 nvme_t *nvme = cmd->nc_nvme;
3168 int nprp_page, nprp;
3169 uint64_t *prp;
3171 if (xfer->x_ndmac == 0)
3172 return (DDI_FAILURE);
3174 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3175 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3177 if (xfer->x_ndmac == 1) {
3178 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3179 return (DDI_SUCCESS);
3180 } else if (xfer->x_ndmac == 2) {
3181 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3182 return (DDI_SUCCESS);
3185 xfer->x_ndmac--;
3187 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3188 ASSERT(nprp_page > 0);
3189 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3192 * We currently don't support chained PRPs and set up our DMA
3193 * attributes to reflect that. If we still get an I/O request
3194 * that needs a chained PRP something is very wrong.
3196 VERIFY(nprp == 1);
3198 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3199 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3201 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3203 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3204 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3205 xfer->x_ndmac > 0;
3206 prp++, xfer->x_ndmac--) {
3207 *prp = xfer->x_dmac.dmac_laddress;
3208 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3211 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3212 DDI_DMA_SYNC_FORDEV);
3213 return (DDI_SUCCESS);
3216 static nvme_cmd_t *
3217 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3219 nvme_t *nvme = ns->ns_nvme;
3220 nvme_cmd_t *cmd;
3223 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3225 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3226 KM_NOSLEEP : KM_SLEEP);
3228 if (cmd == NULL)
3229 return (NULL);
3231 cmd->nc_sqe.sqe_opc = opc;
3232 cmd->nc_callback = nvme_bd_xfer_done;
3233 cmd->nc_xfer = xfer;
3235 switch (opc) {
3236 case NVME_OPC_NVM_WRITE:
3237 case NVME_OPC_NVM_READ:
3238 VERIFY(xfer->x_nblks <= 0x10000);
3240 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3242 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3243 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3244 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3246 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3247 goto fail;
3248 break;
3250 case NVME_OPC_NVM_FLUSH:
3251 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3252 break;
3254 default:
3255 goto fail;
3258 return (cmd);
3260 fail:
3261 nvme_free_cmd(cmd);
3262 return (NULL);
3265 static void
3266 nvme_bd_xfer_done(void *arg)
3268 nvme_cmd_t *cmd = arg;
3269 bd_xfer_t *xfer = cmd->nc_xfer;
3270 int error = 0;
3272 error = nvme_check_cmd_status(cmd);
3273 nvme_free_cmd(cmd);
3275 bd_xfer_done(xfer, error);
3278 static void
3279 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3281 nvme_namespace_t *ns = arg;
3282 nvme_t *nvme = ns->ns_nvme;
3285 * blkdev maintains one queue size per instance (namespace),
3286 * but all namespace share the I/O queues.
3287 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3288 * or change blkdev to handle EAGAIN
3290 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3291 / nvme->n_namespace_count;
3294 * d_maxxfer is not set, which means the value is taken from the DMA
3295 * attributes specified to bd_alloc_handle.
3298 drive->d_removable = B_FALSE;
3299 drive->d_hotpluggable = B_FALSE;
3301 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3302 drive->d_target = ns->ns_id;
3303 drive->d_lun = 0;
3305 drive->d_model = nvme->n_idctl->id_model;
3306 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3307 drive->d_vendor = nvme->n_vendor;
3308 drive->d_vendor_len = strlen(nvme->n_vendor);
3309 drive->d_product = nvme->n_product;
3310 drive->d_product_len = strlen(nvme->n_product);
3311 drive->d_serial = nvme->n_idctl->id_serial;
3312 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3313 drive->d_revision = nvme->n_idctl->id_fwrev;
3314 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3317 static int
3318 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3320 nvme_namespace_t *ns = arg;
3322 media->m_nblks = ns->ns_block_count;
3323 media->m_blksize = ns->ns_block_size;
3324 media->m_readonly = B_FALSE;
3325 media->m_solidstate = B_TRUE;
3327 media->m_pblksize = ns->ns_best_block_size;
3329 return (0);
3332 static int
3333 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3335 nvme_t *nvme = ns->ns_nvme;
3336 nvme_cmd_t *cmd;
3337 nvme_qpair_t *ioq;
3338 boolean_t poll;
3339 int ret;
3341 if (nvme->n_dead)
3342 return (EIO);
3344 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3345 if (cmd == NULL)
3346 return (ENOMEM);
3348 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3349 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3350 ioq = nvme->n_ioq[cmd->nc_sqid];
3353 * Get the polling flag before submitting the command. The command may
3354 * complete immediately after it was submitted, which means we must
3355 * treat both cmd and xfer as if they have been freed already.
