Merge commit 'bb1f424574ac8e08069d0ba993c2a41ffe796794'
[unleashed.git] / kernel / fs / zfs / vdev_initialize.c
blob559c0153d6cce7b7123ecd86e9adcfa519a8685d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2016 by Delphix. All rights reserved.
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
37 * Maximum number of metaslabs per group that can be initialized
38 * simultaneously.
40 int max_initialize_ms = 3;
43 * Value that is written to disk during initialization.
45 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
47 /* maximum number of I/Os outstanding per leaf vdev */
48 int zfs_initialize_limit = 1;
50 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
53 static boolean_t
54 vdev_initialize_should_stop(vdev_t *vd)
56 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57 vd->vdev_detached || vd->vdev_top->vdev_removing);
60 static void
61 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
64 * We pass in the guid instead of the vdev_t since the vdev may
65 * have been freed prior to the sync task being processed. This
66 * happens when a vdev is detached as we call spa_config_vdev_exit(),
67 * stop the intializing thread, schedule the sync task, and free
68 * the vdev. Later when the scheduled sync task is invoked, it would
69 * find that the vdev has been freed.
71 uint64_t guid = *(uint64_t *)arg;
72 uint64_t txg = dmu_tx_get_txg(tx);
73 kmem_free(arg, sizeof (uint64_t));
75 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77 return;
79 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
82 VERIFY(vd->vdev_leaf_zap != 0);
84 objset_t *mos = vd->vdev_spa->spa_meta_objset;
86 if (last_offset > 0) {
87 vd->vdev_initialize_last_offset = last_offset;
88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90 sizeof (last_offset), 1, &last_offset, tx));
92 if (vd->vdev_initialize_action_time > 0) {
93 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96 1, &val, tx));
99 uint64_t initialize_state = vd->vdev_initialize_state;
100 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102 &initialize_state, tx));
105 static void
106 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
108 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109 spa_t *spa = vd->vdev_spa;
111 if (new_state == vd->vdev_initialize_state)
112 return;
115 * Copy the vd's guid, this will be freed by the sync task.
117 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118 *guid = vd->vdev_guid;
121 * If we're suspending, then preserving the original start time.
123 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124 vd->vdev_initialize_action_time = gethrestime_sec();
126 vd->vdev_initialize_state = new_state;
128 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131 guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
133 switch (new_state) {
134 case VDEV_INITIALIZE_ACTIVE:
135 spa_history_log_internal(spa, "initialize", tx,
136 "vdev=%s activated", vd->vdev_path);
137 break;
138 case VDEV_INITIALIZE_SUSPENDED:
139 spa_history_log_internal(spa, "initialize", tx,
140 "vdev=%s suspended", vd->vdev_path);
141 break;
142 case VDEV_INITIALIZE_CANCELED:
143 spa_history_log_internal(spa, "initialize", tx,
144 "vdev=%s canceled", vd->vdev_path);
145 break;
146 case VDEV_INITIALIZE_COMPLETE:
147 spa_history_log_internal(spa, "initialize", tx,
148 "vdev=%s complete", vd->vdev_path);
149 break;
150 default:
151 panic("invalid state %llu", (unsigned long long)new_state);
154 dmu_tx_commit(tx);
157 static void
158 vdev_initialize_cb(zio_t *zio)
160 vdev_t *vd = zio->io_vd;
161 mutex_enter(&vd->vdev_initialize_io_lock);
162 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
164 * The I/O failed because the vdev was unavailable; roll the
165 * last offset back. (This works because spa_sync waits on
166 * spa_txg_zio before it runs sync tasks.)
168 uint64_t *off =
169 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170 *off = MIN(*off, zio->io_offset);
171 } else {
173 * Since initializing is best-effort, we ignore I/O errors and
174 * rely on vdev_probe to determine if the errors are more
175 * critical.
