Merge commit '7928f4baf4ab3230557eb6289be68aa7a3003f38'
[unleashed.git] / kernel / fs / zfs / dsl_pool.c
blob9a82ddb0680b57ffc4b521e0e4a5eb2bbfbeb469
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/bptree.h>
50 #include <sys/zfeature.h>
51 #include <sys/zil_impl.h>
52 #include <sys/dsl_userhold.h>
55 * ZFS Write Throttle
56 * ------------------
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
75 * Implementation
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
85 * The zfs_dirty_data_sync tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
101 uint64_t zfs_dirty_data_max;
102 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
103 int zfs_dirty_data_max_percent = 10;
106 * If there's at least this much dirty data (as a percentage of
107 * zfs_dirty_data_max), push out a txg. This should be less than
108 * zfs_vdev_async_write_active_min_dirty_percent.
110 uint64_t zfs_dirty_data_sync_pct = 20;
113 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
114 * and delay each transaction.
115 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
117 int zfs_delay_min_dirty_percent = 60;
120 * This controls how quickly the delay approaches infinity.
121 * Larger values cause it to delay more for a given amount of dirty data.
122 * Therefore larger values will cause there to be less dirty data for a
123 * given throughput.
125 * For the smoothest delay, this value should be about 1 billion divided
126 * by the maximum number of operations per second. This will smoothly
127 * handle between 10x and 1/10th this number.
129 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
130 * multiply in dmu_tx_delay().
132 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
135 * This determines the number of threads used by the dp_sync_taskq.
137 int zfs_sync_taskq_batch_pct = 75;
140 * These tunables determine the behavior of how zil_itxg_clean() is
141 * called via zil_clean() in the context of spa_sync(). When an itxg
142 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
143 * If the dispatch fails, the call to zil_itxg_clean() will occur
144 * synchronously in the context of spa_sync(), which can negatively
145 * impact the performance of spa_sync() (e.g. in the case of the itxg
146 * list having a large number of itxs that needs to be cleaned).
148 * Thus, these tunables can be used to manipulate the behavior of the
149 * taskq used by zil_clean(); they determine the number of taskq entries
150 * that are pre-populated when the taskq is first created (via the
151 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
152 * taskq entries that are cached after an on-demand allocation (via the
153 * "zfs_zil_clean_taskq_maxalloc").
155 * The idea being, we want to try reasonably hard to ensure there will
156 * already be a taskq entry pre-allocated by the time that it is needed
157 * by zil_clean(). This way, we can avoid the possibility of an
158 * on-demand allocation of a new taskq entry from failing, which would
159 * result in zil_itxg_clean() being called synchronously from zil_clean()
160 * (which can adversely affect performance of spa_sync()).
162 * Additionally, the number of threads used by the taskq can be
163 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
165 int zfs_zil_clean_taskq_nthr_pct = 100;
166 int zfs_zil_clean_taskq_minalloc = 1024;
167 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
170 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
172 uint64_t obj;
173 int err;
175 err = zap_lookup(dp->dp_meta_objset,
176 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
177 name, sizeof (obj), 1, &obj);
178 if (err)
179 return (err);
181 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
184 static dsl_pool_t *
185 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
187 dsl_pool_t *dp;
188 blkptr_t *bp = spa_get_rootblkptr(spa);
190 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
191 dp->dp_spa = spa;
192 dp->dp_meta_rootbp = *bp;
193 rrw_init(&dp->dp_config_rwlock, B_TRUE);
194 txg_init(dp, txg);
196 txg_list_create(&dp->dp_dirty_datasets, spa,
197 offsetof(dsl_dataset_t, ds_dirty_link));
198 txg_list_create(&dp->dp_dirty_zilogs, spa,
199 offsetof(zilog_t, zl_dirty_link));
200 txg_list_create(&dp->dp_dirty_dirs, spa,
201 offsetof(dsl_dir_t, dd_dirty_link));
202 txg_list_create(&dp->dp_sync_tasks, spa,
203 offsetof(dsl_sync_task_t, dst_node));
204 txg_list_create(&dp->dp_early_sync_tasks, spa,
205 offsetof(dsl_sync_task_t, dst_node));
207 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
208 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
209 TASKQ_THREADS_CPU_PCT);
211 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
212 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
213 zfs_zil_clean_taskq_minalloc,
214 zfs_zil_clean_taskq_maxalloc,
