Merge commit 'bb1f424574ac8e08069d0ba993c2a41ffe796794'
[unleashed.git] / kernel / fs / zfs / vdev_removal.c
blob06e25a59ad0613f840bc3eb1bd34d47776c6deca
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
50 * This file contains the necessary logic to remove vdevs from a
51 * storage pool. Currently, the only devices that can be removed
52 * are log, cache, and spare devices; and top level vdevs from a pool
53 * w/o raidz. (Note that members of a mirror can also be removed
54 * by the detach operation.)
56 * Log vdevs are removed by evacuating them and then turning the vdev
57 * into a hole vdev while holding spa config locks.
59 * Top level vdevs are removed and converted into an indirect vdev via
60 * a multi-step process:
62 * - Disable allocations from this device (spa_vdev_remove_top).
64 * - From a new thread (spa_vdev_remove_thread), copy data from
65 * the removing vdev to a different vdev. The copy happens in open
66 * context (spa_vdev_copy_impl) and issues a sync task
67 * (vdev_mapping_sync) so the sync thread can update the partial
68 * indirect mappings in core and on disk.
70 * - If a free happens during a removal, it is freed from the
71 * removing vdev, and if it has already been copied, from the new
72 * location as well (free_from_removing_vdev).
74 * - After the removal is completed, the copy thread converts the vdev
75 * into an indirect vdev (vdev_remove_complete) before instructing
76 * the sync thread to destroy the space maps and finish the removal
77 * (spa_finish_removal).
80 typedef struct vdev_copy_arg {
81 metaslab_t *vca_msp;
82 uint64_t vca_outstanding_bytes;
83 kcondvar_t vca_cv;
84 kmutex_t vca_lock;
85 } vdev_copy_arg_t;
88 * The maximum amount of memory we can use for outstanding i/o while
89 * doing a device removal. This determines how much i/o we can have
90 * in flight concurrently.
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
95 * The largest contiguous segment that we will attempt to allocate when
96 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
97 * there is a performance problem with attempting to allocate large blocks,
98 * consider decreasing this.
100 * Note: we will issue I/Os of up to this size. The mpt driver does not
101 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When
102 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103 * 2 physically contiguous pages; if this allocation fails, mpt will drop
104 * the I/O and hang the device.)
106 int zfs_remove_max_segment = 1024 * 1024;
109 * This is used by the test suite so that it can ensure that certain
110 * actions happen while in the middle of a removal.
112 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
114 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
116 static void spa_vdev_remove_thread(void *arg);
118 static void
119 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
121 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
122 DMU_POOL_DIRECTORY_OBJECT,
123 DMU_POOL_REMOVING, sizeof (uint64_t),
124 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
125 &spa->spa_removing_phys, tx));
128 static nvlist_t *
129 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
131 for (int i = 0; i < count; i++) {
132 uint64_t guid =
133 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
135 if (guid == target_guid)
136 return (nvpp[i]);
139 return (NULL);
142 static void
143 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
144 nvlist_t *dev_to_remove)
146 nvlist_t **newdev = NULL;
148 if (count > 1)
149 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
151 for (int i = 0, j = 0; i < count; i++) {
152 if (dev[i] == dev_to_remove)
153 continue;
154 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
157 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
158 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
160 for (int i = 0; i < count - 1; i++)
161 nvlist_free(newdev[i]);
163 if (count > 1)
164 kmem_free(newdev, (count - 1) * sizeof (void *));
167 static spa_vdev_removal_t *
168 spa_vdev_removal_create(vdev_t *vd)
170 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
171 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
172 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
173 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
174 svr->svr_vdev_id = vd->vdev_id;
176 for (int i = 0; i < TXG_SIZE; i++) {
177 svr->svr_frees[i] = range_tree_create(NULL, NULL);
178 list_create(&svr->svr_new_segments[i],
179 sizeof (vdev_indirect_mapping_entry_t),
180 offsetof(vdev_indirect_mapping_entry_t, vime_node));
183 return (svr);
186 void
187 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
189 for (int i = 0; i < TXG_SIZE; i++) {
190 ASSERT0(svr->svr_bytes_done[i]);
191 ASSERT0(svr->svr_max_offset_to_sync[i]);
192 range_tree_destroy(svr->svr_frees[i]);
193 list_destroy(&svr->svr_new_segments[i]);
196 range_tree_destroy(svr->svr_allocd_segs);
197 mutex_destroy(&svr->svr_lock);
198 cv_destroy(&svr->svr_cv);
199 kmem_free(svr, sizeof (*svr));
203 * This is called as a synctask in the txg in which we will mark this vdev
204 * as removing (in the config stored in the MOS).
206 * It begins the evacuation of a toplevel vdev by:
207 * - initializing the spa_removing_phys which tracks this removal
208 * - computing the amount of space to remove for accounting purposes
209 * - dirtying all dbufs in the spa_config_object
210 * - creating the spa_vdev_removal
211 * - starting the spa_vdev_remove_thread
213 static void
214 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
216 int vdev_id = (uintptr_t)arg;
217 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
218 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
219 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
220 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
221 spa_vdev_removal_t *svr = NULL;
222 uint64_t txg = dmu_tx_get_txg(tx);
224 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
225 svr = spa_vdev_removal_create(vd);
227 ASSERT(vd->vdev_removing);
228 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
230 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
231 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
233 * By activating the OBSOLETE_COUNTS feature, we prevent
234 * the pool from being downgraded and ensure that the
235 * refcounts are precise.
237 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
238 uint64_t one = 1;
239 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
240 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
241 &one, tx));
242 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
245 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
246 vd->vdev_indirect_mapping =
247 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
248 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
249 vd->vdev_indirect_births =
250 vdev_indirect_births_open(mos, vic->vic_births_object);
251 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
252 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
253 spa->spa_removing_phys.sr_end_time = 0;
254 spa->spa_removing_phys.sr_state = DSS_SCANNING;
255 spa->spa_removing_phys.sr_to_copy = 0;
256 spa->spa_removing_phys.sr_copied = 0;
259 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
260 * there may be space in the defer tree, which is free, but still
261 * counted in vs_alloc.
263 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
264 metaslab_t *ms = vd->vdev_ms[i];
265 if (ms->ms_sm == NULL)
266 continue;
269 * Sync tasks happen before metaslab_sync(), therefore
270 * smp_alloc and sm_alloc must be the same.
272 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
273 ms->ms_sm->sm_phys->smp_alloc);
275 spa->spa_removing_phys.sr_to_copy +=
276 space_map_allocated(ms->ms_sm);
279 * Space which we are freeing this txg does not need to
280 * be copied.
