Merge commit 'bb1f424574ac8e08069d0ba993c2a41ffe796794'
[unleashed.git] / kernel / fs / zfs / spa.c
blobb71710bbd7c51add2f64f3b3ab331a761b2273c3
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright (c) 2017 Datto Inc.
32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
36 * SPA: Storage Pool Allocator
38 * This file contains all the routines used when modifying on-disk SPA state.
39 * This includes opening, importing, destroying, exporting a pool, and syncing a
40 * pool.
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/metaslab.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/uberblock_impl.h>
61 #include <sys/txg.h>
62 #include <sys/avl.h>
63 #include <sys/bpobj.h>
64 #include <sys/dmu_traverse.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/unique.h>
67 #include <sys/dsl_pool.h>
68 #include <sys/dsl_dataset.h>
69 #include <sys/dsl_dir.h>
70 #include <sys/dsl_prop.h>
71 #include <sys/dsl_synctask.h>
72 #include <sys/fs/zfs.h>
73 #include <sys/arc.h>
74 #include <sys/callb.h>
75 #include <sys/systeminfo.h>
76 #include <sys/spa_boot.h>
77 #include <sys/zfs_ioctl.h>
78 #include <sys/dsl_scan.h>
79 #include <sys/zfeature.h>
80 #include <sys/dsl_destroy.h>
81 #include <sys/abd.h>
83 #ifdef _KERNEL
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif /* _KERNEL */
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
96 * The interval, in seconds, at which failed configuration cache file writes
97 * should be retried.
99 int zfs_ccw_retry_interval = 300;
101 typedef enum zti_modes {
102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
104 ZTI_MODE_NULL, /* don't create a taskq */
105 ZTI_NMODES
106 } zti_modes_t;
108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
109 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
110 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
112 #define ZTI_N(n) ZTI_P(n, 1)
113 #define ZTI_ONE ZTI_N(1)
115 typedef struct zio_taskq_info {
116 zti_modes_t zti_mode;
117 uint_t zti_value;
118 uint_t zti_count;
119 } zio_taskq_info_t;
121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
122 "issue", "issue_high", "intr", "intr_high"
126 * This table defines the taskq settings for each ZFS I/O type. When
127 * initializing a pool, we use this table to create an appropriately sized
128 * taskq. Some operations are low volume and therefore have a small, static
129 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
130 * macros. Other operations process a large amount of data; the ZTI_BATCH
131 * macro causes us to create a taskq oriented for throughput. Some operations
132 * are so high frequency and short-lived that the taskq itself can become a a
133 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
134 * additional degree of parallelism specified by the number of threads per-
135 * taskq and the number of taskqs; when dispatching an event in this case, the
136 * particular taskq is chosen at random.
138 * The different taskq priorities are to handle the different contexts (issue
139 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
140 * need to be handled with minimum delay.
142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
143 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
144 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
145 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
146 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
147 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
152 static void spa_sync_version(void *arg, dmu_tx_t *tx);
153 static void spa_sync_props(void *arg, dmu_tx_t *tx);
154 static boolean_t spa_has_active_shared_spare(spa_t *spa);
155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
156 static void spa_vdev_resilver_done(spa_t *spa);
158 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
159 id_t zio_taskq_psrset_bind = PS_NONE;
160 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
161 uint_t zio_taskq_basedc = 80; /* base duty cycle */
163 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
164 extern int zfs_sync_pass_deferred_free;
167 * Report any spa_load_verify errors found, but do not fail spa_load.
168 * This is used by zdb to analyze non-idle pools.
170 boolean_t spa_load_verify_dryrun = B_FALSE;
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
176 #define TRYIMPORT_NAME "$import"
179 * For debugging purposes: print out vdev tree during pool import.
181 boolean_t spa_load_print_vdev_tree = B_FALSE;
184 * A non-zero value for zfs_max_missing_tvds means that we allow importing
185 * pools with missing top-level vdevs. This is strictly intended for advanced
186 * pool recovery cases since missing data is almost inevitable. Pools with
187 * missing devices can only be imported read-only for safety reasons, and their
188 * fail-mode will be automatically set to "continue".
190 * With 1 missing vdev we should be able to import the pool and mount all
191 * datasets. User data that was not modified after the missing device has been
192 * added should be recoverable. This means that snapshots created prior to the
193 * addition of that device should be completely intact.
195 * With 2 missing vdevs, some datasets may fail to mount since there are
196 * dataset statistics that are stored as regular metadata. Some data might be
197 * recoverable if those vdevs were added recently.
199 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
200 * may be missing entirely. Chances of data recovery are very low. Note that
201 * there are also risks of performing an inadvertent rewind as we might be
202 * missing all the vdevs with the latest uberblocks.
204 uint64_t zfs_max_missing_tvds = 0;
207 * The parameters below are similar to zfs_max_missing_tvds but are only
208 * intended for a preliminary open of the pool with an untrusted config which
209 * might be incomplete or out-dated.
211 * We are more tolerant for pools opened from a cachefile since we could have
212 * an out-dated cachefile where a device removal was not registered.
213 * We could have set the limit arbitrarily high but in the case where devices
214 * are really missing we would want to return the proper error codes; we chose
215 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
216 * and we get a chance to retrieve the trusted config.
218 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
221 * In the case where config was assembled by scanning device paths (/dev/dsks
222 * by default) we are less tolerant since all the existing devices should have
223 * been detected and we want spa_load to return the right error codes.
225 uint64_t zfs_max_missing_tvds_scan = 0;
228 * Debugging aid that pauses spa_sync() towards the end.
230 boolean_t zfs_pause_spa_sync = B_FALSE;
233 * ==========================================================================
234 * SPA properties routines
235 * ==========================================================================
239 * Add a (source=src, propname=propval) list to an nvlist.
241 static void
242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
243 uint64_t intval, zprop_source_t src)
245 const char *propname = zpool_prop_to_name(prop);
246 nvlist_t *propval;
248 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
249 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
251 if (strval != NULL)
252 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
253 else
254 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
256 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
257 nvlist_free(propval);
261 * Get property values from the spa configuration.
263 static void
264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
266 vdev_t *rvd = spa->spa_root_vdev;
267 dsl_pool_t *pool = spa->spa_dsl_pool;
268 uint64_t size, alloc, cap, version;
269 zprop_source_t src = ZPROP_SRC_NONE;
270 spa_config_dirent_t *dp;
271 metaslab_class_t *mc = spa_normal_class(spa);
273 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
275 if (rvd != NULL) {
276 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
277 size = metaslab_class_get_space(spa_normal_class(spa));
278 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
279 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
280 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
281 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
282 size - alloc, src);
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
284 spa->spa_checkpoint_info.sci_dspace, src);
286 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
287 metaslab_class_fragmentation(mc), src);
288 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
289 metaslab_class_expandable_space(mc), src);
290 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
291 (spa_mode(spa) == FREAD), src);
293 cap = (size == 0) ? 0 : (alloc * 100 / size);
294 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
296 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
297 ddt_get_pool_dedup_ratio(spa), src);
299 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
300 rvd->vdev_state, src);
302 version = spa_version(spa);
303 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
304 src = ZPROP_SRC_DEFAULT;
305 else
306 src = ZPROP_SRC_LOCAL;
307 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
310 if (pool != NULL) {
312 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
313 * when opening pools before this version freedir will be NULL.
315 if (pool->dp_free_dir != NULL) {
316 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
317 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
318 src);
319 } else {
320 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
321 NULL, 0, src);
324 if (pool->dp_leak_dir != NULL) {
325 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
326 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
327 src);
328 } else {
329 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
330 NULL, 0, src);
334 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
336 if (spa->spa_comment != NULL) {
337 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
338 0, ZPROP_SRC_LOCAL);
341 if (spa->spa_root != NULL)
342 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
343 0, ZPROP_SRC_LOCAL);
345 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
346 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
347 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
348 } else {
349 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
350 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
353 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
354 if (dp->scd_path == NULL) {
355 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
356 "none", 0, ZPROP_SRC_LOCAL);
357 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
358 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
359 dp->scd_path, 0, ZPROP_SRC_LOCAL);
365 * Get zpool property values.
368 spa_prop_get(spa_t *spa, nvlist_t **nvp)
370 objset_t *mos = spa->spa_meta_objset;
371 zap_cursor_t zc;
372 zap_attribute_t za;
373 int err;
375 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
377 mutex_enter(&spa->spa_props_lock);
380 * Get properties from the spa config.
382 spa_prop_get_config(spa, nvp);
384 /* If no pool property object, no more prop to get. */
385 if (mos == NULL || spa->spa_pool_props_object == 0) {
386 mutex_exit(&spa->spa_props_lock);
387 return (0);
391 * Get properties from the MOS pool property object.
393 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
394 (err = zap_cursor_retrieve(&zc, &za)) == 0;
395 zap_cursor_advance(&zc)) {
396 uint64_t intval = 0;
397 char *strval = NULL;
398 zprop_source_t src = ZPROP_SRC_DEFAULT;
399 zpool_prop_t prop;
401 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
402 continue;
404 switch (za.za_integer_length) {
405 case 8:
406 /* integer property */
407 if (za.za_first_integer !=
408 zpool_prop_default_numeric(prop))
409 src = ZPROP_SRC_LOCAL;
411 if (prop == ZPOOL_PROP_BOOTFS) {
412 dsl_pool_t *dp;
413 dsl_dataset_t *ds = NULL;
415 dp = spa_get_dsl(spa);
416 dsl_pool_config_enter(dp, FTAG);
417 err = dsl_dataset_hold_obj(dp,
418 za.za_first_integer, FTAG, &ds);
419 if (err != 0) {
420 dsl_pool_config_exit(dp, FTAG);
421 break;
424 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
425 KM_SLEEP);
426 dsl_dataset_name(ds, strval);
427 dsl_dataset_rele(ds, FTAG);
428 dsl_pool_config_exit(dp, FTAG);
429 } else {
430 strval = NULL;
431 intval = za.za_first_integer;
434 spa_prop_add_list(*nvp, prop, strval, intval, src);
436 if (strval != NULL)
437 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
439 break;
441 case 1:
442 /* string property */
443 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
444 err = zap_lookup(mos, spa->spa_pool_props_object,
445 za.za_name, 1, za.za_num_integers, strval);
446 if (err) {
447 kmem_free(strval, za.za_num_integers);
448 break;
450 spa_prop_add_list(*nvp, prop, strval, 0, src);
451 kmem_free(strval, za.za_num_integers);
452 break;
454 default:
455 break;
458 zap_cursor_fini(&zc);
459 mutex_exit(&spa->spa_props_lock);
460 out:
461 if (err && err != ENOENT) {
462 nvlist_free(*nvp);
463 *nvp = NULL;
464 return (err);
467 return (0);
471 * Validate the given pool properties nvlist and modify the list
472 * for the property values to be set.
474 static int
475 spa_prop_validate(spa_t *spa, nvlist_t *props)
477 nvpair_t *elem;
478 int error = 0, reset_bootfs = 0;
479 uint64_t objnum = 0;
480 boolean_t has_feature = B_FALSE;
482 elem = NULL;
483 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
484 uint64_t intval;
485 char *strval, *slash, *check, *fname;
486 const char *propname = nvpair_name(elem);
487 zpool_prop_t prop = zpool_name_to_prop(propname);
489 switch (prop) {
490 case ZPOOL_PROP_INVAL:
491 if (!zpool_prop_feature(propname)) {
492 error = SET_ERROR(EINVAL);
493 break;
497 * Sanitize the input.
499 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
500 error = SET_ERROR(EINVAL);
501 break;
504 if (nvpair_value_uint64(elem, &intval) != 0) {
505 error = SET_ERROR(EINVAL);
506 break;
509 if (intval != 0) {
510 error = SET_ERROR(EINVAL);
511 break;
514 fname = strchr(propname, '@') + 1;
515 if (zfeature_lookup_name(fname, NULL) != 0) {
516 error = SET_ERROR(EINVAL);
517 break;
520 has_feature = B_TRUE;
521 break;
523 case ZPOOL_PROP_VERSION:
524 error = nvpair_value_uint64(elem, &intval);
525 if (!error &&
526 (intval < spa_version(spa) ||
527 intval > SPA_VERSION_BEFORE_FEATURES ||
528 has_feature))
529 error = SET_ERROR(EINVAL);
530 break;
532 case ZPOOL_PROP_DELEGATION:
533 case ZPOOL_PROP_AUTOREPLACE:
534 case ZPOOL_PROP_LISTSNAPS:
535 case ZPOOL_PROP_AUTOEXPAND:
536 error = nvpair_value_uint64(elem, &intval);
537 if (!error && intval > 1)
538 error = SET_ERROR(EINVAL);
539 break;
541 case ZPOOL_PROP_BOOTFS:
543 * If the pool version is less than SPA_VERSION_BOOTFS,
544 * or the pool is still being created (version == 0),
545 * the bootfs property cannot be set.
547 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
548 error = SET_ERROR(ENOTSUP);
549 break;
553 * Make sure the vdev config is bootable
555 if (!vdev_is_bootable(spa->spa_root_vdev)) {
556 error = SET_ERROR(ENOTSUP);
557 break;
560 reset_bootfs = 1;
562 error = nvpair_value_string(elem, &strval);
564 if (!error) {
565 objset_t *os;
566 uint64_t propval;
568 if (strval == NULL || strval[0] == '\0') {
569 objnum = zpool_prop_default_numeric(
570 ZPOOL_PROP_BOOTFS);
571 break;
574 error = dmu_objset_hold(strval, FTAG, &os);
575 if (error != 0)
576 break;
579 * Must be ZPL, and its property settings
580 * must be supported by GRUB (compression
581 * is not gzip, and large blocks are not used).
584 if (dmu_objset_type(os) != DMU_OST_ZFS) {
585 error = SET_ERROR(ENOTSUP);
586 } else if ((error =
587 dsl_prop_get_int_ds(dmu_objset_ds(os),
588 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
589 &propval)) == 0 &&
590 !BOOTFS_COMPRESS_VALID(propval)) {
591 error = SET_ERROR(ENOTSUP);
592 } else {
593 objnum = dmu_objset_id(os);
595 dmu_objset_rele(os, FTAG);
597 break;
599 case ZPOOL_PROP_FAILUREMODE:
600 error = nvpair_value_uint64(elem, &intval);
601 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
602 intval > ZIO_FAILURE_MODE_PANIC))
603 error = SET_ERROR(EINVAL);
606 * This is a special case which only occurs when
607 * the pool has completely failed. This allows
608 * the user to change the in-core failmode property
609 * without syncing it out to disk (I/Os might
610 * currently be blocked). We do this by returning
611 * EIO to the caller (spa_prop_set) to trick it
612 * into thinking we encountered a property validation
613 * error.
615 if (!error && spa_suspended(spa)) {
616 spa->spa_failmode = intval;
617 error = SET_ERROR(EIO);
619 break;
621 case ZPOOL_PROP_CACHEFILE:
622 if ((error = nvpair_value_string(elem, &strval)) != 0)
623 break;
625 if (strval[0] == '\0')
626 break;
628 if (strcmp(strval, "none") == 0)
629 break;
631 if (strval[0] != '/') {
632 error = SET_ERROR(EINVAL);
633 break;
636 slash = strrchr(strval, '/');
637 ASSERT(slash != NULL);
639 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
640 strcmp(slash, "/..") == 0)
641 error = SET_ERROR(EINVAL);
642 break;
644 case ZPOOL_PROP_COMMENT:
645 if ((error = nvpair_value_string(elem, &strval)) != 0)
646 break;
647 for (check = strval; *check != '\0'; check++) {
649 * The kernel doesn't have an easy isprint()
650 * check. For this kernel check, we merely
651 * check ASCII apart from DEL. Fix this if
652 * there is an easy-to-use kernel isprint().
654 if (*check >= 0x7f) {
655 error = SET_ERROR(EINVAL);
656 break;
659 if (strlen(strval) > ZPROP_MAX_COMMENT)
660 error = E2BIG;
661 break;
663 case ZPOOL_PROP_DEDUPDITTO:
664 if (spa_version(spa) < SPA_VERSION_DEDUP)
665 error = SET_ERROR(ENOTSUP);
666 else
667 error = nvpair_value_uint64(elem, &intval);
668 if (error == 0 &&
669 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
670 error = SET_ERROR(EINVAL);
671 break;
674 if (error)
675 break;
678 if (!error && reset_bootfs) {
679 error = nvlist_remove(props,
680 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
682 if (!error) {
683 error = nvlist_add_uint64(props,
684 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
688 return (error);
691 void
692 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
694 char *cachefile;
695 spa_config_dirent_t *dp;
697 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
698 &cachefile) != 0)
699 return;
701 dp = kmem_alloc(sizeof (spa_config_dirent_t),
702 KM_SLEEP);
704 if (cachefile[0] == '\0')
705 dp->scd_path = spa_strdup(spa_config_path);
706 else if (strcmp(cachefile, "none") == 0)
707 dp->scd_path = NULL;
708 else
709 dp->scd_path = spa_strdup(cachefile);
711 list_insert_head(&spa->spa_config_list, dp);
712 if (need_sync)
713 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
717 spa_prop_set(spa_t *spa, nvlist_t *nvp)
719 int error;
720 nvpair_t *elem = NULL;
721 boolean_t need_sync = B_FALSE;
723 if ((error = spa_prop_validate(spa, nvp)) != 0)
724 return (error);
726 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
727 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
729 if (prop == ZPOOL_PROP_CACHEFILE ||
730 prop == ZPOOL_PROP_ALTROOT ||
731 prop == ZPOOL_PROP_READONLY)
732 continue;
734 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
735 uint64_t ver;
737 if (prop == ZPOOL_PROP_VERSION) {
738 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
739 } else {
740 ASSERT(zpool_prop_feature(nvpair_name(elem)));
741 ver = SPA_VERSION_FEATURES;
742 need_sync = B_TRUE;
745 /* Save time if the version is already set. */
746 if (ver == spa_version(spa))
747 continue;
750 * In addition to the pool directory object, we might
751 * create the pool properties object, the features for
752 * read object, the features for write object, or the
753 * feature descriptions object.
755 error = dsl_sync_task(spa->spa_name, NULL,
756 spa_sync_version, &ver,
757 6, ZFS_SPACE_CHECK_RESERVED);
758 if (error)
759 return (error);
760 continue;
763 need_sync = B_TRUE;
764 break;
767 if (need_sync) {
768 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
769 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
772 return (0);
776 * If the bootfs property value is dsobj, clear it.
778 void
779 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
781 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
782 VERIFY(zap_remove(spa->spa_meta_objset,
783 spa->spa_pool_props_object,
784 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
785 spa->spa_bootfs = 0;
789 /*ARGSUSED*/
790 static int
791 spa_change_guid_check(void *arg, dmu_tx_t *tx)
793 uint64_t *newguid = arg;
794 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
795 vdev_t *rvd = spa->spa_root_vdev;
796 uint64_t vdev_state;
798 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
799 int error = (spa_has_checkpoint(spa)) ?
800 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
801 return (SET_ERROR(error));
804 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
805 vdev_state = rvd->vdev_state;
806 spa_config_exit(spa, SCL_STATE, FTAG);
808 if (vdev_state != VDEV_STATE_HEALTHY)
809 return (SET_ERROR(ENXIO));
811 ASSERT3U(spa_guid(spa), !=, *newguid);
813 return (0);
816 static void
817 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
819 uint64_t *newguid = arg;
820 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
821 uint64_t oldguid;
822 vdev_t *rvd = spa->spa_root_vdev;
824 oldguid = spa_guid(spa);
826 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
827 rvd->vdev_guid = *newguid;
828 rvd->vdev_guid_sum += (*newguid - oldguid);
829 vdev_config_dirty(rvd);
830 spa_config_exit(spa, SCL_STATE, FTAG);
832 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
833 oldguid, *newguid);
837 * Change the GUID for the pool. This is done so that we can later
838 * re-import a pool built from a clone of our own vdevs. We will modify
839 * the root vdev's guid, our own pool guid, and then mark all of our
840 * vdevs dirty. Note that we must make sure that all our vdevs are
841 * online when we do this, or else any vdevs that weren't present
842 * would be orphaned from our pool. We are also going to issue a
843 * sysevent to update any watchers.
846 spa_change_guid(spa_t *spa)
848 int error;
849 uint64_t guid;
851 mutex_enter(&spa->spa_vdev_top_lock);
852 mutex_enter(&spa_namespace_lock);
853 guid = spa_generate_guid(NULL);
855 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
856 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
858 if (error == 0) {
859 spa_write_cachefile(spa, B_FALSE, B_TRUE);
860 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
863 mutex_exit(&spa_namespace_lock);
864 mutex_exit(&spa->spa_vdev_top_lock);
866 return (error);
870 * ==========================================================================
871 * SPA state manipulation (open/create/destroy/import/export)
872 * ==========================================================================
875 static int
876 spa_error_entry_compare(const void *a, const void *b)
878 spa_error_entry_t *sa = (spa_error_entry_t *)a;
879 spa_error_entry_t *sb = (spa_error_entry_t *)b;
880 int ret;
882 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
883 sizeof (zbookmark_phys_t));
885 if (ret < 0)
886 return (-1);
887 else if (ret > 0)
888 return (1);
889 else
890 return (0);
894 * Utility function which retrieves copies of the current logs and
895 * re-initializes them in the process.
897 void
898 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
900 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
902 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
903 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
905 avl_create(&spa->spa_errlist_scrub,
906 spa_error_entry_compare, sizeof (spa_error_entry_t),
907 offsetof(spa_error_entry_t, se_avl));
908 avl_create(&spa->spa_errlist_last,
909 spa_error_entry_compare, sizeof (spa_error_entry_t),
910 offsetof(spa_error_entry_t, se_avl));
913 static void
914 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
916 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
917 enum zti_modes mode = ztip->zti_mode;
918 uint_t value = ztip->zti_value;
919 uint_t count = ztip->zti_count;
920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
921 char name[32];
922 uint_t flags = 0;
923 boolean_t batch = B_FALSE;
925 if (mode == ZTI_MODE_NULL) {
926 tqs->stqs_count = 0;
927 tqs->stqs_taskq = NULL;
928 return;
931 ASSERT3U(count, >, 0);
933 tqs->stqs_count = count;
934 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
936 switch (mode) {
937 case ZTI_MODE_FIXED:
938 ASSERT3U(value, >=, 1);
939 value = MAX(value, 1);
940 break;
942 case ZTI_MODE_BATCH:
943 batch = B_TRUE;
944 flags |= TASKQ_THREADS_CPU_PCT;
945 value = zio_taskq_batch_pct;
946 break;
948 default:
949 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
950 "spa_activate()",
951 zio_type_name[t], zio_taskq_types[q], mode, value);
952 break;
955 for (uint_t i = 0; i < count; i++) {
956 taskq_t *tq;
958 if (count > 1) {
959 (void) snprintf(name, sizeof (name), "%s_%s_%u",
960 zio_type_name[t], zio_taskq_types[q], i);
961 } else {
962 (void) snprintf(name, sizeof (name), "%s_%s",
963 zio_type_name[t], zio_taskq_types[q]);
966 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
967 if (batch)
968 flags |= TASKQ_DC_BATCH;
970 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
971 spa->spa_proc, zio_taskq_basedc, flags);
972 } else {
973 pri_t pri = maxclsyspri;
975 * The write issue taskq can be extremely CPU
976 * intensive. Run it at slightly lower priority
977 * than the other taskqs.
979 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
980 pri--;
982 tq = taskq_create_proc(name, value, pri, 50,
983 INT_MAX, spa->spa_proc, flags);
986 tqs->stqs_taskq[i] = tq;
990 static void
991 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
993 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
995 if (tqs->stqs_taskq == NULL) {
996 ASSERT0(tqs->stqs_count);
997 return;
1000 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1001 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1002 taskq_destroy(tqs->stqs_taskq[i]);
1005 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1006 tqs->stqs_taskq = NULL;
1010 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1011 * Note that a type may have multiple discrete taskqs to avoid lock contention
1012 * on the taskq itself. In that case we choose which taskq at random by using
1013 * the low bits of gethrtime().
1015 void
1016 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1017 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1019 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1020 taskq_t *tq;
1022 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1023 ASSERT3U(tqs->stqs_count, !=, 0);
1025 if (tqs->stqs_count == 1) {
1026 tq = tqs->stqs_taskq[0];
1027 } else {
1028 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1031 taskq_dispatch_ent(tq, func, arg, flags, ent);
1034 static void
1035 spa_create_zio_taskqs(spa_t *spa)
1037 for (int t = 0; t < ZIO_TYPES; t++) {
1038 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1039 spa_taskqs_init(spa, t, q);
1044 #ifdef _KERNEL
1045 static void
1046 spa_thread(void *arg)
1048 callb_cpr_t cprinfo;
1050 spa_t *spa = arg;
1051 user_t *pu = PTOU(curproc);
1053 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1054 spa->spa_name);
1056 ASSERT(curproc != &p0);
1057 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1058 "zpool-%s", spa->spa_name);
1059 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1061 /* bind this thread to the requested psrset */
1062 if (zio_taskq_psrset_bind != PS_NONE) {
1063 pool_lock();
1064 mutex_enter(&cpu_lock);
1065 mutex_enter(&pidlock);
1066 mutex_enter(&curproc->p_lock);
1068 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1069 0, NULL, NULL) == 0) {
1070 curthread->t_bind_pset = zio_taskq_psrset_bind;
1071 } else {
1072 cmn_err(CE_WARN,
1073 "Couldn't bind process for zfs pool \"%s\" to "
1074 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1077 mutex_exit(&curproc->p_lock);
1078 mutex_exit(&pidlock);
1079 mutex_exit(&cpu_lock);
1080 pool_unlock();
1083 if (zio_taskq_sysdc) {
1084 sysdc_thread_enter(curthread, 100, 0);
1087 spa->spa_proc = curproc;
1088 spa->spa_did = curthread->t_did;
1090 spa_create_zio_taskqs(spa);
1092 mutex_enter(&spa->spa_proc_lock);
1093 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1095 spa->spa_proc_state = SPA_PROC_ACTIVE;
1096 cv_broadcast(&spa->spa_proc_cv);
1098 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1099 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1100 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1101 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1103 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1104 spa->spa_proc_state = SPA_PROC_GONE;
1105 spa->spa_proc = &p0;
1106 cv_broadcast(&spa->spa_proc_cv);
1107 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1109 mutex_enter(&curproc->p_lock);
1110 lwp_exit();
1112 #endif
1115 * Activate an uninitialized pool.
