Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / arc.c
blob8fa98b14f091a1c8e5db8731fbc4a5dde0ed5ba7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
30 * DVA-based Adjustable Replacement Cache
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
75 * The locking model:
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
102 * Note that the majority of the performance stats are manipulated
103 * with atomic operations.
105 * The L2ARC uses the l2ad_mtx on each vdev for the following:
107 * - L2ARC buflist creation
108 * - L2ARC buflist eviction
109 * - L2ARC write completion, which walks L2ARC buflists
110 * - ARC header destruction, as it removes from L2ARC buflists
111 * - ARC header release, as it removes from L2ARC buflists
115 * ARC operation:
117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118 * This structure can point either to a block that is still in the cache or to
119 * one that is only accessible in an L2 ARC device, or it can provide
120 * information about a block that was recently evicted. If a block is
121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122 * information to retrieve it from the L2ARC device. This information is
123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124 * that is in this state cannot access the data directly.
126 * Blocks that are actively being referenced or have not been evicted
127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128 * the arc_buf_hdr_t that will point to the data block in memory. A block can
129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134 * ability to store the physical data (b_pabd) associated with the DVA of the
135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136 * it will match its on-disk compression characteristics. This behavior can be
137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138 * compressed ARC functionality is disabled, the b_pabd will point to an
139 * uncompressed version of the on-disk data.
141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144 * consumer. The ARC will provide references to this data and will keep it
145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146 * data block and will evict any arc_buf_t that is no longer referenced. The
147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148 * "overhead_size" kstat.
150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151 * compressed form. The typical case is that consumers will want uncompressed
152 * data, and when that happens a new data buffer is allocated where the data is
153 * decompressed for them to use. Currently the only consumer who wants
154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156 * with the arc_buf_hdr_t.
158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159 * first one is owned by a compressed send consumer (and therefore references
160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161 * used by any other consumer (and has its own uncompressed copy of the data
162 * buffer).
164 * arc_buf_hdr_t
165 * +-----------+
166 * | fields |
167 * | common to |
168 * | L1- and |
169 * | L2ARC |
170 * +-----------+
171 * | l2arc_buf_hdr_t
172 * | |
173 * +-----------+
174 * | l1arc_buf_hdr_t
175 * | | arc_buf_t
176 * | b_buf +------------>+-----------+ arc_buf_t
177 * | b_pabd +-+ |b_next +---->+-----------+
178 * +-----------+ | |-----------| |b_next +-->NULL
179 * | |b_comp = T | +-----------+
180 * | |b_data +-+ |b_comp = F |
181 * | +-----------+ | |b_data +-+
182 * +->+------+ | +-----------+ |
183 * compressed | | | |
184 * data | |<--------------+ | uncompressed
185 * +------+ compressed, | data
186 * shared +-->+------+
187 * data | |
188 * | |
189 * +------+
191 * When a consumer reads a block, the ARC must first look to see if the
192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193 * arc_buf_t and either copies uncompressed data into a new data buffer from an
194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196 * hdr is compressed and the desired compression characteristics of the
197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200 * be anywhere in the hdr's list.
202 * The diagram below shows an example of an uncompressed ARC hdr that is
203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204 * the last element in the buf list):
206 * arc_buf_hdr_t
207 * +-----------+
208 * | |
209 * | |
210 * | |
211 * +-----------+
212 * l2arc_buf_hdr_t| |
213 * | |
214 * +-----------+
215 * l1arc_buf_hdr_t| |
216 * | | arc_buf_t (shared)
217 * | b_buf +------------>+---------+ arc_buf_t
218 * | | |b_next +---->+---------+
219 * | b_pabd +-+ |---------| |b_next +-->NULL
220 * +-----------+ | | | +---------+
221 * | |b_data +-+ | |
222 * | +---------+ | |b_data +-+
223 * +->+------+ | +---------+ |
224 * | | | |
225 * uncompressed | | | |
226 * data +------+ | |
227 * ^ +->+------+ |
228 * | uncompressed | | |
229 * | data | | |
230 * | +------+ |
231 * +---------------------------------+
233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234 * since the physical block is about to be rewritten. The new data contents
235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236 * it may compress the data before writing it to disk. The ARC will be called
237 * with the transformed data and will bcopy the transformed on-disk block into
238 * a newly allocated b_pabd. Writes are always done into buffers which have
239 * either been loaned (and hence are new and don't have other readers) or
240 * buffers which have been released (and hence have their own hdr, if there
241 * were originally other readers of the buf's original hdr). This ensures that
242 * the ARC only needs to update a single buf and its hdr after a write occurs.
244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246 * that when compressed ARC is enabled that the L2ARC blocks are identical
247 * to the on-disk block in the main data pool. This provides a significant
248 * advantage since the ARC can leverage the bp's checksum when reading from the
249 * L2ARC to determine if the contents are valid. However, if the compressed
250 * ARC is disabled, then the L2ARC's block must be transformed to look
251 * like the physical block in the main data pool before comparing the
252 * checksum and determining its validity.
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <sys/zthr.h>
278 #include <zfs_fletcher.h>
279 #include <sys/aggsum.h>
280 #include <sys/cityhash.h>
282 #ifndef _KERNEL
283 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
284 boolean_t arc_watch = B_FALSE;
285 int arc_procfd;
286 #endif
289 * This thread's job is to keep enough free memory in the system, by
290 * calling arc_kmem_reap_now() plus arc_shrink(), which improves
291 * arc_available_memory().
293 static zthr_t *arc_reap_zthr;
296 * This thread's job is to keep arc_size under arc_c, by calling
297 * arc_adjust(), which improves arc_is_overflowing().
299 static zthr_t *arc_adjust_zthr;
301 static kmutex_t arc_adjust_lock;
302 static kcondvar_t arc_adjust_waiters_cv;
303 static boolean_t arc_adjust_needed = B_FALSE;
305 uint_t arc_reduce_dnlc_percent = 3;
308 * The number of headers to evict in arc_evict_state_impl() before
309 * dropping the sublist lock and evicting from another sublist. A lower
310 * value means we're more likely to evict the "correct" header (i.e. the
311 * oldest header in the arc state), but comes with higher overhead
312 * (i.e. more invocations of arc_evict_state_impl()).
314 int zfs_arc_evict_batch_limit = 10;
316 /* number of seconds before growing cache again */
317 int arc_grow_retry = 60;
320 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will
321 * be converted to ticks, so with the default hz=100, a setting of 15 ms
322 * will actually wait 2 ticks, or 20ms.
324 int arc_kmem_cache_reap_retry_ms = 1000;
326 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
327 int zfs_arc_overflow_shift = 8;
329 /* shift of arc_c for calculating both min and max arc_p */
330 int arc_p_min_shift = 4;
332 /* log2(fraction of arc to reclaim) */
333 int arc_shrink_shift = 7;
336 * log2(fraction of ARC which must be free to allow growing).
337 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
338 * when reading a new block into the ARC, we will evict an equal-sized block
339 * from the ARC.
341 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
342 * we will still not allow it to grow.
344 int arc_no_grow_shift = 5;
348 * minimum lifespan of a prefetch block in clock ticks
349 * (initialized in arc_init())
351 static int arc_min_prefetch_lifespan;
354 * If this percent of memory is free, don't throttle.
356 int arc_lotsfree_percent = 10;
358 static boolean_t arc_initialized;
361 * The arc has filled available memory and has now warmed up.
363 static boolean_t arc_warm;
366 * log2 fraction of the zio arena to keep free.
368 int arc_zio_arena_free_shift = 2;
371 * These tunables are for performance analysis.
373 uint64_t zfs_arc_max;
374 uint64_t zfs_arc_min;
375 uint64_t zfs_arc_meta_limit = 0;
376 uint64_t zfs_arc_meta_min = 0;
377 int zfs_arc_grow_retry = 0;
378 int zfs_arc_shrink_shift = 0;
379 int zfs_arc_p_min_shift = 0;
380 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
383 * ARC dirty data constraints for arc_tempreserve_space() throttle
385 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
386 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
387 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
389 boolean_t zfs_compressed_arc_enabled = B_TRUE;
392 * Note that buffers can be in one of 6 states:
393 * ARC_anon - anonymous (discussed below)
394 * ARC_mru - recently used, currently cached
395 * ARC_mru_ghost - recentely used, no longer in cache
396 * ARC_mfu - frequently used, currently cached
397 * ARC_mfu_ghost - frequently used, no longer in cache
398 * ARC_l2c_only - exists in L2ARC but not other states
399 * When there are no active references to the buffer, they are
400 * are linked onto a list in one of these arc states. These are
401 * the only buffers that can be evicted or deleted. Within each
402 * state there are multiple lists, one for meta-data and one for
403 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
404 * etc.) is tracked separately so that it can be managed more
405 * explicitly: favored over data, limited explicitly.
407 * Anonymous buffers are buffers that are not associated with
408 * a DVA. These are buffers that hold dirty block copies
409 * before they are written to stable storage. By definition,
410 * they are "ref'd" and are considered part of arc_mru
411 * that cannot be freed. Generally, they will aquire a DVA
412 * as they are written and migrate onto the arc_mru list.