177 if (zio->io_error != 0)
178 vd->vdev_stat.vs_initialize_errors++;
180 vd->vdev_initialize_bytes_done += zio->io_orig_size;
182 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183 vd->vdev_initialize_inflight--;
184 cv_broadcast(&vd->vdev_initialize_io_cv);
185 mutex_exit(&vd->vdev_initialize_io_lock);
187 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
190 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
191 static int
192 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
194 spa_t *spa = vd->vdev_spa;
196 /* Limit inflight initializing I/Os */
197 mutex_enter(&vd->vdev_initialize_io_lock);
198 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199 cv_wait(&vd->vdev_initialize_io_cv,
200 &vd->vdev_initialize_io_lock);
202 vd->vdev_initialize_inflight++;
203 mutex_exit(&vd->vdev_initialize_io_lock);
205 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207 uint64_t txg = dmu_tx_get_txg(tx);
209 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210 mutex_enter(&vd->vdev_initialize_lock);
212 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214 *guid = vd->vdev_guid;
216 /* This is the first write of this txg. */
217 dsl_sync_task_nowait(spa_get_dsl(spa),
218 vdev_initialize_zap_update_sync, guid, 2,
219 ZFS_SPACE_CHECK_RESERVED, tx);
223 * We know the vdev struct will still be around since all
224 * consumers of vdev_free must stop the initialization first.
226 if (vdev_initialize_should_stop(vd)) {
227 mutex_enter(&vd->vdev_initialize_io_lock);
228 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229 vd->vdev_initialize_inflight--;
230 mutex_exit(&vd->vdev_initialize_io_lock);
231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232 mutex_exit(&vd->vdev_initialize_lock);
233 dmu_tx_commit(tx);
234 return (SET_ERROR(EINTR));
236 mutex_exit(&vd->vdev_initialize_lock);
238 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242 /* vdev_initialize_cb releases SCL_STATE_ALL */
244 dmu_tx_commit(tx);
246 return (0);
250 * Translate a logical range to the physical range for the specified vdev_t.
251 * This function is initially called with a leaf vdev and will walk each
252 * parent vdev until it reaches a top-level vdev. Once the top-level is
253 * reached the physical range is initialized and the recursive function
254 * begins to unwind. As it unwinds it calls the parent's vdev specific
255 * translation function to do the real conversion.
257 void
258 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
261 * Walk up the vdev tree
263 if (vd != vd->vdev_top) {
264 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265 } else {
267 * We've reached the top-level vdev, initialize the
268 * physical range to the logical range and start to
269 * unwind.
271 physical_rs->rs_start = logical_rs->rs_start;
272 physical_rs->rs_end = logical_rs->rs_end;
273 return;
276 vdev_t *pvd = vd->vdev_parent;
277 ASSERT3P(pvd, !=, NULL);
278 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
281 * As this recursive function unwinds, translate the logical
282 * range into its physical components by calling the
283 * vdev specific translate function.
285 range_seg_t intermediate = { 0 };
286 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
288 physical_rs->rs_start = intermediate.rs_start;
289 physical_rs->rs_end = intermediate.rs_end;
293 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295 * allocation will guarantee these for us.
297 /* ARGSUSED */
298 static int
299 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
301 ASSERT0(len % sizeof (uint64_t));
302 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
305 return (0);
308 static abd_t *
309 vdev_initialize_block_alloc()
311 /* Allocate ABD for filler data */
312 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
314 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316 vdev_initialize_block_fill, NULL);
318 return (data);
321 static void
322 vdev_initialize_block_free(abd_t *data)
324 abd_free(data);
327 static int
328 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
330 avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
332 for (range_seg_t *rs = avl_first(rt); rs != NULL;
333 rs = AVL_NEXT(rt, rs)) {
334 uint64_t size = rs->rs_end - rs->rs_start;
336 /* Split range into legally-sized physical chunks */
337 uint64_t writes_required =
338 ((size - 1) / zfs_initialize_chunk_size) + 1;
340 for (uint64_t w = 0; w < writes_required; w++) {
341 int error;
343 error = vdev_initialize_write(vd,
344 VDEV_LABEL_START_SIZE + rs->rs_start +
345 (w * zfs_initialize_chunk_size),
346 MIN(size - (w * zfs_initialize_chunk_size),
347 zfs_initialize_chunk_size), data);
348 if (error != 0)
349 return (error);
352 return (0);
355 static void
356 vdev_initialize_ms_load(metaslab_t *msp)
358 ASSERT(MUTEX_HELD(&msp->ms_lock));
360 metaslab_load_wait(msp);
361 if (!msp->ms_loaded)
362 VERIFY0(metaslab_load(msp));
365 static void
366 vdev_initialize_mg_wait(metaslab_group_t *mg)
368 ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
369 while (mg->mg_initialize_updating) {
370 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
374 static void
375 vdev_initialize_mg_mark(metaslab_group_t *mg)
377 ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
378 ASSERT(mg->mg_initialize_updating);
380 while (mg->mg_ms_initializing >= max_initialize_ms) {
381 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
383 mg->mg_ms_initializing++;
384 ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
388 * Mark the metaslab as being initialized to prevent any allocations
389 * on this metaslab. We must also track how many metaslabs are currently
390 * being initialized within a metaslab group and limit them to prevent
391 * allocation failures from occurring because all metaslabs are being
392 * initialized.