1117 static void
1118 spa_activate(spa_t *spa, int mode)
1120 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1122 spa->spa_state = POOL_STATE_ACTIVE;
1123 spa->spa_mode = mode;
1125 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1126 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1128 /* Try to create a covering process */
1129 mutex_enter(&spa->spa_proc_lock);
1130 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1131 ASSERT(spa->spa_proc == &p0);
1132 spa->spa_did = 0;
1134 /* Only create a process if we're going to be around a while. */
1135 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1136 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1137 NULL, 0) == 0) {
1138 spa->spa_proc_state = SPA_PROC_CREATED;
1139 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1140 cv_wait(&spa->spa_proc_cv,
1141 &spa->spa_proc_lock);
1143 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1144 ASSERT(spa->spa_proc != &p0);
1145 ASSERT(spa->spa_did != 0);
1146 } else {
1147 #ifdef _KERNEL
1148 cmn_err(CE_WARN,
1149 "Couldn't create process for zfs pool \"%s\"\n",
1150 spa->spa_name);
1151 #endif
1154 mutex_exit(&spa->spa_proc_lock);
1156 /* If we didn't create a process, we need to create our taskqs. */
1157 if (spa->spa_proc == &p0) {
1158 spa_create_zio_taskqs(spa);
1161 for (size_t i = 0; i < TXG_SIZE; i++) {
1162 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1163 ZIO_FLAG_CANFAIL);
1166 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1167 offsetof(vdev_t, vdev_config_dirty_node));
1168 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1169 offsetof(objset_t, os_evicting_node));
1170 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1171 offsetof(vdev_t, vdev_state_dirty_node));
1173 txg_list_create(&spa->spa_vdev_txg_list, spa,
1174 offsetof(struct vdev, vdev_txg_node));
1176 avl_create(&spa->spa_errlist_scrub,
1177 spa_error_entry_compare, sizeof (spa_error_entry_t),
1178 offsetof(spa_error_entry_t, se_avl));
1179 avl_create(&spa->spa_errlist_last,
1180 spa_error_entry_compare, sizeof (spa_error_entry_t),
1181 offsetof(spa_error_entry_t, se_avl));
1185 * Opposite of spa_activate().
1187 static void
1188 spa_deactivate(spa_t *spa)
1190 ASSERT(spa->spa_sync_on == B_FALSE);
1191 ASSERT(spa->spa_dsl_pool == NULL);
1192 ASSERT(spa->spa_root_vdev == NULL);
1193 ASSERT(spa->spa_async_zio_root == NULL);
1194 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1196 spa_evicting_os_wait(spa);
1198 txg_list_destroy(&spa->spa_vdev_txg_list);
1200 list_destroy(&spa->spa_config_dirty_list);
1201 list_destroy(&spa->spa_evicting_os_list);
1202 list_destroy(&spa->spa_state_dirty_list);
1204 for (int t = 0; t < ZIO_TYPES; t++) {
1205 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1206 spa_taskqs_fini(spa, t, q);
1210 for (size_t i = 0; i < TXG_SIZE; i++) {
1211 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1212 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1213 spa->spa_txg_zio[i] = NULL;
1216 metaslab_class_destroy(spa->spa_normal_class);
1217 spa->spa_normal_class = NULL;
1219 metaslab_class_destroy(spa->spa_log_class);
1220 spa->spa_log_class = NULL;
1223 * If this was part of an import or the open otherwise failed, we may
1224 * still have errors left in the queues. Empty them just in case.
1226 spa_errlog_drain(spa);
1228 avl_destroy(&spa->spa_errlist_scrub);
1229 avl_destroy(&spa->spa_errlist_last);
1231 spa->spa_state = POOL_STATE_UNINITIALIZED;
1233 mutex_enter(&spa->spa_proc_lock);
1234 if (spa->spa_proc_state != SPA_PROC_NONE) {
1235 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1236 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1237 cv_broadcast(&spa->spa_proc_cv);
1238 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1239 ASSERT(spa->spa_proc != &p0);
1240 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1242 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1243 spa->spa_proc_state = SPA_PROC_NONE;
1245 ASSERT(spa->spa_proc == &p0);
1246 mutex_exit(&spa->spa_proc_lock);
1249 * We want to make sure spa_thread() has actually exited the ZFS
1250 * module, so that the module can't be unloaded out from underneath
1251 * it.
1253 if (spa->spa_did != 0) {
1254 thread_join(spa->spa_did);
1255 spa->spa_did = 0;
1260 * Verify a pool configuration, and construct the vdev tree appropriately. This
1261 * will create all the necessary vdevs in the appropriate layout, with each vdev
1262 * in the CLOSED state. This will prep the pool before open/creation/import.
1263 * All vdev validation is done by the vdev_alloc() routine.
1265 static int
1266 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1267 uint_t id, int atype)
1269 nvlist_t **child;
1270 uint_t children;
1271 int error;
1273 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1274 return (error);
1276 if ((*vdp)->vdev_ops->vdev_op_leaf)
1277 return (0);
1279 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1280 &child, &children);
1282 if (error == ENOENT)
1283 return (0);
1285 if (error) {
1286 vdev_free(*vdp);
1287 *vdp = NULL;
1288 return (SET_ERROR(EINVAL));
1291 for (int c = 0; c < children; c++) {
1292 vdev_t *vd;
1293 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1294 atype)) != 0) {
1295 vdev_free(*vdp);
1296 *vdp = NULL;
1297 return (error);
1301 ASSERT(*vdp != NULL);
1303 return (0);
1307 * Opposite of spa_load().
1309 static void
1310 spa_unload(spa_t *spa)
1312 int i;
1314 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1316 spa_load_note(spa, "UNLOADING");
1319 * Stop async tasks.
1321 spa_async_suspend(spa);
1323 if (spa->spa_root_vdev) {
1324 vdev_initialize_stop_all(spa->spa_root_vdev,
1325 VDEV_INITIALIZE_ACTIVE);
1329 * Stop syncing.
1331 if (spa->spa_sync_on) {
1332 txg_sync_stop(spa->spa_dsl_pool);
1333 spa->spa_sync_on = B_FALSE;
1337 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1338 * to call it earlier, before we wait for async i/o to complete.
1339 * This ensures that there is no async metaslab prefetching, by
1340 * calling taskq_wait(mg_taskq).
1342 if (spa->spa_root_vdev != NULL) {
1343 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1344 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1345 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1346 spa_config_exit(spa, SCL_ALL, spa);
1350 * Wait for any outstanding async I/O to complete.
1352 if (spa->spa_async_zio_root != NULL) {
1353 for (int i = 0; i < max_ncpus; i++)
1354 (void) zio_wait(spa->spa_async_zio_root[i]);
1355 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1356 spa->spa_async_zio_root = NULL;
1359 if (spa->spa_vdev_removal != NULL) {
1360 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1361 spa->spa_vdev_removal = NULL;
1364 if (spa->spa_condense_zthr != NULL) {
1365 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1366 zthr_destroy(spa->spa_condense_zthr);
1367 spa->spa_condense_zthr = NULL;
1370 if (spa->spa_checkpoint_discard_zthr != NULL) {
1371 ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1372 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1373 spa->spa_checkpoint_discard_zthr = NULL;
1376 spa_condense_fini(spa);
1378 bpobj_close(&spa->spa_deferred_bpobj);
1380 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1383 * Close all vdevs.
1385 if (spa->spa_root_vdev)
1386 vdev_free(spa->spa_root_vdev);
1387 ASSERT(spa->spa_root_vdev == NULL);
1390 * Close the dsl pool.
1392 if (spa->spa_dsl_pool) {
1393 dsl_pool_close(spa->spa_dsl_pool);
1394 spa->spa_dsl_pool = NULL;
1395 spa->spa_meta_objset = NULL;
1398 ddt_unload(spa);
1401 * Drop and purge level 2 cache
1403 spa_l2cache_drop(spa);
1405 for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 vdev_free(spa->spa_spares.sav_vdevs[i]);
1407 if (spa->spa_spares.sav_vdevs) {
1408 kmem_free(spa->spa_spares.sav_vdevs,
1409 spa->spa_spares.sav_count * sizeof (void *));
1410 spa->spa_spares.sav_vdevs = NULL;
1412 if (spa->spa_spares.sav_config) {
1413 nvlist_free(spa->spa_spares.sav_config);
1414 spa->spa_spares.sav_config = NULL;
1416 spa->spa_spares.sav_count = 0;
1418 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1419 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1420 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1422 if (spa->spa_l2cache.sav_vdevs) {
1423 kmem_free(spa->spa_l2cache.sav_vdevs,
1424 spa->spa_l2cache.sav_count * sizeof (void *));
1425 spa->spa_l2cache.sav_vdevs = NULL;
1427 if (spa->spa_l2cache.sav_config) {
1428 nvlist_free(spa->spa_l2cache.sav_config);
1429 spa->spa_l2cache.sav_config = NULL;
1431 spa->spa_l2cache.sav_count = 0;
1433 spa->spa_async_suspended = 0;
1435 spa->spa_indirect_vdevs_loaded = B_FALSE;
1437 if (spa->spa_comment != NULL) {
1438 spa_strfree(spa->spa_comment);
1439 spa->spa_comment = NULL;
1442 spa_config_exit(spa, SCL_ALL, spa);
1446 * Load (or re-load) the current list of vdevs describing the active spares for
1447 * this pool. When this is called, we have some form of basic information in
1448 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1449 * then re-generate a more complete list including status information.
1451 void
1452 spa_load_spares(spa_t *spa)
1454 nvlist_t **spares;
1455 uint_t nspares;
1456 int i;
1457 vdev_t *vd, *tvd;
1459 #ifndef _KERNEL
1461 * zdb opens both the current state of the pool and the
1462 * checkpointed state (if present), with a different spa_t.
1464 * As spare vdevs are shared among open pools, we skip loading
1465 * them when we load the checkpointed state of the pool.
1467 if (!spa_writeable(spa))
1468 return;
1469 #endif
1471 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1474 * First, close and free any existing spare vdevs.
1476 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1477 vd = spa->spa_spares.sav_vdevs[i];
1479 /* Undo the call to spa_activate() below */
1480 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1481 B_FALSE)) != NULL && tvd->vdev_isspare)
1482 spa_spare_remove(tvd);
1483 vdev_close(vd);
1484 vdev_free(vd);
1487 if (spa->spa_spares.sav_vdevs)
1488 kmem_free(spa->spa_spares.sav_vdevs,
1489 spa->spa_spares.sav_count * sizeof (void *));
1491 if (spa->spa_spares.sav_config == NULL)
1492 nspares = 0;
1493 else
1494 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1495 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1497 spa->spa_spares.sav_count = (int)nspares;
1498 spa->spa_spares.sav_vdevs = NULL;
1500 if (nspares == 0)
1501 return;
1504 * Construct the array of vdevs, opening them to get status in the
1505 * process. For each spare, there is potentially two different vdev_t
1506 * structures associated with it: one in the list of spares (used only
1507 * for basic validation purposes) and one in the active vdev
1508 * configuration (if it's spared in). During this phase we open and
1509 * validate each vdev on the spare list. If the vdev also exists in the
1510 * active configuration, then we also mark this vdev as an active spare.
1512 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1513 KM_SLEEP);
1514 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1515 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1516 VDEV_ALLOC_SPARE) == 0);
1517 ASSERT(vd != NULL);
1519 spa->spa_spares.sav_vdevs[i] = vd;
1521 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1522 B_FALSE)) != NULL) {
1523 if (!tvd->vdev_isspare)
1524 spa_spare_add(tvd);
1527 * We only mark the spare active if we were successfully
1528 * able to load the vdev. Otherwise, importing a pool
1529 * with a bad active spare would result in strange
1530 * behavior, because multiple pool would think the spare
1531 * is actively in use.
1533 * There is a vulnerability here to an equally bizarre
1534 * circumstance, where a dead active spare is later
1535 * brought back to life (onlined or otherwise). Given
1536 * the rarity of this scenario, and the extra complexity
1537 * it adds, we ignore the possibility.
1539 if (!vdev_is_dead(tvd))
1540 spa_spare_activate(tvd);
1543 vd->vdev_top = vd;
1544 vd->vdev_aux = &spa->spa_spares;
1546 if (vdev_open(vd) != 0)
1547 continue;
1549 if (vdev_validate_aux(vd) == 0)
1550 spa_spare_add(vd);
1554 * Recompute the stashed list of spares, with status information
1555 * this time.
1557 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1558 DATA_TYPE_NVLIST_ARRAY) == 0);
1560 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1561 KM_SLEEP);
1562 for (i = 0; i < spa->spa_spares.sav_count; i++)
1563 spares[i] = vdev_config_generate(spa,
1564 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1565 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1566 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1567 for (i = 0; i < spa->spa_spares.sav_count; i++)
1568 nvlist_free(spares[i]);
1569 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1573 * Load (or re-load) the current list of vdevs describing the active l2cache for
1574 * this pool. When this is called, we have some form of basic information in
1575 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1576 * then re-generate a more complete list including status information.
1577 * Devices which are already active have their details maintained, and are
1578 * not re-opened.
1580 void
1581 spa_load_l2cache(spa_t *spa)
1583 nvlist_t **l2cache;
1584 uint_t nl2cache;
1585 int i, j, oldnvdevs;
1586 uint64_t guid;
1587 vdev_t *vd, **oldvdevs, **newvdevs;
1588 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1590 #ifndef _KERNEL
1592 * zdb opens both the current state of the pool and the
1593 * checkpointed state (if present), with a different spa_t.
1595 * As L2 caches are part of the ARC which is shared among open
1596 * pools, we skip loading them when we load the checkpointed
1597 * state of the pool.
1599 if (!spa_writeable(spa))
1600 return;
1601 #endif
1603 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1605 if (sav->sav_config != NULL) {
1606 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1607 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1608 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1609 } else {
1610 nl2cache = 0;
1611 newvdevs = NULL;
1614 oldvdevs = sav->sav_vdevs;
1615 oldnvdevs = sav->sav_count;
1616 sav->sav_vdevs = NULL;
1617 sav->sav_count = 0;
1620 * Process new nvlist of vdevs.
1622 for (i = 0; i < nl2cache; i++) {
1623 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1624 &guid) == 0);
1626 newvdevs[i] = NULL;
1627 for (j = 0; j < oldnvdevs; j++) {
1628 vd = oldvdevs[j];
1629 if (vd != NULL && guid == vd->vdev_guid) {
1631 * Retain previous vdev for add/remove ops.
1633 newvdevs[i] = vd;
1634 oldvdevs[j] = NULL;
1635 break;
1639 if (newvdevs[i] == NULL) {
1641 * Create new vdev
1643 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1644 VDEV_ALLOC_L2CACHE) == 0);
1645 ASSERT(vd != NULL);
1646 newvdevs[i] = vd;
1649 * Commit this vdev as an l2cache device,
1650 * even if it fails to open.
1652 spa_l2cache_add(vd);
1654 vd->vdev_top = vd;
1655 vd->vdev_aux = sav;
1657 spa_l2cache_activate(vd);
1659 if (vdev_open(vd) != 0)
1660 continue;
1662 (void) vdev_validate_aux(vd);
1664 if (!vdev_is_dead(vd))
1665 l2arc_add_vdev(spa, vd);
1670 * Purge vdevs that were dropped
1672 for (i = 0; i < oldnvdevs; i++) {
1673 uint64_t pool;
1675 vd = oldvdevs[i];
1676 if (vd != NULL) {
1677 ASSERT(vd->vdev_isl2cache);
1679 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1680 pool != 0ULL && l2arc_vdev_present(vd))
1681 l2arc_remove_vdev(vd);
1682 vdev_clear_stats(vd);
1683 vdev_free(vd);
1687 if (oldvdevs)
1688 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1690 if (sav->sav_config == NULL)
1691 goto out;
1693 sav->sav_vdevs = newvdevs;
1694 sav->sav_count = (int)nl2cache;
1697 * Recompute the stashed list of l2cache devices, with status
1698 * information this time.
1700 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1701 DATA_TYPE_NVLIST_ARRAY) == 0);
1703 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1704 for (i = 0; i < sav->sav_count; i++)
1705 l2cache[i] = vdev_config_generate(spa,
1706 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1707 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1708 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1709 out:
1710 for (i = 0; i < sav->sav_count; i++)
1711 nvlist_free(l2cache[i]);
1712 if (sav->sav_count)
1713 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1716 static int
1717 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1719 dmu_buf_t *db;
1720 char *packed = NULL;
1721 size_t nvsize = 0;
1722 int error;
1723 *value = NULL;
1725 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1726 if (error != 0)
1727 return (error);
1729 nvsize = *(uint64_t *)db->db_data;
1730 dmu_buf_rele(db, FTAG);
1732 packed = kmem_alloc(nvsize, KM_SLEEP);
1733 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1734 DMU_READ_PREFETCH);
1735 if (error == 0)
1736 error = nvlist_unpack(packed, nvsize, value, 0);
1737 kmem_free(packed, nvsize);
1739 return (error);
1743 * Concrete top-level vdevs that are not missing and are not logs. At every
1744 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1746 static uint64_t
1747 spa_healthy_core_tvds(spa_t *spa)
1749 vdev_t *rvd = spa->spa_root_vdev;
1750 uint64_t tvds = 0;
1752 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1753 vdev_t *vd = rvd->vdev_child[i];
1754 if (vd->vdev_islog)
1755 continue;
1756 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1757 tvds++;
1760 return (tvds);
1764 * Checks to see if the given vdev could not be opened, in which case we post a
1765 * sysevent to notify the autoreplace code that the device has been removed.
1767 static void
1768 spa_check_removed(vdev_t *vd)
1770 for (uint64_t c = 0; c < vd->vdev_children; c++)
1771 spa_check_removed(vd->vdev_child[c]);
1773 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1774 vdev_is_concrete(vd)) {
1775 zfs_post_autoreplace(vd->vdev_spa, vd);
1776 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1780 static int
1781 spa_check_for_missing_logs(spa_t *spa)
1783 vdev_t *rvd = spa->spa_root_vdev;
1786 * If we're doing a normal import, then build up any additional
1787 * diagnostic information about missing log devices.
1788 * We'll pass this up to the user for further processing.
1790 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1791 nvlist_t **child, *nv;
1792 uint64_t idx = 0;
1794 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1795 KM_SLEEP);
1796 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1798 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1799 vdev_t *tvd = rvd->vdev_child[c];
1802 * We consider a device as missing only if it failed
1803 * to open (i.e. offline or faulted is not considered
1804 * as missing).
1806 if (tvd->vdev_islog &&
1807 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1808 child[idx++] = vdev_config_generate(spa, tvd,
1809 B_FALSE, VDEV_CONFIG_MISSING);
1813 if (idx > 0) {
1814 fnvlist_add_nvlist_array(nv,
1815 ZPOOL_CONFIG_CHILDREN, child, idx);
1816 fnvlist_add_nvlist(spa->spa_load_info,
1817 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1819 for (uint64_t i = 0; i < idx; i++)
1820 nvlist_free(child[i]);
1822 nvlist_free(nv);
1823 kmem_free(child, rvd->vdev_children * sizeof (char **));
1825 if (idx > 0) {
1826 spa_load_failed(spa, "some log devices are missing");
1827 vdev_dbgmsg_print_tree(rvd, 2);
1828 return (SET_ERROR(ENXIO));
1830 } else {
1831 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1832 vdev_t *tvd = rvd->vdev_child[c];
1834 if (tvd->vdev_islog &&
1835 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1836 spa_set_log_state(spa, SPA_LOG_CLEAR);
1837 spa_load_note(spa, "some log devices are "
1838 "missing, ZIL is dropped.");
1839 vdev_dbgmsg_print_tree(rvd, 2);
1840 break;
1845 return (0);
1849 * Check for missing log devices
1851 static boolean_t
1852 spa_check_logs(spa_t *spa)
1854 boolean_t rv = B_FALSE;
1855 dsl_pool_t *dp = spa_get_dsl(spa);
1857 switch (spa->spa_log_state) {
1858 case SPA_LOG_MISSING:
1859 /* need to recheck in case slog has been restored */
1860 case SPA_LOG_UNKNOWN:
1861 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1862 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1863 if (rv)
1864 spa_set_log_state(spa, SPA_LOG_MISSING);
1865 break;
1867 return (rv);
1870 static boolean_t
1871 spa_passivate_log(spa_t *spa)
1873 vdev_t *rvd = spa->spa_root_vdev;
1874 boolean_t slog_found = B_FALSE;
1876 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1878 if (!spa_has_slogs(spa))
1879 return (B_FALSE);
1881 for (int c = 0; c < rvd->vdev_children; c++) {
1882 vdev_t *tvd = rvd->vdev_child[c];
1883 metaslab_group_t *mg = tvd->vdev_mg;
1885 if (tvd->vdev_islog) {
1886 metaslab_group_passivate(mg);
1887 slog_found = B_TRUE;
1891 return (slog_found);
1894 static void
1895 spa_activate_log(spa_t *spa)
1897 vdev_t *rvd = spa->spa_root_vdev;
1899 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1901 for (int c = 0; c < rvd->vdev_children; c++) {
1902 vdev_t *tvd = rvd->vdev_child[c];
1903 metaslab_group_t *mg = tvd->vdev_mg;
1905 if (tvd->vdev_islog)
1906 metaslab_group_activate(mg);
1911 spa_reset_logs(spa_t *spa)
1913 int error;
1915 error = dmu_objset_find(spa_name(spa), zil_reset,
1916 NULL, DS_FIND_CHILDREN);
1917 if (error == 0) {
1919 * We successfully offlined the log device, sync out the
1920 * current txg so that the "stubby" block can be removed
1921 * by zil_sync().
1923 txg_wait_synced(spa->spa_dsl_pool, 0);
1925 return (error);
1928 static void
1929 spa_aux_check_removed(spa_aux_vdev_t *sav)
1931 for (int i = 0; i < sav->sav_count; i++)
1932 spa_check_removed(sav->sav_vdevs[i]);
1935 void
1936 spa_claim_notify(zio_t *zio)
1938 spa_t *spa = zio->io_spa;
1940 if (zio->io_error)
1941 return;
1943 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1944 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1945 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1946 mutex_exit(&spa->spa_props_lock);
1949 typedef struct spa_load_error {
1950 uint64_t sle_meta_count;
1951 uint64_t sle_data_count;
1952 } spa_load_error_t;
1954 static void
1955 spa_load_verify_done(zio_t *zio)
1957 blkptr_t *bp = zio->io_bp;
1958 spa_load_error_t *sle = zio->io_private;
1959 dmu_object_type_t type = BP_GET_TYPE(bp);
1960 int error = zio->io_error;
1961 spa_t *spa = zio->io_spa;
1963 abd_free(zio->io_abd);
1964 if (error) {
1965 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1966 type != DMU_OT_INTENT_LOG)
1967 atomic_inc_64(&sle->sle_meta_count);
1968 else
1969 atomic_inc_64(&sle->sle_data_count);
1972 mutex_enter(&spa->spa_scrub_lock);
1973 spa->spa_scrub_inflight--;
1974 cv_broadcast(&spa->spa_scrub_io_cv);
1975 mutex_exit(&spa->spa_scrub_lock);
1979 * Maximum number of concurrent scrub i/os to create while verifying
1980 * a pool while importing it.
1982 int spa_load_verify_maxinflight = 10000;
1983 boolean_t spa_load_verify_metadata = B_TRUE;
1984 boolean_t spa_load_verify_data = B_TRUE;
1986 /*ARGSUSED*/
1987 static int
1988 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1989 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1991 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1992 return (0);
1994 * Note: normally this routine will not be called if
1995 * spa_load_verify_metadata is not set. However, it may be useful
1996 * to manually set the flag after the traversal has begun.
1998 if (!spa_load_verify_metadata)
1999 return (0);
2000 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2001 return (0);
2003 zio_t *rio = arg;
2004 size_t size = BP_GET_PSIZE(bp);
2006 mutex_enter(&spa->spa_scrub_lock);
2007 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2008 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2009 spa->spa_scrub_inflight++;
2010 mutex_exit(&spa->spa_scrub_lock);
2012 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2013 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2014 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2015 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2016 return (0);
2019 /* ARGSUSED */
2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2023 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2024 return (SET_ERROR(ENAMETOOLONG));
2026 return (0);
2029 static int
2030 spa_load_verify(spa_t *spa)
2032 zio_t *rio;
2033 spa_load_error_t sle = { 0 };
2034 zpool_load_policy_t policy;
2035 boolean_t verify_ok = B_FALSE;
2036 int error = 0;
2038 zpool_get_load_policy(spa->spa_config, &policy);
2040 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2041 return (0);
2043 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2044 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2045 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2046 DS_FIND_CHILDREN);
2047 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2048 if (error != 0)
2049 return (error);
2051 rio = zio_root(spa, NULL, &sle,
2052 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2054 if (spa_load_verify_metadata) {
2055 if (spa->spa_extreme_rewind) {
2056 spa_load_note(spa, "performing a complete scan of the "
2057 "pool since extreme rewind is on. This may take "
2058 "a very long time.\n (spa_load_verify_data=%u, "
2059 "spa_load_verify_metadata=%u)",
2060 spa_load_verify_data, spa_load_verify_metadata);
2062 error = traverse_pool(spa, spa->spa_verify_min_txg,
2063 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2064 spa_load_verify_cb, rio);
2067 (void) zio_wait(rio);
2069 spa->spa_load_meta_errors = sle.sle_meta_count;
2070 spa->spa_load_data_errors = sle.sle_data_count;
2072 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2073 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2074 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2075 (u_longlong_t)sle.sle_data_count);
2078 if (spa_load_verify_dryrun ||
2079 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2080 sle.sle_data_count <= policy.zlp_maxdata)) {
2081 int64_t loss = 0;
2083 verify_ok = B_TRUE;
2084 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2085 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2087 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2088 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2089 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2090 VERIFY(nvlist_add_int64(spa->spa_load_info,
2091 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2092 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2093 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2094 } else {
2095 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2098 if (spa_load_verify_dryrun)
2099 return (0);
2101 if (error) {
2102 if (error != ENXIO && error != EIO)
2103 error = SET_ERROR(EIO);
2104 return (error);
2107 return (verify_ok ? 0 : EIO);
2111 * Find a value in the pool props object.
