Merge commit 'bb1f424574ac8e08069d0ba993c2a41ffe796794'
[unleashed.git] / kernel / fs / zfs / spa_misc.c
blob401c28368e603c985b7d04f0361028c2d7a9e2ec
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/txg.h>
46 #include <sys/avl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
60 * SPA locking
62 * There are four basic locks for managing spa_t structures:
64 * spa_namespace_lock (global mutex)
66 * This lock must be acquired to do any of the following:
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
72 * - Rename a spa_t
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
81 * spa_refcount (per-spa refcount_t protected by mutex)
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
86 * some references in the DMU. Internally we check against spa_minref, but
87 * present the image of a zero/non-zero value to consumers.
89 * spa_config_lock[] (per-spa array of rwlocks)
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
97 * The locking order is fairly straightforward:
99 * spa_namespace_lock -> spa_refcount
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
104 * spa_refcount -> spa_config_lock[]
106 * There must be at least one valid reference on the spa_t to acquire
107 * the config lock.
109 * spa_namespace_lock -> spa_config_lock[]
111 * The namespace lock must always be taken before the config lock.
114 * The spa_namespace_lock can be acquired directly and is globally visible.
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
119 * spa_lookup() Lookup a spa_t by name.
121 * spa_add() Create a new spa_t in the namespace.
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
129 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * the system.
132 * spa_guid_exists() Determine whether a pool/device guid exists.
134 * The spa_refcount is manipulated using the following functions:
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
146 * held.
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
168 * The lock acquisition rules are as follows:
170 * SCL_CONFIG
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
175 * SCL_STATE
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
180 * SCL_ALLOC
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
184 * SCL_ZIO
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
189 * SCL_FREE
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
196 * SCL_VDEV
197 * Held as reader to prevent changes to the vdev tree during trivial
198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
202 * In addition, the following rules apply:
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * for writing.
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
226 * spa_rename() is also implemented within this file since it requires
227 * manipulation of the namespace.
230 static avl_tree_t spa_namespace_avl;
231 kmutex_t spa_namespace_lock;
232 static kcondvar_t spa_namespace_cv;
233 static int spa_active_count;
234 int spa_max_replication_override = SPA_DVAS_PER_BP;
236 static kmutex_t spa_spare_lock;
237 static avl_tree_t spa_spare_avl;
238 static kmutex_t spa_l2cache_lock;
239 static avl_tree_t spa_l2cache_avl;
241 kmem_cache_t *spa_buffer_pool;
242 int spa_mode_global;
244 #ifdef ZFS_DEBUG
246 * Everything except dprintf, spa, and indirect_remap is on by default
247 * in debug builds.
249 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
250 #else
251 int zfs_flags = 0;
252 #endif
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption. When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
261 boolean_t zfs_recover = B_FALSE;
264 * If destroy encounters an EIO while reading metadata (e.g. indirect
265 * blocks), space referenced by the missing metadata can not be freed.
266 * Normally this causes the background destroy to become "stalled", as
267 * it is unable to make forward progress. While in this stalled state,
268 * all remaining space to free from the error-encountering filesystem is
269 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
270 * permanently leak the space from indirect blocks that can not be read,
271 * and continue to free everything else that it can.
273 * The default, "stalling" behavior is useful if the storage partially
274 * fails (i.e. some but not all i/os fail), and then later recovers. In
275 * this case, we will be able to continue pool operations while it is
276 * partially failed, and when it recovers, we can continue to free the
277 * space, with no leaks. However, note that this case is actually
278 * fairly rare.
280 * Typically pools either (a) fail completely (but perhaps temporarily,
281 * e.g. a top-level vdev going offline), or (b) have localized,
282 * permanent errors (e.g. disk returns the wrong data due to bit flip or
283 * firmware bug). In case (a), this setting does not matter because the
284 * pool will be suspended and the sync thread will not be able to make
285 * forward progress regardless. In case (b), because the error is
286 * permanent, the best we can do is leak the minimum amount of space,
287 * which is what setting this flag will do. Therefore, it is reasonable
288 * for this flag to normally be set, but we chose the more conservative
289 * approach of not setting it, so that there is no possibility of
290 * leaking space in the "partial temporary" failure case.
292 boolean_t zfs_free_leak_on_eio = B_FALSE;
295 * Expiration time in milliseconds. This value has two meanings. First it is
296 * used to determine when the spa_deadman() logic should fire. By default the
297 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
298 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
299 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
300 * in a system panic.
302 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
305 * Check time in milliseconds. This defines the frequency at which we check
306 * for hung I/O.
308 uint64_t zfs_deadman_checktime_ms = 5000ULL;
311 * Override the zfs deadman behavior via /etc/system. By default the
312 * deadman is enabled except on VMware and sparc deployments.
314 int zfs_deadman_enabled = -1;
317 * The worst case is single-sector max-parity RAID-Z blocks, in which
318 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
319 * times the size; so just assume that. Add to this the fact that
320 * we can have up to 3 DVAs per bp, and one more factor of 2 because
321 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
322 * the worst case is:
323 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
325 int spa_asize_inflation = 24;
328 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
329 * the pool to be consumed. This ensures that we don't run the pool
330 * completely out of space, due to unaccounted changes (e.g. to the MOS).
331 * It also limits the worst-case time to allocate space. If we have
332 * less than this amount of free space, most ZPL operations (e.g. write,
333 * create) will return ENOSPC.
335 * Certain operations (e.g. file removal, most administrative actions) can
336 * use half the slop space. They will only return ENOSPC if less than half
337 * the slop space is free. Typically, once the pool has less than the slop
338 * space free, the user will use these operations to free up space in the pool.
339 * These are the operations that call dsl_pool_adjustedsize() with the netfree
340 * argument set to TRUE.
342 * Operations that are almost guaranteed to free up space in the absence of
343 * a pool checkpoint can use up to three quarters of the slop space
344 * (e.g zfs destroy).
346 * A very restricted set of operations are always permitted, regardless of
347 * the amount of free space. These are the operations that call
348 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
349 * increase in the amount of space used, it is possible to run the pool
350 * completely out of space, causing it to be permanently read-only.
352 * Note that on very small pools, the slop space will be larger than
353 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
354 * but we never allow it to be more than half the pool size.
356 * See also the comments in zfs_space_check_t.
358 int spa_slop_shift = 5;
359 uint64_t spa_min_slop = 128 * 1024 * 1024;
361 int spa_allocators = 4;
363 /*PRINTFLIKE2*/
364 void
365 spa_load_failed(spa_t *spa, const char *fmt, ...)