215 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
217 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
218 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
220 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
221 1, 4, 0);
223 return (dp);
227 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
229 int err;
230 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
232 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
233 &dp->dp_meta_objset);
234 if (err != 0)
235 dsl_pool_close(dp);
236 else
237 *dpp = dp;
239 return (err);
243 dsl_pool_open(dsl_pool_t *dp)
245 int err;
246 dsl_dir_t *dd;
247 dsl_dataset_t *ds;
248 uint64_t obj;
250 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
251 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
252 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
253 &dp->dp_root_dir_obj);
254 if (err)
255 goto out;
257 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
258 NULL, dp, &dp->dp_root_dir);
259 if (err)
260 goto out;
262 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
263 if (err)
264 goto out;
266 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
267 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
268 if (err)
269 goto out;
270 err = dsl_dataset_hold_obj(dp,
271 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
272 if (err == 0) {
273 err = dsl_dataset_hold_obj(dp,
274 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
275 &dp->dp_origin_snap);
276 dsl_dataset_rele(ds, FTAG);
278 dsl_dir_rele(dd, dp);
279 if (err)
280 goto out;
283 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
284 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
285 &dp->dp_free_dir);
286 if (err)
287 goto out;
289 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
290 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
291 if (err)
292 goto out;
293 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
294 dp->dp_meta_objset, obj));
297 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
298 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
299 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
300 if (err == 0) {
301 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
302 dp->dp_meta_objset, obj));
303 } else if (err == ENOENT) {
305 * We might not have created the remap bpobj yet.
307 err = 0;
308 } else {
309 goto out;
314 * Note: errors ignored, because the these special dirs, used for
315 * space accounting, are only created on demand.
317 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
318 &dp->dp_leak_dir);
320 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
321 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
322 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
323 &dp->dp_bptree_obj);
324 if (err != 0)
325 goto out;
328 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
329 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
330 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
331 &dp->dp_empty_bpobj);
332 if (err != 0)
333 goto out;
336 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
337 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
338 &dp->dp_tmp_userrefs_obj);
339 if (err == ENOENT)
340 err = 0;
341 if (err)
342 goto out;
344 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
346 out:
347 rrw_exit(&dp->dp_config_rwlock, FTAG);
348 return (err);
351 void
352 dsl_pool_close(dsl_pool_t *dp)
355 * Drop our references from dsl_pool_open().
357 * Since we held the origin_snap from "syncing" context (which
358 * includes pool-opening context), it actually only got a "ref"
359 * and not a hold, so just drop that here.
361 if (dp->dp_origin_snap != NULL)
362 dsl_dataset_rele(dp->dp_origin_snap, dp);
363 if (dp->dp_mos_dir != NULL)
364 dsl_dir_rele(dp->dp_mos_dir, dp);
365 if (dp->dp_free_dir != NULL)
366 dsl_dir_rele(dp->dp_free_dir, dp);
367 if (dp->dp_leak_dir != NULL)
368 dsl_dir_rele(dp->dp_leak_dir, dp);
369 if (dp->dp_root_dir != NULL)
370 dsl_dir_rele(dp->dp_root_dir, dp);
372 bpobj_close(&dp->dp_free_bpobj);
373 bpobj_close(&dp->dp_obsolete_bpobj);
375 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
376 if (dp->dp_meta_objset != NULL)
377 dmu_objset_evict(dp->dp_meta_objset);
379 txg_list_destroy(&dp->dp_dirty_datasets);
380 txg_list_destroy(&dp->dp_dirty_zilogs);
381 txg_list_destroy(&dp->dp_sync_tasks);
382 txg_list_destroy(&dp->dp_early_sync_tasks);
383 txg_list_destroy(&dp->dp_dirty_dirs);
385 taskq_destroy(dp->dp_zil_clean_taskq);
386 taskq_destroy(dp->dp_sync_taskq);
389 * We can't set retry to TRUE since we're explicitly specifying
390 * a spa to flush. This is good enough; any missed buffers for
391 * this spa won't cause trouble, and they'll eventually fall
392 * out of the ARC just like any other unused buffer.