2113 static void
2114 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2116 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2117 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2121 * Find a value in the pool directory object.
2123 static int
2124 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2126 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2127 name, sizeof (uint64_t), 1, val);
2129 if (error != 0 && (error != ENOENT || log_enoent)) {
2130 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2131 "[error=%d]", name, error);
2134 return (error);
2137 static int
2138 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2140 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2141 return (SET_ERROR(err));
2144 static void
2145 spa_spawn_aux_threads(spa_t *spa)
2147 ASSERT(spa_writeable(spa));
2149 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2151 spa_start_indirect_condensing_thread(spa);
2153 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2154 spa->spa_checkpoint_discard_zthr =
2155 zthr_create(spa_checkpoint_discard_thread_check,
2156 spa_checkpoint_discard_thread, spa);
2160 * Fix up config after a partly-completed split. This is done with the
2161 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2162 * pool have that entry in their config, but only the splitting one contains
2163 * a list of all the guids of the vdevs that are being split off.
2165 * This function determines what to do with that list: either rejoin
2166 * all the disks to the pool, or complete the splitting process. To attempt
2167 * the rejoin, each disk that is offlined is marked online again, and
2168 * we do a reopen() call. If the vdev label for every disk that was
2169 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2170 * then we call vdev_split() on each disk, and complete the split.
2172 * Otherwise we leave the config alone, with all the vdevs in place in
2173 * the original pool.
2175 static void
2176 spa_try_repair(spa_t *spa, nvlist_t *config)
2178 uint_t extracted;
2179 uint64_t *glist;
2180 uint_t i, gcount;
2181 nvlist_t *nvl;
2182 vdev_t **vd;
2183 boolean_t attempt_reopen;
2185 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2186 return;
2188 /* check that the config is complete */
2189 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2190 &glist, &gcount) != 0)
2191 return;
2193 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2195 /* attempt to online all the vdevs & validate */
2196 attempt_reopen = B_TRUE;
2197 for (i = 0; i < gcount; i++) {
2198 if (glist[i] == 0) /* vdev is hole */
2199 continue;
2201 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2202 if (vd[i] == NULL) {
2204 * Don't bother attempting to reopen the disks;
2205 * just do the split.
2207 attempt_reopen = B_FALSE;
2208 } else {
2209 /* attempt to re-online it */
2210 vd[i]->vdev_offline = B_FALSE;
2214 if (attempt_reopen) {
2215 vdev_reopen(spa->spa_root_vdev);
2217 /* check each device to see what state it's in */
2218 for (extracted = 0, i = 0; i < gcount; i++) {
2219 if (vd[i] != NULL &&
2220 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2221 break;
2222 ++extracted;
2227 * If every disk has been moved to the new pool, or if we never
2228 * even attempted to look at them, then we split them off for
2229 * good.
2231 if (!attempt_reopen || gcount == extracted) {
2232 for (i = 0; i < gcount; i++)
2233 if (vd[i] != NULL)
2234 vdev_split(vd[i]);
2235 vdev_reopen(spa->spa_root_vdev);
2238 kmem_free(vd, gcount * sizeof (vdev_t *));
2241 static int
2242 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2244 char *ereport = FM_EREPORT_ZFS_POOL;
2245 int error;
2247 spa->spa_load_state = state;
2249 gethrestime(&spa->spa_loaded_ts);
2250 error = spa_load_impl(spa, type, &ereport);
2253 * Don't count references from objsets that are already closed
2254 * and are making their way through the eviction process.
2256 spa_evicting_os_wait(spa);
2257 spa->spa_minref = refcount_count(&spa->spa_refcount);
2258 if (error) {
2259 if (error != EEXIST) {
2260 spa->spa_loaded_ts.tv_sec = 0;
2261 spa->spa_loaded_ts.tv_nsec = 0;
2263 if (error != EBADF) {
2264 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2267 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2268 spa->spa_ena = 0;
2270 return (error);
2274 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2275 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2276 * spa's per-vdev ZAP list.
2278 static uint64_t
2279 vdev_count_verify_zaps(vdev_t *vd)
2281 spa_t *spa = vd->vdev_spa;
2282 uint64_t total = 0;
2283 if (vd->vdev_top_zap != 0) {
2284 total++;
2285 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2286 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2288 if (vd->vdev_leaf_zap != 0) {
2289 total++;
2290 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2291 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2294 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2295 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2298 return (total);
2301 static int
2302 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2304 uint64_t hostid;
2305 char *hostname;
2306 uint64_t myhostid = 0;
2308 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2309 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2310 hostname = fnvlist_lookup_string(mos_config,
2311 ZPOOL_CONFIG_HOSTNAME);
2313 myhostid = zone_get_hostid(NULL);
2315 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2316 cmn_err(CE_WARN, "pool '%s' could not be "
2317 "loaded as it was last accessed by "
2318 "another system (host: %s hostid: 0x%llx). "
2319 "See: http://illumos.org/msg/ZFS-8000-EY",
2320 spa_name(spa), hostname, (u_longlong_t)hostid);
2321 spa_load_failed(spa, "hostid verification failed: pool "
2322 "last accessed by host: %s (hostid: 0x%llx)",
2323 hostname, (u_longlong_t)hostid);
2324 return (SET_ERROR(EBADF));
2328 return (0);
2331 static int
2332 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2334 int error = 0;
2335 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2336 int parse;
2337 vdev_t *rvd;
2338 uint64_t pool_guid;
2339 char *comment;
2342 * Versioning wasn't explicitly added to the label until later, so if
2343 * it's not present treat it as the initial version.
2345 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2346 &spa->spa_ubsync.ub_version) != 0)
2347 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2349 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2350 spa_load_failed(spa, "invalid config provided: '%s' missing",
2351 ZPOOL_CONFIG_POOL_GUID);
2352 return (SET_ERROR(EINVAL));
2356 * If we are doing an import, ensure that the pool is not already
2357 * imported by checking if its pool guid already exists in the
2358 * spa namespace.
2360 * The only case that we allow an already imported pool to be
2361 * imported again, is when the pool is checkpointed and we want to
2362 * look at its checkpointed state from userland tools like zdb.
2364 #ifdef _KERNEL
2365 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2366 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2367 spa_guid_exists(pool_guid, 0)) {
2368 #else
2369 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2370 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2371 spa_guid_exists(pool_guid, 0) &&
2372 !spa_importing_readonly_checkpoint(spa)) {
2373 #endif
2374 spa_load_failed(spa, "a pool with guid %llu is already open",
2375 (u_longlong_t)pool_guid);
2376 return (SET_ERROR(EEXIST));
2379 spa->spa_config_guid = pool_guid;
2381 nvlist_free(spa->spa_load_info);
2382 spa->spa_load_info = fnvlist_alloc();
2384 ASSERT(spa->spa_comment == NULL);
2385 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2386 spa->spa_comment = spa_strdup(comment);
2388 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2389 &spa->spa_config_txg);
2391 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2392 spa->spa_config_splitting = fnvlist_dup(nvl);
2394 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2395 spa_load_failed(spa, "invalid config provided: '%s' missing",
2396 ZPOOL_CONFIG_VDEV_TREE);
2397 return (SET_ERROR(EINVAL));
2401 * Create "The Godfather" zio to hold all async IOs
2403 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2404 KM_SLEEP);
2405 for (int i = 0; i < max_ncpus; i++) {
2406 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2408 ZIO_FLAG_GODFATHER);
2412 * Parse the configuration into a vdev tree. We explicitly set the
2413 * value that will be returned by spa_version() since parsing the
2414 * configuration requires knowing the version number.
2416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2417 parse = (type == SPA_IMPORT_EXISTING ?
2418 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2419 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2420 spa_config_exit(spa, SCL_ALL, FTAG);
2422 if (error != 0) {
2423 spa_load_failed(spa, "unable to parse config [error=%d]",
2424 error);
2425 return (error);
2428 ASSERT(spa->spa_root_vdev == rvd);
2429 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2430 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2432 if (type != SPA_IMPORT_ASSEMBLE) {
2433 ASSERT(spa_guid(spa) == pool_guid);
2436 return (0);
2440 * Recursively open all vdevs in the vdev tree. This function is called twice:
2441 * first with the untrusted config, then with the trusted config.
2443 static int
2444 spa_ld_open_vdevs(spa_t *spa)
2446 int error = 0;
2449 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2450 * missing/unopenable for the root vdev to be still considered openable.
2452 if (spa->spa_trust_config) {
2453 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2454 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2455 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2456 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2457 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2458 } else {
2459 spa->spa_missing_tvds_allowed = 0;
2462 spa->spa_missing_tvds_allowed =
2463 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2466 error = vdev_open(spa->spa_root_vdev);
2467 spa_config_exit(spa, SCL_ALL, FTAG);
2469 if (spa->spa_missing_tvds != 0) {
2470 spa_load_note(spa, "vdev tree has %lld missing top-level "
2471 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2472 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2474 * Although theoretically we could allow users to open
2475 * incomplete pools in RW mode, we'd need to add a lot
2476 * of extra logic (e.g. adjust pool space to account
2477 * for missing vdevs).
2478 * This limitation also prevents users from accidentally
2479 * opening the pool in RW mode during data recovery and
2480 * damaging it further.
2482 spa_load_note(spa, "pools with missing top-level "
2483 "vdevs can only be opened in read-only mode.");
2484 error = SET_ERROR(ENXIO);
2485 } else {
2486 spa_load_note(spa, "current settings allow for maximum "
2487 "%lld missing top-level vdevs at this stage.",
2488 (u_longlong_t)spa->spa_missing_tvds_allowed);
2491 if (error != 0) {
2492 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2493 error);
2495 if (spa->spa_missing_tvds != 0 || error != 0)
2496 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2498 return (error);
2502 * We need to validate the vdev labels against the configuration that
2503 * we have in hand. This function is called twice: first with an untrusted
2504 * config, then with a trusted config. The validation is more strict when the
2505 * config is trusted.
2507 static int
2508 spa_ld_validate_vdevs(spa_t *spa)
2510 int error = 0;
2511 vdev_t *rvd = spa->spa_root_vdev;
2513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2514 error = vdev_validate(rvd);
2515 spa_config_exit(spa, SCL_ALL, FTAG);
2517 if (error != 0) {
2518 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2519 return (error);
2522 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2523 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2524 "some vdevs");
2525 vdev_dbgmsg_print_tree(rvd, 2);
2526 return (SET_ERROR(ENXIO));
2529 return (0);
2532 static void
2533 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2535 spa->spa_state = POOL_STATE_ACTIVE;
2536 spa->spa_ubsync = spa->spa_uberblock;
2537 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2538 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2539 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2540 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2541 spa->spa_claim_max_txg = spa->spa_first_txg;
2542 spa->spa_prev_software_version = ub->ub_software_version;
2545 static int
2546 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2548 vdev_t *rvd = spa->spa_root_vdev;
2549 nvlist_t *label;
2550 uberblock_t *ub = &spa->spa_uberblock;
2553 * If we are opening the checkpointed state of the pool by
2554 * rewinding to it, at this point we will have written the
2555 * checkpointed uberblock to the vdev labels, so searching
2556 * the labels will find the right uberblock. However, if
2557 * we are opening the checkpointed state read-only, we have
2558 * not modified the labels. Therefore, we must ignore the
2559 * labels and continue using the spa_uberblock that was set
2560 * by spa_ld_checkpoint_rewind.
2562 * Note that it would be fine to ignore the labels when
2563 * rewinding (opening writeable) as well. However, if we
2564 * crash just after writing the labels, we will end up
2565 * searching the labels. Doing so in the common case means
2566 * that this code path gets exercised normally, rather than
2567 * just in the edge case.
2569 if (ub->ub_checkpoint_txg != 0 &&
2570 spa_importing_readonly_checkpoint(spa)) {
2571 spa_ld_select_uberblock_done(spa, ub);
2572 return (0);
2576 * Find the best uberblock.
2578 vdev_uberblock_load(rvd, ub, &label);
2581 * If we weren't able to find a single valid uberblock, return failure.
2583 if (ub->ub_txg == 0) {
2584 nvlist_free(label);
2585 spa_load_failed(spa, "no valid uberblock found");
2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2589 spa_load_note(spa, "using uberblock with txg=%llu",
2590 (u_longlong_t)ub->ub_txg);
2593 * If the pool has an unsupported version we can't open it.
2595 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2596 nvlist_free(label);
2597 spa_load_failed(spa, "version %llu is not supported",
2598 (u_longlong_t)ub->ub_version);
2599 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2602 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2603 nvlist_t *features;
2606 * If we weren't able to find what's necessary for reading the
2607 * MOS in the label, return failure.
2609 if (label == NULL) {
2610 spa_load_failed(spa, "label config unavailable");
2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612 ENXIO));
2615 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2616 &features) != 0) {
2617 nvlist_free(label);
2618 spa_load_failed(spa, "invalid label: '%s' missing",
2619 ZPOOL_CONFIG_FEATURES_FOR_READ);
2620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2621 ENXIO));
2625 * Update our in-core representation with the definitive values
2626 * from the label.
2628 nvlist_free(spa->spa_label_features);
2629 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2632 nvlist_free(label);
2635 * Look through entries in the label nvlist's features_for_read. If
2636 * there is a feature listed there which we don't understand then we
2637 * cannot open a pool.
2639 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2640 nvlist_t *unsup_feat;
2642 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2645 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2646 NULL); nvp != NULL;
2647 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2648 if (!zfeature_is_supported(nvpair_name(nvp))) {
2649 VERIFY(nvlist_add_string(unsup_feat,
2650 nvpair_name(nvp), "") == 0);
2654 if (!nvlist_empty(unsup_feat)) {
2655 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2656 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2657 nvlist_free(unsup_feat);
2658 spa_load_failed(spa, "some features are unsupported");
2659 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2660 ENOTSUP));
2663 nvlist_free(unsup_feat);
2666 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2668 spa_try_repair(spa, spa->spa_config);
2669 spa_config_exit(spa, SCL_ALL, FTAG);
2670 nvlist_free(spa->spa_config_splitting);
2671 spa->spa_config_splitting = NULL;
2675 * Initialize internal SPA structures.
2677 spa_ld_select_uberblock_done(spa, ub);
2679 return (0);
2682 static int
2683 spa_ld_open_rootbp(spa_t *spa)
2685 int error = 0;
2686 vdev_t *rvd = spa->spa_root_vdev;
2688 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2689 if (error != 0) {
2690 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2691 "[error=%d]", error);
2692 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2696 return (0);
2699 static int
2700 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2701 boolean_t reloading)
2703 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2704 nvlist_t *nv, *mos_config, *policy;
2705 int error = 0, copy_error;
2706 uint64_t healthy_tvds, healthy_tvds_mos;
2707 uint64_t mos_config_txg;
2709 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2710 != 0)
2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2714 * If we're assembling a pool from a split, the config provided is
2715 * already trusted so there is nothing to do.
2717 if (type == SPA_IMPORT_ASSEMBLE)
2718 return (0);
2720 healthy_tvds = spa_healthy_core_tvds(spa);
2722 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2723 != 0) {
2724 spa_load_failed(spa, "unable to retrieve MOS config");
2725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2729 * If we are doing an open, pool owner wasn't verified yet, thus do
2730 * the verification here.
2732 if (spa->spa_load_state == SPA_LOAD_OPEN) {
2733 error = spa_verify_host(spa, mos_config);
2734 if (error != 0) {
2735 nvlist_free(mos_config);
2736 return (error);
2740 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2742 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2745 * Build a new vdev tree from the trusted config
2747 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2750 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2751 * obtained by scanning /dev/dsk, then it will have the right vdev
2752 * paths. We update the trusted MOS config with this information.
2753 * We first try to copy the paths with vdev_copy_path_strict, which
2754 * succeeds only when both configs have exactly the same vdev tree.
2755 * If that fails, we fall back to a more flexible method that has a
2756 * best effort policy.
2758 copy_error = vdev_copy_path_strict(rvd, mrvd);
2759 if (copy_error != 0 || spa_load_print_vdev_tree) {
2760 spa_load_note(spa, "provided vdev tree:");
2761 vdev_dbgmsg_print_tree(rvd, 2);
2762 spa_load_note(spa, "MOS vdev tree:");
2763 vdev_dbgmsg_print_tree(mrvd, 2);
2765 if (copy_error != 0) {
2766 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2767 "back to vdev_copy_path_relaxed");
2768 vdev_copy_path_relaxed(rvd, mrvd);
2771 vdev_close(rvd);
2772 vdev_free(rvd);
2773 spa->spa_root_vdev = mrvd;
2774 rvd = mrvd;
2775 spa_config_exit(spa, SCL_ALL, FTAG);
2778 * We will use spa_config if we decide to reload the spa or if spa_load
2779 * fails and we rewind. We must thus regenerate the config using the
2780 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2781 * pass settings on how to load the pool and is not stored in the MOS.
2782 * We copy it over to our new, trusted config.
2784 mos_config_txg = fnvlist_lookup_uint64(mos_config,
2785 ZPOOL_CONFIG_POOL_TXG);
2786 nvlist_free(mos_config);
2787 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2788 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2789 &policy) == 0)
2790 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2791 spa_config_set(spa, mos_config);
2792 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2795 * Now that we got the config from the MOS, we should be more strict
2796 * in checking blkptrs and can make assumptions about the consistency
2797 * of the vdev tree. spa_trust_config must be set to true before opening
2798 * vdevs in order for them to be writeable.
2800 spa->spa_trust_config = B_TRUE;
2803 * Open and validate the new vdev tree
2805 error = spa_ld_open_vdevs(spa);
2806 if (error != 0)
2807 return (error);
2809 error = spa_ld_validate_vdevs(spa);
2810 if (error != 0)
2811 return (error);
2813 if (copy_error != 0 || spa_load_print_vdev_tree) {
2814 spa_load_note(spa, "final vdev tree:");
2815 vdev_dbgmsg_print_tree(rvd, 2);
2818 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2819 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2821 * Sanity check to make sure that we are indeed loading the
2822 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2823 * in the config provided and they happened to be the only ones
2824 * to have the latest uberblock, we could involuntarily perform
2825 * an extreme rewind.
2827 healthy_tvds_mos = spa_healthy_core_tvds(spa);
2828 if (healthy_tvds_mos - healthy_tvds >=
2829 SPA_SYNC_MIN_VDEVS) {
2830 spa_load_note(spa, "config provided misses too many "
2831 "top-level vdevs compared to MOS (%lld vs %lld). ",
2832 (u_longlong_t)healthy_tvds,
2833 (u_longlong_t)healthy_tvds_mos);
2834 spa_load_note(spa, "vdev tree:");
2835 vdev_dbgmsg_print_tree(rvd, 2);
2836 if (reloading) {
2837 spa_load_failed(spa, "config was already "
2838 "provided from MOS. Aborting.");
2839 return (spa_vdev_err(rvd,
2840 VDEV_AUX_CORRUPT_DATA, EIO));
2842 spa_load_note(spa, "spa must be reloaded using MOS "
2843 "config");
2844 return (SET_ERROR(EAGAIN));
2848 error = spa_check_for_missing_logs(spa);
2849 if (error != 0)
2850 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2852 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2853 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2854 "guid sum (%llu != %llu)",
2855 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2856 (u_longlong_t)rvd->vdev_guid_sum);
2857 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2858 ENXIO));
2861 return (0);
2864 static int
2865 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2867 int error = 0;
2868 vdev_t *rvd = spa->spa_root_vdev;
2871 * Everything that we read before spa_remove_init() must be stored
2872 * on concreted vdevs. Therefore we do this as early as possible.
2874 error = spa_remove_init(spa);
2875 if (error != 0) {
2876 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2877 error);
2878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2882 * Retrieve information needed to condense indirect vdev mappings.
2884 error = spa_condense_init(spa);
2885 if (error != 0) {
2886 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2887 error);
2888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2891 return (0);
2894 static int
2895 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2897 int error = 0;
2898 vdev_t *rvd = spa->spa_root_vdev;
2900 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2901 boolean_t missing_feat_read = B_FALSE;
2902 nvlist_t *unsup_feat, *enabled_feat;
2904 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2905 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2909 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2910 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2914 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2915 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2916 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2919 enabled_feat = fnvlist_alloc();
2920 unsup_feat = fnvlist_alloc();
2922 if (!spa_features_check(spa, B_FALSE,
2923 unsup_feat, enabled_feat))
2924 missing_feat_read = B_TRUE;
2926 if (spa_writeable(spa) ||
2927 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2928 if (!spa_features_check(spa, B_TRUE,
2929 unsup_feat, enabled_feat)) {
2930 *missing_feat_writep = B_TRUE;
2934 fnvlist_add_nvlist(spa->spa_load_info,
2935 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2937 if (!nvlist_empty(unsup_feat)) {
2938 fnvlist_add_nvlist(spa->spa_load_info,
2939 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2942 fnvlist_free(enabled_feat);
2943 fnvlist_free(unsup_feat);
2945 if (!missing_feat_read) {
2946 fnvlist_add_boolean(spa->spa_load_info,
2947 ZPOOL_CONFIG_CAN_RDONLY);
2951 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2952 * twofold: to determine whether the pool is available for
2953 * import in read-write mode and (if it is not) whether the
2954 * pool is available for import in read-only mode. If the pool
2955 * is available for import in read-write mode, it is displayed
2956 * as available in userland; if it is not available for import
2957 * in read-only mode, it is displayed as unavailable in
2958 * userland. If the pool is available for import in read-only
2959 * mode but not read-write mode, it is displayed as unavailable
2960 * in userland with a special note that the pool is actually
2961 * available for open in read-only mode.
2963 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2964 * missing a feature for write, we must first determine whether
2965 * the pool can be opened read-only before returning to
2966 * userland in order to know whether to display the
2967 * abovementioned note.
2969 if (missing_feat_read || (*missing_feat_writep &&
2970 spa_writeable(spa))) {
2971 spa_load_failed(spa, "pool uses unsupported features");
2972 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2973 ENOTSUP));
2977 * Load refcounts for ZFS features from disk into an in-memory
2978 * cache during SPA initialization.
2980 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2981 uint64_t refcount;
2983 error = feature_get_refcount_from_disk(spa,
2984 &spa_feature_table[i], &refcount);
2985 if (error == 0) {
2986 spa->spa_feat_refcount_cache[i] = refcount;
2987 } else if (error == ENOTSUP) {
2988 spa->spa_feat_refcount_cache[i] =
2989 SPA_FEATURE_DISABLED;
2990 } else {
2991 spa_load_failed(spa, "error getting refcount "
2992 "for feature %s [error=%d]",
2993 spa_feature_table[i].fi_guid, error);
2994 return (spa_vdev_err(rvd,
2995 VDEV_AUX_CORRUPT_DATA, EIO));
3000 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3001 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3002 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3006 return (0);
3009 static int
3010 spa_ld_load_special_directories(spa_t *spa)
3012 int error = 0;
3013 vdev_t *rvd = spa->spa_root_vdev;
3015 spa->spa_is_initializing = B_TRUE;
3016 error = dsl_pool_open(spa->spa_dsl_pool);
3017 spa->spa_is_initializing = B_FALSE;
3018 if (error != 0) {
3019 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3020 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3023 return (0);
3026 static int
3027 spa_ld_get_props(spa_t *spa)
3029 int error = 0;
3030 uint64_t obj;
3031 vdev_t *rvd = spa->spa_root_vdev;
3033 /* Grab the secret checksum salt from the MOS. */
3034 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3035 DMU_POOL_CHECKSUM_SALT, 1,
3036 sizeof (spa->spa_cksum_salt.zcs_bytes),
3037 spa->spa_cksum_salt.zcs_bytes);
3038 if (error == ENOENT) {
3039 /* Generate a new salt for subsequent use */
3040 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3041 sizeof (spa->spa_cksum_salt.zcs_bytes));
3042 } else if (error != 0) {
3043 spa_load_failed(spa, "unable to retrieve checksum salt from "
3044 "MOS [error=%d]", error);
3045 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3048 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3049 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3050 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3051 if (error != 0) {
3052 spa_load_failed(spa, "error opening deferred-frees bpobj "
3053 "[error=%d]", error);
3054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3058 * Load the bit that tells us to use the new accounting function
3059 * (raid-z deflation). If we have an older pool, this will not
3060 * be present.
3062 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3063 if (error != 0 && error != ENOENT)
3064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3066 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3067 &spa->spa_creation_version, B_FALSE);
3068 if (error != 0 && error != ENOENT)
3069 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3072 * Load the persistent error log. If we have an older pool, this will
3073 * not be present.
3075 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3076 B_FALSE);
3077 if (error != 0 && error != ENOENT)
3078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3080 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3081 &spa->spa_errlog_scrub, B_FALSE);
3082 if (error != 0 && error != ENOENT)
3083 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3086 * Load the history object. If we have an older pool, this
3087 * will not be present.
3089 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3090 if (error != 0 && error != ENOENT)
3091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3094 * Load the per-vdev ZAP map. If we have an older pool, this will not
3095 * be present; in this case, defer its creation to a later time to
3096 * avoid dirtying the MOS this early / out of sync context. See
3097 * spa_sync_config_object.