367 va_list adx;
368 char buf[256];
370 va_start(adx, fmt);
371 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
372 va_end(adx);
374 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
375 spa->spa_trust_config ? "trusted" : "untrusted", buf);
378 /*PRINTFLIKE2*/
379 void
380 spa_load_note(spa_t *spa, const char *fmt, ...)
382 va_list adx;
383 char buf[256];
385 va_start(adx, fmt);
386 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
387 va_end(adx);
389 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
390 spa->spa_trust_config ? "trusted" : "untrusted", buf);
394 * ==========================================================================
395 * SPA config locking
396 * ==========================================================================
398 static void
399 spa_config_lock_init(spa_t *spa)
401 for (int i = 0; i < SCL_LOCKS; i++) {
402 spa_config_lock_t *scl = &spa->spa_config_lock[i];
403 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
404 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
405 refcount_create_untracked(&scl->scl_count);
406 scl->scl_writer = NULL;
407 scl->scl_write_wanted = 0;
411 static void
412 spa_config_lock_destroy(spa_t *spa)
414 for (int i = 0; i < SCL_LOCKS; i++) {
415 spa_config_lock_t *scl = &spa->spa_config_lock[i];
416 mutex_destroy(&scl->scl_lock);
417 cv_destroy(&scl->scl_cv);
418 refcount_destroy(&scl->scl_count);
419 ASSERT(scl->scl_writer == NULL);
420 ASSERT(scl->scl_write_wanted == 0);
425 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
427 for (int i = 0; i < SCL_LOCKS; i++) {
428 spa_config_lock_t *scl = &spa->spa_config_lock[i];
429 if (!(locks & (1 << i)))
430 continue;
431 mutex_enter(&scl->scl_lock);
432 if (rw == RW_READER) {
433 if (scl->scl_writer || scl->scl_write_wanted) {
434 mutex_exit(&scl->scl_lock);
435 spa_config_exit(spa, locks & ((1 << i) - 1),
436 tag);
437 return (0);
439 } else {
440 ASSERT(scl->scl_writer != curthread);
441 if (!refcount_is_zero(&scl->scl_count)) {
442 mutex_exit(&scl->scl_lock);
443 spa_config_exit(spa, locks & ((1 << i) - 1),
444 tag);
445 return (0);
447 scl->scl_writer = curthread;
449 (void) refcount_add(&scl->scl_count, tag);
450 mutex_exit(&scl->scl_lock);
452 return (1);
455 void
456 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
458 int wlocks_held = 0;
460 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
462 for (int i = 0; i < SCL_LOCKS; i++) {
463 spa_config_lock_t *scl = &spa->spa_config_lock[i];
464 if (scl->scl_writer == curthread)
465 wlocks_held |= (1 << i);
466 if (!(locks & (1 << i)))
467 continue;
468 mutex_enter(&scl->scl_lock);
469 if (rw == RW_READER) {
470 while (scl->scl_writer || scl->scl_write_wanted) {
471 cv_wait(&scl->scl_cv, &scl->scl_lock);
473 } else {
474 ASSERT(scl->scl_writer != curthread);
475 while (!refcount_is_zero(&scl->scl_count)) {
476 scl->scl_write_wanted++;
477 cv_wait(&scl->scl_cv, &scl->scl_lock);
478 scl->scl_write_wanted--;
480 scl->scl_writer = curthread;
482 (void) refcount_add(&scl->scl_count, tag);
483 mutex_exit(&scl->scl_lock);
485 ASSERT3U(wlocks_held, <=, locks);
488 void
489 spa_config_exit(spa_t *spa, int locks, void *tag)
491 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
492 spa_config_lock_t *scl = &spa->spa_config_lock[i];
493 if (!(locks & (1 << i)))
494 continue;
495 mutex_enter(&scl->scl_lock);
496 ASSERT(!refcount_is_zero(&scl->scl_count));
497 if (refcount_remove(&scl->scl_count, tag) == 0) {
498 ASSERT(scl->scl_writer == NULL ||
499 scl->scl_writer == curthread);
500 scl->scl_writer = NULL; /* OK in either case */
501 cv_broadcast(&scl->scl_cv);
503 mutex_exit(&scl->scl_lock);
508 spa_config_held(spa_t *spa, int locks, krw_t rw)
510 int locks_held = 0;
512 for (int i = 0; i < SCL_LOCKS; i++) {
513 spa_config_lock_t *scl = &spa->spa_config_lock[i];
514 if (!(locks & (1 << i)))
515 continue;
516 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
517 (rw == RW_WRITER && scl->scl_writer == curthread))
518 locks_held |= 1 << i;
521 return (locks_held);
525 * ==========================================================================
526 * SPA namespace functions
527 * ==========================================================================
531 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
532 * Returns NULL if no matching spa_t is found.
534 spa_t *
535 spa_lookup(const char *name)
537 static spa_t search; /* spa_t is large; don't allocate on stack */
538 spa_t *spa;
539 avl_index_t where;
540 char *cp;
542 ASSERT(MUTEX_HELD(&spa_namespace_lock));
544 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
547 * If it's a full dataset name, figure out the pool name and
548 * just use that.
550 cp = strpbrk(search.spa_name, "/@#");
551 if (cp != NULL)
552 *cp = '\0';
554 spa = avl_find(&spa_namespace_avl, &search, &where);
556 return (spa);
560 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
561 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
562 * looking for potentially hung I/Os.
564 void
565 spa_deadman(void *arg)
567 spa_t *spa = arg;
570 * Disable the deadman timer if the pool is suspended.
572 if (spa_suspended(spa)) {
573 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
574 return;
577 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
578 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
579 ++spa->spa_deadman_calls);
580 if (zfs_deadman_enabled)
581 vdev_deadman(spa->spa_root_vdev);
585 * Create an uninitialized spa_t with the given name. Requires
586 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
587 * exist by calling spa_lookup() first.