394 static void
395 vdev_initialize_ms_mark(metaslab_t *msp)
397 ASSERT(!MUTEX_HELD(&msp->ms_lock));
398 metaslab_group_t *mg = msp->ms_group;
400 mutex_enter(&mg->mg_ms_initialize_lock);
403 * To keep an accurate count of how many threads are initializing
404 * a specific metaslab group, we only allow one thread to mark
405 * the metaslab group at a time. This ensures that the value of
406 * ms_initializing will be accurate when we decide to mark a metaslab
407 * group as being initialized. To do this we force all other threads
408 * to wait till the metaslab's mg_initialize_updating flag is no
409 * longer set.
411 vdev_initialize_mg_wait(mg);
412 mg->mg_initialize_updating = B_TRUE;
413 if (msp->ms_initializing == 0) {
414 vdev_initialize_mg_mark(mg);
416 mutex_enter(&msp->ms_lock);
417 msp->ms_initializing++;
418 mutex_exit(&msp->ms_lock);
420 mg->mg_initialize_updating = B_FALSE;
421 cv_broadcast(&mg->mg_ms_initialize_cv);
422 mutex_exit(&mg->mg_ms_initialize_lock);
425 static void
426 vdev_initialize_ms_unmark(metaslab_t *msp)
428 ASSERT(!MUTEX_HELD(&msp->ms_lock));
429 metaslab_group_t *mg = msp->ms_group;
430 mutex_enter(&mg->mg_ms_initialize_lock);
431 mutex_enter(&msp->ms_lock);
432 if (--msp->ms_initializing == 0) {
433 mg->mg_ms_initializing--;
434 cv_broadcast(&mg->mg_ms_initialize_cv);
436 mutex_exit(&msp->ms_lock);
437 mutex_exit(&mg->mg_ms_initialize_lock);
440 static void
441 vdev_initialize_calculate_progress(vdev_t *vd)
443 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
444 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
445 ASSERT(vd->vdev_leaf_zap != 0);
447 vd->vdev_initialize_bytes_est = 0;
448 vd->vdev_initialize_bytes_done = 0;
450 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
451 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
452 mutex_enter(&msp->ms_lock);
454 uint64_t ms_free = msp->ms_size -
455 space_map_allocated(msp->ms_sm);
457 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
458 ms_free /= vd->vdev_top->vdev_children;
461 * Convert the metaslab range to a physical range
462 * on our vdev. We use this to determine if we are
463 * in the middle of this metaslab range.
465 range_seg_t logical_rs, physical_rs;
466 logical_rs.rs_start = msp->ms_start;
467 logical_rs.rs_end = msp->ms_start + msp->ms_size;
468 vdev_xlate(vd, &logical_rs, &physical_rs);
470 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
471 vd->vdev_initialize_bytes_est += ms_free;
472 mutex_exit(&msp->ms_lock);
473 continue;
474 } else if (vd->vdev_initialize_last_offset >
475 physical_rs.rs_end) {
476 vd->vdev_initialize_bytes_done += ms_free;
477 vd->vdev_initialize_bytes_est += ms_free;
478 mutex_exit(&msp->ms_lock);
479 continue;
483 * If we get here, we're in the middle of initializing this
484 * metaslab. Load it and walk the free tree for more accurate
485 * progress estimation.