394 arc_flush(dp->dp_spa, FALSE);
396 txg_fini(dp);
397 dsl_scan_fini(dp);
398 dmu_buf_user_evict_wait();
400 rrw_destroy(&dp->dp_config_rwlock);
401 mutex_destroy(&dp->dp_lock);
402 taskq_destroy(dp->dp_vnrele_taskq);
403 if (dp->dp_blkstats != NULL)
404 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
405 kmem_free(dp, sizeof (dsl_pool_t));
408 void
409 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
411 uint64_t obj;
413 * Currently, we only create the obsolete_bpobj where there are
414 * indirect vdevs with referenced mappings.
416 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
417 /* create and open the obsolete_bpobj */
418 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
419 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
420 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
421 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
422 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
425 void
426 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
428 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
429 VERIFY0(zap_remove(dp->dp_meta_objset,
430 DMU_POOL_DIRECTORY_OBJECT,
431 DMU_POOL_OBSOLETE_BPOBJ, tx));
432 bpobj_free(dp->dp_meta_objset,
433 dp->dp_obsolete_bpobj.bpo_object, tx);
434 bpobj_close(&dp->dp_obsolete_bpobj);
437 dsl_pool_t *
438 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
440 int err;
441 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
442 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
443 dsl_dataset_t *ds;
444 uint64_t obj;
446 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
448 /* create and open the MOS (meta-objset) */
449 dp->dp_meta_objset = dmu_objset_create_impl(spa,
450 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
452 /* create the pool directory */
453 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
454 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
455 ASSERT0(err);
457 /* Initialize scan structures */
458 VERIFY0(dsl_scan_init(dp, txg));
460 /* create and open the root dir */
461 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
462 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
463 NULL, dp, &dp->dp_root_dir));
465 /* create and open the meta-objset dir */
466 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
467 VERIFY0(dsl_pool_open_special_dir(dp,
468 MOS_DIR_NAME, &dp->dp_mos_dir));
470 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
471 /* create and open the free dir */
472 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
473 FREE_DIR_NAME, tx);
474 VERIFY0(dsl_pool_open_special_dir(dp,
475 FREE_DIR_NAME, &dp->dp_free_dir));
477 /* create and open the free_bplist */
478 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
479 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
480 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
481 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
482 dp->dp_meta_objset, obj));
485 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
486 dsl_pool_create_origin(dp, tx);
488 /* create the root dataset */
489 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
491 /* create the root objset */
492 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
493 #ifdef _KERNEL
495 objset_t *os;
496 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
497 os = dmu_objset_create_impl(dp->dp_spa, ds,
498 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
499 rrw_exit(&ds->ds_bp_rwlock, FTAG);
500 zfs_create_fs(os, kcred, zplprops, tx);
502 #endif
503 dsl_dataset_rele(ds, FTAG);
505 dmu_tx_commit(tx);
507 rrw_exit(&dp->dp_config_rwlock, FTAG);
509 return (dp);
513 * Account for the meta-objset space in its placeholder dsl_dir.
515 void
516 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
517 int64_t used, int64_t comp, int64_t uncomp)
519 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
520 mutex_enter(&dp->dp_lock);
521 dp->dp_mos_used_delta += used;
522 dp->dp_mos_compressed_delta += comp;
523 dp->dp_mos_uncompressed_delta += uncomp;
524 mutex_exit(&dp->dp_lock);
527 static void
528 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
530 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
531 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
532 VERIFY0(zio_wait(zio));
533 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
534 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
537 static void
538 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
540 ASSERT(MUTEX_HELD(&dp->dp_lock));
542 if (delta < 0)
543 ASSERT3U(-delta, <=, dp->dp_dirty_total);
545 dp->dp_dirty_total += delta;
548 * Note: we signal even when increasing dp_dirty_total.
549 * This ensures forward progress -- each thread wakes the next waiter.
551 if (dp->dp_dirty_total < zfs_dirty_data_max)
552 cv_signal(&dp->dp_spaceavail_cv);
555 static boolean_t
556 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
558 spa_t *spa = dp->dp_spa;
559 vdev_t *rvd = spa->spa_root_vdev;
561 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
562 vdev_t *vd = rvd->vdev_child[c];
563 txg_list_t *tl = &vd->vdev_ms_list;
564 metaslab_t *ms;
566 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
567 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
568 VERIFY(range_tree_is_empty(ms->ms_freeing));
569 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
573 return (B_TRUE);
576 void
577 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
579 zio_t *zio;
580 dmu_tx_t *tx;
581 dsl_dir_t *dd;
582 dsl_dataset_t *ds;
583 objset_t *mos = dp->dp_meta_objset;
584 list_t synced_datasets;
586 list_create(&synced_datasets, sizeof (dsl_dataset_t),
587 offsetof(dsl_dataset_t, ds_synced_link));
589 tx = dmu_tx_create_assigned(dp, txg);
592 * Run all early sync tasks before writing out any dirty blocks.