3100 /* The sentinel is only available in the MOS config. */
3101 nvlist_t *mos_config;
3102 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3103 spa_load_failed(spa, "unable to retrieve MOS config");
3104 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3107 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3108 &spa->spa_all_vdev_zaps, B_FALSE);
3110 if (error == ENOENT) {
3111 VERIFY(!nvlist_exists(mos_config,
3112 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3113 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3114 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3115 } else if (error != 0) {
3116 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3117 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3119 * An older version of ZFS overwrote the sentinel value, so
3120 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3121 * destruction to later; see spa_sync_config_object.
3123 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3125 * We're assuming that no vdevs have had their ZAPs created
3126 * before this. Better be sure of it.
3128 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3130 nvlist_free(mos_config);
3132 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3134 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3135 B_FALSE);
3136 if (error && error != ENOENT)
3137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3139 if (error == 0) {
3140 uint64_t autoreplace;
3142 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3143 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3144 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3145 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3146 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3147 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3148 &spa->spa_dedup_ditto);
3150 spa->spa_autoreplace = (autoreplace != 0);
3154 * If we are importing a pool with missing top-level vdevs,
3155 * we enforce that the pool doesn't panic or get suspended on
3156 * error since the likelihood of missing data is extremely high.
3158 if (spa->spa_missing_tvds > 0 &&
3159 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3160 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3161 spa_load_note(spa, "forcing failmode to 'continue' "
3162 "as some top level vdevs are missing");
3163 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3166 return (0);
3169 static int
3170 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3172 int error = 0;
3173 vdev_t *rvd = spa->spa_root_vdev;
3176 * If we're assembling the pool from the split-off vdevs of
3177 * an existing pool, we don't want to attach the spares & cache
3178 * devices.
3182 * Load any hot spares for this pool.
3184 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3185 B_FALSE);
3186 if (error != 0 && error != ENOENT)
3187 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3188 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3189 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3190 if (load_nvlist(spa, spa->spa_spares.sav_object,
3191 &spa->spa_spares.sav_config) != 0) {
3192 spa_load_failed(spa, "error loading spares nvlist");
3193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3197 spa_load_spares(spa);
3198 spa_config_exit(spa, SCL_ALL, FTAG);
3199 } else if (error == 0) {
3200 spa->spa_spares.sav_sync = B_TRUE;
3204 * Load any level 2 ARC devices for this pool.
3206 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3207 &spa->spa_l2cache.sav_object, B_FALSE);
3208 if (error != 0 && error != ENOENT)
3209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3210 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3211 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3212 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3213 &spa->spa_l2cache.sav_config) != 0) {
3214 spa_load_failed(spa, "error loading l2cache nvlist");
3215 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3219 spa_load_l2cache(spa);
3220 spa_config_exit(spa, SCL_ALL, FTAG);
3221 } else if (error == 0) {
3222 spa->spa_l2cache.sav_sync = B_TRUE;
3225 return (0);
3228 static int
3229 spa_ld_load_vdev_metadata(spa_t *spa)
3231 int error = 0;
3232 vdev_t *rvd = spa->spa_root_vdev;
3235 * If the 'autoreplace' property is set, then post a resource notifying
3236 * the ZFS DE that it should not issue any faults for unopenable
3237 * devices. We also iterate over the vdevs, and post a sysevent for any
3238 * unopenable vdevs so that the normal autoreplace handler can take
3239 * over.
3241 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3242 spa_check_removed(spa->spa_root_vdev);
3244 * For the import case, this is done in spa_import(), because
3245 * at this point we're using the spare definitions from
3246 * the MOS config, not necessarily from the userland config.
3248 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3249 spa_aux_check_removed(&spa->spa_spares);
3250 spa_aux_check_removed(&spa->spa_l2cache);
3255 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3257 error = vdev_load(rvd);
3258 if (error != 0) {
3259 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3264 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3267 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3268 spa_config_exit(spa, SCL_ALL, FTAG);
3270 return (0);
3273 static int
3274 spa_ld_load_dedup_tables(spa_t *spa)
3276 int error = 0;
3277 vdev_t *rvd = spa->spa_root_vdev;
3279 error = ddt_load(spa);
3280 if (error != 0) {
3281 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3285 return (0);
3288 static int
3289 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3291 vdev_t *rvd = spa->spa_root_vdev;
3293 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3294 boolean_t missing = spa_check_logs(spa);
3295 if (missing) {
3296 if (spa->spa_missing_tvds != 0) {
3297 spa_load_note(spa, "spa_check_logs failed "
3298 "so dropping the logs");
3299 } else {
3300 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3301 spa_load_failed(spa, "spa_check_logs failed");
3302 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3303 ENXIO));
3308 return (0);
3311 static int
3312 spa_ld_verify_pool_data(spa_t *spa)
3314 int error = 0;
3315 vdev_t *rvd = spa->spa_root_vdev;
3318 * We've successfully opened the pool, verify that we're ready
3319 * to start pushing transactions.
3321 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3322 error = spa_load_verify(spa);
3323 if (error != 0) {
3324 spa_load_failed(spa, "spa_load_verify failed "
3325 "[error=%d]", error);
3326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3327 error));
3331 return (0);
3334 static void
3335 spa_ld_claim_log_blocks(spa_t *spa)
3337 dmu_tx_t *tx;
3338 dsl_pool_t *dp = spa_get_dsl(spa);
3341 * Claim log blocks that haven't been committed yet.
3342 * This must all happen in a single txg.
3343 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3344 * invoked from zil_claim_log_block()'s i/o done callback.
3345 * Price of rollback is that we abandon the log.
3347 spa->spa_claiming = B_TRUE;
3349 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3350 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3351 zil_claim, tx, DS_FIND_CHILDREN);
3352 dmu_tx_commit(tx);
3354 spa->spa_claiming = B_FALSE;
3356 spa_set_log_state(spa, SPA_LOG_GOOD);
3359 static void
3360 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3361 boolean_t update_config_cache)
3363 vdev_t *rvd = spa->spa_root_vdev;
3364 int need_update = B_FALSE;
3367 * If the config cache is stale, or we have uninitialized
3368 * metaslabs (see spa_vdev_add()), then update the config.
3370 * If this is a verbatim import, trust the current
3371 * in-core spa_config and update the disk labels.
3373 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3374 spa->spa_load_state == SPA_LOAD_IMPORT ||
3375 spa->spa_load_state == SPA_LOAD_RECOVER ||
3376 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3377 need_update = B_TRUE;
3379 for (int c = 0; c < rvd->vdev_children; c++)
3380 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3381 need_update = B_TRUE;
3384 * Update the config cache asychronously in case we're the
3385 * root pool, in which case the config cache isn't writable yet.
3387 if (need_update)
3388 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3391 static void
3392 spa_ld_prepare_for_reload(spa_t *spa)
3394 int mode = spa->spa_mode;
3395 int async_suspended = spa->spa_async_suspended;
3397 spa_unload(spa);
3398 spa_deactivate(spa);
3399 spa_activate(spa, mode);
3402 * We save the value of spa_async_suspended as it gets reset to 0 by
3403 * spa_unload(). We want to restore it back to the original value before
3404 * returning as we might be calling spa_async_resume() later.
3406 spa->spa_async_suspended = async_suspended;
3409 static int
3410 spa_ld_read_checkpoint_txg(spa_t *spa)
3412 uberblock_t checkpoint;
3413 int error = 0;
3415 ASSERT0(spa->spa_checkpoint_txg);
3416 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3418 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3419 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3420 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3422 if (error == ENOENT)
3423 return (0);
3425 if (error != 0)
3426 return (error);
3428 ASSERT3U(checkpoint.ub_txg, !=, 0);
3429 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3430 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3431 spa->spa_checkpoint_txg = checkpoint.ub_txg;
3432 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3434 return (0);
3437 static int
3438 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3440 int error = 0;
3442 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3443 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3446 * Never trust the config that is provided unless we are assembling
3447 * a pool following a split.
3448 * This means don't trust blkptrs and the vdev tree in general. This
3449 * also effectively puts the spa in read-only mode since
3450 * spa_writeable() checks for spa_trust_config to be true.
3451 * We will later load a trusted config from the MOS.
3453 if (type != SPA_IMPORT_ASSEMBLE)
3454 spa->spa_trust_config = B_FALSE;
3457 * Parse the config provided to create a vdev tree.
3459 error = spa_ld_parse_config(spa, type);
3460 if (error != 0)
3461 return (error);
3464 * Now that we have the vdev tree, try to open each vdev. This involves
3465 * opening the underlying physical device, retrieving its geometry and
3466 * probing the vdev with a dummy I/O. The state of each vdev will be set
3467 * based on the success of those operations. After this we'll be ready
3468 * to read from the vdevs.
3470 error = spa_ld_open_vdevs(spa);
3471 if (error != 0)
3472 return (error);
3475 * Read the label of each vdev and make sure that the GUIDs stored
3476 * there match the GUIDs in the config provided.
3477 * If we're assembling a new pool that's been split off from an
3478 * existing pool, the labels haven't yet been updated so we skip
3479 * validation for now.
3481 if (type != SPA_IMPORT_ASSEMBLE) {
3482 error = spa_ld_validate_vdevs(spa);
3483 if (error != 0)
3484 return (error);
3488 * Read all vdev labels to find the best uberblock (i.e. latest,
3489 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3490 * get the list of features required to read blkptrs in the MOS from
3491 * the vdev label with the best uberblock and verify that our version
3492 * of zfs supports them all.
3494 error = spa_ld_select_uberblock(spa, type);
3495 if (error != 0)
3496 return (error);
3499 * Pass that uberblock to the dsl_pool layer which will open the root
3500 * blkptr. This blkptr points to the latest version of the MOS and will
3501 * allow us to read its contents.
3503 error = spa_ld_open_rootbp(spa);
3504 if (error != 0)
3505 return (error);
3507 return (0);
3510 static int
3511 spa_ld_checkpoint_rewind(spa_t *spa)
3513 uberblock_t checkpoint;
3514 int error = 0;
3516 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3517 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3519 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3520 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3521 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3523 if (error != 0) {
3524 spa_load_failed(spa, "unable to retrieve checkpointed "
3525 "uberblock from the MOS config [error=%d]", error);
3527 if (error == ENOENT)
3528 error = ZFS_ERR_NO_CHECKPOINT;
3530 return (error);
3533 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3534 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3537 * We need to update the txg and timestamp of the checkpointed
3538 * uberblock to be higher than the latest one. This ensures that
3539 * the checkpointed uberblock is selected if we were to close and
3540 * reopen the pool right after we've written it in the vdev labels.
3541 * (also see block comment in vdev_uberblock_compare)
3543 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3544 checkpoint.ub_timestamp = gethrestime_sec();
3547 * Set current uberblock to be the checkpointed uberblock.
3549 spa->spa_uberblock = checkpoint;
3552 * If we are doing a normal rewind, then the pool is open for
3553 * writing and we sync the "updated" checkpointed uberblock to
3554 * disk. Once this is done, we've basically rewound the whole
3555 * pool and there is no way back.
3557 * There are cases when we don't want to attempt and sync the
3558 * checkpointed uberblock to disk because we are opening a
3559 * pool as read-only. Specifically, verifying the checkpointed
3560 * state with zdb, and importing the checkpointed state to get
3561 * a "preview" of its content.
3563 if (spa_writeable(spa)) {
3564 vdev_t *rvd = spa->spa_root_vdev;
3566 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3567 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3568 int svdcount = 0;
3569 int children = rvd->vdev_children;
3570 int c0 = spa_get_random(children);
3572 for (int c = 0; c < children; c++) {
3573 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3575 /* Stop when revisiting the first vdev */
3576 if (c > 0 && svd[0] == vd)
3577 break;
3579 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3580 !vdev_is_concrete(vd))
3581 continue;
3583 svd[svdcount++] = vd;
3584 if (svdcount == SPA_SYNC_MIN_VDEVS)
3585 break;
3587 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3588 if (error == 0)
3589 spa->spa_last_synced_guid = rvd->vdev_guid;
3590 spa_config_exit(spa, SCL_ALL, FTAG);
3592 if (error != 0) {
3593 spa_load_failed(spa, "failed to write checkpointed "
3594 "uberblock to the vdev labels [error=%d]", error);
3595 return (error);
3599 return (0);
3602 static int
3603 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3604 boolean_t *update_config_cache)
3606 int error;
3609 * Parse the config for pool, open and validate vdevs,
3610 * select an uberblock, and use that uberblock to open
3611 * the MOS.
3613 error = spa_ld_mos_init(spa, type);
3614 if (error != 0)
3615 return (error);
3618 * Retrieve the trusted config stored in the MOS and use it to create
3619 * a new, exact version of the vdev tree, then reopen all vdevs.
3621 error = spa_ld_trusted_config(spa, type, B_FALSE);
3622 if (error == EAGAIN) {
3623 if (update_config_cache != NULL)
3624 *update_config_cache = B_TRUE;
3627 * Redo the loading process with the trusted config if it is
3628 * too different from the untrusted config.
3630 spa_ld_prepare_for_reload(spa);
3631 spa_load_note(spa, "RELOADING");
3632 error = spa_ld_mos_init(spa, type);
3633 if (error != 0)
3634 return (error);
3636 error = spa_ld_trusted_config(spa, type, B_TRUE);
3637 if (error != 0)
3638 return (error);
3640 } else if (error != 0) {
3641 return (error);
3644 return (0);
3648 * Load an existing storage pool, using the config provided. This config
3649 * describes which vdevs are part of the pool and is later validated against
3650 * partial configs present in each vdev's label and an entire copy of the
3651 * config stored in the MOS.
3653 static int
3654 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3656 int error = 0;
3657 boolean_t missing_feat_write = B_FALSE;
3658 boolean_t checkpoint_rewind =
3659 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3660 boolean_t update_config_cache = B_FALSE;
3662 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3663 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3665 spa_load_note(spa, "LOADING");
3667 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3668 if (error != 0)
3669 return (error);
3672 * If we are rewinding to the checkpoint then we need to repeat
3673 * everything we've done so far in this function but this time
3674 * selecting the checkpointed uberblock and using that to open
3675 * the MOS.
3677 if (checkpoint_rewind) {
3679 * If we are rewinding to the checkpoint update config cache
3680 * anyway.
3682 update_config_cache = B_TRUE;
3685 * Extract the checkpointed uberblock from the current MOS
3686 * and use this as the pool's uberblock from now on. If the
3687 * pool is imported as writeable we also write the checkpoint
3688 * uberblock to the labels, making the rewind permanent.
3690 error = spa_ld_checkpoint_rewind(spa);
3691 if (error != 0)
3692 return (error);
3695 * Redo the loading process process again with the
3696 * checkpointed uberblock.
3698 spa_ld_prepare_for_reload(spa);
3699 spa_load_note(spa, "LOADING checkpointed uberblock");
3700 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3701 if (error != 0)
3702 return (error);
3706 * Retrieve the checkpoint txg if the pool has a checkpoint.
3708 error = spa_ld_read_checkpoint_txg(spa);
3709 if (error != 0)
3710 return (error);
3713 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3714 * from the pool and their contents were re-mapped to other vdevs. Note
3715 * that everything that we read before this step must have been
3716 * rewritten on concrete vdevs after the last device removal was
3717 * initiated. Otherwise we could be reading from indirect vdevs before
3718 * we have loaded their mappings.
3720 error = spa_ld_open_indirect_vdev_metadata(spa);
3721 if (error != 0)
3722 return (error);
3725 * Retrieve the full list of active features from the MOS and check if
3726 * they are all supported.
3728 error = spa_ld_check_features(spa, &missing_feat_write);
3729 if (error != 0)
3730 return (error);
3733 * Load several special directories from the MOS needed by the dsl_pool
3734 * layer.
3736 error = spa_ld_load_special_directories(spa);
3737 if (error != 0)
3738 return (error);
3741 * Retrieve pool properties from the MOS.
3743 error = spa_ld_get_props(spa);
3744 if (error != 0)
3745 return (error);
3748 * Retrieve the list of auxiliary devices - cache devices and spares -
3749 * and open them.
3751 error = spa_ld_open_aux_vdevs(spa, type);
3752 if (error != 0)
3753 return (error);
3756 * Load the metadata for all vdevs. Also check if unopenable devices
3757 * should be autoreplaced.
3759 error = spa_ld_load_vdev_metadata(spa);
3760 if (error != 0)
3761 return (error);
3763 error = spa_ld_load_dedup_tables(spa);
3764 if (error != 0)
3765 return (error);
3768 * Verify the logs now to make sure we don't have any unexpected errors
3769 * when we claim log blocks later.
3771 error = spa_ld_verify_logs(spa, type, ereport);
3772 if (error != 0)
3773 return (error);
3775 if (missing_feat_write) {
3776 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3779 * At this point, we know that we can open the pool in
3780 * read-only mode but not read-write mode. We now have enough
3781 * information and can return to userland.
3783 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3784 ENOTSUP));
3788 * Traverse the last txgs to make sure the pool was left off in a safe
3789 * state. When performing an extreme rewind, we verify the whole pool,
3790 * which can take a very long time.
3792 error = spa_ld_verify_pool_data(spa);
3793 if (error != 0)
3794 return (error);
3797 * Calculate the deflated space for the pool. This must be done before
3798 * we write anything to the pool because we'd need to update the space
3799 * accounting using the deflated sizes.
3801 spa_update_dspace(spa);
3804 * We have now retrieved all the information we needed to open the
3805 * pool. If we are importing the pool in read-write mode, a few
3806 * additional steps must be performed to finish the import.
3808 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3809 spa->spa_load_max_txg == UINT64_MAX)) {
3810 uint64_t config_cache_txg = spa->spa_config_txg;
3812 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3815 * In case of a checkpoint rewind, log the original txg
3816 * of the checkpointed uberblock.
3818 if (checkpoint_rewind) {
3819 spa_history_log_internal(spa, "checkpoint rewind",
3820 NULL, "rewound state to txg=%llu",
3821 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3825 * Traverse the ZIL and claim all blocks.
3827 spa_ld_claim_log_blocks(spa);
3830 * Kick-off the syncing thread.
3832 spa->spa_sync_on = B_TRUE;
3833 txg_sync_start(spa->spa_dsl_pool);
3836 * Wait for all claims to sync. We sync up to the highest
3837 * claimed log block birth time so that claimed log blocks
3838 * don't appear to be from the future. spa_claim_max_txg
3839 * will have been set for us by ZIL traversal operations
3840 * performed above.
3842 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3845 * Check if we need to request an update of the config. On the
3846 * next sync, we would update the config stored in vdev labels
3847 * and the cachefile (by default /etc/zfs/zpool.cache).
3849 spa_ld_check_for_config_update(spa, config_cache_txg,
3850 update_config_cache);
3853 * Check all DTLs to see if anything needs resilvering.
3855 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3856 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3857 spa_async_request(spa, SPA_ASYNC_RESILVER);
3860 * Log the fact that we booted up (so that we can detect if
3861 * we rebooted in the middle of an operation).
3863 spa_history_log_version(spa, "open");
3866 * Delete any inconsistent datasets.
3868 (void) dmu_objset_find(spa_name(spa),
3869 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3872 * Clean up any stale temporary dataset userrefs.
3874 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3876 spa_restart_removal(spa);
3878 spa_spawn_aux_threads(spa);
3880 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3881 vdev_initialize_restart(spa->spa_root_vdev);
3882 spa_config_exit(spa, SCL_CONFIG, FTAG);
3885 spa_load_note(spa, "LOADED");
3887 return (0);
3890 static int
3891 spa_load_retry(spa_t *spa, spa_load_state_t state)
3893 int mode = spa->spa_mode;
3895 spa_unload(spa);
3896 spa_deactivate(spa);
3898 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3900 spa_activate(spa, mode);
3901 spa_async_suspend(spa);
3903 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3904 (u_longlong_t)spa->spa_load_max_txg);
3906 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3910 * If spa_load() fails this function will try loading prior txg's. If
3911 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3912 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3913 * function will not rewind the pool and will return the same error as
3914 * spa_load().
3916 static int
3917 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3918 int rewind_flags)
3920 nvlist_t *loadinfo = NULL;
3921 nvlist_t *config = NULL;
3922 int load_error, rewind_error;
3923 uint64_t safe_rewind_txg;
3924 uint64_t min_txg;
3926 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3927 spa->spa_load_max_txg = spa->spa_load_txg;
3928 spa_set_log_state(spa, SPA_LOG_CLEAR);
3929 } else {
3930 spa->spa_load_max_txg = max_request;
3931 if (max_request != UINT64_MAX)
3932 spa->spa_extreme_rewind = B_TRUE;
3935 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3936 if (load_error == 0)
3937 return (0);
3938 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
3940 * When attempting checkpoint-rewind on a pool with no
3941 * checkpoint, we should not attempt to load uberblocks
3942 * from previous txgs when spa_load fails.
3944 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3945 return (load_error);
3948 if (spa->spa_root_vdev != NULL)
3949 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3951 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3952 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3954 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3955 nvlist_free(config);
3956 return (load_error);
3959 if (state == SPA_LOAD_RECOVER) {
3960 /* Price of rolling back is discarding txgs, including log */
3961 spa_set_log_state(spa, SPA_LOG_CLEAR);
3962 } else {
3964 * If we aren't rolling back save the load info from our first
3965 * import attempt so that we can restore it after attempting
3966 * to rewind.
3968 loadinfo = spa->spa_load_info;
3969 spa->spa_load_info = fnvlist_alloc();
3972 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3973 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3974 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3975 TXG_INITIAL : safe_rewind_txg;
3978 * Continue as long as we're finding errors, we're still within
3979 * the acceptable rewind range, and we're still finding uberblocks
3981 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3982 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3983 if (spa->spa_load_max_txg < safe_rewind_txg)
3984 spa->spa_extreme_rewind = B_TRUE;
3985 rewind_error = spa_load_retry(spa, state);
3988 spa->spa_extreme_rewind = B_FALSE;
3989 spa->spa_load_max_txg = UINT64_MAX;
3991 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3992 spa_config_set(spa, config);
3993 else
3994 nvlist_free(config);
3996 if (state == SPA_LOAD_RECOVER) {
3997 ASSERT3P(loadinfo, ==, NULL);
3998 return (rewind_error);
3999 } else {
4000 /* Store the rewind info as part of the initial load info */
4001 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4002 spa->spa_load_info);
4004 /* Restore the initial load info */
4005 fnvlist_free(spa->spa_load_info);
4006 spa->spa_load_info = loadinfo;
4008 return (load_error);
4013 * Pool Open/Import
4015 * The import case is identical to an open except that the configuration is sent
4016 * down from userland, instead of grabbed from the configuration cache. For the
4017 * case of an open, the pool configuration will exist in the
4018 * POOL_STATE_UNINITIALIZED state.
4020 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4021 * the same time open the pool, without having to keep around the spa_t in some
4022 * ambiguous state.
4024 static int
4025 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4026 nvlist_t **config)
4028 spa_t *spa;
4029 spa_load_state_t state = SPA_LOAD_OPEN;
4030 int error;
4031 int locked = B_FALSE;
4033 *spapp = NULL;
4036 * As disgusting as this is, we need to support recursive calls to this
4037 * function because dsl_dir_open() is called during spa_load(), and ends
4038 * up calling spa_open() again. The real fix is to figure out how to
4039 * avoid dsl_dir_open() calling this in the first place.
4041 if (mutex_owner(&spa_namespace_lock) != curthread) {
4042 mutex_enter(&spa_namespace_lock);
4043 locked = B_TRUE;
4046 if ((spa = spa_lookup(pool)) == NULL) {
4047 if (locked)
4048 mutex_exit(&spa_namespace_lock);
4049 return (SET_ERROR(ENOENT));
4052 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4053 zpool_load_policy_t policy;
4055 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4056 &policy);
4057 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4058 state = SPA_LOAD_RECOVER;
4060 spa_activate(spa, spa_mode_global);
4062 if (state != SPA_LOAD_RECOVER)
4063 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4064 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4066 zfs_dbgmsg("spa_open_common: opening %s", pool);
4067 error = spa_load_best(spa, state, policy.zlp_txg,
4068 policy.zlp_rewind);
4070 if (error == EBADF) {
4072 * If vdev_validate() returns failure (indicated by
4073 * EBADF), it indicates that one of the vdevs indicates
4074 * that the pool has been exported or destroyed. If
4075 * this is the case, the config cache is out of sync and
4076 * we should remove the pool from the namespace.
4078 spa_unload(spa);
4079 spa_deactivate(spa);
4080 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4081 spa_remove(spa);
4082 if (locked)
4083 mutex_exit(&spa_namespace_lock);
4084 return (SET_ERROR(ENOENT));
4087 if (error) {
4089 * We can't open the pool, but we still have useful
4090 * information: the state of each vdev after the
4091 * attempted vdev_open(). Return this to the user.
4093 if (config != NULL && spa->spa_config) {
4094 VERIFY(nvlist_dup(spa->spa_config, config,
4095 KM_SLEEP) == 0);
4096 VERIFY(nvlist_add_nvlist(*config,
4097 ZPOOL_CONFIG_LOAD_INFO,
4098 spa->spa_load_info) == 0);
4100 spa_unload(spa);
4101 spa_deactivate(spa);
4102 spa->spa_last_open_failed = error;
4103 if (locked)
4104 mutex_exit(&spa_namespace_lock);
4105 *spapp = NULL;
4106 return (error);
4110 spa_open_ref(spa, tag);
4112 if (config != NULL)
4113 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4116 * If we've recovered the pool, pass back any information we
4117 * gathered while doing the load.