414 * The ARC_l2c_only state is for buffers that are in the second
415 * level ARC but no longer in any of the ARC_m* lists. The second
416 * level ARC itself may also contain buffers that are in any of
417 * the ARC_m* states - meaning that a buffer can exist in two
418 * places. The reason for the ARC_l2c_only state is to keep the
419 * buffer header in the hash table, so that reads that hit the
420 * second level ARC benefit from these fast lookups.
423 typedef struct arc_state {
425 * list of evictable buffers
427 multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
429 * total amount of evictable data in this state
431 refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
433 * total amount of data in this state; this includes: evictable,
434 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
436 refcount_t arcs_size;
437 } arc_state_t;
439 /* The 6 states: */
440 static arc_state_t ARC_anon;
441 static arc_state_t ARC_mru;
442 static arc_state_t ARC_mru_ghost;
443 static arc_state_t ARC_mfu;
444 static arc_state_t ARC_mfu_ghost;
445 static arc_state_t ARC_l2c_only;
447 typedef struct arc_stats {
448 kstat_named_t arcstat_hits;
449 kstat_named_t arcstat_misses;
450 kstat_named_t arcstat_demand_data_hits;
451 kstat_named_t arcstat_demand_data_misses;
452 kstat_named_t arcstat_demand_metadata_hits;
453 kstat_named_t arcstat_demand_metadata_misses;
454 kstat_named_t arcstat_prefetch_data_hits;
455 kstat_named_t arcstat_prefetch_data_misses;
456 kstat_named_t arcstat_prefetch_metadata_hits;
457 kstat_named_t arcstat_prefetch_metadata_misses;
458 kstat_named_t arcstat_mru_hits;
459 kstat_named_t arcstat_mru_ghost_hits;
460 kstat_named_t arcstat_mfu_hits;
461 kstat_named_t arcstat_mfu_ghost_hits;
462 kstat_named_t arcstat_deleted;
464 * Number of buffers that could not be evicted because the hash lock
465 * was held by another thread. The lock may not necessarily be held
466 * by something using the same buffer, since hash locks are shared
467 * by multiple buffers.
469 kstat_named_t arcstat_mutex_miss;
471 * Number of buffers skipped because they have I/O in progress, are
472 * indrect prefetch buffers that have not lived long enough, or are
473 * not from the spa we're trying to evict from.
475 kstat_named_t arcstat_evict_skip;
477 * Number of times arc_evict_state() was unable to evict enough
478 * buffers to reach it's target amount.
480 kstat_named_t arcstat_evict_not_enough;
481 kstat_named_t arcstat_evict_l2_cached;
482 kstat_named_t arcstat_evict_l2_eligible;
483 kstat_named_t arcstat_evict_l2_ineligible;
484 kstat_named_t arcstat_evict_l2_skip;
485 kstat_named_t arcstat_hash_elements;
486 kstat_named_t arcstat_hash_elements_max;
487 kstat_named_t arcstat_hash_collisions;
488 kstat_named_t arcstat_hash_chains;
489 kstat_named_t arcstat_hash_chain_max;
490 kstat_named_t arcstat_p;
491 kstat_named_t arcstat_c;
492 kstat_named_t arcstat_c_min;
493 kstat_named_t arcstat_c_max;
494 /* Not updated directly; only synced in arc_kstat_update. */
495 kstat_named_t arcstat_size;
497 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
498 * Note that the compressed bytes may match the uncompressed bytes
499 * if the block is either not compressed or compressed arc is disabled.
501 kstat_named_t arcstat_compressed_size;
503 * Uncompressed size of the data stored in b_pabd. If compressed
504 * arc is disabled then this value will be identical to the stat
505 * above.
507 kstat_named_t arcstat_uncompressed_size;
509 * Number of bytes stored in all the arc_buf_t's. This is classified
510 * as "overhead" since this data is typically short-lived and will
511 * be evicted from the arc when it becomes unreferenced unless the
512 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
513 * values have been set (see comment in dbuf.c for more information).
515 kstat_named_t arcstat_overhead_size;
517 * Number of bytes consumed by internal ARC structures necessary
518 * for tracking purposes; these structures are not actually
519 * backed by ARC buffers. This includes arc_buf_hdr_t structures
520 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
521 * caches), and arc_buf_t structures (allocated via arc_buf_t
522 * cache).
523 * Not updated directly; only synced in arc_kstat_update.
525 kstat_named_t arcstat_hdr_size;
527 * Number of bytes consumed by ARC buffers of type equal to
528 * ARC_BUFC_DATA. This is generally consumed by buffers backing
529 * on disk user data (e.g. plain file contents).
530 * Not updated directly; only synced in arc_kstat_update.
532 kstat_named_t arcstat_data_size;
534 * Number of bytes consumed by ARC buffers of type equal to
535 * ARC_BUFC_METADATA. This is generally consumed by buffers
536 * backing on disk data that is used for internal ZFS
537 * structures (e.g. ZAP, dnode, indirect blocks, etc).
538 * Not updated directly; only synced in arc_kstat_update.
540 kstat_named_t arcstat_metadata_size;
542 * Number of bytes consumed by various buffers and structures
543 * not actually backed with ARC buffers. This includes bonus
544 * buffers (allocated directly via zio_buf_* functions),
545 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
546 * cache), and dnode_t structures (allocated via dnode_t cache).
547 * Not updated directly; only synced in arc_kstat_update.
549 kstat_named_t arcstat_other_size;
551 * Total number of bytes consumed by ARC buffers residing in the
552 * arc_anon state. This includes *all* buffers in the arc_anon
553 * state; e.g. data, metadata, evictable, and unevictable buffers
554 * are all included in this value.
555 * Not updated directly; only synced in arc_kstat_update.
557 kstat_named_t arcstat_anon_size;
559 * Number of bytes consumed by ARC buffers that meet the
560 * following criteria: backing buffers of type ARC_BUFC_DATA,
561 * residing in the arc_anon state, and are eligible for eviction
562 * (e.g. have no outstanding holds on the buffer).
563 * Not updated directly; only synced in arc_kstat_update.
565 kstat_named_t arcstat_anon_evictable_data;
567 * Number of bytes consumed by ARC buffers that meet the
568 * following criteria: backing buffers of type ARC_BUFC_METADATA,
569 * residing in the arc_anon state, and are eligible for eviction
570 * (e.g. have no outstanding holds on the buffer).
571 * Not updated directly; only synced in arc_kstat_update.
573 kstat_named_t arcstat_anon_evictable_metadata;
575 * Total number of bytes consumed by ARC buffers residing in the
576 * arc_mru state. This includes *all* buffers in the arc_mru
577 * state; e.g. data, metadata, evictable, and unevictable buffers
578 * are all included in this value.
579 * Not updated directly; only synced in arc_kstat_update.
581 kstat_named_t arcstat_mru_size;
583 * Number of bytes consumed by ARC buffers that meet the
584 * following criteria: backing buffers of type ARC_BUFC_DATA,
585 * residing in the arc_mru state, and are eligible for eviction
586 * (e.g. have no outstanding holds on the buffer).
587 * Not updated directly; only synced in arc_kstat_update.
589 kstat_named_t arcstat_mru_evictable_data;
591 * Number of bytes consumed by ARC buffers that meet the
592 * following criteria: backing buffers of type ARC_BUFC_METADATA,
593 * residing in the arc_mru state, and are eligible for eviction
594 * (e.g. have no outstanding holds on the buffer).
595 * Not updated directly; only synced in arc_kstat_update.
597 kstat_named_t arcstat_mru_evictable_metadata;
599 * Total number of bytes that *would have been* consumed by ARC
600 * buffers in the arc_mru_ghost state. The key thing to note
601 * here, is the fact that this size doesn't actually indicate
602 * RAM consumption. The ghost lists only consist of headers and
603 * don't actually have ARC buffers linked off of these headers.
604 * Thus, *if* the headers had associated ARC buffers, these
605 * buffers *would have* consumed this number of bytes.
606 * Not updated directly; only synced in arc_kstat_update.
608 kstat_named_t arcstat_mru_ghost_size;
610 * Number of bytes that *would have been* consumed by ARC
611 * buffers that are eligible for eviction, of type
612 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
613 * Not updated directly; only synced in arc_kstat_update.
615 kstat_named_t arcstat_mru_ghost_evictable_data;
617 * Number of bytes that *would have been* consumed by ARC
618 * buffers that are eligible for eviction, of type
619 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
620 * Not updated directly; only synced in arc_kstat_update.
622 kstat_named_t arcstat_mru_ghost_evictable_metadata;
624 * Total number of bytes consumed by ARC buffers residing in the
625 * arc_mfu state. This includes *all* buffers in the arc_mfu
626 * state; e.g. data, metadata, evictable, and unevictable buffers
627 * are all included in this value.
628 * Not updated directly; only synced in arc_kstat_update.