589 spa_t *
590 spa_add(const char *name, nvlist_t *config, const char *altroot)
592 spa_t *spa;
593 spa_config_dirent_t *dp;
594 cyc_handler_t hdlr;
595 cyc_time_t when;
597 ASSERT(MUTEX_HELD(&spa_namespace_lock));
599 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
601 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
602 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
603 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
604 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
605 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
606 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
607 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
608 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
609 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
610 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
611 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
612 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
614 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
615 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
616 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
617 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
618 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
620 for (int t = 0; t < TXG_SIZE; t++)
621 bplist_create(&spa->spa_free_bplist[t]);
623 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
624 spa->spa_state = POOL_STATE_UNINITIALIZED;
625 spa->spa_freeze_txg = UINT64_MAX;
626 spa->spa_final_txg = UINT64_MAX;
627 spa->spa_load_max_txg = UINT64_MAX;
628 spa->spa_proc = &p0;
629 spa->spa_proc_state = SPA_PROC_NONE;
630 spa->spa_trust_config = B_TRUE;
632 hdlr.cyh_func = spa_deadman;
633 hdlr.cyh_arg = spa;
634 hdlr.cyh_level = CY_LOW_LEVEL;
636 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
639 * This determines how often we need to check for hung I/Os after
640 * the cyclic has already fired. Since checking for hung I/Os is
641 * an expensive operation we don't want to check too frequently.
642 * Instead wait for 5 seconds before checking again.
644 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
645 when.cyt_when = CY_INFINITY;
646 mutex_enter(&cpu_lock);
647 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
648 mutex_exit(&cpu_lock);
650 refcount_create(&spa->spa_refcount);
651 spa_config_lock_init(spa);
653 avl_add(&spa_namespace_avl, spa);
656 * Set the alternate root, if there is one.
658 if (altroot) {
659 spa->spa_root = spa_strdup(altroot);
660 spa_active_count++;
663 spa->spa_alloc_count = spa_allocators;
664 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
665 sizeof (kmutex_t), KM_SLEEP);
666 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
667 sizeof (avl_tree_t), KM_SLEEP);
668 for (int i = 0; i < spa->spa_alloc_count; i++) {
669 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
670 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
671 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
675 * Every pool starts with the default cachefile
677 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
678 offsetof(spa_config_dirent_t, scd_link));
680 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
681 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
682 list_insert_head(&spa->spa_config_list, dp);
684 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
685 KM_SLEEP) == 0);
687 if (config != NULL) {
688 nvlist_t *features;
690 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
691 &features) == 0) {
692 VERIFY(nvlist_dup(features, &spa->spa_label_features,
693 0) == 0);
696 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
699 if (spa->spa_label_features == NULL) {
700 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
701 KM_SLEEP) == 0);
704 spa->spa_iokstat = kstat_create("zfs", 0, name,
705 "disk", KSTAT_TYPE_IO, 1, 0);
706 if (spa->spa_iokstat) {
707 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
708 kstat_install(spa->spa_iokstat);
711 spa->spa_min_ashift = INT_MAX;
712 spa->spa_max_ashift = 0;
715 * As a pool is being created, treat all features as disabled by
716 * setting SPA_FEATURE_DISABLED for all entries in the feature
717 * refcount cache.
719 for (int i = 0; i < SPA_FEATURES; i++) {
720 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
723 return (spa);
727 * Removes a spa_t from the namespace, freeing up any memory used. Requires
728 * spa_namespace_lock. This is called only after the spa_t has been closed and
729 * deactivated.
731 void
732 spa_remove(spa_t *spa)
734 spa_config_dirent_t *dp;
736 ASSERT(MUTEX_HELD(&spa_namespace_lock));
737 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
738 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
740 nvlist_free(spa->spa_config_splitting);
742 avl_remove(&spa_namespace_avl, spa);
743 cv_broadcast(&spa_namespace_cv);
745 if (spa->spa_root) {
746 spa_strfree(spa->spa_root);
747 spa_active_count--;
750 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
751 list_remove(&spa->spa_config_list, dp);
752 if (dp->scd_path != NULL)
753 spa_strfree(dp->scd_path);
754 kmem_free(dp, sizeof (spa_config_dirent_t));
757 for (int i = 0; i < spa->spa_alloc_count; i++) {
758 avl_destroy(&spa->spa_alloc_trees[i]);
759 mutex_destroy(&spa->spa_alloc_locks[i]);
761 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
762 sizeof (kmutex_t));
763 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
764 sizeof (avl_tree_t));
766 list_destroy(&spa->spa_config_list);
768 nvlist_free(spa->spa_label_features);
769 nvlist_free(spa->spa_load_info);
770 spa_config_set(spa, NULL);
772 mutex_enter(&cpu_lock);
773 if (spa->spa_deadman_cycid != CYCLIC_NONE)
774 cyclic_remove(spa->spa_deadman_cycid);
775 mutex_exit(&cpu_lock);
776 spa->spa_deadman_cycid = CYCLIC_NONE;
778 refcount_destroy(&spa->spa_refcount);
780 spa_config_lock_destroy(spa);
782 kstat_delete(spa->spa_iokstat);
783 spa->spa_iokstat = NULL;
785 for (int t = 0; t < TXG_SIZE; t++)
786 bplist_destroy(&spa->spa_free_bplist[t]);
788 zio_checksum_templates_free(spa);
790 cv_destroy(&spa->spa_async_cv);
791 cv_destroy(&spa->spa_evicting_os_cv);
792 cv_destroy(&spa->spa_proc_cv);
793 cv_destroy(&spa->spa_scrub_io_cv);
794 cv_destroy(&spa->spa_suspend_cv);
796 mutex_destroy(&spa->spa_async_lock);
797 mutex_destroy(&spa->spa_errlist_lock);
798 mutex_destroy(&spa->spa_errlog_lock);
799 mutex_destroy(&spa->spa_evicting_os_lock);
800 mutex_destroy(&spa->spa_history_lock);
801 mutex_destroy(&spa->spa_proc_lock);
802 mutex_destroy(&spa->spa_props_lock);
803 mutex_destroy(&spa->spa_cksum_tmpls_lock);
804 mutex_destroy(&spa->spa_scrub_lock);
805 mutex_destroy(&spa->spa_suspend_lock);
806 mutex_destroy(&spa->spa_vdev_top_lock);
807 mutex_destroy(&spa->spa_iokstat_lock);
809 kmem_free(spa, sizeof (spa_t));
813 * Given a pool, return the next pool in the namespace, or NULL if there is
814 * none. If 'prev' is NULL, return the first pool.
816 spa_t *
817 spa_next(spa_t *prev)
819 ASSERT(MUTEX_HELD(&spa_namespace_lock));
821 if (prev)
822 return (AVL_NEXT(&spa_namespace_avl, prev));
823 else
824 return (avl_first(&spa_namespace_avl));
828 * ==========================================================================
829 * SPA refcount functions
830 * ==========================================================================
834 * Add a reference to the given spa_t. Must have at least one reference, or
835 * have the namespace lock held.
837 void
838 spa_open_ref(spa_t *spa, void *tag)
840 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
841 MUTEX_HELD(&spa_namespace_lock));
842 (void) refcount_add(&spa->spa_refcount, tag);
846 * Remove a reference to the given spa_t. Must have at least one reference, or
847 * have the namespace lock held.