4119 if (state == SPA_LOAD_RECOVER) {
4120 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4121 spa->spa_load_info) == 0);
4124 if (locked) {
4125 spa->spa_last_open_failed = 0;
4126 spa->spa_last_ubsync_txg = 0;
4127 spa->spa_load_txg = 0;
4128 mutex_exit(&spa_namespace_lock);
4131 *spapp = spa;
4133 return (0);
4137 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4138 nvlist_t **config)
4140 return (spa_open_common(name, spapp, tag, policy, config));
4144 spa_open(const char *name, spa_t **spapp, void *tag)
4146 return (spa_open_common(name, spapp, tag, NULL, NULL));
4150 * Lookup the given spa_t, incrementing the inject count in the process,
4151 * preventing it from being exported or destroyed.
4153 spa_t *
4154 spa_inject_addref(char *name)
4156 spa_t *spa;
4158 mutex_enter(&spa_namespace_lock);
4159 if ((spa = spa_lookup(name)) == NULL) {
4160 mutex_exit(&spa_namespace_lock);
4161 return (NULL);
4163 spa->spa_inject_ref++;
4164 mutex_exit(&spa_namespace_lock);
4166 return (spa);
4169 void
4170 spa_inject_delref(spa_t *spa)
4172 mutex_enter(&spa_namespace_lock);
4173 spa->spa_inject_ref--;
4174 mutex_exit(&spa_namespace_lock);
4178 * Add spares device information to the nvlist.
4180 static void
4181 spa_add_spares(spa_t *spa, nvlist_t *config)
4183 nvlist_t **spares;
4184 uint_t i, nspares;
4185 nvlist_t *nvroot;
4186 uint64_t guid;
4187 vdev_stat_t *vs;
4188 uint_t vsc;
4189 uint64_t pool;
4191 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4193 if (spa->spa_spares.sav_count == 0)
4194 return;
4196 VERIFY(nvlist_lookup_nvlist(config,
4197 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4198 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4199 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4200 if (nspares != 0) {
4201 VERIFY(nvlist_add_nvlist_array(nvroot,
4202 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4203 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4207 * Go through and find any spares which have since been
4208 * repurposed as an active spare. If this is the case, update
4209 * their status appropriately.
4211 for (i = 0; i < nspares; i++) {
4212 VERIFY(nvlist_lookup_uint64(spares[i],
4213 ZPOOL_CONFIG_GUID, &guid) == 0);
4214 if (spa_spare_exists(guid, &pool, NULL) &&
4215 pool != 0ULL) {
4216 VERIFY(nvlist_lookup_uint64_array(
4217 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4218 (uint64_t **)&vs, &vsc) == 0);
4219 vs->vs_state = VDEV_STATE_CANT_OPEN;
4220 vs->vs_aux = VDEV_AUX_SPARED;
4227 * Add l2cache device information to the nvlist, including vdev stats.
4229 static void
4230 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4232 nvlist_t **l2cache;
4233 uint_t i, j, nl2cache;
4234 nvlist_t *nvroot;
4235 uint64_t guid;
4236 vdev_t *vd;
4237 vdev_stat_t *vs;
4238 uint_t vsc;
4240 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4242 if (spa->spa_l2cache.sav_count == 0)
4243 return;
4245 VERIFY(nvlist_lookup_nvlist(config,
4246 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4247 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4248 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4249 if (nl2cache != 0) {
4250 VERIFY(nvlist_add_nvlist_array(nvroot,
4251 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4252 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4253 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4256 * Update level 2 cache device stats.
4259 for (i = 0; i < nl2cache; i++) {
4260 VERIFY(nvlist_lookup_uint64(l2cache[i],
4261 ZPOOL_CONFIG_GUID, &guid) == 0);
4263 vd = NULL;
4264 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4265 if (guid ==
4266 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4267 vd = spa->spa_l2cache.sav_vdevs[j];
4268 break;
4271 ASSERT(vd != NULL);
4273 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4274 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4275 == 0);
4276 vdev_get_stats(vd, vs);
4281 static void
4282 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4284 nvlist_t *features;
4285 zap_cursor_t zc;
4286 zap_attribute_t za;
4288 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4289 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4291 if (spa->spa_feat_for_read_obj != 0) {
4292 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4293 spa->spa_feat_for_read_obj);
4294 zap_cursor_retrieve(&zc, &za) == 0;
4295 zap_cursor_advance(&zc)) {
4296 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4297 za.za_num_integers == 1);
4298 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4299 za.za_first_integer));
4301 zap_cursor_fini(&zc);
4304 if (spa->spa_feat_for_write_obj != 0) {
4305 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4306 spa->spa_feat_for_write_obj);
4307 zap_cursor_retrieve(&zc, &za) == 0;
4308 zap_cursor_advance(&zc)) {
4309 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4310 za.za_num_integers == 1);
4311 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4312 za.za_first_integer));
4314 zap_cursor_fini(&zc);
4317 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4318 features) == 0);
4319 nvlist_free(features);
4323 spa_get_stats(const char *name, nvlist_t **config,
4324 char *altroot, size_t buflen)
4326 int error;
4327 spa_t *spa;
4329 *config = NULL;
4330 error = spa_open_common(name, &spa, FTAG, NULL, config);
4332 if (spa != NULL) {
4334 * This still leaves a window of inconsistency where the spares
4335 * or l2cache devices could change and the config would be
4336 * self-inconsistent.
4338 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4340 if (*config != NULL) {
4341 uint64_t loadtimes[2];
4343 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4344 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4345 VERIFY(nvlist_add_uint64_array(*config,
4346 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4348 VERIFY(nvlist_add_uint64(*config,
4349 ZPOOL_CONFIG_ERRCOUNT,
4350 spa_get_errlog_size(spa)) == 0);
4352 if (spa_suspended(spa))
4353 VERIFY(nvlist_add_uint64(*config,
4354 ZPOOL_CONFIG_SUSPENDED,
4355 spa->spa_failmode) == 0);
4357 spa_add_spares(spa, *config);
4358 spa_add_l2cache(spa, *config);
4359 spa_add_feature_stats(spa, *config);
4364 * We want to get the alternate root even for faulted pools, so we cheat
4365 * and call spa_lookup() directly.
4367 if (altroot) {
4368 if (spa == NULL) {
4369 mutex_enter(&spa_namespace_lock);
4370 spa = spa_lookup(name);
4371 if (spa)
4372 spa_altroot(spa, altroot, buflen);
4373 else
4374 altroot[0] = '\0';
4375 spa = NULL;
4376 mutex_exit(&spa_namespace_lock);
4377 } else {
4378 spa_altroot(spa, altroot, buflen);
4382 if (spa != NULL) {
4383 spa_config_exit(spa, SCL_CONFIG, FTAG);
4384 spa_close(spa, FTAG);
4387 return (error);
4391 * Validate that the auxiliary device array is well formed. We must have an
4392 * array of nvlists, each which describes a valid leaf vdev. If this is an
4393 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4394 * specified, as long as they are well-formed.
4396 static int
4397 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4398 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4399 vdev_labeltype_t label)
4401 nvlist_t **dev;
4402 uint_t i, ndev;
4403 vdev_t *vd;
4404 int error;
4406 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4409 * It's acceptable to have no devs specified.
4411 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4412 return (0);
4414 if (ndev == 0)
4415 return (SET_ERROR(EINVAL));
4418 * Make sure the pool is formatted with a version that supports this
4419 * device type.
4421 if (spa_version(spa) < version)
4422 return (SET_ERROR(ENOTSUP));
4425 * Set the pending device list so we correctly handle device in-use
4426 * checking.
4428 sav->sav_pending = dev;
4429 sav->sav_npending = ndev;
4431 for (i = 0; i < ndev; i++) {
4432 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4433 mode)) != 0)
4434 goto out;
4436 if (!vd->vdev_ops->vdev_op_leaf) {
4437 vdev_free(vd);
4438 error = SET_ERROR(EINVAL);
4439 goto out;
4443 * The L2ARC currently only supports disk devices in
4444 * kernel context. For user-level testing, we allow it.
4446 #ifdef _KERNEL
4447 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4448 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4449 error = SET_ERROR(ENOTBLK);
4450 vdev_free(vd);
4451 goto out;
4453 #endif
4454 vd->vdev_top = vd;
4456 if ((error = vdev_open(vd)) == 0 &&
4457 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4458 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4459 vd->vdev_guid) == 0);
4462 vdev_free(vd);
4464 if (error &&
4465 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4466 goto out;
4467 else
4468 error = 0;
4471 out:
4472 sav->sav_pending = NULL;
4473 sav->sav_npending = 0;
4474 return (error);
4477 static int
4478 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4480 int error;
4482 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4484 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4485 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4486 VDEV_LABEL_SPARE)) != 0) {
4487 return (error);
4490 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4491 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4492 VDEV_LABEL_L2CACHE));
4495 static void
4496 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4497 const char *config)
4499 int i;
4501 if (sav->sav_config != NULL) {
4502 nvlist_t **olddevs;
4503 uint_t oldndevs;
4504 nvlist_t **newdevs;
4507 * Generate new dev list by concatentating with the
4508 * current dev list.
4510 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4511 &olddevs, &oldndevs) == 0);
4513 newdevs = kmem_alloc(sizeof (void *) *
4514 (ndevs + oldndevs), KM_SLEEP);
4515 for (i = 0; i < oldndevs; i++)
4516 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4517 KM_SLEEP) == 0);
4518 for (i = 0; i < ndevs; i++)
4519 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4520 KM_SLEEP) == 0);
4522 VERIFY(nvlist_remove(sav->sav_config, config,
4523 DATA_TYPE_NVLIST_ARRAY) == 0);
4525 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4526 config, newdevs, ndevs + oldndevs) == 0);
4527 for (i = 0; i < oldndevs + ndevs; i++)
4528 nvlist_free(newdevs[i]);
4529 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4530 } else {
4532 * Generate a new dev list.
4534 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4535 KM_SLEEP) == 0);
4536 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4537 devs, ndevs) == 0);
4542 * Stop and drop level 2 ARC devices
4544 void
4545 spa_l2cache_drop(spa_t *spa)
4547 vdev_t *vd;
4548 int i;
4549 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4551 for (i = 0; i < sav->sav_count; i++) {
4552 uint64_t pool;
4554 vd = sav->sav_vdevs[i];
4555 ASSERT(vd != NULL);
4557 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4558 pool != 0ULL && l2arc_vdev_present(vd))
4559 l2arc_remove_vdev(vd);
4564 * Pool Creation
4567 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4568 nvlist_t *zplprops)
4570 spa_t *spa;
4571 char *altroot = NULL;
4572 vdev_t *rvd;
4573 dsl_pool_t *dp;
4574 dmu_tx_t *tx;
4575 int error = 0;
4576 uint64_t txg = TXG_INITIAL;
4577 nvlist_t **spares, **l2cache;
4578 uint_t nspares, nl2cache;
4579 uint64_t version, obj;
4580 boolean_t has_features;
4583 * If this pool already exists, return failure.
4585 mutex_enter(&spa_namespace_lock);
4586 if (spa_lookup(pool) != NULL) {
4587 mutex_exit(&spa_namespace_lock);
4588 return (SET_ERROR(EEXIST));
4592 * Allocate a new spa_t structure.
4594 (void) nvlist_lookup_string(props,
4595 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4596 spa = spa_add(pool, NULL, altroot);
4597 spa_activate(spa, spa_mode_global);
4599 if (props && (error = spa_prop_validate(spa, props))) {
4600 spa_deactivate(spa);
4601 spa_remove(spa);
4602 mutex_exit(&spa_namespace_lock);
4603 return (error);
4606 has_features = B_FALSE;
4607 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4608 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4609 if (zpool_prop_feature(nvpair_name(elem)))
4610 has_features = B_TRUE;
4613 if (has_features || nvlist_lookup_uint64(props,
4614 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4615 version = SPA_VERSION;
4617 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4619 spa->spa_first_txg = txg;
4620 spa->spa_uberblock.ub_txg = txg - 1;
4621 spa->spa_uberblock.ub_version = version;
4622 spa->spa_ubsync = spa->spa_uberblock;
4623 spa->spa_load_state = SPA_LOAD_CREATE;
4624 spa->spa_removing_phys.sr_state = DSS_NONE;
4625 spa->spa_removing_phys.sr_removing_vdev = -1;
4626 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4629 * Create "The Godfather" zio to hold all async IOs
4631 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4632 KM_SLEEP);
4633 for (int i = 0; i < max_ncpus; i++) {
4634 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4635 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4636 ZIO_FLAG_GODFATHER);
4640 * Create the root vdev.
4642 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4644 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4646 ASSERT(error != 0 || rvd != NULL);
4647 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4649 if (error == 0 && !zfs_allocatable_devs(nvroot))
4650 error = SET_ERROR(EINVAL);
4652 if (error == 0 &&
4653 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4654 (error = spa_validate_aux(spa, nvroot, txg,
4655 VDEV_ALLOC_ADD)) == 0) {
4656 for (int c = 0; c < rvd->vdev_children; c++) {
4657 vdev_metaslab_set_size(rvd->vdev_child[c]);
4658 vdev_expand(rvd->vdev_child[c], txg);
4662 spa_config_exit(spa, SCL_ALL, FTAG);
4664 if (error != 0) {
4665 spa_unload(spa);
4666 spa_deactivate(spa);
4667 spa_remove(spa);
4668 mutex_exit(&spa_namespace_lock);
4669 return (error);
4673 * Get the list of spares, if specified.
4675 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4676 &spares, &nspares) == 0) {
4677 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4678 KM_SLEEP) == 0);
4679 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4680 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4682 spa_load_spares(spa);
4683 spa_config_exit(spa, SCL_ALL, FTAG);
4684 spa->spa_spares.sav_sync = B_TRUE;
4688 * Get the list of level 2 cache devices, if specified.
4690 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4691 &l2cache, &nl2cache) == 0) {
4692 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4693 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4694 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4695 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4696 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4697 spa_load_l2cache(spa);
4698 spa_config_exit(spa, SCL_ALL, FTAG);
4699 spa->spa_l2cache.sav_sync = B_TRUE;
4702 spa->spa_is_initializing = B_TRUE;
4703 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4704 spa->spa_meta_objset = dp->dp_meta_objset;
4705 spa->spa_is_initializing = B_FALSE;
4708 * Create DDTs (dedup tables).
4710 ddt_create(spa);
4712 spa_update_dspace(spa);
4714 tx = dmu_tx_create_assigned(dp, txg);
4717 * Create the pool config object.
4719 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4720 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4721 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4723 if (zap_add(spa->spa_meta_objset,
4724 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4725 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4726 cmn_err(CE_PANIC, "failed to add pool config");
4729 if (spa_version(spa) >= SPA_VERSION_FEATURES)
4730 spa_feature_create_zap_objects(spa, tx);
4732 if (zap_add(spa->spa_meta_objset,
4733 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4734 sizeof (uint64_t), 1, &version, tx) != 0) {
4735 cmn_err(CE_PANIC, "failed to add pool version");
4738 /* Newly created pools with the right version are always deflated. */
4739 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4740 spa->spa_deflate = TRUE;
4741 if (zap_add(spa->spa_meta_objset,
4742 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4743 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4744 cmn_err(CE_PANIC, "failed to add deflate");
4749 * Create the deferred-free bpobj. Turn off compression
4750 * because sync-to-convergence takes longer if the blocksize
4751 * keeps changing.
4753 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4754 dmu_object_set_compress(spa->spa_meta_objset, obj,
4755 ZIO_COMPRESS_OFF, tx);
4756 if (zap_add(spa->spa_meta_objset,
4757 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4758 sizeof (uint64_t), 1, &obj, tx) != 0) {
4759 cmn_err(CE_PANIC, "failed to add bpobj");
4761 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4762 spa->spa_meta_objset, obj));
4765 * Create the pool's history object.
4767 if (version >= SPA_VERSION_ZPOOL_HISTORY)
4768 spa_history_create_obj(spa, tx);
4771 * Generate some random noise for salted checksums to operate on.
4773 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4774 sizeof (spa->spa_cksum_salt.zcs_bytes));
4777 * Set pool properties.
4779 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4780 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4781 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4782 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4784 if (props != NULL) {
4785 spa_configfile_set(spa, props, B_FALSE);
4786 spa_sync_props(props, tx);
4789 dmu_tx_commit(tx);
4791 spa->spa_sync_on = B_TRUE;
4792 txg_sync_start(spa->spa_dsl_pool);
4795 * We explicitly wait for the first transaction to complete so that our
4796 * bean counters are appropriately updated.
4798 txg_wait_synced(spa->spa_dsl_pool, txg);
4800 spa_spawn_aux_threads(spa);
4802 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4803 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4805 spa_history_log_version(spa, "create");
4808 * Don't count references from objsets that are already closed
4809 * and are making their way through the eviction process.
4811 spa_evicting_os_wait(spa);
4812 spa->spa_minref = refcount_count(&spa->spa_refcount);
4813 spa->spa_load_state = SPA_LOAD_NONE;
4815 mutex_exit(&spa_namespace_lock);
4817 return (0);
4820 #ifdef _KERNEL
4822 * Get the root pool information from the root disk, then import the root pool
4823 * during the system boot up time.
4825 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4827 static nvlist_t *
4828 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4830 nvlist_t *config;
4831 nvlist_t *nvtop, *nvroot;
4832 uint64_t pgid;
4834 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4835 return (NULL);
4838 * Add this top-level vdev to the child array.
4840 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4841 &nvtop) == 0);
4842 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4843 &pgid) == 0);
4844 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4847 * Put this pool's top-level vdevs into a root vdev.
4849 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4850 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4851 VDEV_TYPE_ROOT) == 0);
4852 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4853 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4854 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4855 &nvtop, 1) == 0);
4858 * Replace the existing vdev_tree with the new root vdev in
4859 * this pool's configuration (remove the old, add the new).
4861 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4862 nvlist_free(nvroot);
4863 return (config);
4867 * Walk the vdev tree and see if we can find a device with "better"
4868 * configuration. A configuration is "better" if the label on that
4869 * device has a more recent txg.
4871 static void
4872 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4874 for (int c = 0; c < vd->vdev_children; c++)
4875 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4877 if (vd->vdev_ops->vdev_op_leaf) {
4878 nvlist_t *label;
4879 uint64_t label_txg;
4881 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4882 &label) != 0)
4883 return;
4885 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4886 &label_txg) == 0);
4889 * Do we have a better boot device?
4891 if (label_txg > *txg) {
4892 *txg = label_txg;
4893 *avd = vd;
4895 nvlist_free(label);
4900 * Import a root pool.
4902 * For x86. devpath_list will consist of devid and/or physpath name of
4903 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4904 * The GRUB "findroot" command will return the vdev we should boot.
4906 * For Sparc, devpath_list consists the physpath name of the booting device
4907 * no matter the rootpool is a single device pool or a mirrored pool.
4908 * e.g.
4909 * "/pci@1f,0/ide@d/disk@0,0:a"
4912 spa_import_rootpool(char *devpath, char *devid)
4914 spa_t *spa;
4915 vdev_t *rvd, *bvd, *avd = NULL;
4916 nvlist_t *config, *nvtop;
4917 uint64_t guid, txg;
4918 char *pname;
4919 int error;
4922 * Read the label from the boot device and generate a configuration.
4924 config = spa_generate_rootconf(devpath, devid, &guid);
4925 #if defined(_OBP) && defined(_KERNEL)
4926 if (config == NULL) {
4927 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4928 /* iscsi boot */
4929 get_iscsi_bootpath_phy(devpath);
4930 config = spa_generate_rootconf(devpath, devid, &guid);
4933 #endif
4934 if (config == NULL) {
4935 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4936 devpath);
4937 return (SET_ERROR(EIO));
4940 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4941 &pname) == 0);
4942 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4944 mutex_enter(&spa_namespace_lock);
4945 if ((spa = spa_lookup(pname)) != NULL) {
4947 * Remove the existing root pool from the namespace so that we
4948 * can replace it with the correct config we just read in.
4950 spa_remove(spa);
4953 spa = spa_add(pname, config, NULL);
4954 spa->spa_is_root = B_TRUE;
4955 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4956 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4957 &spa->spa_ubsync.ub_version) != 0)
4958 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4961 * Build up a vdev tree based on the boot device's label config.
4963 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4964 &nvtop) == 0);
4965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4966 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4967 VDEV_ALLOC_ROOTPOOL);
4968 spa_config_exit(spa, SCL_ALL, FTAG);
4969 if (error) {
4970 mutex_exit(&spa_namespace_lock);
4971 nvlist_free(config);
4972 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4973 pname);
4974 return (error);
4978 * Get the boot vdev.
4980 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4981 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4982 (u_longlong_t)guid);
4983 error = SET_ERROR(ENOENT);
4984 goto out;
4988 * Determine if there is a better boot device.
4990 avd = bvd;
4991 spa_alt_rootvdev(rvd, &avd, &txg);
4992 if (avd != bvd) {
4993 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4994 "try booting from '%s'", avd->vdev_path);
4995 error = SET_ERROR(EINVAL);
4996 goto out;
5000 * If the boot device is part of a spare vdev then ensure that
5001 * we're booting off the active spare.
5003 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5004 !bvd->vdev_isspare) {
5005 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5006 "try booting from '%s'",
5007 bvd->vdev_parent->
5008 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5009 error = SET_ERROR(EINVAL);
5010 goto out;
5013 error = 0;
5014 out:
5015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5016 vdev_free(rvd);
5017 spa_config_exit(spa, SCL_ALL, FTAG);
5018 mutex_exit(&spa_namespace_lock);
5020 nvlist_free(config);
5021 return (error);
5024 #endif
5027 * Import a non-root pool into the system.
5030 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5032 spa_t *spa;
5033 char *altroot = NULL;
5034 spa_load_state_t state = SPA_LOAD_IMPORT;
5035 zpool_load_policy_t policy;
5036 uint64_t mode = spa_mode_global;
5037 uint64_t readonly = B_FALSE;
5038 int error;
5039 nvlist_t *nvroot;
5040 nvlist_t **spares, **l2cache;
5041 uint_t nspares, nl2cache;
5044 * If a pool with this name exists, return failure.
5046 mutex_enter(&spa_namespace_lock);
5047 if (spa_lookup(pool) != NULL) {
5048 mutex_exit(&spa_namespace_lock);
5049 return (SET_ERROR(EEXIST));
5053 * Create and initialize the spa structure.
5055 (void) nvlist_lookup_string(props,
5056 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5057 (void) nvlist_lookup_uint64(props,
5058 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5059 if (readonly)
5060 mode = FREAD;
5061 spa = spa_add(pool, config, altroot);
5062 spa->spa_import_flags = flags;
5065 * Verbatim import - Take a pool and insert it into the namespace
5066 * as if it had been loaded at boot.
5068 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5069 if (props != NULL)
5070 spa_configfile_set(spa, props, B_FALSE);
5072 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5073 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5074 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5075 mutex_exit(&spa_namespace_lock);
5076 return (0);
5079 spa_activate(spa, mode);
5082 * Don't start async tasks until we know everything is healthy.
5084 spa_async_suspend(spa);
5086 zpool_get_load_policy(config, &policy);
5087 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5088 state = SPA_LOAD_RECOVER;
5090 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5092 if (state != SPA_LOAD_RECOVER) {
5093 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5094 zfs_dbgmsg("spa_import: importing %s", pool);
5095 } else {
5096 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5097 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5099 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5102 * Propagate anything learned while loading the pool and pass it
5103 * back to caller (i.e. rewind info, missing devices, etc).
5105 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5106 spa->spa_load_info) == 0);
5108 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5110 * Toss any existing sparelist, as it doesn't have any validity
5111 * anymore, and conflicts with spa_has_spare().
5113 if (spa->spa_spares.sav_config) {
5114 nvlist_free(spa->spa_spares.sav_config);
5115 spa->spa_spares.sav_config = NULL;
5116 spa_load_spares(spa);
5118 if (spa->spa_l2cache.sav_config) {
5119 nvlist_free(spa->spa_l2cache.sav_config);
5120 spa->spa_l2cache.sav_config = NULL;
5121 spa_load_l2cache(spa);
5124 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5125 &nvroot) == 0);
5126 if (error == 0)
5127 error = spa_validate_aux(spa, nvroot, -1ULL,
5128 VDEV_ALLOC_SPARE);
5129 if (error == 0)
5130 error = spa_validate_aux(spa, nvroot, -1ULL,
5131 VDEV_ALLOC_L2CACHE);
5132 spa_config_exit(spa, SCL_ALL, FTAG);
5134 if (props != NULL)
5135 spa_configfile_set(spa, props, B_FALSE);
5137 if (error != 0 || (props && spa_writeable(spa) &&
5138 (error = spa_prop_set(spa, props)))) {
5139 spa_unload(spa);
5140 spa_deactivate(spa);
5141 spa_remove(spa);
5142 mutex_exit(&spa_namespace_lock);
5143 return (error);
5146 spa_async_resume(spa);
5149 * Override any spares and level 2 cache devices as specified by
5150 * the user, as these may have correct device names/devids, etc.
5152 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5153 &spares, &nspares) == 0) {
5154 if (spa->spa_spares.sav_config)
5155 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5156 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5157 else
5158 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5159 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5160 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5161 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5162 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5163 spa_load_spares(spa);
5164 spa_config_exit(spa, SCL_ALL, FTAG);
5165 spa->spa_spares.sav_sync = B_TRUE;
5167 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5168 &l2cache, &nl2cache) == 0) {
5169 if (spa->spa_l2cache.sav_config)
5170 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5171 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5172 else
5173 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5174 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5175 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5176 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5177 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5178 spa_load_l2cache(spa);
5179 spa_config_exit(spa, SCL_ALL, FTAG);
5180 spa->spa_l2cache.sav_sync = B_TRUE;
5184 * Check for any removed devices.
5186 if (spa->spa_autoreplace) {
5187 spa_aux_check_removed(&spa->spa_spares);
5188 spa_aux_check_removed(&spa->spa_l2cache);
5191 if (spa_writeable(spa)) {
5193 * Update the config cache to include the newly-imported pool.
5195 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5199 * It's possible that the pool was expanded while it was exported.