630 kstat_named_t arcstat_mfu_size;
632 * Number of bytes consumed by ARC buffers that are eligible for
633 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
634 * state.
635 * Not updated directly; only synced in arc_kstat_update.
637 kstat_named_t arcstat_mfu_evictable_data;
639 * Number of bytes consumed by ARC buffers that are eligible for
640 * eviction, of type ARC_BUFC_METADATA, and reside in the
641 * arc_mfu state.
642 * Not updated directly; only synced in arc_kstat_update.
644 kstat_named_t arcstat_mfu_evictable_metadata;
646 * Total number of bytes that *would have been* consumed by ARC
647 * buffers in the arc_mfu_ghost state. See the comment above
648 * arcstat_mru_ghost_size for more details.
649 * Not updated directly; only synced in arc_kstat_update.
651 kstat_named_t arcstat_mfu_ghost_size;
653 * Number of bytes that *would have been* consumed by ARC
654 * buffers that are eligible for eviction, of type
655 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
656 * Not updated directly; only synced in arc_kstat_update.
658 kstat_named_t arcstat_mfu_ghost_evictable_data;
660 * Number of bytes that *would have been* consumed by ARC
661 * buffers that are eligible for eviction, of type
662 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
663 * Not updated directly; only synced in arc_kstat_update.
665 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
666 kstat_named_t arcstat_l2_hits;
667 kstat_named_t arcstat_l2_misses;
668 kstat_named_t arcstat_l2_feeds;
669 kstat_named_t arcstat_l2_rw_clash;
670 kstat_named_t arcstat_l2_read_bytes;
671 kstat_named_t arcstat_l2_write_bytes;
672 kstat_named_t arcstat_l2_writes_sent;
673 kstat_named_t arcstat_l2_writes_done;
674 kstat_named_t arcstat_l2_writes_error;
675 kstat_named_t arcstat_l2_writes_lock_retry;
676 kstat_named_t arcstat_l2_evict_lock_retry;
677 kstat_named_t arcstat_l2_evict_reading;
678 kstat_named_t arcstat_l2_evict_l1cached;
679 kstat_named_t arcstat_l2_free_on_write;
680 kstat_named_t arcstat_l2_abort_lowmem;
681 kstat_named_t arcstat_l2_cksum_bad;
682 kstat_named_t arcstat_l2_io_error;
683 kstat_named_t arcstat_l2_lsize;
684 kstat_named_t arcstat_l2_psize;
685 /* Not updated directly; only synced in arc_kstat_update. */
686 kstat_named_t arcstat_l2_hdr_size;
687 kstat_named_t arcstat_memory_throttle_count;
688 /* Not updated directly; only synced in arc_kstat_update. */
689 kstat_named_t arcstat_meta_used;
690 kstat_named_t arcstat_meta_limit;
691 kstat_named_t arcstat_meta_max;
692 kstat_named_t arcstat_meta_min;
693 kstat_named_t arcstat_sync_wait_for_async;
694 kstat_named_t arcstat_demand_hit_predictive_prefetch;
695 } arc_stats_t;
697 static arc_stats_t arc_stats = {
698 { "hits", KSTAT_DATA_UINT64 },
699 { "misses", KSTAT_DATA_UINT64 },
700 { "demand_data_hits", KSTAT_DATA_UINT64 },
701 { "demand_data_misses", KSTAT_DATA_UINT64 },
702 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
703 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
704 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
705 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
706 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
707 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
708 { "mru_hits", KSTAT_DATA_UINT64 },
709 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
710 { "mfu_hits", KSTAT_DATA_UINT64 },
711 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
712 { "deleted", KSTAT_DATA_UINT64 },
713 { "mutex_miss", KSTAT_DATA_UINT64 },
714 { "evict_skip", KSTAT_DATA_UINT64 },
715 { "evict_not_enough", KSTAT_DATA_UINT64 },
716 { "evict_l2_cached", KSTAT_DATA_UINT64 },
717 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
718 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
719 { "evict_l2_skip", KSTAT_DATA_UINT64 },
720 { "hash_elements", KSTAT_DATA_UINT64 },
721 { "hash_elements_max", KSTAT_DATA_UINT64 },
722 { "hash_collisions", KSTAT_DATA_UINT64 },
723 { "hash_chains", KSTAT_DATA_UINT64 },
724 { "hash_chain_max", KSTAT_DATA_UINT64 },
725 { "p", KSTAT_DATA_UINT64 },
726 { "c", KSTAT_DATA_UINT64 },
727 { "c_min", KSTAT_DATA_UINT64 },
728 { "c_max", KSTAT_DATA_UINT64 },
729 { "size", KSTAT_DATA_UINT64 },
730 { "compressed_size", KSTAT_DATA_UINT64 },
731 { "uncompressed_size", KSTAT_DATA_UINT64 },
732 { "overhead_size", KSTAT_DATA_UINT64 },
733 { "hdr_size", KSTAT_DATA_UINT64 },
734 { "data_size", KSTAT_DATA_UINT64 },
735 { "metadata_size", KSTAT_DATA_UINT64 },
736 { "other_size", KSTAT_DATA_UINT64 },
737 { "anon_size", KSTAT_DATA_UINT64 },
738 { "anon_evictable_data", KSTAT_DATA_UINT64 },
739 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
740 { "mru_size", KSTAT_DATA_UINT64 },
741 { "mru_evictable_data", KSTAT_DATA_UINT64 },
742 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
743 { "mru_ghost_size", KSTAT_DATA_UINT64 },
744 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
745 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
746 { "mfu_size", KSTAT_DATA_UINT64 },
747 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
748 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
749 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
750 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
751 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
752 { "l2_hits", KSTAT_DATA_UINT64 },
753 { "l2_misses", KSTAT_DATA_UINT64 },
754 { "l2_feeds", KSTAT_DATA_UINT64 },
755 { "l2_rw_clash", KSTAT_DATA_UINT64 },
756 { "l2_read_bytes", KSTAT_DATA_UINT64 },
757 { "l2_write_bytes", KSTAT_DATA_UINT64 },
758 { "l2_writes_sent", KSTAT_DATA_UINT64 },
759 { "l2_writes_done", KSTAT_DATA_UINT64 },
760 { "l2_writes_error", KSTAT_DATA_UINT64 },
761 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
762 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
763 { "l2_evict_reading", KSTAT_DATA_UINT64 },
764 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
765 { "l2_free_on_write", KSTAT_DATA_UINT64 },
766 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
767 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
768 { "l2_io_error", KSTAT_DATA_UINT64 },
769 { "l2_size", KSTAT_DATA_UINT64 },
770 { "l2_asize", KSTAT_DATA_UINT64 },
771 { "l2_hdr_size", KSTAT_DATA_UINT64 },
772 { "memory_throttle_count", KSTAT_DATA_UINT64 },
773 { "arc_meta_used", KSTAT_DATA_UINT64 },
774 { "arc_meta_limit", KSTAT_DATA_UINT64 },
775 { "arc_meta_max", KSTAT_DATA_UINT64 },
776 { "arc_meta_min", KSTAT_DATA_UINT64 },
777 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
778 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
781 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
783 #define ARCSTAT_INCR(stat, val) \
784 atomic_add_64(&arc_stats.stat.value.ui64, (val))
786 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
787 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
789 #define ARCSTAT_MAX(stat, val) { \
790 uint64_t m; \
791 while ((val) > (m = arc_stats.stat.value.ui64) && \
792 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
793 continue; \
796 #define ARCSTAT_MAXSTAT(stat) \
797 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
800 * We define a macro to allow ARC hits/misses to be easily broken down by
801 * two separate conditions, giving a total of four different subtypes for
802 * each of hits and misses (so eight statistics total).
804 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
805 if (cond1) { \
806 if (cond2) { \
807 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
808 } else { \
809 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
811 } else { \
812 if (cond2) { \
813 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
814 } else { \
815 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
819 kstat_t *arc_ksp;
820 static arc_state_t *arc_anon;
821 static arc_state_t *arc_mru;
822 static arc_state_t *arc_mru_ghost;
823 static arc_state_t *arc_mfu;
824 static arc_state_t *arc_mfu_ghost;
825 static arc_state_t *arc_l2c_only;
828 * There are several ARC variables that are critical to export as kstats --
829 * but we don't want to have to grovel around in the kstat whenever we wish to
830 * manipulate them. For these variables, we therefore define them to be in
831 * terms of the statistic variable. This assures that we are not introducing
832 * the possibility of inconsistency by having shadow copies of the variables,
833 * while still allowing the code to be readable.
835 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
836 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
837 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
838 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
839 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
840 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
841 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
843 /* compressed size of entire arc */
844 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
845 /* uncompressed size of entire arc */
846 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
847 /* number of bytes in the arc from arc_buf_t's */
848 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
851 * There are also some ARC variables that we want to export, but that are
852 * updated so often that having the canonical representation be the statistic
853 * variable causes a performance bottleneck. We want to use aggsum_t's for these
854 * instead, but still be able to export the kstat in the same way as before.
855 * The solution is to always use the aggsum version, except in the kstat update
856 * callback.