3357 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3359 ret = nvme_submit_io_cmd(ioq, cmd);
3361 if (ret != 0)
3362 return (ret);
3364 if (!poll)
3365 return (0);
3367 do {
3368 cmd = nvme_retrieve_cmd(nvme, ioq);
3369 if (cmd != NULL)
3370 nvme_bd_xfer_done(cmd);
3371 else
3372 drv_usecwait(10);
3373 } while (ioq->nq_active_cmds != 0);
3375 return (0);
3378 static int
3379 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3381 nvme_namespace_t *ns = arg;
3383 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3386 static int
3387 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3389 nvme_namespace_t *ns = arg;
3391 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3394 static int
3395 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3397 nvme_namespace_t *ns = arg;
3399 if (ns->ns_nvme->n_dead)
3400 return (EIO);
3403 * If the volatile write cache is not present or not enabled the FLUSH
3404 * command is a no-op, so we can take a shortcut here.
3406 if (!ns->ns_nvme->n_write_cache_present) {
3407 bd_xfer_done(xfer, ENOTSUP);
3408 return (0);
3411 if (!ns->ns_nvme->n_write_cache_enabled) {
3412 bd_xfer_done(xfer, 0);
3413 return (0);
3416 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3419 static int
3420 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3422 nvme_namespace_t *ns = arg;
3424 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3425 if (*(uint64_t *)ns->ns_eui64 != 0) {
3426 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3427 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3428 } else {
3429 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3430 strlen(ns->ns_devid), ns->ns_devid, devid));
3434 static int
3435 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3437 #ifndef __lock_lint
3438 _NOTE(ARGUNUSED(cred_p));
3439 #endif
3440 minor_t minor = getminor(*devp);
3441 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3442 int nsid = NVME_MINOR_NSID(minor);
3443 nvme_minor_state_t *nm;
3444 int rv = 0;
3446 if (otyp != OTYP_CHR)
3447 return (EINVAL);
3449 if (nvme == NULL)
3450 return (ENXIO);
3452 if (nsid > nvme->n_namespace_count)
3453 return (ENXIO);
3455 if (nvme->n_dead)
3456 return (EIO);
3458 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3460 mutex_enter(&nm->nm_mutex);
3461 if (nm->nm_oexcl) {
3462 rv = EBUSY;
3463 goto out;
3466 if (flag & FEXCL) {
3467 if (nm->nm_ocnt != 0) {
3468 rv = EBUSY;
3469 goto out;
3471 nm->nm_oexcl = B_TRUE;
3474 nm->nm_ocnt++;
3476 out:
3477 mutex_exit(&nm->nm_mutex);
3478 return (rv);
3482 static int
3483 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3485 #ifndef __lock_lint
3486 _NOTE(ARGUNUSED(cred_p));
3487 _NOTE(ARGUNUSED(flag));
3488 #endif
3489 minor_t minor = getminor(dev);
3490 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3491 int nsid = NVME_MINOR_NSID(minor);
3492 nvme_minor_state_t *nm;
3494 if (otyp != OTYP_CHR)
3495 return (ENXIO);
3497 if (nvme == NULL)
3498 return (ENXIO);
3500 if (nsid > nvme->n_namespace_count)
3501 return (ENXIO);
3503 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3505 mutex_enter(&nm->nm_mutex);
3506 if (nm->nm_oexcl)
3507 nm->nm_oexcl = B_FALSE;
3509 ASSERT(nm->nm_ocnt > 0);
3510 nm->nm_ocnt--;
3511 mutex_exit(&nm->nm_mutex);
3513 return (0);
3516 static int
3517 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3518 cred_t *cred_p)
3520 _NOTE(ARGUNUSED(cred_p));
3521 int rv = 0;
3522 void *idctl;
3524 if ((mode & FREAD) == 0)
3525 return (EPERM);
3527 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3528 return (EINVAL);
3530 if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3531 return (rv);
3533 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3534 != 0)
3535 rv = EFAULT;
3537 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3539 return (rv);
3542 static int
3543 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3544 int mode, cred_t *cred_p)
3546 _NOTE(ARGUNUSED(nsid, cred_p));
3547 int rv = 0;
3548 nvme_reg_cap_t cap = { 0 };
3549 nvme_capabilities_t nc;
3551 if ((mode & FREAD) == 0)
3552 return (EPERM);
3554 if (nioc->n_len < sizeof (nc))
3555 return (EINVAL);
3557 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3560 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3561 * specify the base page size of 4k (1<<12), so add 12 here to
3562 * get the real page size value.