849 void
850 spa_close(spa_t *spa, void *tag)
852 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
853 MUTEX_HELD(&spa_namespace_lock));
854 (void) refcount_remove(&spa->spa_refcount, tag);
858 * Remove a reference to the given spa_t held by a dsl dir that is
859 * being asynchronously released. Async releases occur from a taskq
860 * performing eviction of dsl datasets and dirs. The namespace lock
861 * isn't held and the hold by the object being evicted may contribute to
862 * spa_minref (e.g. dataset or directory released during pool export),
863 * so the asserts in spa_close() do not apply.
865 void
866 spa_async_close(spa_t *spa, void *tag)
868 (void) refcount_remove(&spa->spa_refcount, tag);
872 * Check to see if the spa refcount is zero. Must be called with
873 * spa_namespace_lock held. We really compare against spa_minref, which is the
874 * number of references acquired when opening a pool
876 boolean_t
877 spa_refcount_zero(spa_t *spa)
879 ASSERT(MUTEX_HELD(&spa_namespace_lock));
881 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
885 * ==========================================================================
886 * SPA spare and l2cache tracking
887 * ==========================================================================
891 * Hot spares and cache devices are tracked using the same code below,
892 * for 'auxiliary' devices.
895 typedef struct spa_aux {
896 uint64_t aux_guid;
897 uint64_t aux_pool;
898 avl_node_t aux_avl;
899 int aux_count;
900 } spa_aux_t;
902 static int
903 spa_aux_compare(const void *a, const void *b)
905 const spa_aux_t *sa = a;
906 const spa_aux_t *sb = b;
908 if (sa->aux_guid < sb->aux_guid)
909 return (-1);
910 else if (sa->aux_guid > sb->aux_guid)
911 return (1);
912 else
913 return (0);
916 void
917 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
919 avl_index_t where;
920 spa_aux_t search;
921 spa_aux_t *aux;
923 search.aux_guid = vd->vdev_guid;
924 if ((aux = avl_find(avl, &search, &where)) != NULL) {
925 aux->aux_count++;
926 } else {
927 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
928 aux->aux_guid = vd->vdev_guid;
929 aux->aux_count = 1;
930 avl_insert(avl, aux, where);
934 void
935 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
937 spa_aux_t search;
938 spa_aux_t *aux;
939 avl_index_t where;
941 search.aux_guid = vd->vdev_guid;
942 aux = avl_find(avl, &search, &where);
944 ASSERT(aux != NULL);
946 if (--aux->aux_count == 0) {
947 avl_remove(avl, aux);
948 kmem_free(aux, sizeof (spa_aux_t));
949 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
950 aux->aux_pool = 0ULL;
954 boolean_t
955 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
957 spa_aux_t search, *found;
959 search.aux_guid = guid;
960 found = avl_find(avl, &search, NULL);
962 if (pool) {
963 if (found)
964 *pool = found->aux_pool;
965 else
966 *pool = 0ULL;
969 if (refcnt) {
970 if (found)
971 *refcnt = found->aux_count;
972 else
973 *refcnt = 0;
976 return (found != NULL);
979 void
980 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
982 spa_aux_t search, *found;
983 avl_index_t where;
985 search.aux_guid = vd->vdev_guid;
986 found = avl_find(avl, &search, &where);
987 ASSERT(found != NULL);
988 ASSERT(found->aux_pool == 0ULL);
990 found->aux_pool = spa_guid(vd->vdev_spa);
994 * Spares are tracked globally due to the following constraints:
996 * - A spare may be part of multiple pools.
997 * - A spare may be added to a pool even if it's actively in use within
998 * another pool.
999 * - A spare in use in any pool can only be the source of a replacement if
1000 * the target is a spare in the same pool.
1002 * We keep track of all spares on the system through the use of a reference
1003 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1004 * spare, then we bump the reference count in the AVL tree. In addition, we set
1005 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1006 * inactive). When a spare is made active (used to replace a device in the
1007 * pool), we also keep track of which pool its been made a part of.
1009 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1010 * called under the spa_namespace lock as part of vdev reconfiguration. The
1011 * separate spare lock exists for the status query path, which does not need to
1012 * be completely consistent with respect to other vdev configuration changes.
1015 static int
1016 spa_spare_compare(const void *a, const void *b)
1018 return (spa_aux_compare(a, b));
1021 void
1022 spa_spare_add(vdev_t *vd)
1024 mutex_enter(&spa_spare_lock);
1025 ASSERT(!vd->vdev_isspare);
1026 spa_aux_add(vd, &spa_spare_avl);
1027 vd->vdev_isspare = B_TRUE;
1028 mutex_exit(&spa_spare_lock);
1031 void
1032 spa_spare_remove(vdev_t *vd)
1034 mutex_enter(&spa_spare_lock);
1035 ASSERT(vd->vdev_isspare);
1036 spa_aux_remove(vd, &spa_spare_avl);
1037 vd->vdev_isspare = B_FALSE;
1038 mutex_exit(&spa_spare_lock);
1041 boolean_t
1042 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1044 boolean_t found;
1046 mutex_enter(&spa_spare_lock);
1047 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1048 mutex_exit(&spa_spare_lock);
1050 return (found);
1053 void
1054 spa_spare_activate(vdev_t *vd)
1056 mutex_enter(&spa_spare_lock);
1057 ASSERT(vd->vdev_isspare);
1058 spa_aux_activate(vd, &spa_spare_avl);
1059 mutex_exit(&spa_spare_lock);
1063 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1064 * Cache devices currently only support one pool per cache device, and so
1065 * for these devices the aux reference count is currently unused beyond 1.
1068 static int
1069 spa_l2cache_compare(const void *a, const void *b)
1071 return (spa_aux_compare(a, b));
1074 void
1075 spa_l2cache_add(vdev_t *vd)
1077 mutex_enter(&spa_l2cache_lock);
1078 ASSERT(!vd->vdev_isl2cache);
1079 spa_aux_add(vd, &spa_l2cache_avl);
1080 vd->vdev_isl2cache = B_TRUE;
1081 mutex_exit(&spa_l2cache_lock);
1084 void
1085 spa_l2cache_remove(vdev_t *vd)
1087 mutex_enter(&spa_l2cache_lock);
1088 ASSERT(vd->vdev_isl2cache);
1089 spa_aux_remove(vd, &spa_l2cache_avl);
1090 vd->vdev_isl2cache = B_FALSE;
1091 mutex_exit(&spa_l2cache_lock);
1094 boolean_t
1095 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1097 boolean_t found;
1099 mutex_enter(&spa_l2cache_lock);
1100 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1101 mutex_exit(&spa_l2cache_lock);
1103 return (found);
1106 void
1107 spa_l2cache_activate(vdev_t *vd)
1109 mutex_enter(&spa_l2cache_lock);
1110 ASSERT(vd->vdev_isl2cache);
1111 spa_aux_activate(vd, &spa_l2cache_avl);
1112 mutex_exit(&spa_l2cache_lock);
1116 * ==========================================================================
1117 * SPA vdev locking
1118 * ==========================================================================
1122 * Lock the given spa_t for the purpose of adding or removing a vdev.