858 aggsum_t arc_size;
859 aggsum_t arc_meta_used;
860 aggsum_t astat_data_size;
861 aggsum_t astat_metadata_size;
862 aggsum_t astat_hdr_size;
863 aggsum_t astat_other_size;
864 aggsum_t astat_l2_hdr_size;
866 static int arc_no_grow; /* Don't try to grow cache size */
867 static hrtime_t arc_growtime;
868 static uint64_t arc_tempreserve;
869 static uint64_t arc_loaned_bytes;
871 typedef struct arc_callback arc_callback_t;
873 struct arc_callback {
874 void *acb_private;
875 arc_done_func_t *acb_done;
876 arc_buf_t *acb_buf;
877 boolean_t acb_compressed;
878 zio_t *acb_zio_dummy;
879 arc_callback_t *acb_next;
882 typedef struct arc_write_callback arc_write_callback_t;
884 struct arc_write_callback {
885 void *awcb_private;
886 arc_done_func_t *awcb_ready;
887 arc_done_func_t *awcb_children_ready;
888 arc_done_func_t *awcb_physdone;
889 arc_done_func_t *awcb_done;
890 arc_buf_t *awcb_buf;
894 * ARC buffers are separated into multiple structs as a memory saving measure:
895 * - Common fields struct, always defined, and embedded within it:
896 * - L2-only fields, always allocated but undefined when not in L2ARC
897 * - L1-only fields, only allocated when in L1ARC
899 * Buffer in L1 Buffer only in L2
900 * +------------------------+ +------------------------+
901 * | arc_buf_hdr_t | | arc_buf_hdr_t |
902 * | | | |
903 * | | | |
904 * | | | |
905 * +------------------------+ +------------------------+
906 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
907 * | (undefined if L1-only) | | |
908 * +------------------------+ +------------------------+
909 * | l1arc_buf_hdr_t |
910 * | |
911 * | |
912 * | |
913 * | |
914 * +------------------------+
916 * Because it's possible for the L2ARC to become extremely large, we can wind
917 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
918 * is minimized by only allocating the fields necessary for an L1-cached buffer
919 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
920 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
921 * words in pointers. arc_hdr_realloc() is used to switch a header between
922 * these two allocation states.
924 typedef struct l1arc_buf_hdr {
925 kmutex_t b_freeze_lock;
926 zio_cksum_t *b_freeze_cksum;
927 #ifdef ZFS_DEBUG
929 * Used for debugging with kmem_flags - by allocating and freeing
930 * b_thawed when the buffer is thawed, we get a record of the stack
931 * trace that thawed it.
933 void *b_thawed;
934 #endif
936 arc_buf_t *b_buf;
937 uint32_t b_bufcnt;
938 /* for waiting on writes to complete */
939 kcondvar_t b_cv;
940 uint8_t b_byteswap;
942 /* protected by arc state mutex */
943 arc_state_t *b_state;
944 multilist_node_t b_arc_node;
946 /* updated atomically */
947 clock_t b_arc_access;
949 /* self protecting */
950 refcount_t b_refcnt;
952 arc_callback_t *b_acb;
953 abd_t *b_pabd;
954 } l1arc_buf_hdr_t;
956 typedef struct l2arc_dev l2arc_dev_t;
958 typedef struct l2arc_buf_hdr {
959 /* protected by arc_buf_hdr mutex */
960 l2arc_dev_t *b_dev; /* L2ARC device */
961 uint64_t b_daddr; /* disk address, offset byte */
963 list_node_t b_l2node;
964 } l2arc_buf_hdr_t;
966 struct arc_buf_hdr {
967 /* protected by hash lock */
968 dva_t b_dva;
969 uint64_t b_birth;
971 arc_buf_contents_t b_type;
972 arc_buf_hdr_t *b_hash_next;
973 arc_flags_t b_flags;
976 * This field stores the size of the data buffer after
977 * compression, and is set in the arc's zio completion handlers.
978 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
980 * While the block pointers can store up to 32MB in their psize
981 * field, we can only store up to 32MB minus 512B. This is due
982 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
983 * a field of zeros represents 512B in the bp). We can't use a
984 * bias of 1 since we need to reserve a psize of zero, here, to
985 * represent holes and embedded blocks.
987 * This isn't a problem in practice, since the maximum size of a
988 * buffer is limited to 16MB, so we never need to store 32MB in
989 * this field. Even in the upstream illumos code base, the
990 * maximum size of a buffer is limited to 16MB.
992 uint16_t b_psize;
995 * This field stores the size of the data buffer before
996 * compression, and cannot change once set. It is in units
997 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
999 uint16_t b_lsize; /* immutable */
1000 uint64_t b_spa; /* immutable */
1002 /* L2ARC fields. Undefined when not in L2ARC. */
1003 l2arc_buf_hdr_t b_l2hdr;
1004 /* L1ARC fields. Undefined when in l2arc_only state */
1005 l1arc_buf_hdr_t b_l1hdr;
1008 #define GHOST_STATE(state) \
1009 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
1010 (state) == arc_l2c_only)
1012 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1013 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1014 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1015 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
1016 #define HDR_COMPRESSION_ENABLED(hdr) \
1017 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1019 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
1020 #define HDR_L2_READING(hdr) \
1021 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
1022 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1023 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1024 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1025 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1026 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1028 #define HDR_ISTYPE_METADATA(hdr) \
1029 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1030 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
1032 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1033 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1035 /* For storing compression mode in b_flags */
1036 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
1038 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
1039 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1040 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1041 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1043 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
1044 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1045 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1048 * Other sizes
1051 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1052 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1055 * Hash table routines
1058 #define HT_LOCK_PAD 64
1060 struct ht_lock {
1061 kmutex_t ht_lock;
1062 #ifdef _KERNEL
1063 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1064 #endif
1067 #define BUF_LOCKS 256
1068 typedef struct buf_hash_table {
1069 uint64_t ht_mask;
1070 arc_buf_hdr_t **ht_table;
1071 struct ht_lock ht_locks[BUF_LOCKS];
1072 } buf_hash_table_t;
1074 static buf_hash_table_t buf_hash_table;
1076 #define BUF_HASH_INDEX(spa, dva, birth) \
1077 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1078 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1079 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1080 #define HDR_LOCK(hdr) \
1081 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1083 uint64_t zfs_crc64_table[256];
1086 * Level 2 ARC
1089 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
1090 #define L2ARC_HEADROOM 2 /* num of writes */
1092 * If we discover during ARC scan any buffers to be compressed, we boost
1093 * our headroom for the next scanning cycle by this percentage multiple.
1095 #define L2ARC_HEADROOM_BOOST 200
1096 #define L2ARC_FEED_SECS 1 /* caching interval secs */
1097 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
1099 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
1100 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
1102 /* L2ARC Performance Tunables */
1103 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
1104 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
1105 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
1106 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1107 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
1108 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
1109 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
1110 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
1111 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
1114 * L2ARC Internals
1116 struct l2arc_dev {
1117 vdev_t *l2ad_vdev; /* vdev */
1118 spa_t *l2ad_spa; /* spa */
1119 uint64_t l2ad_hand; /* next write location */
1120 uint64_t l2ad_start; /* first addr on device */
1121 uint64_t l2ad_end; /* last addr on device */
1122 boolean_t l2ad_first; /* first sweep through */
1123 boolean_t l2ad_writing; /* currently writing */
1124 kmutex_t l2ad_mtx; /* lock for buffer list */
1125 list_t l2ad_buflist; /* buffer list */
1126 list_node_t l2ad_node; /* device list node */
1127 refcount_t l2ad_alloc; /* allocated bytes */
1130 static list_t L2ARC_dev_list; /* device list */
1131 static list_t *l2arc_dev_list; /* device list pointer */
1132 static kmutex_t l2arc_dev_mtx; /* device list mutex */
1133 static l2arc_dev_t *l2arc_dev_last; /* last device used */
1134 static list_t L2ARC_free_on_write; /* free after write buf list */
1135 static list_t *l2arc_free_on_write; /* free after write list ptr */
1136 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1137 static uint64_t l2arc_ndev; /* number of devices */
1139 typedef struct l2arc_read_callback {
1140 arc_buf_hdr_t *l2rcb_hdr; /* read header */
1141 blkptr_t l2rcb_bp; /* original blkptr */
1142 zbookmark_phys_t l2rcb_zb; /* original bookmark */
1143 int l2rcb_flags; /* original flags */
1144 abd_t *l2rcb_abd; /* temporary buffer */
1145 } l2arc_read_callback_t;
1147 typedef struct l2arc_write_callback {
1148 l2arc_dev_t *l2wcb_dev; /* device info */
1149 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
1150 } l2arc_write_callback_t;
1152 typedef struct l2arc_data_free {
1153 /* protected by l2arc_free_on_write_mtx */
1154 abd_t *l2df_abd;
1155 size_t l2df_size;
1156 arc_buf_contents_t l2df_type;
1157 list_node_t l2df_list_node;
1158 } l2arc_data_free_t;
1160 static kmutex_t l2arc_feed_thr_lock;
1161 static kcondvar_t l2arc_feed_thr_cv;
1162 static uint8_t l2arc_thread_exit;
1164 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1165 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1166 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1167 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1168 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1169 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1170 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1171 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1172 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1173 static boolean_t arc_is_overflowing();
1174 static void arc_buf_watch(arc_buf_t *);
1176 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1177 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1178 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1179 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1181 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1182 static void l2arc_read_done(zio_t *);
1186 * We use Cityhash for this. It's fast, and has good hash properties without
1187 * requiring any large static buffers.