487 vdev_initialize_ms_load(msp);
489 for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root); rs;
490 rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
491 logical_rs.rs_start = rs->rs_start;
492 logical_rs.rs_end = rs->rs_end;
493 vdev_xlate(vd, &logical_rs, &physical_rs);
495 uint64_t size = physical_rs.rs_end -
496 physical_rs.rs_start;
497 vd->vdev_initialize_bytes_est += size;
498 if (vd->vdev_initialize_last_offset >
499 physical_rs.rs_end) {
500 vd->vdev_initialize_bytes_done += size;
501 } else if (vd->vdev_initialize_last_offset >
502 physical_rs.rs_start &&
503 vd->vdev_initialize_last_offset <
504 physical_rs.rs_end) {
505 vd->vdev_initialize_bytes_done +=
506 vd->vdev_initialize_last_offset -
507 physical_rs.rs_start;
510 mutex_exit(&msp->ms_lock);
514 static void
515 vdev_initialize_load(vdev_t *vd)
517 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
518 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
519 ASSERT(vd->vdev_leaf_zap != 0);
521 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
522 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
523 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
524 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
525 sizeof (vd->vdev_initialize_last_offset), 1,
526 &vd->vdev_initialize_last_offset);
527 ASSERT(err == 0 || err == ENOENT);
530 vdev_initialize_calculate_progress(vd);
535 * Convert the logical range into a physcial range and add it to our
536 * avl tree.
538 void
539 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
541 vdev_t *vd = arg;
542 range_seg_t logical_rs, physical_rs;
543 logical_rs.rs_start = start;
544 logical_rs.rs_end = start + size;
546 ASSERT(vd->vdev_ops->vdev_op_leaf);
547 vdev_xlate(vd, &logical_rs, &physical_rs);
549 IMPLY(vd->vdev_top == vd,
550 logical_rs.rs_start == physical_rs.rs_start);
551 IMPLY(vd->vdev_top == vd,
552 logical_rs.rs_end == physical_rs.rs_end);
554 /* Only add segments that we have not visited yet */
555 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
556 return;
558 /* Pick up where we left off mid-range. */
559 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
560 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
561 "(%llu, %llu)", vd->vdev_path,
562 (u_longlong_t)physical_rs.rs_start,
563 (u_longlong_t)physical_rs.rs_end,
564 (u_longlong_t)vd->vdev_initialize_last_offset,
565 (u_longlong_t)physical_rs.rs_end);
566 ASSERT3U(physical_rs.rs_end, >,
567 vd->vdev_initialize_last_offset);
568 physical_rs.rs_start = vd->vdev_initialize_last_offset;
570 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
573 * With raidz, it's possible that the logical range does not live on
574 * this leaf vdev. We only add the physical range to this vdev's if it
575 * has a length greater than 0.
577 if (physical_rs.rs_end > physical_rs.rs_start) {
578 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
579 physical_rs.rs_end - physical_rs.rs_start);
580 } else {
581 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
585 static void
586 vdev_initialize_thread(void *arg)
588 vdev_t *vd = arg;
589 spa_t *spa = vd->vdev_spa;
590 int error = 0;
591 uint64_t ms_count = 0;
593 ASSERT(vdev_is_concrete(vd));
594 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
596 vd->vdev_initialize_last_offset = 0;
597 vdev_initialize_load(vd);
599 abd_t *deadbeef = vdev_initialize_block_alloc();
601 vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
603 for (uint64_t i = 0; !vd->vdev_detached &&
604 i < vd->vdev_top->vdev_ms_count; i++) {
605 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
608 * If we've expanded the top-level vdev or it's our
609 * first pass, calculate our progress.
611 if (vd->vdev_top->vdev_ms_count != ms_count) {
612 vdev_initialize_calculate_progress(vd);
613 ms_count = vd->vdev_top->vdev_ms_count;
616 vdev_initialize_ms_mark(msp);
617 mutex_enter(&msp->ms_lock);
618 vdev_initialize_ms_load(msp);
620 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
621 vd);
622 mutex_exit(&msp->ms_lock);
624 spa_config_exit(spa, SCL_CONFIG, FTAG);
625 error = vdev_initialize_ranges(vd, deadbeef);
626 vdev_initialize_ms_unmark(msp);
627 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
629 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
630 if (error != 0)
631 break;
634 spa_config_exit(spa, SCL_CONFIG, FTAG);
635 mutex_enter(&vd->vdev_initialize_io_lock);
636 while (vd->vdev_initialize_inflight > 0) {
637 cv_wait(&vd->vdev_initialize_io_cv,
638 &vd->vdev_initialize_io_lock);
640 mutex_exit(&vd->vdev_initialize_io_lock);
642 range_tree_destroy(vd->vdev_initialize_tree);
643 vdev_initialize_block_free(deadbeef);
644 vd->vdev_initialize_tree = NULL;
646 mutex_enter(&vd->vdev_initialize_lock);
647 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
648 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
650 ASSERT(vd->vdev_initialize_thread != NULL ||
651 vd->vdev_initialize_inflight == 0);
654 * Drop the vdev_initialize_lock while we sync out the
655 * txg since it's possible that a device might be trying to
656 * come online and must check to see if it needs to restart an
657 * initialization. That thread will be holding the spa_config_lock
658 * which would prevent the txg_wait_synced from completing.