3564 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3565 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3567 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3568 rv = EFAULT;
3570 return (rv);
3573 static int
3574 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3575 int mode, cred_t *cred_p)
3577 _NOTE(ARGUNUSED(cred_p));
3578 void *log = NULL;
3579 size_t bufsize = 0;
3580 int rv = 0;
3582 if ((mode & FREAD) == 0)
3583 return (EPERM);
3585 switch (nioc->n_arg) {
3586 case NVME_LOGPAGE_ERROR:
3587 if (nsid != 0)
3588 return (EINVAL);
3589 break;
3590 case NVME_LOGPAGE_HEALTH:
3591 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3592 return (EINVAL);
3594 if (nsid == 0)
3595 nsid = (uint32_t)-1;
3597 break;
3598 case NVME_LOGPAGE_FWSLOT:
3599 if (nsid != 0)
3600 return (EINVAL);
3601 break;
3602 default:
3603 return (EINVAL);
3606 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3607 != DDI_SUCCESS)
3608 return (EIO);
3610 if (nioc->n_len < bufsize) {
3611 kmem_free(log, bufsize);
3612 return (EINVAL);
3615 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3616 rv = EFAULT;
3618 nioc->n_len = bufsize;
3619 kmem_free(log, bufsize);
3621 return (rv);
3624 static int
3625 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3626 int mode, cred_t *cred_p)
3628 _NOTE(ARGUNUSED(cred_p));
3629 void *buf = NULL;
3630 size_t bufsize = 0;
3631 uint32_t res = 0;
3632 uint8_t feature;
3633 int rv = 0;
3635 if ((mode & FREAD) == 0)
3636 return (EPERM);
3638 if ((nioc->n_arg >> 32) > 0xff)
3639 return (EINVAL);
3641 feature = (uint8_t)(nioc->n_arg >> 32);
3643 switch (feature) {
3644 case NVME_FEAT_ARBITRATION:
3645 case NVME_FEAT_POWER_MGMT:
3646 case NVME_FEAT_TEMPERATURE:
3647 case NVME_FEAT_ERROR:
3648 case NVME_FEAT_NQUEUES:
3649 case NVME_FEAT_INTR_COAL:
3650 case NVME_FEAT_WRITE_ATOM:
3651 case NVME_FEAT_ASYNC_EVENT:
3652 case NVME_FEAT_PROGRESS:
3653 if (nsid != 0)
3654 return (EINVAL);
3655 break;
3657 case NVME_FEAT_INTR_VECT:
3658 if (nsid != 0)
3659 return (EINVAL);
3661 res = nioc->n_arg & 0xffffffffUL;
3662 if (res >= nvme->n_intr_cnt)
3663 return (EINVAL);
3664 break;
3666 case NVME_FEAT_LBA_RANGE:
3667 if (nvme->n_lba_range_supported == B_FALSE)
3668 return (EINVAL);
3670 if (nsid == 0 ||
3671 nsid > nvme->n_namespace_count)
3672 return (EINVAL);
3674 break;
3676 case NVME_FEAT_WRITE_CACHE:
3677 if (nsid != 0)
3678 return (EINVAL);
3680 if (!nvme->n_write_cache_present)
3681 return (EINVAL);
3683 break;
3685 case NVME_FEAT_AUTO_PST:
3686 if (nsid != 0)
3687 return (EINVAL);
3689 if (!nvme->n_auto_pst_supported)
3690 return (EINVAL);
3692 break;
3694 default:
3695 return (EINVAL);
3698 rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3699 if (rv != 0)
3700 return (rv);
3702 if (nioc->n_len < bufsize) {
3703 kmem_free(buf, bufsize);
3704 return (EINVAL);
3707 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3708 rv = EFAULT;
3710 kmem_free(buf, bufsize);
3711 nioc->n_arg = res;
3712 nioc->n_len = bufsize;
3714 return (rv);
3717 static int
3718 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3719 cred_t *cred_p)
3721 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3723 if ((mode & FREAD) == 0)
3724 return (EPERM);
3726 nioc->n_arg = nvme->n_intr_cnt;
3727 return (0);
3730 static int
3731 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3732 cred_t *cred_p)
3734 _NOTE(ARGUNUSED(nsid, cred_p));
3735 int rv = 0;
3737 if ((mode & FREAD) == 0)
3738 return (EPERM);
3740 if (nioc->n_len < sizeof (nvme->n_version))
3741 return (ENOMEM);
3743 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3744 sizeof (nvme->n_version), mode) != 0)
3745 rv = EFAULT;
3747 return (rv);
3750 static int
3751 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3752 cred_t *cred_p)
3754 _NOTE(ARGUNUSED(mode));
3755 nvme_format_nvm_t frmt = { 0 };
3756 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3758 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3759 return (EPERM);
3761 frmt.r = nioc->n_arg & 0xffffffff;
3764 * Check whether the FORMAT NVM command is supported.
