Merge commit '7928f4baf4ab3230557eb6289be68aa7a3003f38'
[unleashed.git] / kernel / fs / zfs / txg.c
blob48e1c682cb91e602622914f481d645ec77dc9a21
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/zil.h>
34 #include <sys/callb.h>
37 * ZFS Transaction Groups
38 * ----------------------
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions -- operations that change in-memory structures -- are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
54 * Open
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions -- updates to in-memory structures -- are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
64 * Quiescing
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
75 * Syncing
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
109 static void txg_sync_thread(void *arg);
110 static void txg_quiesce_thread(void *arg);
112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
115 * Prepare the txg subsystem.
117 void
118 txg_init(dsl_pool_t *dp, uint64_t txg)
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
124 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
131 NULL);
132 for (i = 0; i < TXG_SIZE; i++) {
133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
134 NULL);
135 list_create(&tx->tx_cpu[c].tc_callbacks[i],
136 sizeof (dmu_tx_callback_t),
137 offsetof(dmu_tx_callback_t, dcb_node));
141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
149 tx->tx_open_txg = txg;
153 * Close down the txg subsystem.
155 void
156 txg_fini(dsl_pool_t *dp)
158 tx_state_t *tx = &dp->dp_tx;
159 int c;
161 ASSERT0(tx->tx_threads);
163 mutex_destroy(&tx->tx_sync_lock);
165 cv_destroy(&tx->tx_sync_more_cv);
166 cv_destroy(&tx->tx_sync_done_cv);
167 cv_destroy(&tx->tx_quiesce_more_cv);
168 cv_destroy(&tx->tx_quiesce_done_cv);
169 cv_destroy(&tx->tx_exit_cv);
171 for (c = 0; c < max_ncpus; c++) {
172 int i;
174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
175 mutex_destroy(&tx->tx_cpu[c].tc_lock);
176 for (i = 0; i < TXG_SIZE; i++) {
177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
182 if (tx->tx_commit_cb_taskq != NULL)
183 taskq_destroy(tx->tx_commit_cb_taskq);
185 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
187 bzero(tx, sizeof (tx_state_t));
191 * Start syncing transaction groups.
193 void
194 txg_sync_start(dsl_pool_t *dp)
196 tx_state_t *tx = &dp->dp_tx;
198 mutex_enter(&tx->tx_sync_lock);
200 dprintf("pool %p\n", dp);
202 ASSERT0(tx->tx_threads);
204 tx->tx_threads = 2;
206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
207 dp, 0, &p0, TS_RUN, minclsyspri);
210 * The sync thread can need a larger-than-default stack size on
211 * 32-bit x86. This is due in part to nested pools and
212 * scrub_visitbp() recursion.
214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
215 dp, 0, &p0, TS_RUN, minclsyspri);
217 mutex_exit(&tx->tx_sync_lock);
220 static void
221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
224 mutex_enter(&tx->tx_sync_lock);
227 static void
228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
230 ASSERT(*tpp != NULL);
231 *tpp = NULL;
232 tx->tx_threads--;
233 cv_broadcast(&tx->tx_exit_cv);
234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
235 thread_exit();
238 static void
239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
241 CALLB_CPR_SAFE_BEGIN(cpr);
243 if (time)
244 (void) cv_timedwait(cv, &tx->tx_sync_lock,
245 ddi_get_lbolt() + time);
246 else
247 cv_wait(cv, &tx->tx_sync_lock);
249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
253 * Stop syncing transaction groups.
255 void
256 txg_sync_stop(dsl_pool_t *dp)
258 tx_state_t *tx = &dp->dp_tx;
260 dprintf("pool %p\n", dp);
262 * Finish off any work in progress.
264 ASSERT3U(tx->tx_threads, ==, 2);
267 * We need to ensure that we've vacated the deferred space_maps.
269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
272 * Wake all sync threads and wait for them to die.