1189 static uint64_t
1190 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1192 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1195 #define HDR_EMPTY(hdr) \
1196 ((hdr)->b_dva.dva_word[0] == 0 && \
1197 (hdr)->b_dva.dva_word[1] == 0)
1199 #define HDR_EQUAL(spa, dva, birth, hdr) \
1200 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1201 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1202 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1204 static void
1205 buf_discard_identity(arc_buf_hdr_t *hdr)
1207 hdr->b_dva.dva_word[0] = 0;
1208 hdr->b_dva.dva_word[1] = 0;
1209 hdr->b_birth = 0;
1212 static arc_buf_hdr_t *
1213 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1215 const dva_t *dva = BP_IDENTITY(bp);
1216 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1217 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1218 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1219 arc_buf_hdr_t *hdr;
1221 mutex_enter(hash_lock);
1222 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1223 hdr = hdr->b_hash_next) {
1224 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1225 *lockp = hash_lock;
1226 return (hdr);
1229 mutex_exit(hash_lock);
1230 *lockp = NULL;
1231 return (NULL);
1235 * Insert an entry into the hash table. If there is already an element
1236 * equal to elem in the hash table, then the already existing element
1237 * will be returned and the new element will not be inserted.
1238 * Otherwise returns NULL.
1239 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1241 static arc_buf_hdr_t *
1242 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1244 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1245 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1246 arc_buf_hdr_t *fhdr;
1247 uint32_t i;
1249 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1250 ASSERT(hdr->b_birth != 0);
1251 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1253 if (lockp != NULL) {
1254 *lockp = hash_lock;
1255 mutex_enter(hash_lock);
1256 } else {
1257 ASSERT(MUTEX_HELD(hash_lock));
1260 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1261 fhdr = fhdr->b_hash_next, i++) {
1262 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1263 return (fhdr);
1266 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1267 buf_hash_table.ht_table[idx] = hdr;
1268 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1270 /* collect some hash table performance data */
1271 if (i > 0) {
1272 ARCSTAT_BUMP(arcstat_hash_collisions);
1273 if (i == 1)
1274 ARCSTAT_BUMP(arcstat_hash_chains);
1276 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1279 ARCSTAT_BUMP(arcstat_hash_elements);
1280 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1282 return (NULL);
1285 static void
1286 buf_hash_remove(arc_buf_hdr_t *hdr)
1288 arc_buf_hdr_t *fhdr, **hdrp;
1289 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1291 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1292 ASSERT(HDR_IN_HASH_TABLE(hdr));
1294 hdrp = &buf_hash_table.ht_table[idx];
1295 while ((fhdr = *hdrp) != hdr) {
1296 ASSERT3P(fhdr, !=, NULL);
1297 hdrp = &fhdr->b_hash_next;
1299 *hdrp = hdr->b_hash_next;
1300 hdr->b_hash_next = NULL;
1301 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1303 /* collect some hash table performance data */
1304 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1306 if (buf_hash_table.ht_table[idx] &&
1307 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1308 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1312 * Global data structures and functions for the buf kmem cache.
1314 static kmem_cache_t *hdr_full_cache;
1315 static kmem_cache_t *hdr_l2only_cache;
1316 static kmem_cache_t *buf_cache;
1318 static void
1319 buf_fini(void)
1321 int i;
1323 kmem_free(buf_hash_table.ht_table,
1324 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1325 for (i = 0; i < BUF_LOCKS; i++)
1326 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1327 kmem_cache_destroy(hdr_full_cache);
1328 kmem_cache_destroy(hdr_l2only_cache);
1329 kmem_cache_destroy(buf_cache);
1333 * Constructor callback - called when the cache is empty
1334 * and a new buf is requested.
1336 /* ARGSUSED */
1337 static int
1338 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1340 arc_buf_hdr_t *hdr = vbuf;
1342 bzero(hdr, HDR_FULL_SIZE);
1343 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1344 refcount_create(&hdr->b_l1hdr.b_refcnt);
1345 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1346 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1347 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1349 return (0);
1352 /* ARGSUSED */
1353 static int
1354 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1356 arc_buf_hdr_t *hdr = vbuf;
1358 bzero(hdr, HDR_L2ONLY_SIZE);
1359 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1361 return (0);
1364 /* ARGSUSED */
1365 static int
1366 buf_cons(void *vbuf, void *unused, int kmflag)
1368 arc_buf_t *buf = vbuf;
1370 bzero(buf, sizeof (arc_buf_t));
1371 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1372 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1374 return (0);
1378 * Destructor callback - called when a cached buf is
1379 * no longer required.
1381 /* ARGSUSED */
1382 static void
1383 hdr_full_dest(void *vbuf, void *unused)
1385 arc_buf_hdr_t *hdr = vbuf;
1387 ASSERT(HDR_EMPTY(hdr));
1388 cv_destroy(&hdr->b_l1hdr.b_cv);
1389 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1390 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1391 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1392 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1395 /* ARGSUSED */
1396 static void
1397 hdr_l2only_dest(void *vbuf, void *unused)
1399 arc_buf_hdr_t *hdr = vbuf;
1401 ASSERT(HDR_EMPTY(hdr));
1402 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1405 /* ARGSUSED */
1406 static void
1407 buf_dest(void *vbuf, void *unused)
1409 arc_buf_t *buf = vbuf;
1411 mutex_destroy(&buf->b_evict_lock);
1412 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1416 * Reclaim callback -- invoked when memory is low.
1418 /* ARGSUSED */
1419 static void
1420 hdr_recl(void *unused)
1422 dprintf("hdr_recl called\n");
1424 * umem calls the reclaim func when we destroy the buf cache,
1425 * which is after we do arc_fini().
1427 if (arc_initialized)
1428 zthr_wakeup(arc_reap_zthr);
1431 static void
1432 buf_init(void)
1434 uint64_t *ct;
1435 uint64_t hsize = 1ULL << 12;
1436 int i, j;
1439 * The hash table is big enough to fill all of physical memory
1440 * with an average block size of zfs_arc_average_blocksize (default 8K).
1441 * By default, the table will take up
1442 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1444 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1445 hsize <<= 1;
1446 retry:
1447 buf_hash_table.ht_mask = hsize - 1;
1448 buf_hash_table.ht_table =
1449 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1450 if (buf_hash_table.ht_table == NULL) {
1451 ASSERT(hsize > (1ULL << 8));
1452 hsize >>= 1;
1453 goto retry;
1456 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1457 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1458 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1459 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1460 NULL, NULL, 0);
1461 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1462 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1464 for (i = 0; i < 256; i++)
1465 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1466 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1468 for (i = 0; i < BUF_LOCKS; i++) {
1469 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1470 NULL, MUTEX_DEFAULT, NULL);
1475 * This is the size that the buf occupies in memory. If the buf is compressed,
1476 * it will correspond to the compressed size. You should use this method of
1477 * getting the buf size unless you explicitly need the logical size.
1479 int32_t
1480 arc_buf_size(arc_buf_t *buf)
1482 return (ARC_BUF_COMPRESSED(buf) ?
1483 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1486 int32_t
1487 arc_buf_lsize(arc_buf_t *buf)
1489 return (HDR_GET_LSIZE(buf->b_hdr));
1492 enum zio_compress
1493 arc_get_compression(arc_buf_t *buf)
1495 return (ARC_BUF_COMPRESSED(buf) ?
1496 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1499 #define ARC_MINTIME (hz>>4) /* 62 ms */
1501 static inline boolean_t
1502 arc_buf_is_shared(arc_buf_t *buf)
1504 boolean_t shared = (buf->b_data != NULL &&
1505 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1506 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1507 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1508 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1509 IMPLY(shared, ARC_BUF_SHARED(buf));
1510 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1513 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1514 * already being shared" requirement prevents us from doing that.
1517 return (shared);
1521 * Free the checksum associated with this header. If there is no checksum, this
1522 * is a no-op.
1524 static inline void
1525 arc_cksum_free(arc_buf_hdr_t *hdr)
1527 ASSERT(HDR_HAS_L1HDR(hdr));
1528 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1529 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1530 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1531 hdr->b_l1hdr.b_freeze_cksum = NULL;
1533 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1537 * Return true iff at least one of the bufs on hdr is not compressed.
1539 static boolean_t
1540 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1542 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1543 if (!ARC_BUF_COMPRESSED(b)) {
1544 return (B_TRUE);
1547 return (B_FALSE);
1551 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1552 * matches the checksum that is stored in the hdr. If there is no checksum,
1553 * or if the buf is compressed, this is a no-op.