3766 if (nvme->n_idctl->id_oacs.oa_format == 0)
3767 return (EINVAL);
3770 * Don't allow format or secure erase of individual namespace if that
3771 * would cause a format or secure erase of all namespaces.
3773 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3774 return (EINVAL);
3776 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3777 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3778 return (EINVAL);
3781 * Don't allow formatting with Protection Information.
3783 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3784 return (EINVAL);
3787 * Don't allow formatting using an illegal LBA format, or any LBA format
3788 * that uses metadata.
3790 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3791 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3792 return (EINVAL);
3795 * Don't allow formatting using an illegal Secure Erase setting.
3797 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3798 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3799 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3800 return (EINVAL);
3802 if (nsid == 0)
3803 nsid = (uint32_t)-1;
3805 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3806 frmt.b.fm_ses));
3809 static int
3810 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3811 cred_t *cred_p)
3813 _NOTE(ARGUNUSED(nioc, mode));
3814 int rv = 0;
3816 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3817 return (EPERM);
3819 if (nsid == 0)
3820 return (EINVAL);
3822 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3823 if (rv != DDI_SUCCESS)
3824 rv = EBUSY;
3826 return (rv);
3829 static int
3830 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3831 cred_t *cred_p)
3833 _NOTE(ARGUNUSED(nioc, mode));
3834 nvme_identify_nsid_t *idns;
3835 int rv = 0;
3837 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3838 return (EPERM);
3840 if (nsid == 0)
3841 return (EINVAL);
3844 * Identify namespace again, free old identify data.
3846 idns = nvme->n_ns[nsid - 1].ns_idns;
3847 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3848 return (EIO);
3850 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3852 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3853 if (rv != DDI_SUCCESS)
3854 rv = EBUSY;
3856 return (rv);
3859 static int
3860 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3861 int *rval_p)
3863 #ifndef __lock_lint
3864 _NOTE(ARGUNUSED(rval_p));
3865 #endif
3866 minor_t minor = getminor(dev);
3867 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3868 int nsid = NVME_MINOR_NSID(minor);
3869 int rv = 0;
3870 nvme_ioctl_t nioc;
3872 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3873 NULL,
3874 nvme_ioctl_identify,
3875 nvme_ioctl_identify,
3876 nvme_ioctl_capabilities,
3877 nvme_ioctl_get_logpage,
3878 nvme_ioctl_get_features,
3879 nvme_ioctl_intr_cnt,
3880 nvme_ioctl_version,
3881 nvme_ioctl_format,
3882 nvme_ioctl_detach,
3883 nvme_ioctl_attach
3886 if (nvme == NULL)
3887 return (ENXIO);
3889 if (nsid > nvme->n_namespace_count)
3890 return (ENXIO);
3892 if (IS_DEVCTL(cmd))
3893 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3895 #ifdef _MULTI_DATAMODEL
3896 switch (ddi_model_convert_from(mode & FMODELS)) {
3897 case DDI_MODEL_ILP32: {
3898 nvme_ioctl32_t nioc32;
3899 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3900 mode) != 0)
3901 return (EFAULT);
3902 nioc.n_len = nioc32.n_len;
3903 nioc.n_buf = nioc32.n_buf;
3904 nioc.n_arg = nioc32.n_arg;
3905 break;
3907 case DDI_MODEL_NONE:
3908 #endif
3909 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3910 != 0)
3911 return (EFAULT);
3912 #ifdef _MULTI_DATAMODEL
3913 break;
3915 #endif
3917 if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3918 return (EIO);
3921 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3923 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3924 * attachment point nodes.
3926 nsid = 0;
3927 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3929 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3930 * will always return identify data for namespace 1.
3932 nsid = 1;
3935 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3936 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3937 cred_p);
3938 else
3939 rv = EINVAL;
3941 #ifdef _MULTI_DATAMODEL
3942 switch (ddi_model_convert_from(mode & FMODELS)) {
3943 case DDI_MODEL_ILP32: {
3944 nvme_ioctl32_t nioc32;
3946 nioc32.n_len = (size32_t)nioc.n_len;
3947 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3948 nioc32.n_arg = nioc.n_arg;
3950 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3951 mode) != 0)
3952 return (EFAULT);
3953 break;
3955 case DDI_MODEL_NONE:
3956 #endif
3957 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3958 != 0)
3959 return (EFAULT);
3960 #ifdef _MULTI_DATAMODEL
3961 break;
3963 #endif
3965 return (rv);