274 mutex_enter(&tx->tx_sync_lock);
276 ASSERT3U(tx->tx_threads, ==, 2);
278 tx->tx_exiting = 1;
280 cv_broadcast(&tx->tx_quiesce_more_cv);
281 cv_broadcast(&tx->tx_quiesce_done_cv);
282 cv_broadcast(&tx->tx_sync_more_cv);
284 while (tx->tx_threads != 0)
285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
287 tx->tx_exiting = 0;
289 mutex_exit(&tx->tx_sync_lock);
292 uint64_t
293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
295 tx_state_t *tx = &dp->dp_tx;
296 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
297 uint64_t txg;
299 mutex_enter(&tc->tc_open_lock);
300 txg = tx->tx_open_txg;
302 mutex_enter(&tc->tc_lock);
303 tc->tc_count[txg & TXG_MASK]++;
304 mutex_exit(&tc->tc_lock);
306 th->th_cpu = tc;
307 th->th_txg = txg;
309 return (txg);
312 void
313 txg_rele_to_quiesce(txg_handle_t *th)
315 tx_cpu_t *tc = th->th_cpu;
317 ASSERT(!MUTEX_HELD(&tc->tc_lock));
318 mutex_exit(&tc->tc_open_lock);
321 void
322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
324 tx_cpu_t *tc = th->th_cpu;
325 int g = th->th_txg & TXG_MASK;
327 mutex_enter(&tc->tc_lock);
328 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
329 mutex_exit(&tc->tc_lock);
332 void
333 txg_rele_to_sync(txg_handle_t *th)
335 tx_cpu_t *tc = th->th_cpu;
336 int g = th->th_txg & TXG_MASK;
338 mutex_enter(&tc->tc_lock);
339 ASSERT(tc->tc_count[g] != 0);
340 if (--tc->tc_count[g] == 0)
341 cv_broadcast(&tc->tc_cv[g]);
342 mutex_exit(&tc->tc_lock);
344 th->th_cpu = NULL; /* defensive */
348 * Blocks until all transactions in the group are committed.
350 * On return, the transaction group has reached a stable state in which it can
351 * then be passed off to the syncing context.
353 static void
354 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
356 tx_state_t *tx = &dp->dp_tx;
357 int g = txg & TXG_MASK;
358 int c;
361 * Grab all tc_open_locks so nobody else can get into this txg.
363 for (c = 0; c < max_ncpus; c++)
364 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
366 ASSERT(txg == tx->tx_open_txg);
367 tx->tx_open_txg++;
368 tx->tx_open_time = gethrtime();
370 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
371 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
374 * Now that we've incremented tx_open_txg, we can let threads
375 * enter the next transaction group.
377 for (c = 0; c < max_ncpus; c++)
378 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
381 * Quiesce the transaction group by waiting for everyone to txg_exit().
383 for (c = 0; c < max_ncpus; c++) {
384 tx_cpu_t *tc = &tx->tx_cpu[c];
385 mutex_enter(&tc->tc_lock);
386 while (tc->tc_count[g] != 0)
387 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
388 mutex_exit(&tc->tc_lock);
392 static void
393 txg_do_callbacks(list_t *cb_list)
395 dmu_tx_do_callbacks(cb_list, 0);
397 list_destroy(cb_list);
399 kmem_free(cb_list, sizeof (list_t));
403 * Dispatch the commit callbacks registered on this txg to worker threads.
405 * If no callbacks are registered for a given TXG, nothing happens.
406 * This function creates a taskq for the associated pool, if needed.
408 static void
409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
411 int c;
412 tx_state_t *tx = &dp->dp_tx;
413 list_t *cb_list;
415 for (c = 0; c < max_ncpus; c++) {
416 tx_cpu_t *tc = &tx->tx_cpu[c];
418 * No need to lock tx_cpu_t at this point, since this can
419 * only be called once a txg has been synced.
422 int g = txg & TXG_MASK;
424 if (list_is_empty(&tc->tc_callbacks[g]))
425 continue;
427 if (tx->tx_commit_cb_taskq == NULL) {
429 * Commit callback taskq hasn't been created yet.