282 spa->spa_removing_phys.sr_to_copy -=
283 range_tree_space(ms->ms_freeing);
285 ASSERT0(range_tree_space(ms->ms_freed));
286 for (int t = 0; t < TXG_SIZE; t++)
287 ASSERT0(range_tree_space(ms->ms_allocating[t]));
291 * Sync tasks are called before metaslab_sync(), so there should
292 * be no already-synced metaslabs in the TXG_CLEAN list.
294 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
296 spa_sync_removing_state(spa, tx);
299 * All blocks that we need to read the most recent mapping must be
300 * stored on concrete vdevs. Therefore, we must dirty anything that
301 * is read before spa_remove_init(). Specifically, the
302 * spa_config_object. (Note that although we already modified the
303 * spa_config_object in spa_sync_removing_state, that may not have
304 * modified all blocks of the object.)
306 dmu_object_info_t doi;
307 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
308 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
309 dmu_buf_t *dbuf;
310 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
311 offset, FTAG, &dbuf, 0));
312 dmu_buf_will_dirty(dbuf, tx);
313 offset += dbuf->db_size;
314 dmu_buf_rele(dbuf, FTAG);
318 * Now that we've allocated the im_object, dirty the vdev to ensure
319 * that the object gets written to the config on disk.
321 vdev_config_dirty(vd);
323 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
324 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
325 vic->vic_mapping_object);
327 spa_history_log_internal(spa, "vdev remove started", tx,
328 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
329 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
331 * Setting spa_vdev_removal causes subsequent frees to call
332 * free_from_removing_vdev(). Note that we don't need any locking
333 * because we are the sync thread, and metaslab_free_impl() is only
334 * called from syncing context (potentially from a zio taskq thread,
335 * but in any case only when there are outstanding free i/os, which
336 * there are not).
338 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
339 spa->spa_vdev_removal = svr;
340 svr->svr_thread = thread_create(NULL, 0,
341 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
345 * When we are opening a pool, we must read the mapping for each
346 * indirect vdev in order from most recently removed to least
347 * recently removed. We do this because the blocks for the mapping
348 * of older indirect vdevs may be stored on more recently removed vdevs.
349 * In order to read each indirect mapping object, we must have
350 * initialized all more recently removed vdevs.
353 spa_remove_init(spa_t *spa)
355 int error;
357 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
358 DMU_POOL_DIRECTORY_OBJECT,
359 DMU_POOL_REMOVING, sizeof (uint64_t),
360 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
361 &spa->spa_removing_phys);
363 if (error == ENOENT) {
364 spa->spa_removing_phys.sr_state = DSS_NONE;
365 spa->spa_removing_phys.sr_removing_vdev = -1;
366 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
367 spa->spa_indirect_vdevs_loaded = B_TRUE;
368 return (0);
369 } else if (error != 0) {
370 return (error);
373 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
375 * We are currently removing a vdev. Create and
376 * initialize a spa_vdev_removal_t from the bonus
377 * buffer of the removing vdevs vdev_im_object, and
378 * initialize its partial mapping.
380 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
381 vdev_t *vd = vdev_lookup_top(spa,
382 spa->spa_removing_phys.sr_removing_vdev);
384 if (vd == NULL) {
385 spa_config_exit(spa, SCL_STATE, FTAG);
386 return (EINVAL);
389 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
391 ASSERT(vdev_is_concrete(vd));
392 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
393 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
394 ASSERT(vd->vdev_removing);
396 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
397 spa->spa_meta_objset, vic->vic_mapping_object);
398 vd->vdev_indirect_births = vdev_indirect_births_open(
399 spa->spa_meta_objset, vic->vic_births_object);
400 spa_config_exit(spa, SCL_STATE, FTAG);
402 spa->spa_vdev_removal = svr;
405 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
406 uint64_t indirect_vdev_id =
407 spa->spa_removing_phys.sr_prev_indirect_vdev;
408 while (indirect_vdev_id != UINT64_MAX) {
409 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
410 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
412 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
413 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
414 spa->spa_meta_objset, vic->vic_mapping_object);
415 vd->vdev_indirect_births = vdev_indirect_births_open(
416 spa->spa_meta_objset, vic->vic_births_object);
418 indirect_vdev_id = vic->vic_prev_indirect_vdev;
420 spa_config_exit(spa, SCL_STATE, FTAG);
423 * Now that we've loaded all the indirect mappings, we can allow
424 * reads from other blocks (e.g. via predictive prefetch).
426 spa->spa_indirect_vdevs_loaded = B_TRUE;
427 return (0);
430 void
431 spa_restart_removal(spa_t *spa)
433 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
435 if (svr == NULL)
436 return;
439 * In general when this function is called there is no
440 * removal thread running. The only scenario where this
441 * is not true is during spa_import() where this function
442 * is called twice [once from spa_import_impl() and
443 * spa_async_resume()]. Thus, in the scenario where we
444 * import a pool that has an ongoing removal we don't
445 * want to spawn a second thread.
447 if (svr->svr_thread != NULL)
448 return;
450 if (!spa_writeable(spa))
451 return;
453 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
454 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
455 0, &p0, TS_RUN, minclsyspri);
459 * Process freeing from a device which is in the middle of being removed.
460 * We must handle this carefully so that we attempt to copy freed data,
461 * and we correctly free already-copied data.
463 void
464 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
466 spa_t *spa = vd->vdev_spa;
467 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
468 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
469 uint64_t txg = spa_syncing_txg(spa);
470 uint64_t max_offset_yet = 0;
472 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
473 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
474 vdev_indirect_mapping_object(vim));
475 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
477 mutex_enter(&svr->svr_lock);
480 * Remove the segment from the removing vdev's spacemap. This
481 * ensures that we will not attempt to copy this space (if the
482 * removal thread has not yet visited it), and also ensures
483 * that we know what is actually allocated on the new vdevs
484 * (needed if we cancel the removal).
486 * Note: we must do the metaslab_free_concrete() with the svr_lock
487 * held, so that the remove_thread can not load this metaslab and then
488 * visit this offset between the time that we metaslab_free_concrete()
489 * and when we check to see if it has been visited.
491 * Note: The checkpoint flag is set to false as having/taking
492 * a checkpoint and removing a device can't happen at the same
493 * time.
495 ASSERT(!spa_has_checkpoint(spa));
496 metaslab_free_concrete(vd, offset, size, B_FALSE);
498 uint64_t synced_size = 0;
499 uint64_t synced_offset = 0;
500 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
501 if (offset < max_offset_synced) {
503 * The mapping for this offset is already on disk.
504 * Free from the new location.
506 * Note that we use svr_max_synced_offset because it is
507 * updated atomically with respect to the in-core mapping.
508 * By contrast, vim_max_offset is not.
510 * This block may be split between a synced entry and an
511 * in-flight or unvisited entry. Only process the synced
512 * portion of it here.