1555 static void
1556 arc_cksum_verify(arc_buf_t *buf)
1558 arc_buf_hdr_t *hdr = buf->b_hdr;
1559 zio_cksum_t zc;
1561 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1562 return;
1564 if (ARC_BUF_COMPRESSED(buf)) {
1565 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1566 arc_hdr_has_uncompressed_buf(hdr));
1567 return;
1570 ASSERT(HDR_HAS_L1HDR(hdr));
1572 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1573 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1574 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1575 return;
1578 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1579 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1580 panic("buffer modified while frozen!");
1581 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1584 static boolean_t
1585 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1587 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1588 boolean_t valid_cksum;
1590 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1591 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1594 * We rely on the blkptr's checksum to determine if the block
1595 * is valid or not. When compressed arc is enabled, the l2arc
1596 * writes the block to the l2arc just as it appears in the pool.
1597 * This allows us to use the blkptr's checksum to validate the
1598 * data that we just read off of the l2arc without having to store
1599 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1600 * arc is disabled, then the data written to the l2arc is always
1601 * uncompressed and won't match the block as it exists in the main
1602 * pool. When this is the case, we must first compress it if it is
1603 * compressed on the main pool before we can validate the checksum.
1605 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1606 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1607 uint64_t lsize = HDR_GET_LSIZE(hdr);
1608 uint64_t csize;
1610 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1611 csize = zio_compress_data(compress, zio->io_abd,
1612 abd_to_buf(cdata), lsize);
1614 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1615 if (csize < HDR_GET_PSIZE(hdr)) {
1617 * Compressed blocks are always a multiple of the
1618 * smallest ashift in the pool. Ideally, we would
1619 * like to round up the csize to the next
1620 * spa_min_ashift but that value may have changed
1621 * since the block was last written. Instead,
1622 * we rely on the fact that the hdr's psize
1623 * was set to the psize of the block when it was
1624 * last written. We set the csize to that value
1625 * and zero out any part that should not contain
1626 * data.
1628 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1629 csize = HDR_GET_PSIZE(hdr);
1631 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1635 * Block pointers always store the checksum for the logical data.
1636 * If the block pointer has the gang bit set, then the checksum
1637 * it represents is for the reconstituted data and not for an
1638 * individual gang member. The zio pipeline, however, must be able to
1639 * determine the checksum of each of the gang constituents so it
1640 * treats the checksum comparison differently than what we need
1641 * for l2arc blocks. This prevents us from using the
1642 * zio_checksum_error() interface directly. Instead we must call the
1643 * zio_checksum_error_impl() so that we can ensure the checksum is
1644 * generated using the correct checksum algorithm and accounts for the
1645 * logical I/O size and not just a gang fragment.
1647 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1648 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1649 zio->io_offset, NULL) == 0);
1650 zio_pop_transforms(zio);
1651 return (valid_cksum);
1655 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1656 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1657 * isn't modified later on. If buf is compressed or there is already a checksum
1658 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1660 static void
1661 arc_cksum_compute(arc_buf_t *buf)
1663 arc_buf_hdr_t *hdr = buf->b_hdr;
1665 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1666 return;
1668 ASSERT(HDR_HAS_L1HDR(hdr));
1670 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1671 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1672 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1673 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1674 return;
1675 } else if (ARC_BUF_COMPRESSED(buf)) {
1676 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1677 return;
1680 ASSERT(!ARC_BUF_COMPRESSED(buf));
1681 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1682 KM_SLEEP);
1683 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1684 hdr->b_l1hdr.b_freeze_cksum);
1685 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1686 arc_buf_watch(buf);
1689 #ifndef _KERNEL
1690 typedef struct procctl {
1691 long cmd;
1692 prwatch_t prwatch;
1693 } procctl_t;
1694 #endif
1696 /* ARGSUSED */
1697 static void
1698 arc_buf_unwatch(arc_buf_t *buf)
1700 #ifndef _KERNEL
1701 if (arc_watch) {
1702 int result;
1703 procctl_t ctl;
1704 ctl.cmd = PCWATCH;
1705 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1706 ctl.prwatch.pr_size = 0;
1707 ctl.prwatch.pr_wflags = 0;
1708 result = write(arc_procfd, &ctl, sizeof (ctl));
1709 ASSERT3U(result, ==, sizeof (ctl));
1711 #endif
1714 /* ARGSUSED */
1715 static void
1716 arc_buf_watch(arc_buf_t *buf)
1718 #ifndef _KERNEL
1719 if (arc_watch) {
1720 int result;
1721 procctl_t ctl;
1722 ctl.cmd = PCWATCH;
1723 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1724 ctl.prwatch.pr_size = arc_buf_size(buf);
1725 ctl.prwatch.pr_wflags = WA_WRITE;
1726 result = write(arc_procfd, &ctl, sizeof (ctl));
1727 ASSERT3U(result, ==, sizeof (ctl));
1729 #endif
1732 static arc_buf_contents_t
1733 arc_buf_type(arc_buf_hdr_t *hdr)
1735 arc_buf_contents_t type;
1736 if (HDR_ISTYPE_METADATA(hdr)) {
1737 type = ARC_BUFC_METADATA;
1738 } else {
1739 type = ARC_BUFC_DATA;
1741 VERIFY3U(hdr->b_type, ==, type);
1742 return (type);
1745 boolean_t
1746 arc_is_metadata(arc_buf_t *buf)
1748 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1751 static uint32_t
1752 arc_bufc_to_flags(arc_buf_contents_t type)
1754 switch (type) {
1755 case ARC_BUFC_DATA:
1756 /* metadata field is 0 if buffer contains normal data */
1757 return (0);
1758 case ARC_BUFC_METADATA:
1759 return (ARC_FLAG_BUFC_METADATA);
1760 default:
1761 break;
1763 panic("undefined ARC buffer type!");
1764 return ((uint32_t)-1);
1767 void
1768 arc_buf_thaw(arc_buf_t *buf)
1770 arc_buf_hdr_t *hdr = buf->b_hdr;
1772 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1773 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1775 arc_cksum_verify(buf);
1778 * Compressed buffers do not manipulate the b_freeze_cksum or
1779 * allocate b_thawed.
1781 if (ARC_BUF_COMPRESSED(buf)) {
1782 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1783 arc_hdr_has_uncompressed_buf(hdr));
1784 return;
1787 ASSERT(HDR_HAS_L1HDR(hdr));
1788 arc_cksum_free(hdr);
1790 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1791 #ifdef ZFS_DEBUG
1792 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1793 if (hdr->b_l1hdr.b_thawed != NULL)
1794 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1795 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1797 #endif
1799 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1801 arc_buf_unwatch(buf);
1804 void
1805 arc_buf_freeze(arc_buf_t *buf)
1807 arc_buf_hdr_t *hdr = buf->b_hdr;
1808 kmutex_t *hash_lock;
1810 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1811 return;
1813 if (ARC_BUF_COMPRESSED(buf)) {
1814 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1815 arc_hdr_has_uncompressed_buf(hdr));
1816 return;
1819 hash_lock = HDR_LOCK(hdr);
1820 mutex_enter(hash_lock);
1822 ASSERT(HDR_HAS_L1HDR(hdr));
1823 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1824 hdr->b_l1hdr.b_state == arc_anon);
1825 arc_cksum_compute(buf);
1826 mutex_exit(hash_lock);
1830 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1831 * the following functions should be used to ensure that the flags are
1832 * updated in a thread-safe way. When manipulating the flags either
1833 * the hash_lock must be held or the hdr must be undiscoverable. This
1834 * ensures that we're not racing with any other threads when updating
1835 * the flags.
1837 static inline void
1838 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1840 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1841 hdr->b_flags |= flags;
1844 static inline void
1845 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1847 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1848 hdr->b_flags &= ~flags;
1852 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1853 * done in a special way since we have to clear and set bits
1854 * at the same time. Consumers that wish to set the compression bits
1855 * must use this function to ensure that the flags are updated in
1856 * thread-safe manner.
1858 static void
1859 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1861 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1864 * Holes and embedded blocks will always have a psize = 0 so
1865 * we ignore the compression of the blkptr and set the
1866 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1867 * Holes and embedded blocks remain anonymous so we don't
1868 * want to uncompress them. Mark them as uncompressed.
1870 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1871 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1872 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1873 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1874 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1875 } else {
1876 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1877 HDR_SET_COMPRESS(hdr, cmp);
1878 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1879 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1884 * Looks for another buf on the same hdr which has the data decompressed, copies
1885 * from it, and returns true. If no such buf exists, returns false.
1887 static boolean_t
1888 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1890 arc_buf_hdr_t *hdr = buf->b_hdr;
1891 boolean_t copied = B_FALSE;
1893 ASSERT(HDR_HAS_L1HDR(hdr));
1894 ASSERT3P(buf->b_data, !=, NULL);
1895 ASSERT(!ARC_BUF_COMPRESSED(buf));
1897 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1898 from = from->b_next) {
1899 /* can't use our own data buffer */
1900 if (from == buf) {
1901 continue;
1904 if (!ARC_BUF_COMPRESSED(from)) {
1905 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1906 copied = B_TRUE;
1907 break;
1912 * There were no decompressed bufs, so there should not be a
1913 * checksum on the hdr either.