660 mutex_exit(&vd->vdev_initialize_lock);
661 txg_wait_synced(spa_get_dsl(spa), 0);
662 mutex_enter(&vd->vdev_initialize_lock);
664 vd->vdev_initialize_thread = NULL;
665 cv_broadcast(&vd->vdev_initialize_cv);
666 mutex_exit(&vd->vdev_initialize_lock);
670 * Initiates a device. Caller must hold vdev_initialize_lock.
671 * Device must be a leaf and not already be initializing.
673 void
674 vdev_initialize(vdev_t *vd)
676 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
677 ASSERT(vd->vdev_ops->vdev_op_leaf);
678 ASSERT(vdev_is_concrete(vd));
679 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
680 ASSERT(!vd->vdev_detached);
681 ASSERT(!vd->vdev_initialize_exit_wanted);
682 ASSERT(!vd->vdev_top->vdev_removing);
684 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
685 vd->vdev_initialize_thread = thread_create(NULL, 0,
686 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
690 * Stop initializng a device, with the resultant initialing state being
691 * tgt_state. Blocks until the initializing thread has exited.
692 * Caller must hold vdev_initialize_lock and must not be writing to the spa
693 * config, as the initializing thread may try to enter the config as a reader
694 * before exiting.
696 void
697 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
699 spa_t *spa = vd->vdev_spa;
700 ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
702 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
703 ASSERT(vd->vdev_ops->vdev_op_leaf);
704 ASSERT(vdev_is_concrete(vd));
707 * Allow cancel requests to proceed even if the initialize thread
708 * has stopped.
710 if (vd->vdev_initialize_thread == NULL &&
711 tgt_state != VDEV_INITIALIZE_CANCELED) {
712 return;
715 vdev_initialize_change_state(vd, tgt_state);
716 vd->vdev_initialize_exit_wanted = B_TRUE;
717 while (vd->vdev_initialize_thread != NULL)
718 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
720 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
721 vd->vdev_initialize_exit_wanted = B_FALSE;
724 static void
725 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
727 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
728 mutex_enter(&vd->vdev_initialize_lock);
729 vdev_initialize_stop(vd, tgt_state);
730 mutex_exit(&vd->vdev_initialize_lock);
731 return;
734 for (uint64_t i = 0; i < vd->vdev_children; i++) {
735 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
740 * Convenience function to stop initializing of a vdev tree and set all
741 * initialize thread pointers to NULL.
743 void
744 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
746 vdev_initialize_stop_all_impl(vd, tgt_state);
748 if (vd->vdev_spa->spa_sync_on) {
749 /* Make sure that our state has been synced to disk */
750 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
754 void
755 vdev_initialize_restart(vdev_t *vd)
757 ASSERT(MUTEX_HELD(&spa_namespace_lock));
758 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
760 if (vd->vdev_leaf_zap != 0) {
761 mutex_enter(&vd->vdev_initialize_lock);
762 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
763 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
764 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
765 sizeof (initialize_state), 1, &initialize_state);
766 ASSERT(err == 0 || err == ENOENT);
767 vd->vdev_initialize_state = initialize_state;
769 uint64_t timestamp = 0;
770 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
771 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
772 sizeof (timestamp), 1, &timestamp);
773 ASSERT(err == 0 || err == ENOENT);
774 vd->vdev_initialize_action_time = (time_t)timestamp;
776 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
777 vd->vdev_offline) {
778 /* load progress for reporting, but don't resume */
779 vdev_initialize_load(vd);
780 } else if (vd->vdev_initialize_state ==
781 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
782 vdev_initialize(vd);
785 mutex_exit(&vd->vdev_initialize_lock);
788 for (uint64_t i = 0; i < vd->vdev_children; i++) {
789 vdev_initialize_restart(vd->vdev_child[i]);