514 synced_size = MIN(size, max_offset_synced - offset);
515 synced_offset = offset;
517 ASSERT3U(max_offset_yet, <=, max_offset_synced);
518 max_offset_yet = max_offset_synced;
520 DTRACE_PROBE3(remove__free__synced,
521 spa_t *, spa,
522 uint64_t, offset,
523 uint64_t, synced_size);
525 size -= synced_size;
526 offset += synced_size;
530 * Look at all in-flight txgs starting from the currently syncing one
531 * and see if a section of this free is being copied. By starting from
532 * this txg and iterating forward, we might find that this region
533 * was copied in two different txgs and handle it appropriately.
535 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
536 int txgoff = (txg + i) & TXG_MASK;
537 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
539 * The mapping for this offset is in flight, and
540 * will be synced in txg+i.
542 uint64_t inflight_size = MIN(size,
543 svr->svr_max_offset_to_sync[txgoff] - offset);
545 DTRACE_PROBE4(remove__free__inflight,
546 spa_t *, spa,
547 uint64_t, offset,
548 uint64_t, inflight_size,
549 uint64_t, txg + i);
552 * We copy data in order of increasing offset.
553 * Therefore the max_offset_to_sync[] must increase
554 * (or be zero, indicating that nothing is being
555 * copied in that txg).
557 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
558 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
559 >=, max_offset_yet);
560 max_offset_yet =
561 svr->svr_max_offset_to_sync[txgoff];
565 * We've already committed to copying this segment:
566 * we have allocated space elsewhere in the pool for
567 * it and have an IO outstanding to copy the data. We
568 * cannot free the space before the copy has
569 * completed, or else the copy IO might overwrite any
570 * new data. To free that space, we record the
571 * segment in the appropriate svr_frees tree and free
572 * the mapped space later, in the txg where we have
573 * completed the copy and synced the mapping (see
574 * vdev_mapping_sync).
576 range_tree_add(svr->svr_frees[txgoff],
577 offset, inflight_size);
578 size -= inflight_size;
579 offset += inflight_size;
582 * This space is already accounted for as being
583 * done, because it is being copied in txg+i.
584 * However, if i!=0, then it is being copied in
585 * a future txg. If we crash after this txg
586 * syncs but before txg+i syncs, then the space
587 * will be free. Therefore we must account
588 * for the space being done in *this* txg
589 * (when it is freed) rather than the future txg
590 * (when it will be copied).
592 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
593 inflight_size);
594 svr->svr_bytes_done[txgoff] -= inflight_size;
595 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
598 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
600 if (size > 0) {
602 * The copy thread has not yet visited this offset. Ensure
603 * that it doesn't.
606 DTRACE_PROBE3(remove__free__unvisited,
607 spa_t *, spa,
608 uint64_t, offset,
609 uint64_t, size);
611 if (svr->svr_allocd_segs != NULL)
612 range_tree_clear(svr->svr_allocd_segs, offset, size);
615 * Since we now do not need to copy this data, for
616 * accounting purposes we have done our job and can count
617 * it as completed.
619 svr->svr_bytes_done[txg & TXG_MASK] += size;
621 mutex_exit(&svr->svr_lock);
624 * Now that we have dropped svr_lock, process the synced portion
625 * of this free.
627 if (synced_size > 0) {
628 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
631 * Note: this can only be called from syncing context,
632 * and the vdev_indirect_mapping is only changed from the
633 * sync thread, so we don't need svr_lock while doing
634 * metaslab_free_impl_cb.
636 boolean_t checkpoint = B_FALSE;
637 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
638 metaslab_free_impl_cb, &checkpoint);
643 * Stop an active removal and update the spa_removing phys.
645 static void
646 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
648 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
649 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
651 /* Ensure the removal thread has completed before we free the svr. */
652 spa_vdev_remove_suspend(spa);
654 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
656 if (state == DSS_FINISHED) {
657 spa_removing_phys_t *srp = &spa->spa_removing_phys;
658 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
659 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
661 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
662 vdev_t *pvd = vdev_lookup_top(spa,
663 srp->sr_prev_indirect_vdev);
664 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
667 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
668 srp->sr_prev_indirect_vdev = vd->vdev_id;
670 spa->spa_removing_phys.sr_state = state;
671 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
673 spa->spa_vdev_removal = NULL;
674 spa_vdev_removal_destroy(svr);
676 spa_sync_removing_state(spa, tx);
678 vdev_config_dirty(spa->spa_root_vdev);
681 static void
682 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
684 vdev_t *vd = arg;
685 vdev_indirect_mark_obsolete(vd, offset, size);
686 boolean_t checkpoint = B_FALSE;
687 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
688 metaslab_free_impl_cb, &checkpoint);
692 * On behalf of the removal thread, syncs an incremental bit more of
693 * the indirect mapping to disk and updates the in-memory mapping.
694 * Called as a sync task in every txg that the removal thread makes progress.
696 static void
697 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
699 spa_vdev_removal_t *svr = arg;
700 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
701 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
702 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
703 uint64_t txg = dmu_tx_get_txg(tx);
704 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
706 ASSERT(vic->vic_mapping_object != 0);
707 ASSERT3U(txg, ==, spa_syncing_txg(spa));
709 vdev_indirect_mapping_add_entries(vim,
710 &svr->svr_new_segments[txg & TXG_MASK], tx);
711 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
712 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
715 * Free the copied data for anything that was freed while the
716 * mapping entries were in flight.
718 mutex_enter(&svr->svr_lock);
719 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
720 free_mapped_segment_cb, vd);
721 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
722 vdev_indirect_mapping_max_offset(vim));
723 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
724 mutex_exit(&svr->svr_lock);
726 spa_sync_removing_state(spa, tx);
730 * All reads and writes associated with a call to spa_vdev_copy_segment()
731 * are done.
733 static void
734 spa_vdev_copy_nullzio_done(zio_t *zio)
736 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
740 * The write of the new location is done.
742 static void
743 spa_vdev_copy_segment_write_done(zio_t *zio)
745 vdev_copy_arg_t *vca = zio->io_private;
747 abd_free(zio->io_abd);
749 mutex_enter(&vca->vca_lock);
750 vca->vca_outstanding_bytes -= zio->io_size;
751 cv_signal(&vca->vca_cv);
752 mutex_exit(&vca->vca_lock);
756 * The read of the old location is done. The parent zio is the write to
757 * the new location. Allow it to start.
759 static void
760 spa_vdev_copy_segment_read_done(zio_t *zio)
762 zio_nowait(zio_unique_parent(zio));
766 * If the old and new vdevs are mirrors, we will read both sides of the old
767 * mirror, and write each copy to the corresponding side of the new mirror.
768 * If the old and new vdevs have a different number of children, we will do
769 * this as best as possible. Since we aren't verifying checksums, this
770 * ensures that as long as there's a good copy of the data, we'll have a
771 * good copy after the removal, even if there's silent damage to one side
772 * of the mirror. If we're removing a mirror that has some silent damage,
773 * we'll have exactly the same damage in the new location (assuming that
774 * the new location is also a mirror).