1123 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1124 * It returns the next transaction group for the spa_t.
1126 uint64_t
1127 spa_vdev_enter(spa_t *spa)
1129 mutex_enter(&spa->spa_vdev_top_lock);
1130 mutex_enter(&spa_namespace_lock);
1131 return (spa_vdev_config_enter(spa));
1135 * Internal implementation for spa_vdev_enter(). Used when a vdev
1136 * operation requires multiple syncs (i.e. removing a device) while
1137 * keeping the spa_namespace_lock held.
1139 uint64_t
1140 spa_vdev_config_enter(spa_t *spa)
1142 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1144 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1146 return (spa_last_synced_txg(spa) + 1);
1150 * Used in combination with spa_vdev_config_enter() to allow the syncing
1151 * of multiple transactions without releasing the spa_namespace_lock.
1153 void
1154 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1156 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1158 int config_changed = B_FALSE;
1160 ASSERT(txg > spa_last_synced_txg(spa));
1162 spa->spa_pending_vdev = NULL;
1165 * Reassess the DTLs.
1167 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1169 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1170 config_changed = B_TRUE;
1171 spa->spa_config_generation++;
1175 * Verify the metaslab classes.
1177 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1178 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1180 spa_config_exit(spa, SCL_ALL, spa);
1183 * Panic the system if the specified tag requires it. This
1184 * is useful for ensuring that configurations are updated
1185 * transactionally.
1187 if (zio_injection_enabled)
1188 zio_handle_panic_injection(spa, tag, 0);
1191 * Note: this txg_wait_synced() is important because it ensures
1192 * that there won't be more than one config change per txg.
1193 * This allows us to use the txg as the generation number.
1195 if (error == 0)
1196 txg_wait_synced(spa->spa_dsl_pool, txg);
1198 if (vd != NULL) {
1199 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1200 if (vd->vdev_ops->vdev_op_leaf) {
1201 mutex_enter(&vd->vdev_initialize_lock);
1202 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
1203 mutex_exit(&vd->vdev_initialize_lock);
1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1207 vdev_free(vd);
1208 spa_config_exit(spa, SCL_ALL, spa);
1212 * If the config changed, update the config cache.
1214 if (config_changed)
1215 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1219 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1220 * locking of spa_vdev_enter(), we also want make sure the transactions have
1221 * synced to disk, and then update the global configuration cache with the new
1222 * information.
1225 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1227 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1228 mutex_exit(&spa_namespace_lock);
1229 mutex_exit(&spa->spa_vdev_top_lock);
1231 return (error);
1235 * Lock the given spa_t for the purpose of changing vdev state.
1237 void
1238 spa_vdev_state_enter(spa_t *spa, int oplocks)
1240 int locks = SCL_STATE_ALL | oplocks;
1243 * Root pools may need to read of the underlying devfs filesystem
1244 * when opening up a vdev. Unfortunately if we're holding the
1245 * SCL_ZIO lock it will result in a deadlock when we try to issue
1246 * the read from the root filesystem. Instead we "prefetch"
1247 * the associated vnodes that we need prior to opening the
1248 * underlying devices and cache them so that we can prevent
1249 * any I/O when we are doing the actual open.
1251 if (spa_is_root(spa)) {
1252 int low = locks & ~(SCL_ZIO - 1);
1253 int high = locks & ~low;
1255 spa_config_enter(spa, high, spa, RW_WRITER);
1256 vdev_hold(spa->spa_root_vdev);
1257 spa_config_enter(spa, low, spa, RW_WRITER);
1258 } else {
1259 spa_config_enter(spa, locks, spa, RW_WRITER);
1261 spa->spa_vdev_locks = locks;
1265 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1267 boolean_t config_changed = B_FALSE;
1269 if (vd != NULL || error == 0)
1270 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1271 0, 0, B_FALSE);
1273 if (vd != NULL) {
1274 vdev_state_dirty(vd->vdev_top);
1275 config_changed = B_TRUE;
1276 spa->spa_config_generation++;
1279 if (spa_is_root(spa))
1280 vdev_rele(spa->spa_root_vdev);
1282 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1283 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1286 * If anything changed, wait for it to sync. This ensures that,
1287 * from the system administrator's perspective, zpool(8) commands
1288 * are synchronous. This is important for things like zpool offline:
1289 * when the command completes, you expect no further I/O from ZFS.
1291 if (vd != NULL)
1292 txg_wait_synced(spa->spa_dsl_pool, 0);
1295 * If the config changed, update the config cache.
1297 if (config_changed) {
1298 mutex_enter(&spa_namespace_lock);
1299 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1300 mutex_exit(&spa_namespace_lock);
1303 return (error);
1307 * ==========================================================================
1308 * Miscellaneous functions
1309 * ==========================================================================
1312 void
1313 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1315 if (!nvlist_exists(spa->spa_label_features, feature)) {
1316 fnvlist_add_boolean(spa->spa_label_features, feature);
1318 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1319 * dirty the vdev config because lock SCL_CONFIG is not held.
1320 * Thankfully, in this case we don't need to dirty the config
1321 * because it will be written out anyway when we finish
1322 * creating the pool.
1324 if (tx->tx_txg != TXG_INITIAL)
1325 vdev_config_dirty(spa->spa_root_vdev);
1329 void
1330 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1332 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1333 vdev_config_dirty(spa->spa_root_vdev);
1337 * Rename a spa_t.
1340 spa_rename(const char *name, const char *newname)
1342 spa_t *spa;
1343 int err;
1346 * Lookup the spa_t and grab the config lock for writing. We need to
1347 * actually open the pool so that we can sync out the necessary labels.
1348 * It's OK to call spa_open() with the namespace lock held because we
1349 * allow recursive calls for other reasons.