5200 * We kick off an async task to handle this for us.
5202 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5204 spa_history_log_version(spa, "import");
5206 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5208 mutex_exit(&spa_namespace_lock);
5210 return (0);
5213 nvlist_t *
5214 spa_tryimport(nvlist_t *tryconfig)
5216 nvlist_t *config = NULL;
5217 char *poolname, *cachefile;
5218 spa_t *spa;
5219 uint64_t state;
5220 int error;
5221 zpool_load_policy_t policy;
5223 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5224 return (NULL);
5226 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5227 return (NULL);
5230 * Create and initialize the spa structure.
5232 mutex_enter(&spa_namespace_lock);
5233 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5234 spa_activate(spa, FREAD);
5237 * Rewind pool if a max txg was provided.
5239 zpool_get_load_policy(spa->spa_config, &policy);
5240 if (policy.zlp_txg != UINT64_MAX) {
5241 spa->spa_load_max_txg = policy.zlp_txg;
5242 spa->spa_extreme_rewind = B_TRUE;
5243 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5244 poolname, (longlong_t)policy.zlp_txg);
5245 } else {
5246 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5249 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5250 == 0) {
5251 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5252 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5253 } else {
5254 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5257 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5260 * If 'tryconfig' was at least parsable, return the current config.
5262 if (spa->spa_root_vdev != NULL) {
5263 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5264 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5265 poolname) == 0);
5266 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5267 state) == 0);
5268 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5269 spa->spa_uberblock.ub_timestamp) == 0);
5270 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5271 spa->spa_load_info) == 0);
5274 * If the bootfs property exists on this pool then we
5275 * copy it out so that external consumers can tell which
5276 * pools are bootable.
5278 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5279 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5282 * We have to play games with the name since the
5283 * pool was opened as TRYIMPORT_NAME.
5285 if (dsl_dsobj_to_dsname(spa_name(spa),
5286 spa->spa_bootfs, tmpname) == 0) {
5287 char *cp;
5288 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5290 cp = strchr(tmpname, '/');
5291 if (cp == NULL) {
5292 (void) strlcpy(dsname, tmpname,
5293 MAXPATHLEN);
5294 } else {
5295 (void) snprintf(dsname, MAXPATHLEN,
5296 "%s/%s", poolname, ++cp);
5298 VERIFY(nvlist_add_string(config,
5299 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5300 kmem_free(dsname, MAXPATHLEN);
5302 kmem_free(tmpname, MAXPATHLEN);
5306 * Add the list of hot spares and level 2 cache devices.
5308 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5309 spa_add_spares(spa, config);
5310 spa_add_l2cache(spa, config);
5311 spa_config_exit(spa, SCL_CONFIG, FTAG);
5314 spa_unload(spa);
5315 spa_deactivate(spa);
5316 spa_remove(spa);
5317 mutex_exit(&spa_namespace_lock);
5319 return (config);
5323 * Pool export/destroy
5325 * The act of destroying or exporting a pool is very simple. We make sure there
5326 * is no more pending I/O and any references to the pool are gone. Then, we
5327 * update the pool state and sync all the labels to disk, removing the
5328 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5329 * we don't sync the labels or remove the configuration cache.
5331 static int
5332 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5333 boolean_t force, boolean_t hardforce)
5335 spa_t *spa;
5337 if (oldconfig)
5338 *oldconfig = NULL;
5340 if (!(spa_mode_global & FWRITE))
5341 return (SET_ERROR(EROFS));
5343 mutex_enter(&spa_namespace_lock);
5344 if ((spa = spa_lookup(pool)) == NULL) {
5345 mutex_exit(&spa_namespace_lock);
5346 return (SET_ERROR(ENOENT));
5350 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5351 * reacquire the namespace lock, and see if we can export.
5353 spa_open_ref(spa, FTAG);
5354 mutex_exit(&spa_namespace_lock);
5355 spa_async_suspend(spa);
5356 mutex_enter(&spa_namespace_lock);
5357 spa_close(spa, FTAG);
5360 * The pool will be in core if it's openable,
5361 * in which case we can modify its state.
5363 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5366 * Objsets may be open only because they're dirty, so we
5367 * have to force it to sync before checking spa_refcnt.
5369 txg_wait_synced(spa->spa_dsl_pool, 0);
5370 spa_evicting_os_wait(spa);
5373 * A pool cannot be exported or destroyed if there are active
5374 * references. If we are resetting a pool, allow references by
5375 * fault injection handlers.
5377 if (!spa_refcount_zero(spa) ||
5378 (spa->spa_inject_ref != 0 &&
5379 new_state != POOL_STATE_UNINITIALIZED)) {
5380 spa_async_resume(spa);
5381 mutex_exit(&spa_namespace_lock);
5382 return (SET_ERROR(EBUSY));
5386 * A pool cannot be exported if it has an active shared spare.
5387 * This is to prevent other pools stealing the active spare
5388 * from an exported pool. At user's own will, such pool can
5389 * be forcedly exported.
5391 if (!force && new_state == POOL_STATE_EXPORTED &&
5392 spa_has_active_shared_spare(spa)) {
5393 spa_async_resume(spa);
5394 mutex_exit(&spa_namespace_lock);
5395 return (SET_ERROR(EXDEV));
5399 * We're about to export or destroy this pool. Make sure
5400 * we stop all initializtion activity here before we
5401 * set the spa_final_txg. This will ensure that all
5402 * dirty data resulting from the initialization is
5403 * committed to disk before we unload the pool.
5405 if (spa->spa_root_vdev != NULL) {
5406 vdev_initialize_stop_all(spa->spa_root_vdev,
5407 VDEV_INITIALIZE_ACTIVE);
5411 * We want this to be reflected on every label,
5412 * so mark them all dirty. spa_unload() will do the
5413 * final sync that pushes these changes out.
5415 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5417 spa->spa_state = new_state;
5418 spa->spa_final_txg = spa_last_synced_txg(spa) +
5419 TXG_DEFER_SIZE + 1;
5420 vdev_config_dirty(spa->spa_root_vdev);
5421 spa_config_exit(spa, SCL_ALL, FTAG);
5425 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5427 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5428 spa_unload(spa);
5429 spa_deactivate(spa);
5432 if (oldconfig && spa->spa_config)
5433 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5435 if (new_state != POOL_STATE_UNINITIALIZED) {
5436 if (!hardforce)
5437 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5438 spa_remove(spa);
5440 mutex_exit(&spa_namespace_lock);
5442 return (0);
5446 * Destroy a storage pool.
5449 spa_destroy(char *pool)
5451 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5452 B_FALSE, B_FALSE));
5456 * Export a storage pool.
5459 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5460 boolean_t hardforce)
5462 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5463 force, hardforce));
5467 * Similar to spa_export(), this unloads the spa_t without actually removing it
5468 * from the namespace in any way.
5471 spa_reset(char *pool)
5473 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5474 B_FALSE, B_FALSE));
5478 * ==========================================================================
5479 * Device manipulation
5480 * ==========================================================================
5484 * Add a device to a storage pool.
5487 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5489 uint64_t txg, id;
5490 int error;
5491 vdev_t *rvd = spa->spa_root_vdev;
5492 vdev_t *vd, *tvd;
5493 nvlist_t **spares, **l2cache;
5494 uint_t nspares, nl2cache;
5496 ASSERT(spa_writeable(spa));
5498 txg = spa_vdev_enter(spa);
5500 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5501 VDEV_ALLOC_ADD)) != 0)
5502 return (spa_vdev_exit(spa, NULL, txg, error));
5504 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
5506 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5507 &nspares) != 0)
5508 nspares = 0;
5510 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5511 &nl2cache) != 0)
5512 nl2cache = 0;
5514 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5515 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5517 if (vd->vdev_children != 0 &&
5518 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5519 return (spa_vdev_exit(spa, vd, txg, error));
5522 * We must validate the spares and l2cache devices after checking the
5523 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5525 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5526 return (spa_vdev_exit(spa, vd, txg, error));
5529 * If we are in the middle of a device removal, we can only add
5530 * devices which match the existing devices in the pool.
5531 * If we are in the middle of a removal, or have some indirect
5532 * vdevs, we can not add raidz toplevels.
5534 if (spa->spa_vdev_removal != NULL ||
5535 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5536 for (int c = 0; c < vd->vdev_children; c++) {
5537 tvd = vd->vdev_child[c];
5538 if (spa->spa_vdev_removal != NULL &&
5539 tvd->vdev_ashift != spa->spa_max_ashift) {
5540 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5542 /* Fail if top level vdev is raidz */
5543 if (tvd->vdev_ops == &vdev_raidz_ops) {
5544 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5547 * Need the top level mirror to be
5548 * a mirror of leaf vdevs only
5550 if (tvd->vdev_ops == &vdev_mirror_ops) {
5551 for (uint64_t cid = 0;
5552 cid < tvd->vdev_children; cid++) {
5553 vdev_t *cvd = tvd->vdev_child[cid];
5554 if (!cvd->vdev_ops->vdev_op_leaf) {
5555 return (spa_vdev_exit(spa, vd,
5556 txg, EINVAL));
5563 for (int c = 0; c < vd->vdev_children; c++) {
5566 * Set the vdev id to the first hole, if one exists.
5568 for (id = 0; id < rvd->vdev_children; id++) {
5569 if (rvd->vdev_child[id]->vdev_ishole) {
5570 vdev_free(rvd->vdev_child[id]);
5571 break;
5574 tvd = vd->vdev_child[c];
5575 vdev_remove_child(vd, tvd);
5576 tvd->vdev_id = id;
5577 vdev_add_child(rvd, tvd);
5578 vdev_config_dirty(tvd);
5581 if (nspares != 0) {
5582 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5583 ZPOOL_CONFIG_SPARES);
5584 spa_load_spares(spa);
5585 spa->spa_spares.sav_sync = B_TRUE;
5588 if (nl2cache != 0) {
5589 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5590 ZPOOL_CONFIG_L2CACHE);
5591 spa_load_l2cache(spa);
5592 spa->spa_l2cache.sav_sync = B_TRUE;
5596 * We have to be careful when adding new vdevs to an existing pool.
5597 * If other threads start allocating from these vdevs before we
5598 * sync the config cache, and we lose power, then upon reboot we may
5599 * fail to open the pool because there are DVAs that the config cache
5600 * can't translate. Therefore, we first add the vdevs without
5601 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5602 * and then let spa_config_update() initialize the new metaslabs.
5604 * spa_load() checks for added-but-not-initialized vdevs, so that
5605 * if we lose power at any point in this sequence, the remaining
5606 * steps will be completed the next time we load the pool.
5608 (void) spa_vdev_exit(spa, vd, txg, 0);
5610 mutex_enter(&spa_namespace_lock);
5611 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5612 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5613 mutex_exit(&spa_namespace_lock);
5615 return (0);
5619 * Attach a device to a mirror. The arguments are the path to any device
5620 * in the mirror, and the nvroot for the new device. If the path specifies
5621 * a device that is not mirrored, we automatically insert the mirror vdev.
5623 * If 'replacing' is specified, the new device is intended to replace the
5624 * existing device; in this case the two devices are made into their own
5625 * mirror using the 'replacing' vdev, which is functionally identical to
5626 * the mirror vdev (it actually reuses all the same ops) but has a few
5627 * extra rules: you can't attach to it after it's been created, and upon
5628 * completion of resilvering, the first disk (the one being replaced)
5629 * is automatically detached.
5632 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5634 uint64_t txg, dtl_max_txg;
5635 vdev_t *rvd = spa->spa_root_vdev;
5636 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5637 vdev_ops_t *pvops;
5638 char *oldvdpath, *newvdpath;
5639 int newvd_isspare;
5640 int error;
5642 ASSERT(spa_writeable(spa));
5644 txg = spa_vdev_enter(spa);
5646 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5648 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5649 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5650 error = (spa_has_checkpoint(spa)) ?
5651 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5652 return (spa_vdev_exit(spa, NULL, txg, error));
5655 if (spa->spa_vdev_removal != NULL)
5656 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5658 if (oldvd == NULL)
5659 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5661 if (!oldvd->vdev_ops->vdev_op_leaf)
5662 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5664 pvd = oldvd->vdev_parent;
5666 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5667 VDEV_ALLOC_ATTACH)) != 0)
5668 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5670 if (newrootvd->vdev_children != 1)
5671 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5673 newvd = newrootvd->vdev_child[0];
5675 if (!newvd->vdev_ops->vdev_op_leaf)
5676 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5678 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5679 return (spa_vdev_exit(spa, newrootvd, txg, error));
5682 * Spares can't replace logs
5684 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5685 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5687 if (!replacing) {
5689 * For attach, the only allowable parent is a mirror or the root
5690 * vdev.
5692 if (pvd->vdev_ops != &vdev_mirror_ops &&
5693 pvd->vdev_ops != &vdev_root_ops)
5694 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5696 pvops = &vdev_mirror_ops;
5697 } else {
5699 * Active hot spares can only be replaced by inactive hot
5700 * spares.
5702 if (pvd->vdev_ops == &vdev_spare_ops &&
5703 oldvd->vdev_isspare &&
5704 !spa_has_spare(spa, newvd->vdev_guid))
5705 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5708 * If the source is a hot spare, and the parent isn't already a
5709 * spare, then we want to create a new hot spare. Otherwise, we
5710 * want to create a replacing vdev. The user is not allowed to
5711 * attach to a spared vdev child unless the 'isspare' state is
5712 * the same (spare replaces spare, non-spare replaces
5713 * non-spare).
5715 if (pvd->vdev_ops == &vdev_replacing_ops &&
5716 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5717 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5718 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5719 newvd->vdev_isspare != oldvd->vdev_isspare) {
5720 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5723 if (newvd->vdev_isspare)
5724 pvops = &vdev_spare_ops;
5725 else
5726 pvops = &vdev_replacing_ops;
5730 * Make sure the new device is big enough.
5732 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5733 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5736 * The new device cannot have a higher alignment requirement
5737 * than the top-level vdev.
5739 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5740 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5743 * If this is an in-place replacement, update oldvd's path and devid
5744 * to make it distinguishable from newvd, and unopenable from now on.
5746 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5747 spa_strfree(oldvd->vdev_path);
5748 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5749 KM_SLEEP);
5750 (void) sprintf(oldvd->vdev_path, "%s/%s",
5751 newvd->vdev_path, "old");
5752 if (oldvd->vdev_devid != NULL) {
5753 spa_strfree(oldvd->vdev_devid);
5754 oldvd->vdev_devid = NULL;
5758 /* mark the device being resilvered */
5759 newvd->vdev_resilver_txg = txg;
5762 * If the parent is not a mirror, or if we're replacing, insert the new
5763 * mirror/replacing/spare vdev above oldvd.
5765 if (pvd->vdev_ops != pvops)
5766 pvd = vdev_add_parent(oldvd, pvops);
5768 ASSERT(pvd->vdev_top->vdev_parent == rvd);
5769 ASSERT(pvd->vdev_ops == pvops);
5770 ASSERT(oldvd->vdev_parent == pvd);
5773 * Extract the new device from its root and add it to pvd.
5775 vdev_remove_child(newrootvd, newvd);
5776 newvd->vdev_id = pvd->vdev_children;
5777 newvd->vdev_crtxg = oldvd->vdev_crtxg;
5778 vdev_add_child(pvd, newvd);
5780 tvd = newvd->vdev_top;
5781 ASSERT(pvd->vdev_top == tvd);
5782 ASSERT(tvd->vdev_parent == rvd);
5784 vdev_config_dirty(tvd);
5787 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5788 * for any dmu_sync-ed blocks. It will propagate upward when
5789 * spa_vdev_exit() calls vdev_dtl_reassess().
5791 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5793 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5794 dtl_max_txg - TXG_INITIAL);
5796 if (newvd->vdev_isspare) {
5797 spa_spare_activate(newvd);
5798 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5801 oldvdpath = spa_strdup(oldvd->vdev_path);
5802 newvdpath = spa_strdup(newvd->vdev_path);
5803 newvd_isspare = newvd->vdev_isspare;
5806 * Mark newvd's DTL dirty in this txg.
5808 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5811 * Schedule the resilver to restart in the future. We do this to
5812 * ensure that dmu_sync-ed blocks have been stitched into the
5813 * respective datasets.
5815 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5817 if (spa->spa_bootfs)
5818 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5820 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5823 * Commit the config
5825 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5827 spa_history_log_internal(spa, "vdev attach", NULL,
5828 "%s vdev=%s %s vdev=%s",
5829 replacing && newvd_isspare ? "spare in" :
5830 replacing ? "replace" : "attach", newvdpath,
5831 replacing ? "for" : "to", oldvdpath);
5833 spa_strfree(oldvdpath);
5834 spa_strfree(newvdpath);
5836 return (0);
5840 * Detach a device from a mirror or replacing vdev.
5842 * If 'replace_done' is specified, only detach if the parent
5843 * is a replacing vdev.
5846 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5848 uint64_t txg;
5849 int error;
5850 vdev_t *rvd = spa->spa_root_vdev;
5851 vdev_t *vd, *pvd, *cvd, *tvd;
5852 boolean_t unspare = B_FALSE;
5853 uint64_t unspare_guid = 0;
5854 char *vdpath;
5856 ASSERT(spa_writeable(spa));
5858 txg = spa_vdev_enter(spa);
5860 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5863 * Besides being called directly from the userland through the
5864 * ioctl interface, spa_vdev_detach() can be potentially called
5865 * at the end of spa_vdev_resilver_done().
5867 * In the regular case, when we have a checkpoint this shouldn't
5868 * happen as we never empty the DTLs of a vdev during the scrub
5869 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
5870 * should never get here when we have a checkpoint.
5872 * That said, even in a case when we checkpoint the pool exactly
5873 * as spa_vdev_resilver_done() calls this function everything
5874 * should be fine as the resilver will return right away.
5876 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5877 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5878 error = (spa_has_checkpoint(spa)) ?
5879 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5880 return (spa_vdev_exit(spa, NULL, txg, error));
5883 if (vd == NULL)
5884 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5886 if (!vd->vdev_ops->vdev_op_leaf)
5887 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5889 pvd = vd->vdev_parent;
5892 * If the parent/child relationship is not as expected, don't do it.
5893 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5894 * vdev that's replacing B with C. The user's intent in replacing
5895 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5896 * the replace by detaching C, the expected behavior is to end up
5897 * M(A,B). But suppose that right after deciding to detach C,
5898 * the replacement of B completes. We would have M(A,C), and then
5899 * ask to detach C, which would leave us with just A -- not what
5900 * the user wanted. To prevent this, we make sure that the
5901 * parent/child relationship hasn't changed -- in this example,
5902 * that C's parent is still the replacing vdev R.
5904 if (pvd->vdev_guid != pguid && pguid != 0)
5905 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5908 * Only 'replacing' or 'spare' vdevs can be replaced.
5910 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5911 pvd->vdev_ops != &vdev_spare_ops)
5912 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5914 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5915 spa_version(spa) >= SPA_VERSION_SPARES);
5918 * Only mirror, replacing, and spare vdevs support detach.
5920 if (pvd->vdev_ops != &vdev_replacing_ops &&
5921 pvd->vdev_ops != &vdev_mirror_ops &&
5922 pvd->vdev_ops != &vdev_spare_ops)
5923 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5926 * If this device has the only valid copy of some data,
5927 * we cannot safely detach it.
5929 if (vdev_dtl_required(vd))
5930 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5932 ASSERT(pvd->vdev_children >= 2);
5935 * If we are detaching the second disk from a replacing vdev, then
5936 * check to see if we changed the original vdev's path to have "/old"
5937 * at the end in spa_vdev_attach(). If so, undo that change now.
5939 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5940 vd->vdev_path != NULL) {
5941 size_t len = strlen(vd->vdev_path);
5943 for (int c = 0; c < pvd->vdev_children; c++) {
5944 cvd = pvd->vdev_child[c];
5946 if (cvd == vd || cvd->vdev_path == NULL)
5947 continue;
5949 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5950 strcmp(cvd->vdev_path + len, "/old") == 0) {
5951 spa_strfree(cvd->vdev_path);
5952 cvd->vdev_path = spa_strdup(vd->vdev_path);
5953 break;
5959 * If we are detaching the original disk from a spare, then it implies
5960 * that the spare should become a real disk, and be removed from the
5961 * active spare list for the pool.
5963 if (pvd->vdev_ops == &vdev_spare_ops &&
5964 vd->vdev_id == 0 &&
5965 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5966 unspare = B_TRUE;
5969 * Erase the disk labels so the disk can be used for other things.
5970 * This must be done after all other error cases are handled,
5971 * but before we disembowel vd (so we can still do I/O to it).
5972 * But if we can't do it, don't treat the error as fatal --
5973 * it may be that the unwritability of the disk is the reason
5974 * it's being detached!
5976 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5979 * Remove vd from its parent and compact the parent's children.
5981 vdev_remove_child(pvd, vd);
5982 vdev_compact_children(pvd);
5985 * Remember one of the remaining children so we can get tvd below.
5987 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5990 * If we need to remove the remaining child from the list of hot spares,
5991 * do it now, marking the vdev as no longer a spare in the process.
5992 * We must do this before vdev_remove_parent(), because that can
5993 * change the GUID if it creates a new toplevel GUID. For a similar
5994 * reason, we must remove the spare now, in the same txg as the detach;
5995 * otherwise someone could attach a new sibling, change the GUID, and
5996 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5998 if (unspare) {
5999 ASSERT(cvd->vdev_isspare);
6000 spa_spare_remove(cvd);
6001 unspare_guid = cvd->vdev_guid;
6002 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6003 cvd->vdev_unspare = B_TRUE;
6007 * If the parent mirror/replacing vdev only has one child,
6008 * the parent is no longer needed. Remove it from the tree.
6010 if (pvd->vdev_children == 1) {
6011 if (pvd->vdev_ops == &vdev_spare_ops)
6012 cvd->vdev_unspare = B_FALSE;
6013 vdev_remove_parent(cvd);
6018 * We don't set tvd until now because the parent we just removed
6019 * may have been the previous top-level vdev.
6021 tvd = cvd->vdev_top;
6022 ASSERT(tvd->vdev_parent == rvd);
6025 * Reevaluate the parent vdev state.
6027 vdev_propagate_state(cvd);
6030 * If the 'autoexpand' property is set on the pool then automatically
6031 * try to expand the size of the pool. For example if the device we
6032 * just detached was smaller than the others, it may be possible to
6033 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6034 * first so that we can obtain the updated sizes of the leaf vdevs.
6036 if (spa->spa_autoexpand) {
6037 vdev_reopen(tvd);
6038 vdev_expand(tvd, txg);
6041 vdev_config_dirty(tvd);
6044 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6045 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6046 * But first make sure we're not on any *other* txg's DTL list, to
6047 * prevent vd from being accessed after it's freed.
6049 vdpath = spa_strdup(vd->vdev_path);
6050 for (int t = 0; t < TXG_SIZE; t++)
6051 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6052 vd->vdev_detached = B_TRUE;
6053 vdev_dirty(tvd, VDD_DTL, vd, txg);
6055 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6057 /* hang on to the spa before we release the lock */
6058 spa_open_ref(spa, FTAG);
6060 error = spa_vdev_exit(spa, vd, txg, 0);
6062 spa_history_log_internal(spa, "detach", NULL,
6063 "vdev=%s", vdpath);
6064 spa_strfree(vdpath);
6067 * If this was the removal of the original device in a hot spare vdev,
6068 * then we want to go through and remove the device from the hot spare
6069 * list of every other pool.
6071 if (unspare) {
6072 spa_t *altspa = NULL;
6074 mutex_enter(&spa_namespace_lock);
6075 while ((altspa = spa_next(altspa)) != NULL) {
6076 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6077 altspa == spa)
6078 continue;
6080 spa_open_ref(altspa, FTAG);
6081 mutex_exit(&spa_namespace_lock);
6082 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6083 mutex_enter(&spa_namespace_lock);
6084 spa_close(altspa, FTAG);
6086 mutex_exit(&spa_namespace_lock);
6088 /* search the rest of the vdevs for spares to remove */
6089 spa_vdev_resilver_done(spa);
6092 /* all done with the spa; OK to release */
6093 mutex_enter(&spa_namespace_lock);
6094 spa_close(spa, FTAG);
6095 mutex_exit(&spa_namespace_lock);
6097 return (error);
6101 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6104 * We hold the namespace lock through the whole function
6105 * to prevent any changes to the pool while we're starting or
6106 * stopping initialization. The config and state locks are held so that
6107 * we can properly assess the vdev state before we commit to
6108 * the initializing operation.
6110 mutex_enter(&spa_namespace_lock);
6111 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6113 /* Look up vdev and ensure it's a leaf. */
6114 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6115 if (vd == NULL || vd->vdev_detached) {
6116 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6117 mutex_exit(&spa_namespace_lock);
6118 return (SET_ERROR(ENODEV));
6119 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6120 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6121 mutex_exit(&spa_namespace_lock);
6122 return (SET_ERROR(EINVAL));
6123 } else if (!vdev_writeable(vd)) {
6124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6125 mutex_exit(&spa_namespace_lock);
6126 return (SET_ERROR(EROFS));
6128 mutex_enter(&vd->vdev_initialize_lock);
6129 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6132 * When we activate an initialize action we check to see
6133 * if the vdev_initialize_thread is NULL. We do this instead
6134 * of using the vdev_initialize_state since there might be
6135 * a previous initialization process which has completed but
6136 * the thread is not exited.