776 * We accomplish this by creating a tree of zio_t's, with as many writes as
777 * there are "children" of the new vdev (a non-redundant vdev counts as one
778 * child, a 2-way mirror has 2 children, etc). Each write has an associated
779 * read from a child of the old vdev. Typically there will be the same
780 * number of children of the old and new vdevs. However, if there are more
781 * children of the new vdev, some child(ren) of the old vdev will be issued
782 * multiple reads. If there are more children of the old vdev, some copies
783 * will be dropped.
785 * For example, the tree of zio_t's for a 2-way mirror is:
787 * null
788 * / \
789 * write(new vdev, child 0) write(new vdev, child 1)
790 * | |
791 * read(old vdev, child 0) read(old vdev, child 1)
793 * Child zio's complete before their parents complete. However, zio's
794 * created with zio_vdev_child_io() may be issued before their children
795 * complete. In this case we need to make sure that the children (reads)
796 * complete before the parents (writes) are *issued*. We do this by not
797 * calling zio_nowait() on each write until its corresponding read has
798 * completed.
800 * The spa_config_lock must be held while zio's created by
801 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
802 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
803 * zio is needed to release the spa_config_lock after all the reads and
804 * writes complete. (Note that we can't grab the config lock for each read,
805 * because it is not reentrant - we could deadlock with a thread waiting
806 * for a write lock.)
808 static void
809 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
810 vdev_t *source_vd, uint64_t source_offset,
811 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
813 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
815 mutex_enter(&vca->vca_lock);
816 vca->vca_outstanding_bytes += size;
817 mutex_exit(&vca->vca_lock);
819 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
821 vdev_t *source_child_vd;
822 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
824 * Source and dest are both mirrors. Copy from the same
825 * child id as we are copying to (wrapping around if there
826 * are more dest children than source children).
828 source_child_vd =
829 source_vd->vdev_child[dest_id % source_vd->vdev_children];
830 } else {
831 source_child_vd = source_vd;
834 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
835 dest_child_vd, dest_offset, abd, size,
836 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
837 ZIO_FLAG_CANFAIL,
838 spa_vdev_copy_segment_write_done, vca);
840 zio_nowait(zio_vdev_child_io(write_zio, NULL,
841 source_child_vd, source_offset, abd, size,
842 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
843 ZIO_FLAG_CANFAIL,
844 spa_vdev_copy_segment_read_done, vca));
848 * Allocate a new location for this segment, and create the zio_t's to
849 * read from the old location and write to the new location.
851 static int
852 spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
853 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
855 metaslab_group_t *mg = vd->vdev_mg;
856 spa_t *spa = vd->vdev_spa;
857 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
858 vdev_indirect_mapping_entry_t *entry;
859 dva_t dst = { 0 };
861 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
864 * We use allocator 0 for this I/O because we don't expect device remap
865 * to be the steady state of the system, so parallelizing is not as
866 * critical as it is for other allocation types. We also want to ensure
867 * that the IOs are allocated together as much as possible, to reduce
868 * mapping sizes.
870 int error = metaslab_alloc_dva(spa, mg->mg_class, size,
871 &dst, 0, NULL, txg, 0, zal, 0);
872 if (error != 0)
873 return (error);
876 * We can't have any padding of the allocated size, otherwise we will
877 * misunderstand what's allocated, and the size of the mapping.
878 * The caller ensures this will be true by passing in a size that is
879 * aligned to the worst (highest) ashift in the pool.
881 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
883 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
884 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
885 entry->vime_mapping.vimep_dst = dst;
888 * See comment before spa_vdev_copy_one_child().
890 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
891 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
892 spa_vdev_copy_nullzio_done, NULL, 0);
893 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
894 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
895 for (int i = 0; i < dest_vd->vdev_children; i++) {
896 vdev_t *child = dest_vd->vdev_child[i];
897 spa_vdev_copy_one_child(vca, nzio, vd, start,
898 child, DVA_GET_OFFSET(&dst), i, size);
900 } else {
901 spa_vdev_copy_one_child(vca, nzio, vd, start,
902 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
904 zio_nowait(nzio);
906 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
907 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
908 vdev_dirty(vd, 0, NULL, txg);
910 return (0);
914 * Complete the removal of a toplevel vdev. This is called as a
915 * synctask in the same txg that we will sync out the new config (to the
916 * MOS object) which indicates that this vdev is indirect.
918 static void
919 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
921 spa_vdev_removal_t *svr = arg;
922 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
923 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
925 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
927 for (int i = 0; i < TXG_SIZE; i++) {
928 ASSERT0(svr->svr_bytes_done[i]);
931 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
932 spa->spa_removing_phys.sr_to_copy);
934 vdev_destroy_spacemaps(vd, tx);
936 /* destroy leaf zaps, if any */
937 ASSERT3P(svr->svr_zaplist, !=, NULL);
938 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
939 pair != NULL;
940 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
941 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
943 fnvlist_free(svr->svr_zaplist);
945 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
946 /* vd->vdev_path is not available here */
947 spa_history_log_internal(spa, "vdev remove completed", tx,
948 "%s vdev %llu", spa_name(spa), vd->vdev_id);
951 static void
952 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
954 ASSERT3P(zlist, !=, NULL);
955 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
957 if (vd->vdev_leaf_zap != 0) {
958 char zkey[32];
959 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
960 VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
961 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
964 for (uint64_t id = 0; id < vd->vdev_children; id++) {
965 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
969 static void
970 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
972 vdev_t *ivd;
973 dmu_tx_t *tx;
974 spa_t *spa = vd->vdev_spa;
975 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
978 * First, build a list of leaf zaps to be destroyed.
979 * This is passed to the sync context thread,
980 * which does the actual unlinking.
982 svr->svr_zaplist = fnvlist_alloc();
983 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
985 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
986 ivd->vdev_removing = 0;
988 vd->vdev_leaf_zap = 0;
990 vdev_remove_child(ivd, vd);
991 vdev_compact_children(ivd);
993 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
995 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
996 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
997 0, ZFS_SPACE_CHECK_NONE, tx);
998 dmu_tx_commit(tx);
1001 * Indicate that this thread has exited.
1002 * After this, we can not use svr.
1004 mutex_enter(&svr->svr_lock);
1005 svr->svr_thread = NULL;
1006 cv_broadcast(&svr->svr_cv);
1007 mutex_exit(&svr->svr_lock);
1011 * Complete the removal of a toplevel vdev. This is called in open
1012 * context by the removal thread after we have copied all vdev's data.