1351 mutex_enter(&spa_namespace_lock);
1352 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1353 mutex_exit(&spa_namespace_lock);
1354 return (err);
1357 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1359 avl_remove(&spa_namespace_avl, spa);
1360 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1361 avl_add(&spa_namespace_avl, spa);
1364 * Sync all labels to disk with the new names by marking the root vdev
1365 * dirty and waiting for it to sync. It will pick up the new pool name
1366 * during the sync.
1368 vdev_config_dirty(spa->spa_root_vdev);
1370 spa_config_exit(spa, SCL_ALL, FTAG);
1372 txg_wait_synced(spa->spa_dsl_pool, 0);
1375 * Sync the updated config cache.
1377 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1379 spa_close(spa, FTAG);
1381 mutex_exit(&spa_namespace_lock);
1383 return (0);
1387 * Return the spa_t associated with given pool_guid, if it exists. If
1388 * device_guid is non-zero, determine whether the pool exists *and* contains
1389 * a device with the specified device_guid.
1391 spa_t *
1392 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1394 spa_t *spa;
1395 avl_tree_t *t = &spa_namespace_avl;
1397 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1399 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1400 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1401 continue;
1402 if (spa->spa_root_vdev == NULL)
1403 continue;
1404 if (spa_guid(spa) == pool_guid) {
1405 if (device_guid == 0)
1406 break;
1408 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1409 device_guid) != NULL)
1410 break;
1413 * Check any devices we may be in the process of adding.
1415 if (spa->spa_pending_vdev) {
1416 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1417 device_guid) != NULL)
1418 break;
1423 return (spa);
1427 * Determine whether a pool with the given pool_guid exists.
1429 boolean_t
1430 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1432 return (spa_by_guid(pool_guid, device_guid) != NULL);
1435 char *
1436 spa_strdup(const char *s)
1438 size_t len;
1439 char *new;
1441 len = strlen(s);
1442 new = kmem_alloc(len + 1, KM_SLEEP);
1443 bcopy(s, new, len);
1444 new[len] = '\0';
1446 return (new);
1449 void
1450 spa_strfree(char *s)
1452 kmem_free(s, strlen(s) + 1);
1455 uint64_t
1456 spa_get_random(uint64_t range)
1458 uint64_t r;
1460 ASSERT(range != 0);
1462 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1464 return (r % range);
1467 uint64_t
1468 spa_generate_guid(spa_t *spa)
1470 uint64_t guid = spa_get_random(-1ULL);
1472 if (spa != NULL) {
1473 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1474 guid = spa_get_random(-1ULL);
1475 } else {
1476 while (guid == 0 || spa_guid_exists(guid, 0))
1477 guid = spa_get_random(-1ULL);
1480 return (guid);
1483 void
1484 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1486 char type[256];
1487 char *checksum = NULL;
1488 char *compress = NULL;
1490 if (bp != NULL) {
1491 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1492 dmu_object_byteswap_t bswap =
1493 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1494 (void) snprintf(type, sizeof (type), "bswap %s %s",
1495 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1496 "metadata" : "data",
1497 dmu_ot_byteswap[bswap].ob_name);
1498 } else {
1499 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1500 sizeof (type));
1502 if (!BP_IS_EMBEDDED(bp)) {
1503 checksum =
1504 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1506 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1509 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1510 compress);
1513 void
1514 spa_freeze(spa_t *spa)
1516 uint64_t freeze_txg = 0;
1518 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1519 if (spa->spa_freeze_txg == UINT64_MAX) {
1520 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1521 spa->spa_freeze_txg = freeze_txg;
1523 spa_config_exit(spa, SCL_ALL, FTAG);
1524 if (freeze_txg != 0)
1525 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1528 void
1529 zfs_panic_recover(const char *fmt, ...)
1531 va_list adx;
1533 va_start(adx, fmt);
1534 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1535 va_end(adx);
1539 * This is a stripped-down version of strtoull, suitable only for converting
1540 * lowercase hexadecimal numbers that don't overflow.
1542 uint64_t
1543 zfs_strtonum(const char *str, char **nptr)
1545 uint64_t val = 0;
1546 char c;
1547 int digit;
1549 while ((c = *str) != '\0') {
1550 if (c >= '0' && c <= '9')
1551 digit = c - '0';
1552 else if (c >= 'a' && c <= 'f')
1553 digit = 10 + c - 'a';
1554 else
1555 break;
1557 val *= 16;
1558 val += digit;
1560 str++;
1563 if (nptr)
1564 *nptr = (char *)str;
1566 return (val);
1570 * ==========================================================================
1571 * Accessor functions
1572 * ==========================================================================
1575 boolean_t
1576 spa_shutting_down(spa_t *spa)
1578 return (spa->spa_async_suspended);
1581 dsl_pool_t *
1582 spa_get_dsl(spa_t *spa)
1584 return (spa->spa_dsl_pool);
1587 boolean_t
1588 spa_is_initializing(spa_t *spa)
1590 return (spa->spa_is_initializing);
1593 boolean_t
1594 spa_indirect_vdevs_loaded(spa_t *spa)
1596 return (spa->spa_indirect_vdevs_loaded);
1599 blkptr_t *
1600 spa_get_rootblkptr(spa_t *spa)
1602 return (&spa->spa_ubsync.ub_rootbp);
1605 void
1606 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1608 spa->spa_uberblock.ub_rootbp = *bp;
1611 void
1612 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1614 if (spa->spa_root == NULL)
1615 buf[0] = '\0';
1616 else
1617 (void) strncpy(buf, spa->spa_root, buflen);
1621 spa_sync_pass(spa_t *spa)
1623 return (spa->spa_sync_pass);
1626 char *
1627 spa_name(spa_t *spa)
1629 return (spa->spa_name);
1632 uint64_t
1633 spa_guid(spa_t *spa)
1635 dsl_pool_t *dp = spa_get_dsl(spa);
1636 uint64_t guid;
1639 * If we fail to parse the config during spa_load(), we can go through
1640 * the error path (which posts an ereport) and end up here with no root
1641 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1642 * this case.
1644 if (spa->spa_root_vdev == NULL)
1645 return (spa->spa_config_guid);
1647 guid = spa->spa_last_synced_guid != 0 ?
1648 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1651 * Return the most recently synced out guid unless we're
1652 * in syncing context.
1654 if (dp && dsl_pool_sync_context(dp))
1655 return (spa->spa_root_vdev->vdev_guid);
1656 else
1657 return (guid);
1660 uint64_t
1661 spa_load_guid(spa_t *spa)
1664 * This is a GUID that exists solely as a reference for the
1665 * purposes of the arc. It is generated at load time, and
1666 * is never written to persistent storage.