431 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
432 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
433 TASKQ_PREPOPULATE);
436 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
437 list_create(cb_list, sizeof (dmu_tx_callback_t),
438 offsetof(dmu_tx_callback_t, dcb_node));
440 list_move_tail(cb_list, &tc->tc_callbacks[g]);
442 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
443 txg_do_callbacks, cb_list, TQ_SLEEP);
447 static boolean_t
448 txg_is_syncing(dsl_pool_t *dp)
450 tx_state_t *tx = &dp->dp_tx;
451 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
452 return (tx->tx_syncing_txg != 0);
455 static boolean_t
456 txg_is_quiescing(dsl_pool_t *dp)
458 tx_state_t *tx = &dp->dp_tx;
459 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
460 return (tx->tx_quiescing_txg != 0);
463 static boolean_t
464 txg_has_quiesced_to_sync(dsl_pool_t *dp)
466 tx_state_t *tx = &dp->dp_tx;
467 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
468 return (tx->tx_quiesced_txg != 0);
471 static void
472 txg_sync_thread(void *arg)
474 dsl_pool_t *dp = arg;
475 spa_t *spa = dp->dp_spa;
476 tx_state_t *tx = &dp->dp_tx;
477 callb_cpr_t cpr;
478 uint64_t start, delta;
480 txg_thread_enter(tx, &cpr);
482 start = delta = 0;
483 for (;;) {
484 uint64_t timeout = zfs_txg_timeout * hz;
485 uint64_t timer;
486 uint64_t txg;
487 uint64_t dirty_min_bytes =
488 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
491 * We sync when we're scanning, there's someone waiting
492 * on us, or the quiesce thread has handed off a txg to
493 * us, or we have reached our timeout.
495 timer = (delta >= timeout ? 0 : timeout - delta);
496 while (!dsl_scan_active(dp->dp_scan) &&
497 !tx->tx_exiting && timer > 0 &&
498 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
499 !txg_has_quiesced_to_sync(dp) &&
500 dp->dp_dirty_total < dirty_min_bytes) {
501 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
502 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
503 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
504 delta = ddi_get_lbolt() - start;
505 timer = (delta > timeout ? 0 : timeout - delta);
509 * Wait until the quiesce thread hands off a txg to us,
510 * prompting it to do so if necessary.
512 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
513 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
514 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
515 cv_broadcast(&tx->tx_quiesce_more_cv);
516 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
519 if (tx->tx_exiting)
520 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
523 * Consume the quiesced txg which has been handed off to
524 * us. This may cause the quiescing thread to now be
525 * able to quiesce another txg, so we must signal it.
527 ASSERT(tx->tx_quiesced_txg != 0);
528 txg = tx->tx_quiesced_txg;
529 tx->tx_quiesced_txg = 0;
530 tx->tx_syncing_txg = txg;
531 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
532 cv_broadcast(&tx->tx_quiesce_more_cv);
534 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
535 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
536 mutex_exit(&tx->tx_sync_lock);
538 start = ddi_get_lbolt();
539 spa_sync(spa, txg);
540 delta = ddi_get_lbolt() - start;
542 mutex_enter(&tx->tx_sync_lock);
543 tx->tx_synced_txg = txg;
544 tx->tx_syncing_txg = 0;
545 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
546 cv_broadcast(&tx->tx_sync_done_cv);
549 * Dispatch commit callbacks to worker threads.
551 txg_dispatch_callbacks(dp, txg);
555 static void
556 txg_quiesce_thread(void *arg)
558 dsl_pool_t *dp = arg;
559 tx_state_t *tx = &dp->dp_tx;
560 callb_cpr_t cpr;
562 txg_thread_enter(tx, &cpr);
564 for (;;) {
565 uint64_t txg;
568 * We quiesce when there's someone waiting on us.
569 * However, we can only have one txg in "quiescing" or
570 * "quiesced, waiting to sync" state. So we wait until
571 * the "quiesced, waiting to sync" txg has been consumed
572 * by the sync thread.
574 while (!tx->tx_exiting &&
575 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
576 txg_has_quiesced_to_sync(dp)))
577 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
579 if (tx->tx_exiting)
580 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
582 txg = tx->tx_open_txg;
583 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
584 txg, tx->tx_quiesce_txg_waiting,
585 tx->tx_sync_txg_waiting);
586 tx->tx_quiescing_txg = txg;
588 mutex_exit(&tx->tx_sync_lock);
589 txg_quiesce(dp, txg);
590 mutex_enter(&tx->tx_sync_lock);
593 * Hand this txg off to the sync thread.