1014 static void
1015 vdev_remove_complete(spa_t *spa)
1017 uint64_t txg;
1020 * Wait for any deferred frees to be synced before we call
1021 * vdev_metaslab_fini()
1023 txg_wait_synced(spa->spa_dsl_pool, 0);
1024 txg = spa_vdev_enter(spa);
1025 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1026 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1028 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1029 ESC_ZFS_VDEV_REMOVE_DEV);
1031 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1032 vd->vdev_id, txg);
1035 * Discard allocation state.
1037 if (vd->vdev_mg != NULL) {
1038 vdev_metaslab_fini(vd);
1039 metaslab_group_destroy(vd->vdev_mg);
1040 vd->vdev_mg = NULL;
1042 ASSERT0(vd->vdev_stat.vs_space);
1043 ASSERT0(vd->vdev_stat.vs_dspace);
1045 vdev_remove_replace_with_indirect(vd, txg);
1048 * We now release the locks, allowing spa_sync to run and finish the
1049 * removal via vdev_remove_complete_sync in syncing context.
1051 * Note that we hold on to the vdev_t that has been replaced. Since
1052 * it isn't part of the vdev tree any longer, it can't be concurrently
1053 * manipulated, even while we don't have the config lock.
1055 (void) spa_vdev_exit(spa, NULL, txg, 0);
1058 * Top ZAP should have been transferred to the indirect vdev in
1059 * vdev_remove_replace_with_indirect.
1061 ASSERT0(vd->vdev_top_zap);
1064 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1066 ASSERT0(vd->vdev_leaf_zap);
1068 txg = spa_vdev_enter(spa);
1069 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1071 * Request to update the config and the config cachefile.
1073 vdev_config_dirty(spa->spa_root_vdev);
1074 (void) spa_vdev_exit(spa, vd, txg, 0);
1076 spa_event_post(ev);
1080 * Evacuates a segment of size at most max_alloc from the vdev
1081 * via repeated calls to spa_vdev_copy_segment. If an allocation
1082 * fails, the pool is probably too fragmented to handle such a
1083 * large size, so decrease max_alloc so that the caller will not try
1084 * this size again this txg.
1086 static void
1087 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1088 uint64_t *max_alloc, dmu_tx_t *tx)
1090 uint64_t txg = dmu_tx_get_txg(tx);
1091 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1093 mutex_enter(&svr->svr_lock);
1095 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1096 if (rs == NULL) {
1097 mutex_exit(&svr->svr_lock);
1098 return;
1100 uint64_t offset = rs->rs_start;
1101 uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1103 range_tree_remove(svr->svr_allocd_segs, offset, length);
1105 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1106 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1107 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1110 svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1113 * Note: this is the amount of *allocated* space
1114 * that we are taking care of each txg.
1116 svr->svr_bytes_done[txg & TXG_MASK] += length;
1118 mutex_exit(&svr->svr_lock);
1120 zio_alloc_list_t zal;
1121 metaslab_trace_init(&zal);
1122 uint64_t thismax = *max_alloc;
1123 while (length > 0) {
1124 uint64_t mylen = MIN(length, thismax);
1126 int error = spa_vdev_copy_segment(vd,
1127 offset, mylen, txg, vca, &zal);
1129 if (error == ENOSPC) {
1131 * Cut our segment in half, and don't try this
1132 * segment size again this txg. Note that the
1133 * allocation size must be aligned to the highest
1134 * ashift in the pool, so that the allocation will
1135 * not be padded out to a multiple of the ashift,
1136 * which could cause us to think that this mapping
1137 * is larger than we intended.
1139 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1140 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1141 thismax = P2ROUNDUP(mylen / 2,
1142 1 << spa->spa_max_ashift);
1143 ASSERT3U(thismax, <, mylen);
1145 * The minimum-size allocation can not fail.
1147 ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1148 *max_alloc = mylen - (1 << spa->spa_max_ashift);
1149 } else {
1150 ASSERT0(error);
1151 length -= mylen;
1152 offset += mylen;
1155 * We've performed an allocation, so reset the
1156 * alloc trace list.
1158 metaslab_trace_fini(&zal);
1159 metaslab_trace_init(&zal);
1162 metaslab_trace_fini(&zal);
1166 * The removal thread operates in open context. It iterates over all
1167 * allocated space in the vdev, by loading each metaslab's spacemap.
1168 * For each contiguous segment of allocated space (capping the segment
1169 * size at SPA_MAXBLOCKSIZE), we:
1170 * - Allocate space for it on another vdev.
1171 * - Create a new mapping from the old location to the new location
1172 * (as a record in svr_new_segments).
1173 * - Initiate a logical read zio to get the data off the removing disk.
1174 * - In the read zio's done callback, initiate a logical write zio to
1175 * write it to the new vdev.
1176 * Note that all of this will take effect when a particular TXG syncs.
1177 * The sync thread ensures that all the phys reads and writes for the syncing
1178 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1179 * (see vdev_mapping_sync()).
1181 static void
1182 spa_vdev_remove_thread(void *arg)
1184 spa_t *spa = arg;
1185 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1186 vdev_copy_arg_t vca;
1187 uint64_t max_alloc = zfs_remove_max_segment;
1188 uint64_t last_txg = 0;
1190 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1191 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1192 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1193 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1195 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1196 ASSERT(vdev_is_concrete(vd));
1197 ASSERT(vd->vdev_removing);
1198 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1199 ASSERT(vim != NULL);
1201 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1202 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1203 vca.vca_outstanding_bytes = 0;
1205 mutex_enter(&svr->svr_lock);
1208 * Start from vim_max_offset so we pick up where we left off
1209 * if we are restarting the removal after opening the pool.
1211 uint64_t msi;
1212 for (msi = start_offset >> vd->vdev_ms_shift;
1213 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1214 metaslab_t *msp = vd->vdev_ms[msi];
1215 ASSERT3U(msi, <=, vd->vdev_ms_count);
1217 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1219 mutex_enter(&msp->ms_sync_lock);
1220 mutex_enter(&msp->ms_lock);
1223 * Assert nothing in flight -- ms_*tree is empty.
1225 for (int i = 0; i < TXG_SIZE; i++) {
1226 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1230 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1231 * read the allocated segments from the space map object
1232 * into svr_allocd_segs. Since we do this while holding
1233 * svr_lock and ms_sync_lock, concurrent frees (which
1234 * would have modified the space map) will wait for us
1235 * to finish loading the spacemap, and then take the
1236 * appropriate action (see free_from_removing_vdev()).
1238 if (msp->ms_sm != NULL) {
1239 space_map_t *sm = NULL;
1242 * We have to open a new space map here, because
1243 * ms_sm's sm_length and sm_alloc may not reflect
1244 * what's in the object contents, if we are in between
1245 * metaslab_sync() and metaslab_sync_done().