1668 return (spa->spa_load_guid);
1671 uint64_t
1672 spa_last_synced_txg(spa_t *spa)
1674 return (spa->spa_ubsync.ub_txg);
1677 uint64_t
1678 spa_first_txg(spa_t *spa)
1680 return (spa->spa_first_txg);
1683 uint64_t
1684 spa_syncing_txg(spa_t *spa)
1686 return (spa->spa_syncing_txg);
1690 * Return the last txg where data can be dirtied. The final txgs
1691 * will be used to just clear out any deferred frees that remain.
1693 uint64_t
1694 spa_final_dirty_txg(spa_t *spa)
1696 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1699 pool_state_t
1700 spa_state(spa_t *spa)
1702 return (spa->spa_state);
1705 spa_load_state_t
1706 spa_load_state(spa_t *spa)
1708 return (spa->spa_load_state);
1711 uint64_t
1712 spa_freeze_txg(spa_t *spa)
1714 return (spa->spa_freeze_txg);
1717 /* ARGSUSED */
1718 uint64_t
1719 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1721 return (lsize * spa_asize_inflation);
1725 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1726 * or at least 128MB, unless that would cause it to be more than half the
1727 * pool size.
1729 * See the comment above spa_slop_shift for details.
1731 uint64_t
1732 spa_get_slop_space(spa_t *spa)
1734 uint64_t space = spa_get_dspace(spa);
1735 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1738 uint64_t
1739 spa_get_dspace(spa_t *spa)
1741 return (spa->spa_dspace);
1744 uint64_t
1745 spa_get_checkpoint_space(spa_t *spa)
1747 return (spa->spa_checkpoint_info.sci_dspace);
1750 void
1751 spa_update_dspace(spa_t *spa)
1753 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1754 ddt_get_dedup_dspace(spa);
1755 if (spa->spa_vdev_removal != NULL) {
1757 * We can't allocate from the removing device, so
1758 * subtract its size. This prevents the DMU/DSL from
1759 * filling up the (now smaller) pool while we are in the
1760 * middle of removing the device.
1762 * Note that the DMU/DSL doesn't actually know or care
1763 * how much space is allocated (it does its own tracking
1764 * of how much space has been logically used). So it
1765 * doesn't matter that the data we are moving may be
1766 * allocated twice (on the old device and the new
1767 * device).
1769 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1770 vdev_t *vd =
1771 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1772 spa->spa_dspace -= spa_deflate(spa) ?
1773 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1774 spa_config_exit(spa, SCL_VDEV, FTAG);
1779 * Return the failure mode that has been set to this pool. The default
1780 * behavior will be to block all I/Os when a complete failure occurs.
1782 uint8_t
1783 spa_get_failmode(spa_t *spa)
1785 return (spa->spa_failmode);
1788 boolean_t
1789 spa_suspended(spa_t *spa)
1791 return (spa->spa_suspended);
1794 uint64_t
1795 spa_version(spa_t *spa)
1797 return (spa->spa_ubsync.ub_version);
1800 boolean_t
1801 spa_deflate(spa_t *spa)
1803 return (spa->spa_deflate);
1806 metaslab_class_t *
1807 spa_normal_class(spa_t *spa)
1809 return (spa->spa_normal_class);
1812 metaslab_class_t *
1813 spa_log_class(spa_t *spa)
1815 return (spa->spa_log_class);
1818 void
1819 spa_evicting_os_register(spa_t *spa, objset_t *os)
1821 mutex_enter(&spa->spa_evicting_os_lock);
1822 list_insert_head(&spa->spa_evicting_os_list, os);
1823 mutex_exit(&spa->spa_evicting_os_lock);
1826 void
1827 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1829 mutex_enter(&spa->spa_evicting_os_lock);
1830 list_remove(&spa->spa_evicting_os_list, os);
1831 cv_broadcast(&spa->spa_evicting_os_cv);
1832 mutex_exit(&spa->spa_evicting_os_lock);
1835 void
1836 spa_evicting_os_wait(spa_t *spa)
1838 mutex_enter(&spa->spa_evicting_os_lock);
1839 while (!list_is_empty(&spa->spa_evicting_os_list))
1840 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1841 mutex_exit(&spa->spa_evicting_os_lock);
1843 dmu_buf_user_evict_wait();
1847 spa_max_replication(spa_t *spa)
1850 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1851 * handle BPs with more than one DVA allocated. Set our max
1852 * replication level accordingly.
1854 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1855 return (1);
1856 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1860 spa_prev_software_version(spa_t *spa)
1862 return (spa->spa_prev_software_version);
1865 uint64_t
1866 spa_deadman_synctime(spa_t *spa)
1868 return (spa->spa_deadman_synctime);
1871 uint64_t
1872 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1874 uint64_t asize = DVA_GET_ASIZE(dva);
1875 uint64_t dsize = asize;
1877 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1879 if (asize != 0 && spa->spa_deflate) {
1880 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1881 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1884 return (dsize);
1887 uint64_t
1888 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1890 uint64_t dsize = 0;
1892 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1893 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1895 return (dsize);
1898 uint64_t
1899 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1901 uint64_t dsize = 0;
1903 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1905 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1906 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1908 spa_config_exit(spa, SCL_VDEV, FTAG);
1910 return (dsize);
1914 * ==========================================================================
1915 * Initialization and Termination
1916 * ==========================================================================
1919 static int
1920 spa_name_compare(const void *a1, const void *a2)
1922 const spa_t *s1 = a1;
1923 const spa_t *s2 = a2;
1924 int s;
1926 s = strcmp(s1->spa_name, s2->spa_name);
1927 if (s > 0)
1928 return (1);
1929 if (s < 0)
1930 return (-1);
1931 return (0);
1935 spa_busy(void)
1937 return (spa_active_count);
1940 void
1941 spa_boot_init()
1943 spa_config_load();
1946 void
1947 spa_init(int mode)
1949 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1950 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1951 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1952 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1954 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1955 offsetof(spa_t, spa_avl));
1957 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1958 offsetof(spa_aux_t, aux_avl));
1960 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1961 offsetof(spa_aux_t, aux_avl));
1963 spa_mode_global = mode;
1965 #ifdef _KERNEL
1966 spa_arch_init();
1967 #else
1968 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1969 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1970 if (arc_procfd == -1) {
1971 perror("could not enable watchpoints: "
1972 "opening /proc/self/ctl failed: ");
1973 } else {
1974 arc_watch = B_TRUE;
1977 #endif
1979 refcount_init();
1980 unique_init();
1981 range_tree_init();
1982 metaslab_alloc_trace_init();
1983 zio_init();
1984 dmu_init();
1985 zil_init();
1986 vdev_cache_stat_init();
1987 zfs_prop_init();
1988 zpool_prop_init();
1989 zpool_feature_init();
1990 spa_config_load();
1991 l2arc_start();
1994 void
1995 spa_fini(void)
1997 l2arc_stop();
1999 spa_evict_all();
2001 vdev_cache_stat_fini();
2002 zil_fini();
2003 dmu_fini();
2004 zio_fini();
2005 metaslab_alloc_trace_fini();
2006 range_tree_fini();
2007 unique_fini();
2008 refcount_fini();
2010 avl_destroy(&spa_namespace_avl);
2011 avl_destroy(&spa_spare_avl);
2012 avl_destroy(&spa_l2cache_avl);
2014 cv_destroy(&spa_namespace_cv);
2015 mutex_destroy(&spa_namespace_lock);
2016 mutex_destroy(&spa_spare_lock);
2017 mutex_destroy(&spa_l2cache_lock);
2021 * Return whether this pool has slogs. No locking needed.