6138 if (cmd_type == POOL_INITIALIZE_DO &&
6139 (vd->vdev_initialize_thread != NULL ||
6140 vd->vdev_top->vdev_removing)) {
6141 mutex_exit(&vd->vdev_initialize_lock);
6142 mutex_exit(&spa_namespace_lock);
6143 return (SET_ERROR(EBUSY));
6144 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6145 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6146 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6147 mutex_exit(&vd->vdev_initialize_lock);
6148 mutex_exit(&spa_namespace_lock);
6149 return (SET_ERROR(ESRCH));
6150 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6151 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6152 mutex_exit(&vd->vdev_initialize_lock);
6153 mutex_exit(&spa_namespace_lock);
6154 return (SET_ERROR(ESRCH));
6157 switch (cmd_type) {
6158 case POOL_INITIALIZE_DO:
6159 vdev_initialize(vd);
6160 break;
6161 case POOL_INITIALIZE_CANCEL:
6162 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6163 break;
6164 case POOL_INITIALIZE_SUSPEND:
6165 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6166 break;
6167 default:
6168 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6170 mutex_exit(&vd->vdev_initialize_lock);
6172 /* Sync out the initializing state */
6173 txg_wait_synced(spa->spa_dsl_pool, 0);
6174 mutex_exit(&spa_namespace_lock);
6176 return (0);
6181 * Split a set of devices from their mirrors, and create a new pool from them.
6184 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6185 nvlist_t *props, boolean_t exp)
6187 int error = 0;
6188 uint64_t txg, *glist;
6189 spa_t *newspa;
6190 uint_t c, children, lastlog;
6191 nvlist_t **child, *nvl, *tmp;
6192 dmu_tx_t *tx;
6193 char *altroot = NULL;
6194 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6195 boolean_t activate_slog;
6197 ASSERT(spa_writeable(spa));
6199 txg = spa_vdev_enter(spa);
6201 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6202 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6203 error = (spa_has_checkpoint(spa)) ?
6204 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6205 return (spa_vdev_exit(spa, NULL, txg, error));
6208 /* clear the log and flush everything up to now */
6209 activate_slog = spa_passivate_log(spa);
6210 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6211 error = spa_reset_logs(spa);
6212 txg = spa_vdev_config_enter(spa);
6214 if (activate_slog)
6215 spa_activate_log(spa);
6217 if (error != 0)
6218 return (spa_vdev_exit(spa, NULL, txg, error));
6220 /* check new spa name before going any further */
6221 if (spa_lookup(newname) != NULL)
6222 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6225 * scan through all the children to ensure they're all mirrors
6227 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6228 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6229 &children) != 0)
6230 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6232 /* first, check to ensure we've got the right child count */
6233 rvd = spa->spa_root_vdev;
6234 lastlog = 0;
6235 for (c = 0; c < rvd->vdev_children; c++) {
6236 vdev_t *vd = rvd->vdev_child[c];
6238 /* don't count the holes & logs as children */
6239 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6240 if (lastlog == 0)
6241 lastlog = c;
6242 continue;
6245 lastlog = 0;
6247 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6248 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6250 /* next, ensure no spare or cache devices are part of the split */
6251 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6252 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6253 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6255 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6256 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6258 /* then, loop over each vdev and validate it */
6259 for (c = 0; c < children; c++) {
6260 uint64_t is_hole = 0;
6262 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6263 &is_hole);
6265 if (is_hole != 0) {
6266 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6267 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6268 continue;
6269 } else {
6270 error = SET_ERROR(EINVAL);
6271 break;
6275 /* which disk is going to be split? */
6276 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6277 &glist[c]) != 0) {
6278 error = SET_ERROR(EINVAL);
6279 break;
6282 /* look it up in the spa */
6283 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6284 if (vml[c] == NULL) {
6285 error = SET_ERROR(ENODEV);
6286 break;
6289 /* make sure there's nothing stopping the split */
6290 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6291 vml[c]->vdev_islog ||
6292 !vdev_is_concrete(vml[c]) ||
6293 vml[c]->vdev_isspare ||
6294 vml[c]->vdev_isl2cache ||
6295 !vdev_writeable(vml[c]) ||
6296 vml[c]->vdev_children != 0 ||
6297 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6298 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6299 error = SET_ERROR(EINVAL);
6300 break;
6303 if (vdev_dtl_required(vml[c])) {
6304 error = SET_ERROR(EBUSY);
6305 break;
6308 /* we need certain info from the top level */
6309 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6310 vml[c]->vdev_top->vdev_ms_array) == 0);
6311 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6312 vml[c]->vdev_top->vdev_ms_shift) == 0);
6313 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6314 vml[c]->vdev_top->vdev_asize) == 0);
6315 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6316 vml[c]->vdev_top->vdev_ashift) == 0);
6318 /* transfer per-vdev ZAPs */
6319 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6320 VERIFY0(nvlist_add_uint64(child[c],
6321 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6323 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6324 VERIFY0(nvlist_add_uint64(child[c],
6325 ZPOOL_CONFIG_VDEV_TOP_ZAP,
6326 vml[c]->vdev_parent->vdev_top_zap));
6329 if (error != 0) {
6330 kmem_free(vml, children * sizeof (vdev_t *));
6331 kmem_free(glist, children * sizeof (uint64_t));
6332 return (spa_vdev_exit(spa, NULL, txg, error));
6335 /* stop writers from using the disks */
6336 for (c = 0; c < children; c++) {
6337 if (vml[c] != NULL)
6338 vml[c]->vdev_offline = B_TRUE;
6340 vdev_reopen(spa->spa_root_vdev);
6343 * Temporarily record the splitting vdevs in the spa config. This
6344 * will disappear once the config is regenerated.
6346 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6347 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6348 glist, children) == 0);
6349 kmem_free(glist, children * sizeof (uint64_t));
6351 mutex_enter(&spa->spa_props_lock);
6352 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6353 nvl) == 0);
6354 mutex_exit(&spa->spa_props_lock);
6355 spa->spa_config_splitting = nvl;
6356 vdev_config_dirty(spa->spa_root_vdev);
6358 /* configure and create the new pool */
6359 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6360 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6361 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6362 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6363 spa_version(spa)) == 0);
6364 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6365 spa->spa_config_txg) == 0);
6366 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6367 spa_generate_guid(NULL)) == 0);
6368 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6369 (void) nvlist_lookup_string(props,
6370 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6372 /* add the new pool to the namespace */
6373 newspa = spa_add(newname, config, altroot);
6374 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6375 newspa->spa_config_txg = spa->spa_config_txg;
6376 spa_set_log_state(newspa, SPA_LOG_CLEAR);
6378 /* release the spa config lock, retaining the namespace lock */
6379 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6381 if (zio_injection_enabled)
6382 zio_handle_panic_injection(spa, FTAG, 1);
6384 spa_activate(newspa, spa_mode_global);
6385 spa_async_suspend(newspa);
6387 for (c = 0; c < children; c++) {
6388 if (vml[c] != NULL) {
6390 * Temporarily stop the initializing activity. We set
6391 * the state to ACTIVE so that we know to resume
6392 * the initializing once the split has completed.
6394 mutex_enter(&vml[c]->vdev_initialize_lock);
6395 vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6396 mutex_exit(&vml[c]->vdev_initialize_lock);
6400 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6402 /* create the new pool from the disks of the original pool */
6403 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6404 if (error)
6405 goto out;
6407 /* if that worked, generate a real config for the new pool */
6408 if (newspa->spa_root_vdev != NULL) {
6409 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6410 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6411 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6412 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6413 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6414 B_TRUE));
6417 /* set the props */
6418 if (props != NULL) {
6419 spa_configfile_set(newspa, props, B_FALSE);
6420 error = spa_prop_set(newspa, props);
6421 if (error)
6422 goto out;
6425 /* flush everything */
6426 txg = spa_vdev_config_enter(newspa);
6427 vdev_config_dirty(newspa->spa_root_vdev);
6428 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6430 if (zio_injection_enabled)
6431 zio_handle_panic_injection(spa, FTAG, 2);
6433 spa_async_resume(newspa);
6435 /* finally, update the original pool's config */
6436 txg = spa_vdev_config_enter(spa);
6437 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6438 error = dmu_tx_assign(tx, TXG_WAIT);
6439 if (error != 0)
6440 dmu_tx_abort(tx);
6441 for (c = 0; c < children; c++) {
6442 if (vml[c] != NULL) {
6443 vdev_split(vml[c]);
6444 if (error == 0)
6445 spa_history_log_internal(spa, "detach", tx,
6446 "vdev=%s", vml[c]->vdev_path);
6448 vdev_free(vml[c]);
6451 spa->spa_avz_action = AVZ_ACTION_REBUILD;
6452 vdev_config_dirty(spa->spa_root_vdev);
6453 spa->spa_config_splitting = NULL;
6454 nvlist_free(nvl);
6455 if (error == 0)
6456 dmu_tx_commit(tx);
6457 (void) spa_vdev_exit(spa, NULL, txg, 0);
6459 if (zio_injection_enabled)
6460 zio_handle_panic_injection(spa, FTAG, 3);
6462 /* split is complete; log a history record */
6463 spa_history_log_internal(newspa, "split", NULL,
6464 "from pool %s", spa_name(spa));
6466 kmem_free(vml, children * sizeof (vdev_t *));
6468 /* if we're not going to mount the filesystems in userland, export */
6469 if (exp)
6470 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6471 B_FALSE, B_FALSE);
6473 return (error);
6475 out:
6476 spa_unload(newspa);
6477 spa_deactivate(newspa);
6478 spa_remove(newspa);
6480 txg = spa_vdev_config_enter(spa);
6482 /* re-online all offlined disks */
6483 for (c = 0; c < children; c++) {
6484 if (vml[c] != NULL)
6485 vml[c]->vdev_offline = B_FALSE;
6488 /* restart initializing disks as necessary */
6489 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6491 vdev_reopen(spa->spa_root_vdev);
6493 nvlist_free(spa->spa_config_splitting);
6494 spa->spa_config_splitting = NULL;
6495 (void) spa_vdev_exit(spa, NULL, txg, error);
6497 kmem_free(vml, children * sizeof (vdev_t *));
6498 return (error);
6502 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6503 * currently spared, so we can detach it.
6505 static vdev_t *
6506 spa_vdev_resilver_done_hunt(vdev_t *vd)
6508 vdev_t *newvd, *oldvd;
6510 for (int c = 0; c < vd->vdev_children; c++) {
6511 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6512 if (oldvd != NULL)
6513 return (oldvd);
6517 * Check for a completed replacement. We always consider the first
6518 * vdev in the list to be the oldest vdev, and the last one to be
6519 * the newest (see spa_vdev_attach() for how that works). In
6520 * the case where the newest vdev is faulted, we will not automatically
6521 * remove it after a resilver completes. This is OK as it will require
6522 * user intervention to determine which disk the admin wishes to keep.
6524 if (vd->vdev_ops == &vdev_replacing_ops) {
6525 ASSERT(vd->vdev_children > 1);
6527 newvd = vd->vdev_child[vd->vdev_children - 1];
6528 oldvd = vd->vdev_child[0];
6530 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6531 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6532 !vdev_dtl_required(oldvd))
6533 return (oldvd);
6537 * Check for a completed resilver with the 'unspare' flag set.
6539 if (vd->vdev_ops == &vdev_spare_ops) {
6540 vdev_t *first = vd->vdev_child[0];
6541 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6543 if (last->vdev_unspare) {
6544 oldvd = first;
6545 newvd = last;
6546 } else if (first->vdev_unspare) {
6547 oldvd = last;
6548 newvd = first;
6549 } else {
6550 oldvd = NULL;
6553 if (oldvd != NULL &&
6554 vdev_dtl_empty(newvd, DTL_MISSING) &&
6555 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6556 !vdev_dtl_required(oldvd))
6557 return (oldvd);
6560 * If there are more than two spares attached to a disk,
6561 * and those spares are not required, then we want to
6562 * attempt to free them up now so that they can be used
6563 * by other pools. Once we're back down to a single
6564 * disk+spare, we stop removing them.
6566 if (vd->vdev_children > 2) {
6567 newvd = vd->vdev_child[1];
6569 if (newvd->vdev_isspare && last->vdev_isspare &&
6570 vdev_dtl_empty(last, DTL_MISSING) &&
6571 vdev_dtl_empty(last, DTL_OUTAGE) &&
6572 !vdev_dtl_required(newvd))
6573 return (newvd);
6577 return (NULL);
6580 static void
6581 spa_vdev_resilver_done(spa_t *spa)
6583 vdev_t *vd, *pvd, *ppvd;
6584 uint64_t guid, sguid, pguid, ppguid;
6586 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6588 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6589 pvd = vd->vdev_parent;
6590 ppvd = pvd->vdev_parent;
6591 guid = vd->vdev_guid;
6592 pguid = pvd->vdev_guid;
6593 ppguid = ppvd->vdev_guid;
6594 sguid = 0;
6596 * If we have just finished replacing a hot spared device, then
6597 * we need to detach the parent's first child (the original hot
6598 * spare) as well.
6600 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6601 ppvd->vdev_children == 2) {
6602 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6603 sguid = ppvd->vdev_child[1]->vdev_guid;
6605 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6607 spa_config_exit(spa, SCL_ALL, FTAG);
6608 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6609 return;
6610 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6611 return;
6612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6615 spa_config_exit(spa, SCL_ALL, FTAG);
6619 * Update the stored path or FRU for this vdev.
6622 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6623 boolean_t ispath)
6625 vdev_t *vd;
6626 boolean_t sync = B_FALSE;
6628 ASSERT(spa_writeable(spa));
6630 spa_vdev_state_enter(spa, SCL_ALL);
6632 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6633 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6635 if (!vd->vdev_ops->vdev_op_leaf)
6636 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6638 if (ispath) {
6639 if (strcmp(value, vd->vdev_path) != 0) {
6640 spa_strfree(vd->vdev_path);
6641 vd->vdev_path = spa_strdup(value);
6642 sync = B_TRUE;
6644 } else {
6645 if (vd->vdev_fru == NULL) {
6646 vd->vdev_fru = spa_strdup(value);
6647 sync = B_TRUE;
6648 } else if (strcmp(value, vd->vdev_fru) != 0) {
6649 spa_strfree(vd->vdev_fru);
6650 vd->vdev_fru = spa_strdup(value);
6651 sync = B_TRUE;
6655 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6659 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6661 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6665 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6667 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6671 * ==========================================================================
6672 * SPA Scanning
6673 * ==========================================================================
6676 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6678 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6680 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6681 return (SET_ERROR(EBUSY));
6683 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6687 spa_scan_stop(spa_t *spa)
6689 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6690 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6691 return (SET_ERROR(EBUSY));
6692 return (dsl_scan_cancel(spa->spa_dsl_pool));
6696 spa_scan(spa_t *spa, pool_scan_func_t func)
6698 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6700 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6701 return (SET_ERROR(ENOTSUP));
6704 * If a resilver was requested, but there is no DTL on a
6705 * writeable leaf device, we have nothing to do.
6707 if (func == POOL_SCAN_RESILVER &&
6708 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6709 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6710 return (0);
6713 return (dsl_scan(spa->spa_dsl_pool, func));
6717 * ==========================================================================
6718 * SPA async task processing
6719 * ==========================================================================
6722 static void
6723 spa_async_remove(spa_t *spa, vdev_t *vd)
6725 if (vd->vdev_remove_wanted) {
6726 vd->vdev_remove_wanted = B_FALSE;
6727 vd->vdev_delayed_close = B_FALSE;
6728 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6731 * We want to clear the stats, but we don't want to do a full
6732 * vdev_clear() as that will cause us to throw away
6733 * degraded/faulted state as well as attempt to reopen the
6734 * device, all of which is a waste.
6736 vd->vdev_stat.vs_read_errors = 0;
6737 vd->vdev_stat.vs_write_errors = 0;
6738 vd->vdev_stat.vs_checksum_errors = 0;
6740 vdev_state_dirty(vd->vdev_top);
6743 for (int c = 0; c < vd->vdev_children; c++)
6744 spa_async_remove(spa, vd->vdev_child[c]);
6747 static void
6748 spa_async_probe(spa_t *spa, vdev_t *vd)
6750 if (vd->vdev_probe_wanted) {
6751 vd->vdev_probe_wanted = B_FALSE;
6752 vdev_reopen(vd); /* vdev_open() does the actual probe */
6755 for (int c = 0; c < vd->vdev_children; c++)
6756 spa_async_probe(spa, vd->vdev_child[c]);
6759 static void
6760 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6762 sysevent_id_t eid;
6763 nvlist_t *attr;
6764 char *physpath;
6766 if (!spa->spa_autoexpand)
6767 return;
6769 for (int c = 0; c < vd->vdev_children; c++) {
6770 vdev_t *cvd = vd->vdev_child[c];
6771 spa_async_autoexpand(spa, cvd);
6774 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6775 return;
6777 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6778 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6780 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6781 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6783 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6784 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6786 nvlist_free(attr);
6787 kmem_free(physpath, MAXPATHLEN);
6790 static void
6791 spa_async_thread(void *arg)
6793 spa_t *spa = (spa_t *)arg;
6794 int tasks;
6796 ASSERT(spa->spa_sync_on);
6798 mutex_enter(&spa->spa_async_lock);
6799 tasks = spa->spa_async_tasks;
6800 spa->spa_async_tasks = 0;
6801 mutex_exit(&spa->spa_async_lock);
6804 * See if the config needs to be updated.
6806 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6807 uint64_t old_space, new_space;
6809 mutex_enter(&spa_namespace_lock);
6810 old_space = metaslab_class_get_space(spa_normal_class(spa));
6811 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6812 new_space = metaslab_class_get_space(spa_normal_class(spa));
6813 mutex_exit(&spa_namespace_lock);
6816 * If the pool grew as a result of the config update,
6817 * then log an internal history event.
6819 if (new_space != old_space) {
6820 spa_history_log_internal(spa, "vdev online", NULL,
6821 "pool '%s' size: %llu(+%llu)",
6822 spa_name(spa), new_space, new_space - old_space);
6827 * See if any devices need to be marked REMOVED.
6829 if (tasks & SPA_ASYNC_REMOVE) {
6830 spa_vdev_state_enter(spa, SCL_NONE);
6831 spa_async_remove(spa, spa->spa_root_vdev);
6832 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6833 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6834 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6835 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6836 (void) spa_vdev_state_exit(spa, NULL, 0);
6839 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6840 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6841 spa_async_autoexpand(spa, spa->spa_root_vdev);
6842 spa_config_exit(spa, SCL_CONFIG, FTAG);
6846 * See if any devices need to be probed.
6848 if (tasks & SPA_ASYNC_PROBE) {
6849 spa_vdev_state_enter(spa, SCL_NONE);
6850 spa_async_probe(spa, spa->spa_root_vdev);
6851 (void) spa_vdev_state_exit(spa, NULL, 0);
6855 * If any devices are done replacing, detach them.
6857 if (tasks & SPA_ASYNC_RESILVER_DONE)
6858 spa_vdev_resilver_done(spa);
6861 * Kick off a resilver.
6863 if (tasks & SPA_ASYNC_RESILVER)
6864 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6866 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
6867 mutex_enter(&spa_namespace_lock);
6868 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6869 vdev_initialize_restart(spa->spa_root_vdev);
6870 spa_config_exit(spa, SCL_CONFIG, FTAG);
6871 mutex_exit(&spa_namespace_lock);
6875 * Let the world know that we're done.
6877 mutex_enter(&spa->spa_async_lock);
6878 spa->spa_async_thread = NULL;
6879 cv_broadcast(&spa->spa_async_cv);
6880 mutex_exit(&spa->spa_async_lock);
6881 thread_exit();
6884 void
6885 spa_async_suspend(spa_t *spa)
6887 mutex_enter(&spa->spa_async_lock);
6888 spa->spa_async_suspended++;
6889 while (spa->spa_async_thread != NULL)
6890 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6891 mutex_exit(&spa->spa_async_lock);
6893 spa_vdev_remove_suspend(spa);
6895 zthr_t *condense_thread = spa->spa_condense_zthr;
6896 if (condense_thread != NULL && zthr_isrunning(condense_thread))
6897 VERIFY0(zthr_cancel(condense_thread));
6899 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6900 if (discard_thread != NULL && zthr_isrunning(discard_thread))
6901 VERIFY0(zthr_cancel(discard_thread));
6904 void
6905 spa_async_resume(spa_t *spa)
6907 mutex_enter(&spa->spa_async_lock);
6908 ASSERT(spa->spa_async_suspended != 0);
6909 spa->spa_async_suspended--;
6910 mutex_exit(&spa->spa_async_lock);
6911 spa_restart_removal(spa);
6913 zthr_t *condense_thread = spa->spa_condense_zthr;
6914 if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6915 zthr_resume(condense_thread);
6917 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6918 if (discard_thread != NULL && !zthr_isrunning(discard_thread))
6919 zthr_resume(discard_thread);
6922 static boolean_t
6923 spa_async_tasks_pending(spa_t *spa)
6925 uint_t non_config_tasks;
6926 uint_t config_task;
6927 boolean_t config_task_suspended;
6929 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6930 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6931 if (spa->spa_ccw_fail_time == 0) {
6932 config_task_suspended = B_FALSE;
6933 } else {
6934 config_task_suspended =
6935 (gethrtime() - spa->spa_ccw_fail_time) <
6936 (zfs_ccw_retry_interval * NANOSEC);
6939 return (non_config_tasks || (config_task && !config_task_suspended));
6942 static void
6943 spa_async_dispatch(spa_t *spa)
6945 mutex_enter(&spa->spa_async_lock);
6946 if (spa_async_tasks_pending(spa) &&
6947 !spa->spa_async_suspended &&
6948 spa->spa_async_thread == NULL &&
6949 rootdir != NULL)
6950 spa->spa_async_thread = thread_create(NULL, 0,
6951 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6952 mutex_exit(&spa->spa_async_lock);
6955 void
6956 spa_async_request(spa_t *spa, int task)
6958 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6959 mutex_enter(&spa->spa_async_lock);
6960 spa->spa_async_tasks |= task;
6961 mutex_exit(&spa->spa_async_lock);
6965 * ==========================================================================
6966 * SPA syncing routines
6967 * ==========================================================================
6970 static int
6971 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6973 bpobj_t *bpo = arg;
6974 bpobj_enqueue(bpo, bp, tx);
6975 return (0);
6978 static int
6979 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6981 zio_t *zio = arg;
6983 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6984 zio->io_flags));
6985 return (0);
6989 * Note: this simple function is not inlined to make it easier to dtrace the
6990 * amount of time spent syncing frees.
6992 static void
6993 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6995 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6996 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6997 VERIFY(zio_wait(zio) == 0);
7001 * Note: this simple function is not inlined to make it easier to dtrace the
7002 * amount of time spent syncing deferred frees.
7004 static void
7005 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7007 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7008 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7009 spa_free_sync_cb, zio, tx), ==, 0);
7010 VERIFY0(zio_wait(zio));
7014 static void
7015 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7017 char *packed = NULL;
7018 size_t bufsize;
7019 size_t nvsize = 0;
7020 dmu_buf_t *db;
7022 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7025 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7026 * information. This avoids the dmu_buf_will_dirty() path and
7027 * saves us a pre-read to get data we don't actually care about.
7029 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7030 packed = kmem_alloc(bufsize, KM_SLEEP);
7032 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7033 KM_SLEEP) == 0);
7034 bzero(packed + nvsize, bufsize - nvsize);
7036 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7038 kmem_free(packed, bufsize);
7040 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7041 dmu_buf_will_dirty(db, tx);
7042 *(uint64_t *)db->db_data = nvsize;
7043 dmu_buf_rele(db, FTAG);
7046 static void
7047 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7048 const char *config, const char *entry)
7050 nvlist_t *nvroot;
7051 nvlist_t **list;
7052 int i;
7054 if (!sav->sav_sync)
7055 return;
7058 * Update the MOS nvlist describing the list of available devices.
7059 * spa_validate_aux() will have already made sure this nvlist is
7060 * valid and the vdevs are labeled appropriately.
7062 if (sav->sav_object == 0) {
7063 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7064 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7065 sizeof (uint64_t), tx);
7066 VERIFY(zap_update(spa->spa_meta_objset,
7067 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7068 &sav->sav_object, tx) == 0);
7071 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7072 if (sav->sav_count == 0) {
7073 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7074 } else {
7075 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7076 for (i = 0; i < sav->sav_count; i++)
7077 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7078 B_FALSE, VDEV_CONFIG_L2CACHE);
7079 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7080 sav->sav_count) == 0);
7081 for (i = 0; i < sav->sav_count; i++)
7082 nvlist_free(list[i]);
7083 kmem_free(list, sav->sav_count * sizeof (void *));
7086 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7087 nvlist_free(nvroot);
7089 sav->sav_sync = B_FALSE;
7093 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7094 * The all-vdev ZAP must be empty.
7096 static void
7097 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7099 spa_t *spa = vd->vdev_spa;
7100 if (vd->vdev_top_zap != 0) {
7101 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7102 vd->vdev_top_zap, tx));
7104 if (vd->vdev_leaf_zap != 0) {
7105 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7106 vd->vdev_leaf_zap, tx));
7108 for (uint64_t i = 0; i < vd->vdev_children; i++) {
7109 spa_avz_build(vd->vdev_child[i], avz, tx);
7113 static void
7114 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7116 nvlist_t *config;
7119 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7120 * its config may not be dirty but we still need to build per-vdev ZAPs.
7121 * Similarly, if the pool is being assembled (e.g. after a split), we
7122 * need to rebuild the AVZ although the config may not be dirty.