1247 VERIFY0(space_map_open(&sm,
1248 spa->spa_dsl_pool->dp_meta_objset,
1249 msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1250 msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1251 space_map_update(sm);
1252 VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1253 SM_ALLOC));
1254 space_map_close(sm);
1256 range_tree_walk(msp->ms_freeing,
1257 range_tree_remove, svr->svr_allocd_segs);
1260 * When we are resuming from a paused removal (i.e.
1261 * when importing a pool with a removal in progress),
1262 * discard any state that we have already processed.
1264 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1266 mutex_exit(&msp->ms_lock);
1267 mutex_exit(&msp->ms_sync_lock);
1269 vca.vca_msp = msp;
1270 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1271 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1272 msp->ms_id);
1274 while (!svr->svr_thread_exit &&
1275 !range_tree_is_empty(svr->svr_allocd_segs)) {
1277 mutex_exit(&svr->svr_lock);
1280 * We need to periodically drop the config lock so that
1281 * writers can get in. Additionally, we can't wait
1282 * for a txg to sync while holding a config lock
1283 * (since a waiting writer could cause a 3-way deadlock
1284 * with the sync thread, which also gets a config
1285 * lock for reader). So we can't hold the config lock
1286 * while calling dmu_tx_assign().
1288 spa_config_exit(spa, SCL_CONFIG, FTAG);
1291 * This delay will pause the removal around the point
1292 * specified by zfs_remove_max_bytes_pause. We do this
1293 * solely from the test suite or during debugging.
1295 uint64_t bytes_copied =
1296 spa->spa_removing_phys.sr_copied;
1297 for (int i = 0; i < TXG_SIZE; i++)
1298 bytes_copied += svr->svr_bytes_done[i];
1299 while (zfs_remove_max_bytes_pause <= bytes_copied &&
1300 !svr->svr_thread_exit)
1301 delay(hz);
1303 mutex_enter(&vca.vca_lock);
1304 while (vca.vca_outstanding_bytes >
1305 zfs_remove_max_copy_bytes) {
1306 cv_wait(&vca.vca_cv, &vca.vca_lock);
1308 mutex_exit(&vca.vca_lock);
1310 dmu_tx_t *tx =
1311 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1313 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1314 uint64_t txg = dmu_tx_get_txg(tx);
1317 * Reacquire the vdev_config lock. The vdev_t
1318 * that we're removing may have changed, e.g. due
1319 * to a vdev_attach or vdev_detach.
1321 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1322 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1324 if (txg != last_txg)
1325 max_alloc = zfs_remove_max_segment;
1326 last_txg = txg;
1328 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1330 dmu_tx_commit(tx);
1331 mutex_enter(&svr->svr_lock);
1335 mutex_exit(&svr->svr_lock);
1337 spa_config_exit(spa, SCL_CONFIG, FTAG);
1340 * Wait for all copies to finish before cleaning up the vca.
1342 txg_wait_synced(spa->spa_dsl_pool, 0);
1343 ASSERT0(vca.vca_outstanding_bytes);
1345 mutex_destroy(&vca.vca_lock);
1346 cv_destroy(&vca.vca_cv);
1348 if (svr->svr_thread_exit) {
1349 mutex_enter(&svr->svr_lock);
1350 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1351 svr->svr_thread = NULL;
1352 cv_broadcast(&svr->svr_cv);
1353 mutex_exit(&svr->svr_lock);
1354 } else {
1355 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1356 vdev_remove_complete(spa);
1360 void
1361 spa_vdev_remove_suspend(spa_t *spa)
1363 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1365 if (svr == NULL)
1366 return;
1368 mutex_enter(&svr->svr_lock);
1369 svr->svr_thread_exit = B_TRUE;
1370 while (svr->svr_thread != NULL)
1371 cv_wait(&svr->svr_cv, &svr->svr_lock);
1372 svr->svr_thread_exit = B_FALSE;
1373 mutex_exit(&svr->svr_lock);
1376 /* ARGSUSED */
1377 static int
1378 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1380 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1382 if (spa->spa_vdev_removal == NULL)
1383 return (ENOTACTIVE);
1384 return (0);
1388 * Cancel a removal by freeing all entries from the partial mapping
1389 * and marking the vdev as no longer being removing.
1391 /* ARGSUSED */
1392 static void
1393 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1395 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1396 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1397 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1398 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1399 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1400 objset_t *mos = spa->spa_meta_objset;
1402 ASSERT3P(svr->svr_thread, ==, NULL);
1404 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1405 if (vdev_obsolete_counts_are_precise(vd)) {
1406 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1407 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1408 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1411 if (vdev_obsolete_sm_object(vd) != 0) {
1412 ASSERT(vd->vdev_obsolete_sm != NULL);
1413 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1414 space_map_object(vd->vdev_obsolete_sm));
1416 space_map_free(vd->vdev_obsolete_sm, tx);
1417 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1418 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1419 space_map_close(vd->vdev_obsolete_sm);
1420 vd->vdev_obsolete_sm = NULL;
1421 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1423 for (int i = 0; i < TXG_SIZE; i++) {
1424 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1425 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1426 vdev_indirect_mapping_max_offset(vim));
1429 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1430 metaslab_t *msp = vd->vdev_ms[msi];
1432 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1433 break;
1435 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1437 mutex_enter(&msp->ms_lock);
1440 * Assert nothing in flight -- ms_*tree is empty.
1442 for (int i = 0; i < TXG_SIZE; i++)
1443 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1444 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1445 ASSERT0(range_tree_space(msp->ms_defer[i]));
1446 ASSERT0(range_tree_space(msp->ms_freed));
1448 if (msp->ms_sm != NULL) {
1450 * Assert that the in-core spacemap has the same
1451 * length as the on-disk one, so we can use the
1452 * existing in-core spacemap to load it from disk.
1454 ASSERT3U(msp->ms_sm->sm_alloc, ==,
1455 msp->ms_sm->sm_phys->smp_alloc);
1456 ASSERT3U(msp->ms_sm->sm_length, ==,
1457 msp->ms_sm->sm_phys->smp_objsize);
1459 mutex_enter(&svr->svr_lock);
1460 VERIFY0(space_map_load(msp->ms_sm,
1461 svr->svr_allocd_segs, SM_ALLOC));
1462 range_tree_walk(msp->ms_freeing,
1463 range_tree_remove, svr->svr_allocd_segs);
1466 * Clear everything past what has been synced,
1467 * because we have not allocated mappings for it yet.
1469 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1470 uint64_t sm_end = msp->ms_sm->sm_start +
1471 msp->ms_sm->sm_size;
1472 if (sm_end > syncd)
1473 range_tree_clear(svr->svr_allocd_segs,
1474 syncd, sm_end - syncd);
1476 mutex_exit(&svr->svr_lock);
1478 mutex_exit(&msp->ms_lock);
1480 mutex_enter(&svr->svr_lock);
1481 range_tree_vacate(svr->svr_allocd_segs,
1482 free_mapped_segment_cb, vd);
1483 mutex_exit(&svr->svr_lock);
1487 * Note: this must happen after we invoke free_mapped_segment_cb,
1488 * because it adds to the obsolete_segments.