2022 * It's not a problem if the wrong answer is returned as it's only for
2023 * performance and not correctness
2025 boolean_t
2026 spa_has_slogs(spa_t *spa)
2028 return (spa->spa_log_class->mc_rotor != NULL);
2031 spa_log_state_t
2032 spa_get_log_state(spa_t *spa)
2034 return (spa->spa_log_state);
2037 void
2038 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2040 spa->spa_log_state = state;
2043 boolean_t
2044 spa_is_root(spa_t *spa)
2046 return (spa->spa_is_root);
2049 boolean_t
2050 spa_writeable(spa_t *spa)
2052 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2056 * Returns true if there is a pending sync task in any of the current
2057 * syncing txg, the current quiescing txg, or the current open txg.
2059 boolean_t
2060 spa_has_pending_synctask(spa_t *spa)
2062 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2063 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2067 spa_mode(spa_t *spa)
2069 return (spa->spa_mode);
2072 uint64_t
2073 spa_bootfs(spa_t *spa)
2075 return (spa->spa_bootfs);
2078 uint64_t
2079 spa_delegation(spa_t *spa)
2081 return (spa->spa_delegation);
2084 objset_t *
2085 spa_meta_objset(spa_t *spa)
2087 return (spa->spa_meta_objset);
2090 enum zio_checksum
2091 spa_dedup_checksum(spa_t *spa)
2093 return (spa->spa_dedup_checksum);
2097 * Reset pool scan stat per scan pass (or reboot).
2099 void
2100 spa_scan_stat_init(spa_t *spa)
2102 /* data not stored on disk */
2103 spa->spa_scan_pass_start = gethrestime_sec();
2104 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2105 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2106 else
2107 spa->spa_scan_pass_scrub_pause = 0;
2108 spa->spa_scan_pass_scrub_spent_paused = 0;
2109 spa->spa_scan_pass_exam = 0;
2110 vdev_scan_stat_init(spa->spa_root_vdev);
2114 * Get scan stats for zpool status reports
2117 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2119 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2121 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2122 return (SET_ERROR(ENOENT));
2123 bzero(ps, sizeof (pool_scan_stat_t));
2125 /* data stored on disk */
2126 ps->pss_func = scn->scn_phys.scn_func;
2127 ps->pss_start_time = scn->scn_phys.scn_start_time;
2128 ps->pss_end_time = scn->scn_phys.scn_end_time;
2129 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2130 ps->pss_examined = scn->scn_phys.scn_examined;
2131 ps->pss_to_process = scn->scn_phys.scn_to_process;
2132 ps->pss_processed = scn->scn_phys.scn_processed;
2133 ps->pss_errors = scn->scn_phys.scn_errors;
2134 ps->pss_state = scn->scn_phys.scn_state;
2136 /* data not stored on disk */
2137 ps->pss_pass_start = spa->spa_scan_pass_start;
2138 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2139 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2140 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2142 return (0);
2146 spa_maxblocksize(spa_t *spa)
2148 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2149 return (SPA_MAXBLOCKSIZE);
2150 else
2151 return (SPA_OLD_MAXBLOCKSIZE);
2155 * Returns the txg that the last device removal completed. No indirect mappings
2156 * have been added since this txg.
2158 uint64_t
2159 spa_get_last_removal_txg(spa_t *spa)
2161 uint64_t vdevid;
2162 uint64_t ret = -1ULL;
2164 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2166 * sr_prev_indirect_vdev is only modified while holding all the
2167 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2168 * examining it.
2170 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2172 while (vdevid != -1ULL) {
2173 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2174 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2176 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2179 * If the removal did not remap any data, we don't care.
2181 if (vdev_indirect_births_count(vib) != 0) {
2182 ret = vdev_indirect_births_last_entry_txg(vib);
2183 break;
2186 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2188 spa_config_exit(spa, SCL_VDEV, FTAG);
2190 IMPLY(ret != -1ULL,
2191 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2193 return (ret);
2196 boolean_t
2197 spa_trust_config(spa_t *spa)
2199 return (spa->spa_trust_config);
2202 uint64_t
2203 spa_missing_tvds_allowed(spa_t *spa)
2205 return (spa->spa_missing_tvds_allowed);
2208 void
2209 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2211 spa->spa_missing_tvds = missing;
2214 boolean_t
2215 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2217 vdev_t *rvd = spa->spa_root_vdev;
2218 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2219 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2220 return (B_FALSE);
2222 return (B_TRUE);
2225 boolean_t
2226 spa_has_checkpoint(spa_t *spa)
2228 return (spa->spa_checkpoint_txg != 0);
2231 boolean_t
2232 spa_importing_readonly_checkpoint(spa_t *spa)
2234 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2235 spa->spa_mode == FREAD);
2238 uint64_t
2239 spa_min_claim_txg(spa_t *spa)
2241 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2243 if (checkpoint_txg != 0)
2244 return (checkpoint_txg + 1);
2246 return (spa->spa_first_txg);
2250 * If there is a checkpoint, async destroys may consume more space from
2251 * the pool instead of freeing it. In an attempt to save the pool from
2252 * getting suspended when it is about to run out of space, we stop
2253 * processing async destroys.
2255 boolean_t
2256 spa_suspend_async_destroy(spa_t *spa)
2258 dsl_pool_t *dp = spa_get_dsl(spa);
2260 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2261 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2262 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2263 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2265 if (spa_has_checkpoint(spa) && avail == 0)
2266 return (B_TRUE);
2268 return (B_FALSE);