595 dprintf("quiesce done, handing off txg %llu\n", txg);
596 tx->tx_quiescing_txg = 0;
597 tx->tx_quiesced_txg = txg;
598 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
599 cv_broadcast(&tx->tx_sync_more_cv);
600 cv_broadcast(&tx->tx_quiesce_done_cv);
605 * Delay this thread by delay nanoseconds if we are still in the open
606 * transaction group and there is already a waiting txg quiescing or quiesced.
607 * Abort the delay if this txg stalls or enters the quiescing state.
609 void
610 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
612 tx_state_t *tx = &dp->dp_tx;
613 hrtime_t start = gethrtime();
615 /* don't delay if this txg could transition to quiescing immediately */
616 if (tx->tx_open_txg > txg ||
617 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
618 return;
620 mutex_enter(&tx->tx_sync_lock);
621 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
622 mutex_exit(&tx->tx_sync_lock);
623 return;
626 while (gethrtime() - start < delay &&
627 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
628 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
629 &tx->tx_sync_lock, delay, resolution, 0);
632 mutex_exit(&tx->tx_sync_lock);
635 void
636 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
638 tx_state_t *tx = &dp->dp_tx;
640 ASSERT(!dsl_pool_config_held(dp));
642 mutex_enter(&tx->tx_sync_lock);
643 ASSERT3U(tx->tx_threads, ==, 2);
644 if (txg == 0)
645 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
646 if (tx->tx_sync_txg_waiting < txg)
647 tx->tx_sync_txg_waiting = txg;
648 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
649 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
650 while (tx->tx_synced_txg < txg) {
651 dprintf("broadcasting sync more "
652 "tx_synced=%llu waiting=%llu dp=%p\n",
653 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
654 cv_broadcast(&tx->tx_sync_more_cv);
655 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
657 mutex_exit(&tx->tx_sync_lock);
660 void
661 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
663 tx_state_t *tx = &dp->dp_tx;
665 ASSERT(!dsl_pool_config_held(dp));
667 mutex_enter(&tx->tx_sync_lock);
668 ASSERT3U(tx->tx_threads, ==, 2);
669 if (txg == 0)
670 txg = tx->tx_open_txg + 1;
671 if (tx->tx_quiesce_txg_waiting < txg)
672 tx->tx_quiesce_txg_waiting = txg;
673 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
674 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
675 while (tx->tx_open_txg < txg) {
676 cv_broadcast(&tx->tx_quiesce_more_cv);
677 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
679 mutex_exit(&tx->tx_sync_lock);
683 * If there isn't a txg syncing or in the pipeline, push another txg through
684 * the pipeline by queiscing the open txg.
686 void
687 txg_kick(dsl_pool_t *dp)
689 tx_state_t *tx = &dp->dp_tx;
691 ASSERT(!dsl_pool_config_held(dp));
693 mutex_enter(&tx->tx_sync_lock);
694 if (!txg_is_syncing(dp) &&
695 !txg_is_quiescing(dp) &&
696 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
697 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
698 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
699 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
700 cv_broadcast(&tx->tx_quiesce_more_cv);
702 mutex_exit(&tx->tx_sync_lock);
705 boolean_t
706 txg_stalled(dsl_pool_t *dp)
708 tx_state_t *tx = &dp->dp_tx;
709 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
712 boolean_t
713 txg_sync_waiting(dsl_pool_t *dp)
715 tx_state_t *tx = &dp->dp_tx;
717 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
718 tx->tx_quiesced_txg != 0);
722 * Verify that this txg is active (open, quiescing, syncing). Non-active
723 * txg's should not be manipulated.
725 void
726 txg_verify(spa_t *spa, uint64_t txg)
728 dsl_pool_t *dp = spa_get_dsl(spa);
729 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
730 return;
731 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
732 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
733 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
737 * Per-txg object lists.