1490 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1492 ASSERT3U(vic->vic_mapping_object, ==,
1493 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1494 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1495 vd->vdev_indirect_mapping = NULL;
1496 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1497 vic->vic_mapping_object = 0;
1499 ASSERT3U(vic->vic_births_object, ==,
1500 vdev_indirect_births_object(vd->vdev_indirect_births));
1501 vdev_indirect_births_close(vd->vdev_indirect_births);
1502 vd->vdev_indirect_births = NULL;
1503 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1504 vic->vic_births_object = 0;
1507 * We may have processed some frees from the removing vdev in this
1508 * txg, thus increasing svr_bytes_done; discard that here to
1509 * satisfy the assertions in spa_vdev_removal_destroy().
1510 * Note that future txg's can not have any bytes_done, because
1511 * future TXG's are only modified from open context, and we have
1512 * already shut down the copying thread.
1514 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1515 spa_finish_removal(spa, DSS_CANCELED, tx);
1517 vd->vdev_removing = B_FALSE;
1518 vdev_config_dirty(vd);
1520 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1521 vd->vdev_id, dmu_tx_get_txg(tx));
1522 spa_history_log_internal(spa, "vdev remove canceled", tx,
1523 "%s vdev %llu %s", spa_name(spa),
1524 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1528 spa_vdev_remove_cancel(spa_t *spa)
1530 spa_vdev_remove_suspend(spa);
1532 if (spa->spa_vdev_removal == NULL)
1533 return (ENOTACTIVE);
1535 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1537 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1538 spa_vdev_remove_cancel_sync, NULL, 0,
1539 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1541 if (error == 0) {
1542 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1543 vdev_t *vd = vdev_lookup_top(spa, vdid);
1544 metaslab_group_activate(vd->vdev_mg);
1545 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1548 return (error);
1552 * Called every sync pass of every txg if there's a svr.
1554 void
1555 svr_sync(spa_t *spa, dmu_tx_t *tx)
1557 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1558 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1561 * This check is necessary so that we do not dirty the
1562 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1563 * is nothing to do. Dirtying it every time would prevent us
1564 * from syncing-to-convergence.
1566 if (svr->svr_bytes_done[txgoff] == 0)
1567 return;
1570 * Update progress accounting.
1572 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1573 svr->svr_bytes_done[txgoff] = 0;
1575 spa_sync_removing_state(spa, tx);
1578 static void
1579 vdev_remove_make_hole_and_free(vdev_t *vd)
1581 uint64_t id = vd->vdev_id;
1582 spa_t *spa = vd->vdev_spa;
1583 vdev_t *rvd = spa->spa_root_vdev;
1584 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1586 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1587 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1589 vdev_free(vd);
1591 if (last_vdev) {
1592 vdev_compact_children(rvd);
1593 } else {
1594 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1595 vdev_add_child(rvd, vd);
1597 vdev_config_dirty(rvd);
1600 * Reassess the health of our root vdev.
1602 vdev_reopen(rvd);
1606 * Remove a log device. The config lock is held for the specified TXG.
1608 static int
1609 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1611 metaslab_group_t *mg = vd->vdev_mg;
1612 spa_t *spa = vd->vdev_spa;
1613 int error = 0;
1615 ASSERT(vd->vdev_islog);
1616 ASSERT(vd == vd->vdev_top);
1619 * Stop allocating from this vdev.
1621 metaslab_group_passivate(mg);
1624 * Wait for the youngest allocations and frees to sync,
1625 * and then wait for the deferral of those frees to finish.
1627 spa_vdev_config_exit(spa, NULL,
1628 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1631 * Evacuate the device. We don't hold the config lock as writer
1632 * since we need to do I/O but we do keep the
1633 * spa_namespace_lock held. Once this completes the device
1634 * should no longer have any blocks allocated on it.
1636 if (vd->vdev_islog) {
1637 if (vd->vdev_stat.vs_alloc != 0)
1638 error = spa_reset_logs(spa);
1641 *txg = spa_vdev_config_enter(spa);
1643 if (error != 0) {
1644 metaslab_group_activate(mg);
1645 return (error);
1647 ASSERT0(vd->vdev_stat.vs_alloc);
1650 * The evacuation succeeded. Remove any remaining MOS metadata
1651 * associated with this vdev, and wait for these changes to sync.
1653 vd->vdev_removing = B_TRUE;
1655 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1656 vdev_config_dirty(vd);
1658 spa_history_log_internal(spa, "vdev remove", NULL,
1659 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1660 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1662 /* Make sure these changes are sync'ed */
1663 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1665 /* Stop initializing */
1666 (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1668 *txg = spa_vdev_config_enter(spa);
1670 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1671 ESC_ZFS_VDEV_REMOVE_DEV);
1672 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1673 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1675 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1676 ASSERT0(vd->vdev_top_zap);
1677 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1678 ASSERT0(vd->vdev_leaf_zap);
1680 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1682 if (list_link_active(&vd->vdev_state_dirty_node))
1683 vdev_state_clean(vd);
1684 if (list_link_active(&vd->vdev_config_dirty_node))
1685 vdev_config_clean(vd);
1688 * Clean up the vdev namespace.
1690 vdev_remove_make_hole_and_free(vd);
1692 if (ev != NULL)
1693 spa_event_post(ev);
1695 return (0);
1698 static int
1699 spa_vdev_remove_top_check(vdev_t *vd)
1701 spa_t *spa = vd->vdev_spa;
1703 if (vd != vd->vdev_top)
1704 return (SET_ERROR(ENOTSUP));
1706 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1707 return (SET_ERROR(ENOTSUP));
1710 * There has to be enough free space to remove the
1711 * device and leave double the "slop" space (i.e. we
1712 * must leave at least 3% of the pool free, in addition to
1713 * the normal slop space).
1715 if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1716 NULL, 0, B_TRUE) <
1717 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1718 return (SET_ERROR(ENOSPC));
1722 * There can not be a removal in progress.
1724 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1725 return (SET_ERROR(EBUSY));
1728 * The device must have all its data.
1730 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1731 !vdev_dtl_empty(vd, DTL_OUTAGE))
1732 return (SET_ERROR(EBUSY));
1735 * The device must be healthy.
1737 if (!vdev_readable(vd))
1738 return (SET_ERROR(EIO));
1741 * All vdevs in normal class must have the same ashift.
1743 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1744 return (SET_ERROR(EINVAL));
1748 * All vdevs in normal class must have the same ashift
1749 * and not be raidz.