593 * For more info on early sync tasks see block comment in
594 * dsl_early_sync_task().
596 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
597 dsl_sync_task_t *dst;
599 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
600 while ((dst =
601 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
602 ASSERT(dsl_early_sync_task_verify(dp, txg));
603 dsl_sync_task_sync(dst, tx);
605 ASSERT(dsl_early_sync_task_verify(dp, txg));
609 * Write out all dirty blocks of dirty datasets.
611 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
612 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
614 * We must not sync any non-MOS datasets twice, because
615 * we may have taken a snapshot of them. However, we
616 * may sync newly-created datasets on pass 2.
618 ASSERT(!list_link_active(&ds->ds_synced_link));
619 list_insert_tail(&synced_datasets, ds);
620 dsl_dataset_sync(ds, zio, tx);
622 VERIFY0(zio_wait(zio));
625 * We have written all of the accounted dirty data, so our
626 * dp_space_towrite should now be zero. However, some seldom-used
627 * code paths do not adhere to this (e.g. dbuf_undirty(), also
628 * rounding error in dbuf_write_physdone).
629 * Shore up the accounting of any dirtied space now.
631 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
634 * Update the long range free counter after
635 * we're done syncing user data
637 mutex_enter(&dp->dp_lock);
638 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
639 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
640 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
641 mutex_exit(&dp->dp_lock);
644 * After the data blocks have been written (ensured by the zio_wait()
645 * above), update the user/group space accounting. This happens
646 * in tasks dispatched to dp_sync_taskq, so wait for them before
647 * continuing.
649 for (ds = list_head(&synced_datasets); ds != NULL;
650 ds = list_next(&synced_datasets, ds)) {
651 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
653 taskq_wait(dp->dp_sync_taskq);
656 * Sync the datasets again to push out the changes due to
657 * userspace updates. This must be done before we process the
658 * sync tasks, so that any snapshots will have the correct
659 * user accounting information (and we won't get confused
660 * about which blocks are part of the snapshot).
662 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
663 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
664 ASSERT(list_link_active(&ds->ds_synced_link));
665 dmu_buf_rele(ds->ds_dbuf, ds);
666 dsl_dataset_sync(ds, zio, tx);
668 VERIFY0(zio_wait(zio));
671 * Now that the datasets have been completely synced, we can
672 * clean up our in-memory structures accumulated while syncing:
674 * - move dead blocks from the pending deadlist to the on-disk deadlist
675 * - release hold from dsl_dataset_dirty()
677 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
678 dsl_dataset_sync_done(ds, tx);
680 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
681 dsl_dir_sync(dd, tx);
685 * The MOS's space is accounted for in the pool/$MOS
686 * (dp_mos_dir). We can't modify the mos while we're syncing
687 * it, so we remember the deltas and apply them here.
689 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
690 dp->dp_mos_uncompressed_delta != 0) {
691 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
692 dp->dp_mos_used_delta,
693 dp->dp_mos_compressed_delta,
694 dp->dp_mos_uncompressed_delta, tx);
695 dp->dp_mos_used_delta = 0;
696 dp->dp_mos_compressed_delta = 0;
697 dp->dp_mos_uncompressed_delta = 0;
700 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
701 dsl_pool_sync_mos(dp, tx);
705 * If we modify a dataset in the same txg that we want to destroy it,
706 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
707 * dsl_dir_destroy_check() will fail if there are unexpected holds.
708 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
709 * and clearing the hold on it) before we process the sync_tasks.
710 * The MOS data dirtied by the sync_tasks will be synced on the next
711 * pass.
713 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
714 dsl_sync_task_t *dst;
716 * No more sync tasks should have been added while we
717 * were syncing.