739 void
740 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
742 int t;
744 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
746 tl->tl_offset = offset;
747 tl->tl_spa = spa;
749 for (t = 0; t < TXG_SIZE; t++)
750 tl->tl_head[t] = NULL;
753 void
754 txg_list_destroy(txg_list_t *tl)
756 int t;
758 for (t = 0; t < TXG_SIZE; t++)
759 ASSERT(txg_list_empty(tl, t));
761 mutex_destroy(&tl->tl_lock);
764 boolean_t
765 txg_list_empty(txg_list_t *tl, uint64_t txg)
767 txg_verify(tl->tl_spa, txg);
768 return (tl->tl_head[txg & TXG_MASK] == NULL);
772 * Returns true if all txg lists are empty.
774 * Warning: this is inherently racy (an item could be added immediately
775 * after this function returns). We don't bother with the lock because
776 * it wouldn't change the semantics.
778 boolean_t
779 txg_all_lists_empty(txg_list_t *tl)
781 for (int i = 0; i < TXG_SIZE; i++) {
782 if (!txg_list_empty(tl, i)) {
783 return (B_FALSE);
786 return (B_TRUE);
790 * Add an entry to the list (unless it's already on the list).
791 * Returns B_TRUE if it was actually added.
793 boolean_t
794 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
796 int t = txg & TXG_MASK;
797 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
798 boolean_t add;
800 txg_verify(tl->tl_spa, txg);
801 mutex_enter(&tl->tl_lock);
802 add = (tn->tn_member[t] == 0);
803 if (add) {
804 tn->tn_member[t] = 1;
805 tn->tn_next[t] = tl->tl_head[t];
806 tl->tl_head[t] = tn;
808 mutex_exit(&tl->tl_lock);
810 return (add);
814 * Add an entry to the end of the list, unless it's already on the list.
815 * (walks list to find end)
816 * Returns B_TRUE if it was actually added.
818 boolean_t
819 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
821 int t = txg & TXG_MASK;
822 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
823 boolean_t add;
825 txg_verify(tl->tl_spa, txg);
826 mutex_enter(&tl->tl_lock);
827 add = (tn->tn_member[t] == 0);
828 if (add) {
829 txg_node_t **tp;
831 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
832 continue;
834 tn->tn_member[t] = 1;
835 tn->tn_next[t] = NULL;
836 *tp = tn;
838 mutex_exit(&tl->tl_lock);
840 return (add);
844 * Remove the head of the list and return it.
846 void *
847 txg_list_remove(txg_list_t *tl, uint64_t txg)
849 int t = txg & TXG_MASK;
850 txg_node_t *tn;
851 void *p = NULL;
853 txg_verify(tl->tl_spa, txg);
854 mutex_enter(&tl->tl_lock);
855 if ((tn = tl->tl_head[t]) != NULL) {
856 ASSERT(tn->tn_member[t]);
857 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
858 p = (char *)tn - tl->tl_offset;
859 tl->tl_head[t] = tn->tn_next[t];
860 tn->tn_next[t] = NULL;
861 tn->tn_member[t] = 0;
863 mutex_exit(&tl->tl_lock);
865 return (p);
869 * Remove a specific item from the list and return it.
871 void *
872 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
874 int t = txg & TXG_MASK;
875 txg_node_t *tn, **tp;
877 txg_verify(tl->tl_spa, txg);
878 mutex_enter(&tl->tl_lock);
880 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
881 if ((char *)tn - tl->tl_offset == p) {
882 *tp = tn->tn_next[t];
883 tn->tn_next[t] = NULL;
884 tn->tn_member[t] = 0;
885 mutex_exit(&tl->tl_lock);
886 return (p);
890 mutex_exit(&tl->tl_lock);
892 return (NULL);
895 boolean_t
896 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
898 int t = txg & TXG_MASK;
899 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
901 txg_verify(tl->tl_spa, txg);
902 return (tn->tn_member[t] != 0);
906 * Walk a txg list -- only safe if you know it's not changing.
908 void *
909 txg_list_head(txg_list_t *tl, uint64_t txg)
911 int t = txg & TXG_MASK;
912 txg_node_t *tn = tl->tl_head[t];
914 txg_verify(tl->tl_spa, txg);
915 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
918 void *
919 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
921 int t = txg & TXG_MASK;
922 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
924 txg_verify(tl->tl_spa, txg);
925 tn = tn->tn_next[t];
927 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);