1751 vdev_t *rvd = spa->spa_root_vdev;
1752 int num_indirect = 0;
1753 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1754 vdev_t *cvd = rvd->vdev_child[id];
1755 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1756 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1757 if (cvd->vdev_ops == &vdev_indirect_ops)
1758 num_indirect++;
1759 if (!vdev_is_concrete(cvd))
1760 continue;
1761 if (cvd->vdev_ops == &vdev_raidz_ops)
1762 return (SET_ERROR(EINVAL));
1764 * Need the mirror to be mirror of leaf vdevs only
1766 if (cvd->vdev_ops == &vdev_mirror_ops) {
1767 for (uint64_t cid = 0;
1768 cid < cvd->vdev_children; cid++) {
1769 vdev_t *tmp = cvd->vdev_child[cid];
1770 if (!tmp->vdev_ops->vdev_op_leaf)
1771 return (SET_ERROR(EINVAL));
1776 return (0);
1780 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1781 * The config lock is held for the specified TXG. Once initiated,
1782 * evacuation of all allocated space (copying it to other vdevs) happens
1783 * in the background (see spa_vdev_remove_thread()), and can be canceled
1784 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1785 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1787 static int
1788 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1790 spa_t *spa = vd->vdev_spa;
1791 int error;
1794 * Check for errors up-front, so that we don't waste time
1795 * passivating the metaslab group and clearing the ZIL if there
1796 * are errors.
1798 error = spa_vdev_remove_top_check(vd);
1799 if (error != 0)
1800 return (error);
1803 * Stop allocating from this vdev. Note that we must check
1804 * that this is not the only device in the pool before
1805 * passivating, otherwise we will not be able to make
1806 * progress because we can't allocate from any vdevs.
1807 * The above check for sufficient free space serves this
1808 * purpose.
1810 metaslab_group_t *mg = vd->vdev_mg;
1811 metaslab_group_passivate(mg);
1814 * Wait for the youngest allocations and frees to sync,
1815 * and then wait for the deferral of those frees to finish.
1817 spa_vdev_config_exit(spa, NULL,
1818 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1821 * We must ensure that no "stubby" log blocks are allocated
1822 * on the device to be removed. These blocks could be
1823 * written at any time, including while we are in the middle
1824 * of copying them.
1826 error = spa_reset_logs(spa);
1829 * We stop any initializing that is currently in progress but leave
1830 * the state as "active". This will allow the initializing to resume
1831 * if the removal is canceled sometime later.
1833 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1835 *txg = spa_vdev_config_enter(spa);
1838 * Things might have changed while the config lock was dropped
1839 * (e.g. space usage). Check for errors again.
1841 if (error == 0)
1842 error = spa_vdev_remove_top_check(vd);
1844 if (error != 0) {
1845 metaslab_group_activate(mg);
1846 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
1847 return (error);
1850 vd->vdev_removing = B_TRUE;
1852 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1853 vdev_config_dirty(vd);
1854 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1855 dsl_sync_task_nowait(spa->spa_dsl_pool,
1856 vdev_remove_initiate_sync,
1857 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
1858 dmu_tx_commit(tx);
1860 return (0);
1864 * Remove a device from the pool.
1866 * Removing a device from the vdev namespace requires several steps
1867 * and can take a significant amount of time. As a result we use
1868 * the spa_vdev_config_[enter/exit] functions which allow us to
1869 * grab and release the spa_config_lock while still holding the namespace
1870 * lock. During each step the configuration is synced out.
1873 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1875 vdev_t *vd;
1876 nvlist_t **spares, **l2cache, *nv;
1877 uint64_t txg = 0;
1878 uint_t nspares, nl2cache;
1879 int error = 0;
1880 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1881 sysevent_t *ev = NULL;
1883 ASSERT(spa_writeable(spa));
1885 if (!locked)
1886 txg = spa_vdev_enter(spa);
1888 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1889 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1890 error = (spa_has_checkpoint(spa)) ?
1891 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1893 if (!locked)
1894 return (spa_vdev_exit(spa, NULL, txg, error));
1896 return (error);
1899 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1901 if (spa->spa_spares.sav_vdevs != NULL &&
1902 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1903 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1904 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1906 * Only remove the hot spare if it's not currently in use
1907 * in this pool.
1909 if (vd == NULL || unspare) {
1910 char *nvstr = fnvlist_lookup_string(nv,
1911 ZPOOL_CONFIG_PATH);
1912 spa_history_log_internal(spa, "vdev remove", NULL,
1913 "%s vdev (%s) %s", spa_name(spa),
1914 VDEV_TYPE_SPARE, nvstr);
1915 if (vd == NULL)
1916 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1917 ev = spa_event_create(spa, vd, NULL,
1918 ESC_ZFS_VDEV_REMOVE_AUX);
1919 spa_vdev_remove_aux(spa->spa_spares.sav_config,
1920 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1921 spa_load_spares(spa);
1922 spa->spa_spares.sav_sync = B_TRUE;
1923 } else {
1924 error = SET_ERROR(EBUSY);
1926 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
1927 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1928 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1929 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1930 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1931 spa_history_log_internal(spa, "vdev remove", NULL,
1932 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1934 * Cache devices can always be removed.
1936 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1937 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1938 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1939 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1940 spa_load_l2cache(spa);
1941 spa->spa_l2cache.sav_sync = B_TRUE;
1942 } else if (vd != NULL && vd->vdev_islog) {
1943 ASSERT(!locked);
1944 error = spa_vdev_remove_log(vd, &txg);
1945 } else if (vd != NULL) {
1946 ASSERT(!locked);
1947 error = spa_vdev_remove_top(vd, &txg);
1948 } else {
1950 * There is no vdev of any kind with the specified guid.
1952 error = SET_ERROR(ENOENT);
1955 if (!locked)
1956 error = spa_vdev_exit(spa, NULL, txg, error);
1958 if (ev != NULL) {
1959 if (error != 0) {
1960 spa_event_discard(ev);
1961 } else {
1962 spa_event_post(ev);
1966 return (error);
1970 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1972 prs->prs_state = spa->spa_removing_phys.sr_state;
1974 if (prs->prs_state == DSS_NONE)
1975 return (SET_ERROR(ENOENT));
1977 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1978 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1979 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1980 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1981 prs->prs_copied = spa->spa_removing_phys.sr_copied;
1983 if (spa->spa_vdev_removal != NULL) {
1984 for (int i = 0; i < TXG_SIZE; i++) {
1985 prs->prs_copied +=
1986 spa->spa_vdev_removal->svr_bytes_done[i];
1990 prs->prs_mapping_memory = 0;
1991 uint64_t indirect_vdev_id =
1992 spa->spa_removing_phys.sr_prev_indirect_vdev;
1993 while (indirect_vdev_id != -1) {
1994 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1995 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1996 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1998 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1999 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2000 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2003 return (0);