1915 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1917 return (copied);
1921 * Given a buf that has a data buffer attached to it, this function will
1922 * efficiently fill the buf with data of the specified compression setting from
1923 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1924 * are already sharing a data buf, no copy is performed.
1926 * If the buf is marked as compressed but uncompressed data was requested, this
1927 * will allocate a new data buffer for the buf, remove that flag, and fill the
1928 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1929 * uncompressed data, and (since we haven't added support for it yet) if you
1930 * want compressed data your buf must already be marked as compressed and have
1931 * the correct-sized data buffer.
1933 static int
1934 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1936 arc_buf_hdr_t *hdr = buf->b_hdr;
1937 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1938 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1940 ASSERT3P(buf->b_data, !=, NULL);
1941 IMPLY(compressed, hdr_compressed);
1942 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1944 if (hdr_compressed == compressed) {
1945 if (!arc_buf_is_shared(buf)) {
1946 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1947 arc_buf_size(buf));
1949 } else {
1950 ASSERT(hdr_compressed);
1951 ASSERT(!compressed);
1952 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1955 * If the buf is sharing its data with the hdr, unlink it and
1956 * allocate a new data buffer for the buf.
1958 if (arc_buf_is_shared(buf)) {
1959 ASSERT(ARC_BUF_COMPRESSED(buf));
1961 /* We need to give the buf it's own b_data */
1962 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1963 buf->b_data =
1964 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1965 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1967 /* Previously overhead was 0; just add new overhead */
1968 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1969 } else if (ARC_BUF_COMPRESSED(buf)) {
1970 /* We need to reallocate the buf's b_data */
1971 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1972 buf);
1973 buf->b_data =
1974 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1976 /* We increased the size of b_data; update overhead */
1977 ARCSTAT_INCR(arcstat_overhead_size,
1978 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1982 * Regardless of the buf's previous compression settings, it
1983 * should not be compressed at the end of this function.
1985 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1988 * Try copying the data from another buf which already has a
1989 * decompressed version. If that's not possible, it's time to
1990 * bite the bullet and decompress the data from the hdr.
1992 if (arc_buf_try_copy_decompressed_data(buf)) {
1993 /* Skip byteswapping and checksumming (already done) */
1994 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1995 return (0);
1996 } else {
1997 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1998 hdr->b_l1hdr.b_pabd, buf->b_data,
1999 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2002 * Absent hardware errors or software bugs, this should
2003 * be impossible, but log it anyway so we can debug it.
2005 if (error != 0) {
2006 zfs_dbgmsg(
2007 "hdr %p, compress %d, psize %d, lsize %d",
2008 hdr, HDR_GET_COMPRESS(hdr),
2009 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2010 return (SET_ERROR(EIO));
2015 /* Byteswap the buf's data if necessary */
2016 if (bswap != DMU_BSWAP_NUMFUNCS) {
2017 ASSERT(!HDR_SHARED_DATA(hdr));
2018 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2019 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2022 /* Compute the hdr's checksum if necessary */
2023 arc_cksum_compute(buf);
2025 return (0);
2029 arc_decompress(arc_buf_t *buf)
2031 return (arc_buf_fill(buf, B_FALSE));
2035 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2037 static uint64_t
2038 arc_hdr_size(arc_buf_hdr_t *hdr)
2040 uint64_t size;
2042 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2043 HDR_GET_PSIZE(hdr) > 0) {
2044 size = HDR_GET_PSIZE(hdr);
2045 } else {
2046 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2047 size = HDR_GET_LSIZE(hdr);
2049 return (size);
2053 * Increment the amount of evictable space in the arc_state_t's refcount.
2054 * We account for the space used by the hdr and the arc buf individually
2055 * so that we can add and remove them from the refcount individually.
2057 static void
2058 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2060 arc_buf_contents_t type = arc_buf_type(hdr);
2062 ASSERT(HDR_HAS_L1HDR(hdr));
2064 if (GHOST_STATE(state)) {
2065 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2066 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2067 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2068 (void) refcount_add_many(&state->arcs_esize[type],
2069 HDR_GET_LSIZE(hdr), hdr);
2070 return;
2073 ASSERT(!GHOST_STATE(state));
2074 if (hdr->b_l1hdr.b_pabd != NULL) {
2075 (void) refcount_add_many(&state->arcs_esize[type],
2076 arc_hdr_size(hdr), hdr);
2078 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2079 buf = buf->b_next) {
2080 if (arc_buf_is_shared(buf))
2081 continue;
2082 (void) refcount_add_many(&state->arcs_esize[type],
2083 arc_buf_size(buf), buf);
2088 * Decrement the amount of evictable space in the arc_state_t's refcount.
2089 * We account for the space used by the hdr and the arc buf individually
2090 * so that we can add and remove them from the refcount individually.
2092 static void
2093 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2095 arc_buf_contents_t type = arc_buf_type(hdr);
2097 ASSERT(HDR_HAS_L1HDR(hdr));
2099 if (GHOST_STATE(state)) {
2100 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2101 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2102 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2103 (void) refcount_remove_many(&state->arcs_esize[type],
2104 HDR_GET_LSIZE(hdr), hdr);
2105 return;
2108 ASSERT(!GHOST_STATE(state));
2109 if (hdr->b_l1hdr.b_pabd != NULL) {
2110 (void) refcount_remove_many(&state->arcs_esize[type],
2111 arc_hdr_size(hdr), hdr);
2113 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2114 buf = buf->b_next) {
2115 if (arc_buf_is_shared(buf))
2116 continue;
2117 (void) refcount_remove_many(&state->arcs_esize[type],
2118 arc_buf_size(buf), buf);
2123 * Add a reference to this hdr indicating that someone is actively
2124 * referencing that memory. When the refcount transitions from 0 to 1,
2125 * we remove it from the respective arc_state_t list to indicate that
2126 * it is not evictable.
2128 static void
2129 add_reference(arc_buf_hdr_t *hdr, void *tag)
2131 ASSERT(HDR_HAS_L1HDR(hdr));
2132 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2133 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2134 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2135 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2138 arc_state_t *state = hdr->b_l1hdr.b_state;
2140 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2141 (state != arc_anon)) {
2142 /* We don't use the L2-only state list. */
2143 if (state != arc_l2c_only) {
2144 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2145 hdr);
2146 arc_evictable_space_decrement(hdr, state);
2148 /* remove the prefetch flag if we get a reference */
2149 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2154 * Remove a reference from this hdr. When the reference transitions from
2155 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2156 * list making it eligible for eviction.
2158 static int
2159 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2161 int cnt;
2162 arc_state_t *state = hdr->b_l1hdr.b_state;
2164 ASSERT(HDR_HAS_L1HDR(hdr));
2165 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2166 ASSERT(!GHOST_STATE(state));
2169 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2170 * check to prevent usage of the arc_l2c_only list.
2172 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2173 (state != arc_anon)) {
2174 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2175 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2176 arc_evictable_space_increment(hdr, state);
2178 return (cnt);
2182 * Move the supplied buffer to the indicated state. The hash lock
2183 * for the buffer must be held by the caller.
2185 static void
2186 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2187 kmutex_t *hash_lock)
2189 arc_state_t *old_state;
2190 int64_t refcnt;
2191 uint32_t bufcnt;
2192 boolean_t update_old, update_new;
2193 arc_buf_contents_t buftype = arc_buf_type(hdr);
2196 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2197 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2198 * L1 hdr doesn't always exist when we change state to arc_anon before
2199 * destroying a header, in which case reallocating to add the L1 hdr is
2200 * pointless.
2202 if (HDR_HAS_L1HDR(hdr)) {
2203 old_state = hdr->b_l1hdr.b_state;
2204 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2205 bufcnt = hdr->b_l1hdr.b_bufcnt;
2206 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2207 } else {
2208 old_state = arc_l2c_only;
2209 refcnt = 0;
2210 bufcnt = 0;
2211 update_old = B_FALSE;
2213 update_new = update_old;
2215 ASSERT(MUTEX_HELD(hash_lock));
2216 ASSERT3P(new_state, !=, old_state);
2217 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2218 ASSERT(old_state != arc_anon || bufcnt <= 1);
2221 * If this buffer is evictable, transfer it from the
2222 * old state list to the new state list.
2224 if (refcnt == 0) {
2225 if (old_state != arc_anon && old_state != arc_l2c_only) {
2226 ASSERT(HDR_HAS_L1HDR(hdr));
2227 multilist_remove(old_state->arcs_list[buftype], hdr);
2229 if (GHOST_STATE(old_state)) {
2230 ASSERT0(bufcnt);
2231 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2232 update_old = B_TRUE;
2234 arc_evictable_space_decrement(hdr, old_state);
2236 if (new_state != arc_anon && new_state != arc_l2c_only) {
2239 * An L1 header always exists here, since if we're
2240 * moving to some L1-cached state (i.e. not l2c_only or
2241 * anonymous), we realloc the header to add an L1hdr
2242 * beforehand.