719 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
720 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
721 dsl_sync_task_sync(dst, tx);
724 dmu_tx_commit(tx);
726 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
729 void
730 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
732 zilog_t *zilog;
734 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
735 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
737 * We don't remove the zilog from the dp_dirty_zilogs
738 * list until after we've cleaned it. This ensures that
739 * callers of zilog_is_dirty() receive an accurate
740 * answer when they are racing with the spa sync thread.
742 zil_clean(zilog, txg);
743 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
744 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
745 dmu_buf_rele(ds->ds_dbuf, zilog);
747 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
751 * TRUE if the current thread is the tx_sync_thread or if we
752 * are being called from SPA context during pool initialization.
755 dsl_pool_sync_context(dsl_pool_t *dp)
757 return (curthread == dp->dp_tx.tx_sync_thread ||
758 spa_is_initializing(dp->dp_spa) ||
759 taskq_member(dp->dp_sync_taskq, curthread));
763 * This function returns the amount of allocatable space in the pool
764 * minus whatever space is currently reserved by ZFS for specific
765 * purposes. Specifically:
767 * 1] Any reserved SLOP space
768 * 2] Any space used by the checkpoint
769 * 3] Any space used for deferred frees
771 * The latter 2 are especially important because they are needed to
772 * rectify the SPA's and DMU's different understanding of how much space
773 * is used. Now the DMU is aware of that extra space tracked by the SPA
774 * without having to maintain a separate special dir (e.g similar to
775 * $MOS, $FREEING, and $LEAKED).
777 * Note: By deferred frees here, we mean the frees that were deferred
778 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
779 * segments placed in ms_defer trees during metaslab_sync_done().
781 uint64_t
782 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
784 spa_t *spa = dp->dp_spa;
785 uint64_t space, resv, adjustedsize;
786 uint64_t spa_deferred_frees =
787 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
789 space = spa_get_dspace(spa)
790 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
791 resv = spa_get_slop_space(spa);
793 switch (slop_policy) {
794 case ZFS_SPACE_CHECK_NORMAL:
795 break;
796 case ZFS_SPACE_CHECK_RESERVED:
797 resv >>= 1;
798 break;
799 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
800 resv >>= 2;
801 break;
802 case ZFS_SPACE_CHECK_NONE:
803 resv = 0;
804 break;
805 default:
806 panic("invalid slop policy value: %d", slop_policy);
807 break;
809 adjustedsize = (space >= resv) ? (space - resv) : 0;
811 return (adjustedsize);
814 uint64_t
815 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
817 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
818 uint64_t deferred =
819 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
820 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
821 return (quota);
824 boolean_t
825 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
827 uint64_t delay_min_bytes =
828 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
829 uint64_t dirty_min_bytes =
830 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
831 boolean_t rv;
833 mutex_enter(&dp->dp_lock);
834 if (dp->dp_dirty_total > dirty_min_bytes)
835 txg_kick(dp);
836 rv = (dp->dp_dirty_total > delay_min_bytes);
837 mutex_exit(&dp->dp_lock);
838 return (rv);
841 void
842 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
844 if (space > 0) {
845 mutex_enter(&dp->dp_lock);
846 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
847 dsl_pool_dirty_delta(dp, space);
848 mutex_exit(&dp->dp_lock);
852 void
853 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
855 ASSERT3S(space, >=, 0);
856 if (space == 0)
857 return;
858 mutex_enter(&dp->dp_lock);
859 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
860 /* XXX writing something we didn't dirty? */
861 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
863 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
864 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
865 ASSERT3U(dp->dp_dirty_total, >=, space);
866 dsl_pool_dirty_delta(dp, -space);
867 mutex_exit(&dp->dp_lock);
870 /* ARGSUSED */
871 static int
872 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
874 dmu_tx_t *tx = arg;
875 dsl_dataset_t *ds, *prev = NULL;
876 int err;
878 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
879 if (err)
880 return (err);
882 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
883 err = dsl_dataset_hold_obj(dp,
884 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
885 if (err) {
886 dsl_dataset_rele(ds, FTAG);
887 return (err);
890 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
891 break;
892 dsl_dataset_rele(ds, FTAG);
893 ds = prev;
894 prev = NULL;
897 if (prev == NULL) {
898 prev = dp->dp_origin_snap;
901 * The $ORIGIN can't have any data, or the accounting
902 * will be wrong.