7124 if (list_is_empty(&spa->spa_config_dirty_list) &&
7125 spa->spa_avz_action == AVZ_ACTION_NONE)
7126 return;
7128 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7130 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7131 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7132 spa->spa_all_vdev_zaps != 0);
7134 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7135 /* Make and build the new AVZ */
7136 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7137 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7138 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7140 /* Diff old AVZ with new one */
7141 zap_cursor_t zc;
7142 zap_attribute_t za;
7144 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7145 spa->spa_all_vdev_zaps);
7146 zap_cursor_retrieve(&zc, &za) == 0;
7147 zap_cursor_advance(&zc)) {
7148 uint64_t vdzap = za.za_first_integer;
7149 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7150 vdzap) == ENOENT) {
7152 * ZAP is listed in old AVZ but not in new one;
7153 * destroy it
7155 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7156 tx));
7160 zap_cursor_fini(&zc);
7162 /* Destroy the old AVZ */
7163 VERIFY0(zap_destroy(spa->spa_meta_objset,
7164 spa->spa_all_vdev_zaps, tx));
7166 /* Replace the old AVZ in the dir obj with the new one */
7167 VERIFY0(zap_update(spa->spa_meta_objset,
7168 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7169 sizeof (new_avz), 1, &new_avz, tx));
7171 spa->spa_all_vdev_zaps = new_avz;
7172 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7173 zap_cursor_t zc;
7174 zap_attribute_t za;
7176 /* Walk through the AVZ and destroy all listed ZAPs */
7177 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7178 spa->spa_all_vdev_zaps);
7179 zap_cursor_retrieve(&zc, &za) == 0;
7180 zap_cursor_advance(&zc)) {
7181 uint64_t zap = za.za_first_integer;
7182 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7185 zap_cursor_fini(&zc);
7187 /* Destroy and unlink the AVZ itself */
7188 VERIFY0(zap_destroy(spa->spa_meta_objset,
7189 spa->spa_all_vdev_zaps, tx));
7190 VERIFY0(zap_remove(spa->spa_meta_objset,
7191 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7192 spa->spa_all_vdev_zaps = 0;
7195 if (spa->spa_all_vdev_zaps == 0) {
7196 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7197 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7198 DMU_POOL_VDEV_ZAP_MAP, tx);
7200 spa->spa_avz_action = AVZ_ACTION_NONE;
7202 /* Create ZAPs for vdevs that don't have them. */
7203 vdev_construct_zaps(spa->spa_root_vdev, tx);
7205 config = spa_config_generate(spa, spa->spa_root_vdev,
7206 dmu_tx_get_txg(tx), B_FALSE);
7209 * If we're upgrading the spa version then make sure that
7210 * the config object gets updated with the correct version.
7212 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7213 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7214 spa->spa_uberblock.ub_version);
7216 spa_config_exit(spa, SCL_STATE, FTAG);
7218 nvlist_free(spa->spa_config_syncing);
7219 spa->spa_config_syncing = config;
7221 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7224 static void
7225 spa_sync_version(void *arg, dmu_tx_t *tx)
7227 uint64_t *versionp = arg;
7228 uint64_t version = *versionp;
7229 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7232 * Setting the version is special cased when first creating the pool.
7234 ASSERT(tx->tx_txg != TXG_INITIAL);
7236 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7237 ASSERT(version >= spa_version(spa));
7239 spa->spa_uberblock.ub_version = version;
7240 vdev_config_dirty(spa->spa_root_vdev);
7241 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7245 * Set zpool properties.
7247 static void
7248 spa_sync_props(void *arg, dmu_tx_t *tx)
7250 nvlist_t *nvp = arg;
7251 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7252 objset_t *mos = spa->spa_meta_objset;
7253 nvpair_t *elem = NULL;
7255 mutex_enter(&spa->spa_props_lock);
7257 while ((elem = nvlist_next_nvpair(nvp, elem))) {
7258 uint64_t intval;
7259 char *strval, *fname;
7260 zpool_prop_t prop;
7261 const char *propname;
7262 zprop_type_t proptype;
7263 spa_feature_t fid;
7265 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7266 case ZPOOL_PROP_INVAL:
7268 * We checked this earlier in spa_prop_validate().
7270 ASSERT(zpool_prop_feature(nvpair_name(elem)));
7272 fname = strchr(nvpair_name(elem), '@') + 1;
7273 VERIFY0(zfeature_lookup_name(fname, &fid));
7275 spa_feature_enable(spa, fid, tx);
7276 spa_history_log_internal(spa, "set", tx,
7277 "%s=enabled", nvpair_name(elem));
7278 break;
7280 case ZPOOL_PROP_VERSION:
7281 intval = fnvpair_value_uint64(elem);
7283 * The version is synced seperatly before other
7284 * properties and should be correct by now.
7286 ASSERT3U(spa_version(spa), >=, intval);
7287 break;
7289 case ZPOOL_PROP_ALTROOT:
7291 * 'altroot' is a non-persistent property. It should
7292 * have been set temporarily at creation or import time.
7294 ASSERT(spa->spa_root != NULL);
7295 break;
7297 case ZPOOL_PROP_READONLY:
7298 case ZPOOL_PROP_CACHEFILE:
7300 * 'readonly' and 'cachefile' are also non-persisitent
7301 * properties.
7303 break;
7304 case ZPOOL_PROP_COMMENT:
7305 strval = fnvpair_value_string(elem);
7306 if (spa->spa_comment != NULL)
7307 spa_strfree(spa->spa_comment);
7308 spa->spa_comment = spa_strdup(strval);
7310 * We need to dirty the configuration on all the vdevs
7311 * so that their labels get updated. It's unnecessary
7312 * to do this for pool creation since the vdev's
7313 * configuratoin has already been dirtied.
7315 if (tx->tx_txg != TXG_INITIAL)
7316 vdev_config_dirty(spa->spa_root_vdev);
7317 spa_history_log_internal(spa, "set", tx,
7318 "%s=%s", nvpair_name(elem), strval);
7319 break;
7320 default:
7322 * Set pool property values in the poolprops mos object.
7324 if (spa->spa_pool_props_object == 0) {
7325 spa->spa_pool_props_object =
7326 zap_create_link(mos, DMU_OT_POOL_PROPS,
7327 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7328 tx);
7331 /* normalize the property name */
7332 propname = zpool_prop_to_name(prop);
7333 proptype = zpool_prop_get_type(prop);
7335 if (nvpair_type(elem) == DATA_TYPE_STRING) {
7336 ASSERT(proptype == PROP_TYPE_STRING);
7337 strval = fnvpair_value_string(elem);
7338 VERIFY0(zap_update(mos,
7339 spa->spa_pool_props_object, propname,
7340 1, strlen(strval) + 1, strval, tx));
7341 spa_history_log_internal(spa, "set", tx,
7342 "%s=%s", nvpair_name(elem), strval);
7343 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7344 intval = fnvpair_value_uint64(elem);
7346 if (proptype == PROP_TYPE_INDEX) {
7347 const char *unused;
7348 VERIFY0(zpool_prop_index_to_string(
7349 prop, intval, &unused));
7351 VERIFY0(zap_update(mos,
7352 spa->spa_pool_props_object, propname,
7353 8, 1, &intval, tx));
7354 spa_history_log_internal(spa, "set", tx,
7355 "%s=%lld", nvpair_name(elem), intval);
7356 } else {
7357 ASSERT(0); /* not allowed */
7360 switch (prop) {
7361 case ZPOOL_PROP_DELEGATION:
7362 spa->spa_delegation = intval;
7363 break;
7364 case ZPOOL_PROP_BOOTFS:
7365 spa->spa_bootfs = intval;
7366 break;
7367 case ZPOOL_PROP_FAILUREMODE:
7368 spa->spa_failmode = intval;
7369 break;
7370 case ZPOOL_PROP_AUTOEXPAND:
7371 spa->spa_autoexpand = intval;
7372 if (tx->tx_txg != TXG_INITIAL)
7373 spa_async_request(spa,
7374 SPA_ASYNC_AUTOEXPAND);
7375 break;
7376 case ZPOOL_PROP_DEDUPDITTO:
7377 spa->spa_dedup_ditto = intval;
7378 break;
7379 default:
7380 break;
7386 mutex_exit(&spa->spa_props_lock);
7390 * Perform one-time upgrade on-disk changes. spa_version() does not
7391 * reflect the new version this txg, so there must be no changes this
7392 * txg to anything that the upgrade code depends on after it executes.
7393 * Therefore this must be called after dsl_pool_sync() does the sync
7394 * tasks.
7396 static void
7397 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7399 dsl_pool_t *dp = spa->spa_dsl_pool;
7401 ASSERT(spa->spa_sync_pass == 1);
7403 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7405 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7406 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7407 dsl_pool_create_origin(dp, tx);
7409 /* Keeping the origin open increases spa_minref */
7410 spa->spa_minref += 3;
7413 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7414 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7415 dsl_pool_upgrade_clones(dp, tx);
7418 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7419 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7420 dsl_pool_upgrade_dir_clones(dp, tx);
7422 /* Keeping the freedir open increases spa_minref */
7423 spa->spa_minref += 3;
7426 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7427 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7428 spa_feature_create_zap_objects(spa, tx);
7432 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7433 * when possibility to use lz4 compression for metadata was added
7434 * Old pools that have this feature enabled must be upgraded to have
7435 * this feature active
7437 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7438 boolean_t lz4_en = spa_feature_is_enabled(spa,
7439 SPA_FEATURE_LZ4_COMPRESS);
7440 boolean_t lz4_ac = spa_feature_is_active(spa,
7441 SPA_FEATURE_LZ4_COMPRESS);
7443 if (lz4_en && !lz4_ac)
7444 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7448 * If we haven't written the salt, do so now. Note that the
7449 * feature may not be activated yet, but that's fine since
7450 * the presence of this ZAP entry is backwards compatible.
7452 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7453 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7454 VERIFY0(zap_add(spa->spa_meta_objset,
7455 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7456 sizeof (spa->spa_cksum_salt.zcs_bytes),
7457 spa->spa_cksum_salt.zcs_bytes, tx));
7460 rrw_exit(&dp->dp_config_rwlock, FTAG);
7463 static void
7464 vdev_indirect_state_sync_verify(vdev_t *vd)
7466 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7467 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7469 if (vd->vdev_ops == &vdev_indirect_ops) {
7470 ASSERT(vim != NULL);
7471 ASSERT(vib != NULL);
7474 if (vdev_obsolete_sm_object(vd) != 0) {
7475 ASSERT(vd->vdev_obsolete_sm != NULL);
7476 ASSERT(vd->vdev_removing ||
7477 vd->vdev_ops == &vdev_indirect_ops);
7478 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7479 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7481 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7482 space_map_object(vd->vdev_obsolete_sm));
7483 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7484 space_map_allocated(vd->vdev_obsolete_sm));
7486 ASSERT(vd->vdev_obsolete_segments != NULL);
7489 * Since frees / remaps to an indirect vdev can only
7490 * happen in syncing context, the obsolete segments
7491 * tree must be empty when we start syncing.
7493 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7497 * Sync the specified transaction group. New blocks may be dirtied as
7498 * part of the process, so we iterate until it converges.
7500 void
7501 spa_sync(spa_t *spa, uint64_t txg)
7503 dsl_pool_t *dp = spa->spa_dsl_pool;
7504 objset_t *mos = spa->spa_meta_objset;
7505 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7506 vdev_t *rvd = spa->spa_root_vdev;
7507 vdev_t *vd;
7508 dmu_tx_t *tx;
7509 int error;
7510 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7511 zfs_vdev_queue_depth_pct / 100;
7513 VERIFY(spa_writeable(spa));
7516 * Wait for i/os issued in open context that need to complete
7517 * before this txg syncs.
7519 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7520 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7521 ZIO_FLAG_CANFAIL);
7524 * Lock out configuration changes.
7526 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7528 spa->spa_syncing_txg = txg;
7529 spa->spa_sync_pass = 0;
7531 for (int i = 0; i < spa->spa_alloc_count; i++) {
7532 mutex_enter(&spa->spa_alloc_locks[i]);
7533 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7534 mutex_exit(&spa->spa_alloc_locks[i]);
7538 * If there are any pending vdev state changes, convert them
7539 * into config changes that go out with this transaction group.
7541 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7542 while (list_head(&spa->spa_state_dirty_list) != NULL) {
7544 * We need the write lock here because, for aux vdevs,
7545 * calling vdev_config_dirty() modifies sav_config.
7546 * This is ugly and will become unnecessary when we
7547 * eliminate the aux vdev wart by integrating all vdevs
7548 * into the root vdev tree.
7550 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7551 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7552 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7553 vdev_state_clean(vd);
7554 vdev_config_dirty(vd);
7556 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7557 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7559 spa_config_exit(spa, SCL_STATE, FTAG);
7561 tx = dmu_tx_create_assigned(dp, txg);
7563 spa->spa_sync_starttime = gethrtime();
7564 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7565 spa->spa_sync_starttime + spa->spa_deadman_synctime));
7568 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7569 * set spa_deflate if we have no raid-z vdevs.
7571 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7572 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7573 int i;
7575 for (i = 0; i < rvd->vdev_children; i++) {
7576 vd = rvd->vdev_child[i];
7577 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7578 break;
7580 if (i == rvd->vdev_children) {
7581 spa->spa_deflate = TRUE;
7582 VERIFY(0 == zap_add(spa->spa_meta_objset,
7583 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7584 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7589 * Set the top-level vdev's max queue depth. Evaluate each
7590 * top-level's async write queue depth in case it changed.
7591 * The max queue depth will not change in the middle of syncing
7592 * out this txg.
7594 uint64_t slots_per_allocator = 0;
7595 for (int c = 0; c < rvd->vdev_children; c++) {
7596 vdev_t *tvd = rvd->vdev_child[c];
7597 metaslab_group_t *mg = tvd->vdev_mg;
7599 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7600 !metaslab_group_initialized(mg))
7601 continue;
7604 * It is safe to do a lock-free check here because only async
7605 * allocations look at mg_max_alloc_queue_depth, and async
7606 * allocations all happen from spa_sync().
7608 for (int i = 0; i < spa->spa_alloc_count; i++)
7609 ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
7610 mg->mg_max_alloc_queue_depth = max_queue_depth;
7612 for (int i = 0; i < spa->spa_alloc_count; i++) {
7613 mg->mg_cur_max_alloc_queue_depth[i] =
7614 zfs_vdev_def_queue_depth;
7616 slots_per_allocator += zfs_vdev_def_queue_depth;
7618 metaslab_class_t *mc = spa_normal_class(spa);
7619 for (int i = 0; i < spa->spa_alloc_count; i++) {
7620 ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
7621 mc->mc_alloc_max_slots[i] = slots_per_allocator;
7623 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7625 for (int c = 0; c < rvd->vdev_children; c++) {
7626 vdev_t *vd = rvd->vdev_child[c];
7627 vdev_indirect_state_sync_verify(vd);
7629 if (vdev_indirect_should_condense(vd)) {
7630 spa_condense_indirect_start_sync(vd, tx);
7631 break;
7636 * Iterate to convergence.
7638 do {
7639 int pass = ++spa->spa_sync_pass;
7641 spa_sync_config_object(spa, tx);
7642 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7643 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7644 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7645 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7646 spa_errlog_sync(spa, txg);
7647 dsl_pool_sync(dp, txg);
7649 if (pass < zfs_sync_pass_deferred_free) {
7650 spa_sync_frees(spa, free_bpl, tx);
7651 } else {
7653 * We can not defer frees in pass 1, because
7654 * we sync the deferred frees later in pass 1.
7656 ASSERT3U(pass, >, 1);
7657 bplist_iterate(free_bpl, bpobj_enqueue_cb,
7658 &spa->spa_deferred_bpobj, tx);
7661 ddt_sync(spa, txg);
7662 dsl_scan_sync(dp, tx);
7664 if (spa->spa_vdev_removal != NULL)
7665 svr_sync(spa, tx);
7667 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7668 != NULL)
7669 vdev_sync(vd, txg);
7671 if (pass == 1) {
7672 spa_sync_upgrades(spa, tx);
7673 ASSERT3U(txg, >=,
7674 spa->spa_uberblock.ub_rootbp.blk_birth);
7676 * Note: We need to check if the MOS is dirty
7677 * because we could have marked the MOS dirty
7678 * without updating the uberblock (e.g. if we
7679 * have sync tasks but no dirty user data). We
7680 * need to check the uberblock's rootbp because
7681 * it is updated if we have synced out dirty
7682 * data (though in this case the MOS will most
7683 * likely also be dirty due to second order
7684 * effects, we don't want to rely on that here).
7686 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7687 !dmu_objset_is_dirty(mos, txg)) {
7689 * Nothing changed on the first pass,
7690 * therefore this TXG is a no-op. Avoid
7691 * syncing deferred frees, so that we
7692 * can keep this TXG as a no-op.
7694 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7695 txg));
7696 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7697 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7698 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7699 txg));
7700 break;
7702 spa_sync_deferred_frees(spa, tx);
7705 } while (dmu_objset_is_dirty(mos, txg));
7707 if (!list_is_empty(&spa->spa_config_dirty_list)) {
7709 * Make sure that the number of ZAPs for all the vdevs matches
7710 * the number of ZAPs in the per-vdev ZAP list. This only gets
7711 * called if the config is dirty; otherwise there may be
7712 * outstanding AVZ operations that weren't completed in
7713 * spa_sync_config_object.
7715 uint64_t all_vdev_zap_entry_count;
7716 ASSERT0(zap_count(spa->spa_meta_objset,
7717 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7718 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7719 all_vdev_zap_entry_count);
7722 if (spa->spa_vdev_removal != NULL) {
7723 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7727 * Rewrite the vdev configuration (which includes the uberblock)
7728 * to commit the transaction group.
7730 * If there are no dirty vdevs, we sync the uberblock to a few
7731 * random top-level vdevs that are known to be visible in the
7732 * config cache (see spa_vdev_add() for a complete description).
7733 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7735 for (;;) {
7737 * We hold SCL_STATE to prevent vdev open/close/etc.
7738 * while we're attempting to write the vdev labels.
7740 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7742 if (list_is_empty(&spa->spa_config_dirty_list)) {
7743 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7744 int svdcount = 0;
7745 int children = rvd->vdev_children;
7746 int c0 = spa_get_random(children);
7748 for (int c = 0; c < children; c++) {
7749 vd = rvd->vdev_child[(c0 + c) % children];
7751 /* Stop when revisiting the first vdev */
7752 if (c > 0 && svd[0] == vd)
7753 break;
7755 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7756 !vdev_is_concrete(vd))
7757 continue;
7759 svd[svdcount++] = vd;
7760 if (svdcount == SPA_SYNC_MIN_VDEVS)
7761 break;
7763 error = vdev_config_sync(svd, svdcount, txg);
7764 } else {
7765 error = vdev_config_sync(rvd->vdev_child,
7766 rvd->vdev_children, txg);
7769 if (error == 0)
7770 spa->spa_last_synced_guid = rvd->vdev_guid;
7772 spa_config_exit(spa, SCL_STATE, FTAG);
7774 if (error == 0)
7775 break;
7776 zio_suspend(spa, NULL);
7777 zio_resume_wait(spa);
7779 dmu_tx_commit(tx);
7781 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7784 * Clear the dirty config list.
7786 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7787 vdev_config_clean(vd);
7790 * Now that the new config has synced transactionally,
7791 * let it become visible to the config cache.
7793 if (spa->spa_config_syncing != NULL) {
7794 spa_config_set(spa, spa->spa_config_syncing);
7795 spa->spa_config_txg = txg;
7796 spa->spa_config_syncing = NULL;
7799 dsl_pool_sync_done(dp, txg);
7801 for (int i = 0; i < spa->spa_alloc_count; i++) {
7802 mutex_enter(&spa->spa_alloc_locks[i]);
7803 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7804 mutex_exit(&spa->spa_alloc_locks[i]);
7808 * Update usable space statistics.
7810 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7811 != NULL)
7812 vdev_sync_done(vd, txg);
7814 spa_update_dspace(spa);
7817 * It had better be the case that we didn't dirty anything
7818 * since vdev_config_sync().
7820 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7821 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7822 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7824 while (zfs_pause_spa_sync)
7825 delay(1);
7827 spa->spa_sync_pass = 0;
7830 * Update the last synced uberblock here. We want to do this at
7831 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7832 * will be guaranteed that all the processing associated with
7833 * that txg has been completed.
7835 spa->spa_ubsync = spa->spa_uberblock;
7836 spa_config_exit(spa, SCL_CONFIG, FTAG);
7838 spa_handle_ignored_writes(spa);
7841 * If any async tasks have been requested, kick them off.
7843 spa_async_dispatch(spa);
7847 * Sync all pools. We don't want to hold the namespace lock across these
7848 * operations, so we take a reference on the spa_t and drop the lock during the
7849 * sync.
7851 void
7852 spa_sync_allpools(void)
7854 spa_t *spa = NULL;
7855 mutex_enter(&spa_namespace_lock);
7856 while ((spa = spa_next(spa)) != NULL) {
7857 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7858 !spa_writeable(spa) || spa_suspended(spa))
7859 continue;
7860 spa_open_ref(spa, FTAG);
7861 mutex_exit(&spa_namespace_lock);
7862 txg_wait_synced(spa_get_dsl(spa), 0);
7863 mutex_enter(&spa_namespace_lock);
7864 spa_close(spa, FTAG);
7866 mutex_exit(&spa_namespace_lock);
7870 * ==========================================================================
7871 * Miscellaneous routines
7872 * ==========================================================================
7876 * Remove all pools in the system.
7878 void
7879 spa_evict_all(void)
7881 spa_t *spa;
7884 * Remove all cached state. All pools should be closed now,
7885 * so every spa in the AVL tree should be unreferenced.
7887 mutex_enter(&spa_namespace_lock);
7888 while ((spa = spa_next(NULL)) != NULL) {
7890 * Stop async tasks. The async thread may need to detach
7891 * a device that's been replaced, which requires grabbing
7892 * spa_namespace_lock, so we must drop it here.
7894 spa_open_ref(spa, FTAG);
7895 mutex_exit(&spa_namespace_lock);
7896 spa_async_suspend(spa);
7897 mutex_enter(&spa_namespace_lock);
7898 spa_close(spa, FTAG);
7900 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7901 spa_unload(spa);
7902 spa_deactivate(spa);
7904 spa_remove(spa);
7906 mutex_exit(&spa_namespace_lock);
7909 vdev_t *
7910 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7912 vdev_t *vd;
7913 int i;
7915 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7916 return (vd);
7918 if (aux) {
7919 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7920 vd = spa->spa_l2cache.sav_vdevs[i];
7921 if (vd->vdev_guid == guid)
7922 return (vd);
7925 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7926 vd = spa->spa_spares.sav_vdevs[i];
7927 if (vd->vdev_guid == guid)
7928 return (vd);
7932 return (NULL);
7935 void
7936 spa_upgrade(spa_t *spa, uint64_t version)
7938 ASSERT(spa_writeable(spa));
7940 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7943 * This should only be called for a non-faulted pool, and since a
7944 * future version would result in an unopenable pool, this shouldn't be
7945 * possible.
7947 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7948 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7950 spa->spa_uberblock.ub_version = version;
7951 vdev_config_dirty(spa->spa_root_vdev);
7953 spa_config_exit(spa, SCL_ALL, FTAG);
7955 txg_wait_synced(spa_get_dsl(spa), 0);
7958 boolean_t
7959 spa_has_spare(spa_t *spa, uint64_t guid)
7961 int i;
7962 uint64_t spareguid;
7963 spa_aux_vdev_t *sav = &spa->spa_spares;
7965 for (i = 0; i < sav->sav_count; i++)
7966 if (sav->sav_vdevs[i]->vdev_guid == guid)
7967 return (B_TRUE);
7969 for (i = 0; i < sav->sav_npending; i++) {
7970 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7971 &spareguid) == 0 && spareguid == guid)
7972 return (B_TRUE);
7975 return (B_FALSE);
7979 * Check if a pool has an active shared spare device.
7980 * Note: reference count of an active spare is 2, as a spare and as a replace
7982 static boolean_t
7983 spa_has_active_shared_spare(spa_t *spa)
7985 int i, refcnt;
7986 uint64_t pool;
7987 spa_aux_vdev_t *sav = &spa->spa_spares;
7989 for (i = 0; i < sav->sav_count; i++) {
7990 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7991 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7992 refcnt > 2)
7993 return (B_TRUE);
7996 return (B_FALSE);
7999 sysevent_t *
8000 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8002 sysevent_t *ev = NULL;
8003 #ifdef _KERNEL
8004 sysevent_attr_list_t *attr = NULL;
8005 sysevent_value_t value;
8007 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8008 SE_SLEEP);
8009 ASSERT(ev != NULL);
8011 value.value_type = SE_DATA_TYPE_STRING;
8012 value.value.sv_string = spa_name(spa);
8013 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8014 goto done;
8016 value.value_type = SE_DATA_TYPE_UINT64;
8017 value.value.sv_uint64 = spa_guid(spa);
8018 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8019 goto done;
8021 if (vd) {
8022 value.value_type = SE_DATA_TYPE_UINT64;
8023 value.value.sv_uint64 = vd->vdev_guid;
8024 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8025 SE_SLEEP) != 0)
8026 goto done;
8028 if (vd->vdev_path) {
8029 value.value_type = SE_DATA_TYPE_STRING;
8030 value.value.sv_string = vd->vdev_path;
8031 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8032 &value, SE_SLEEP) != 0)
8033 goto done;
8037 if (hist_nvl != NULL) {
8038 fnvlist_merge((nvlist_t *)attr, hist_nvl);
8041 if (sysevent_attach_attributes(ev, attr) != 0)
8042 goto done;
8043 attr = NULL;
8045 done:
8046 if (attr)
8047 sysevent_free_attr(attr);
8049 #endif
8050 return (ev);
8053 void
8054 spa_event_post(sysevent_t *ev)
8056 #ifdef _KERNEL
8057 sysevent_id_t eid;
8059 (void) log_sysevent(ev, SE_SLEEP, &eid);
8060 sysevent_free(ev);
8061 #endif
8064 void
8065 spa_event_discard(sysevent_t *ev)
8067 #ifdef _KERNEL
8068 sysevent_free(ev);
8069 #endif
8073 * Post a sysevent corresponding to the given event. The 'name' must be one of
8074 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
8075 * filled in from the spa and (optionally) the vdev and history nvl. This
8076 * doesn't do anything in the userland libzpool, as we don't want consumers to
8077 * misinterpret ztest or zdb as real changes.
8079 void
8080 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8082 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));