904 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
905 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
906 rrw_exit(&ds->ds_bp_rwlock, FTAG);
908 /* The origin doesn't get attached to itself */
909 if (ds->ds_object == prev->ds_object) {
910 dsl_dataset_rele(ds, FTAG);
911 return (0);
914 dmu_buf_will_dirty(ds->ds_dbuf, tx);
915 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
916 dsl_dataset_phys(ds)->ds_prev_snap_txg =
917 dsl_dataset_phys(prev)->ds_creation_txg;
919 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
920 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
922 dmu_buf_will_dirty(prev->ds_dbuf, tx);
923 dsl_dataset_phys(prev)->ds_num_children++;
925 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
926 ASSERT(ds->ds_prev == NULL);
927 VERIFY0(dsl_dataset_hold_obj(dp,
928 dsl_dataset_phys(ds)->ds_prev_snap_obj,
929 ds, &ds->ds_prev));
933 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
934 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
936 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
937 dmu_buf_will_dirty(prev->ds_dbuf, tx);
938 dsl_dataset_phys(prev)->ds_next_clones_obj =
939 zap_create(dp->dp_meta_objset,
940 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
942 VERIFY0(zap_add_int(dp->dp_meta_objset,
943 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
945 dsl_dataset_rele(ds, FTAG);
946 if (prev != dp->dp_origin_snap)
947 dsl_dataset_rele(prev, FTAG);
948 return (0);
951 void
952 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
954 ASSERT(dmu_tx_is_syncing(tx));
955 ASSERT(dp->dp_origin_snap != NULL);
957 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
958 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
961 /* ARGSUSED */
962 static int
963 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
965 dmu_tx_t *tx = arg;
966 objset_t *mos = dp->dp_meta_objset;
968 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
969 dsl_dataset_t *origin;
971 VERIFY0(dsl_dataset_hold_obj(dp,
972 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
974 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
975 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
976 dsl_dir_phys(origin->ds_dir)->dd_clones =
977 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
978 0, tx);
981 VERIFY0(zap_add_int(dp->dp_meta_objset,
982 dsl_dir_phys(origin->ds_dir)->dd_clones,
983 ds->ds_object, tx));
985 dsl_dataset_rele(origin, FTAG);
987 return (0);
990 void
991 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
993 ASSERT(dmu_tx_is_syncing(tx));
994 uint64_t obj;
996 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
997 VERIFY0(dsl_pool_open_special_dir(dp,
998 FREE_DIR_NAME, &dp->dp_free_dir));
1001 * We can't use bpobj_alloc(), because spa_version() still
1002 * returns the old version, and we need a new-version bpobj with
1003 * subobj support. So call dmu_object_alloc() directly.
1005 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1006 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1007 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1008 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1009 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1011 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1012 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1015 void
1016 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1018 uint64_t dsobj;
1019 dsl_dataset_t *ds;
1021 ASSERT(dmu_tx_is_syncing(tx));
1022 ASSERT(dp->dp_origin_snap == NULL);
1023 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1025 /* create the origin dir, ds, & snap-ds */
1026 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1027 NULL, 0, kcred, tx);
1028 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1029 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1030 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1031 dp, &dp->dp_origin_snap));
1032 dsl_dataset_rele(ds, FTAG);
1035 taskq_t *
1036 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
1038 return (dp->dp_vnrele_taskq);
1042 * Walk through the pool-wide zap object of temporary snapshot user holds
1043 * and release them.
1045 void
1046 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1048 zap_attribute_t za;
1049 zap_cursor_t zc;
1050 objset_t *mos = dp->dp_meta_objset;
1051 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1052 nvlist_t *holds;
1054 if (zapobj == 0)
1055 return;
1056 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1058 holds = fnvlist_alloc();
1060 for (zap_cursor_init(&zc, mos, zapobj);
1061 zap_cursor_retrieve(&zc, &za) == 0;
1062 zap_cursor_advance(&zc)) {
1063 char *htag;
1064 nvlist_t *tags;
1066 htag = strchr(za.za_name, '-');
1067 *htag = '\0';
1068 ++htag;
1069 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1070 tags = fnvlist_alloc();
1071 fnvlist_add_boolean(tags, htag);
1072 fnvlist_add_nvlist(holds, za.za_name, tags);
1073 fnvlist_free(tags);
1074 } else {
1075 fnvlist_add_boolean(tags, htag);
1078 dsl_dataset_user_release_tmp(dp, holds);
1079 fnvlist_free(holds);
1080 zap_cursor_fini(&zc);
1084 * Create the pool-wide zap object for storing temporary snapshot holds.
1086 void
1087 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1089 objset_t *mos = dp->dp_meta_objset;
1091 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1092 ASSERT(dmu_tx_is_syncing(tx));
1094 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1095 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1098 static int
1099 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1100 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1102 objset_t *mos = dp->dp_meta_objset;
1103 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1104 char *name;
1105 int error;
1107 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1108 ASSERT(dmu_tx_is_syncing(tx));
1111 * If the pool was created prior to SPA_VERSION_USERREFS, the
1112 * zap object for temporary holds might not exist yet.
1114 if (zapobj == 0) {
1115 if (holding) {
1116 dsl_pool_user_hold_create_obj(dp, tx);
1117 zapobj = dp->dp_tmp_userrefs_obj;
1118 } else {
1119 return (SET_ERROR(ENOENT));
1123 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1124 if (holding)
1125 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1126 else
1127 error = zap_remove(mos, zapobj, name, tx);
1128 strfree(name);
1130 return (error);
1134 * Add a temporary hold for the given dataset object and tag.
1137 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1138 uint64_t now, dmu_tx_t *tx)
1140 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1144 * Release a temporary hold for the given dataset object and tag.
1147 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1148 dmu_tx_t *tx)
1150 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, (uintptr_t)NULL,
1151 tx, B_FALSE));
1155 * DSL Pool Configuration Lock
1157 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1158 * creation / destruction / rename / property setting). It must be held for
1159 * read to hold a dataset or dsl_dir. I.e. you must call
1160 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1161 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1162 * must be held continuously until all datasets and dsl_dirs are released.
1164 * The only exception to this rule is that if a "long hold" is placed on
1165 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1166 * is still held. The long hold will prevent the dataset from being
1167 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1168 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1169 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1171 * Legitimate long-holders (including owners) should be long-running, cancelable
1172 * tasks that should cause "zfs destroy" to fail. This includes DMU
1173 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1174 * "zfs send", and "zfs diff". There are several other long-holders whose
1175 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1177 * The usual formula for long-holding would be:
1178 * dsl_pool_hold()
1179 * dsl_dataset_hold()
1180 * ... perform checks ...
1181 * dsl_dataset_long_hold()
1182 * dsl_pool_rele()
1183 * ... perform long-running task ...
1184 * dsl_dataset_long_rele()
1185 * dsl_dataset_rele()
1187 * Note that when the long hold is released, the dataset is still held but
1188 * the pool is not held. The dataset may change arbitrarily during this time
1189 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1190 * dataset except release it.
1192 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1193 * or modifying operations.
1195 * Modifying operations should generally use dsl_sync_task(). The synctask
1196 * infrastructure enforces proper locking strategy with respect to the
1197 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1199 * Read-only operations will manually hold the pool, then the dataset, obtain
1200 * information from the dataset, then release the pool and dataset.
1201 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1202 * hold/rele.
1206 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1208 spa_t *spa;
1209 int error;
1211 error = spa_open(name, &spa, tag);
1212 if (error == 0) {
1213 *dp = spa_get_dsl(spa);
1214 dsl_pool_config_enter(*dp, tag);
1216 return (error);
1219 void
1220 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1222 dsl_pool_config_exit(dp, tag);
1223 spa_close(dp->dp_spa, tag);
1226 void
1227 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1230 * We use a "reentrant" reader-writer lock, but not reentrantly.
1232 * The rrwlock can (with the track_all flag) track all reading threads,
1233 * which is very useful for debugging which code path failed to release
1234 * the lock, and for verifying that the *current* thread does hold
1235 * the lock.
1237 * (Unlike a rwlock, which knows that N threads hold it for
1238 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1239 * if any thread holds it for read, even if this thread doesn't).
1241 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1242 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1245 void
1246 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1248 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1249 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1252 void
1253 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1255 rrw_exit(&dp->dp_config_rwlock, tag);
1258 boolean_t
1259 dsl_pool_config_held(dsl_pool_t *dp)
1261 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1264 boolean_t
1265 dsl_pool_config_held_writer(dsl_pool_t *dp)
1267 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));