2244 ASSERT(HDR_HAS_L1HDR(hdr));
2245 multilist_insert(new_state->arcs_list[buftype], hdr);
2247 if (GHOST_STATE(new_state)) {
2248 ASSERT0(bufcnt);
2249 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2250 update_new = B_TRUE;
2252 arc_evictable_space_increment(hdr, new_state);
2256 ASSERT(!HDR_EMPTY(hdr));
2257 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2258 buf_hash_remove(hdr);
2260 /* adjust state sizes (ignore arc_l2c_only) */
2262 if (update_new && new_state != arc_l2c_only) {
2263 ASSERT(HDR_HAS_L1HDR(hdr));
2264 if (GHOST_STATE(new_state)) {
2265 ASSERT0(bufcnt);
2268 * When moving a header to a ghost state, we first
2269 * remove all arc buffers. Thus, we'll have a
2270 * bufcnt of zero, and no arc buffer to use for
2271 * the reference. As a result, we use the arc
2272 * header pointer for the reference.
2274 (void) refcount_add_many(&new_state->arcs_size,
2275 HDR_GET_LSIZE(hdr), hdr);
2276 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2277 } else {
2278 uint32_t buffers = 0;
2281 * Each individual buffer holds a unique reference,
2282 * thus we must remove each of these references one
2283 * at a time.
2285 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2286 buf = buf->b_next) {
2287 ASSERT3U(bufcnt, !=, 0);
2288 buffers++;
2291 * When the arc_buf_t is sharing the data
2292 * block with the hdr, the owner of the
2293 * reference belongs to the hdr. Only
2294 * add to the refcount if the arc_buf_t is
2295 * not shared.
2297 if (arc_buf_is_shared(buf))
2298 continue;
2300 (void) refcount_add_many(&new_state->arcs_size,
2301 arc_buf_size(buf), buf);
2303 ASSERT3U(bufcnt, ==, buffers);
2305 if (hdr->b_l1hdr.b_pabd != NULL) {
2306 (void) refcount_add_many(&new_state->arcs_size,
2307 arc_hdr_size(hdr), hdr);
2308 } else {
2309 ASSERT(GHOST_STATE(old_state));
2314 if (update_old && old_state != arc_l2c_only) {
2315 ASSERT(HDR_HAS_L1HDR(hdr));
2316 if (GHOST_STATE(old_state)) {
2317 ASSERT0(bufcnt);
2318 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2321 * When moving a header off of a ghost state,
2322 * the header will not contain any arc buffers.
2323 * We use the arc header pointer for the reference
2324 * which is exactly what we did when we put the
2325 * header on the ghost state.
2328 (void) refcount_remove_many(&old_state->arcs_size,
2329 HDR_GET_LSIZE(hdr), hdr);
2330 } else {
2331 uint32_t buffers = 0;
2334 * Each individual buffer holds a unique reference,
2335 * thus we must remove each of these references one
2336 * at a time.
2338 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2339 buf = buf->b_next) {
2340 ASSERT3U(bufcnt, !=, 0);
2341 buffers++;
2344 * When the arc_buf_t is sharing the data
2345 * block with the hdr, the owner of the
2346 * reference belongs to the hdr. Only
2347 * add to the refcount if the arc_buf_t is
2348 * not shared.
2350 if (arc_buf_is_shared(buf))
2351 continue;
2353 (void) refcount_remove_many(
2354 &old_state->arcs_size, arc_buf_size(buf),
2355 buf);
2357 ASSERT3U(bufcnt, ==, buffers);
2358 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2359 (void) refcount_remove_many(
2360 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2364 if (HDR_HAS_L1HDR(hdr))
2365 hdr->b_l1hdr.b_state = new_state;
2368 * L2 headers should never be on the L2 state list since they don't
2369 * have L1 headers allocated.
2371 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2372 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2375 void
2376 arc_space_consume(uint64_t space, arc_space_type_t type)
2378 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2380 switch (type) {
2381 case ARC_SPACE_DATA:
2382 aggsum_add(&astat_data_size, space);
2383 break;
2384 case ARC_SPACE_META:
2385 aggsum_add(&astat_metadata_size, space);
2386 break;
2387 case ARC_SPACE_OTHER:
2388 aggsum_add(&astat_other_size, space);
2389 break;
2390 case ARC_SPACE_HDRS:
2391 aggsum_add(&astat_hdr_size, space);
2392 break;
2393 case ARC_SPACE_L2HDRS:
2394 aggsum_add(&astat_l2_hdr_size, space);
2395 break;
2398 if (type != ARC_SPACE_DATA)
2399 aggsum_add(&arc_meta_used, space);
2401 aggsum_add(&arc_size, space);
2404 void
2405 arc_space_return(uint64_t space, arc_space_type_t type)
2407 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2409 switch (type) {
2410 case ARC_SPACE_DATA:
2411 aggsum_add(&astat_data_size, -space);
2412 break;
2413 case ARC_SPACE_META:
2414 aggsum_add(&astat_metadata_size, -space);
2415 break;
2416 case ARC_SPACE_OTHER:
2417 aggsum_add(&astat_other_size, -space);
2418 break;
2419 case ARC_SPACE_HDRS:
2420 aggsum_add(&astat_hdr_size, -space);
2421 break;
2422 case ARC_SPACE_L2HDRS:
2423 aggsum_add(&astat_l2_hdr_size, -space);
2424 break;
2427 if (type != ARC_SPACE_DATA) {
2428 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2430 * We use the upper bound here rather than the precise value
2431 * because the arc_meta_max value doesn't need to be
2432 * precise. It's only consumed by humans via arcstats.
2434 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2435 arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2436 aggsum_add(&arc_meta_used, -space);
2439 ASSERT(aggsum_compare(&arc_size, space) >= 0);
2440 aggsum_add(&arc_size, -space);
2444 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2445 * with the hdr's b_pabd.
2447 static boolean_t
2448 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2451 * The criteria for sharing a hdr's data are:
2452 * 1. the hdr's compression matches the buf's compression
2453 * 2. the hdr doesn't need to be byteswapped
2454 * 3. the hdr isn't already being shared
2455 * 4. the buf is either compressed or it is the last buf in the hdr list
2457 * Criterion #4 maintains the invariant that shared uncompressed
2458 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2459 * might ask, "if a compressed buf is allocated first, won't that be the
2460 * last thing in the list?", but in that case it's impossible to create
2461 * a shared uncompressed buf anyway (because the hdr must be compressed
2462 * to have the compressed buf). You might also think that #3 is
2463 * sufficient to make this guarantee, however it's possible
2464 * (specifically in the rare L2ARC write race mentioned in
2465 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2466 * is sharable, but wasn't at the time of its allocation. Rather than
2467 * allow a new shared uncompressed buf to be created and then shuffle
2468 * the list around to make it the last element, this simply disallows
2469 * sharing if the new buf isn't the first to be added.
2471 ASSERT3P(buf->b_hdr, ==, hdr);
2472 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2473 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2474 return (buf_compressed == hdr_compressed &&
2475 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2476 !HDR_SHARED_DATA(hdr) &&
2477 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2481 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2482 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2483 * copy was made successfully, or an error code otherwise.
2485 static int
2486 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2487 boolean_t fill, arc_buf_t **ret)
2489 arc_buf_t *buf;
2491 ASSERT(HDR_HAS_L1HDR(hdr));
2492 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2493 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2494 hdr->b_type == ARC_BUFC_METADATA);
2495 ASSERT3P(ret, !=, NULL);
2496 ASSERT3P(*ret, ==, NULL);
2498 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2499 buf->b_hdr = hdr;
2500 buf->b_data = NULL;
2501 buf->b_next = hdr->b_l1hdr.b_buf;
2502 buf->b_flags = 0;
2504 add_reference(hdr, tag);
2507 * We're about to change the hdr's b_flags. We must either
2508 * hold the hash_lock or be undiscoverable.
2510 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2513 * Only honor requests for compressed bufs if the hdr is actually
2514 * compressed.
2516 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2517 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2520 * If the hdr's data can be shared then we share the data buffer and
2521 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2522 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2523 * buffer to store the buf's data.
2525 * There are two additional restrictions here because we're sharing
2526 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2527 * actively involved in an L2ARC write, because if this buf is used by
2528 * an arc_write() then the hdr's data buffer will be released when the
2529 * write completes, even though the L2ARC write might still be using it.
2530 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2531 * need to be ABD-aware.
2533 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2534 abd_is_linear(hdr->b_l1hdr.b_pabd);
2536 /* Set up b_data and sharing */
2537 if (can_share) {
2538 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2539 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2540 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2541 } else {
2542 buf->b_data =
2543 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2544 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2546 VERIFY3P(buf->b_data, !=, NULL);
2548 hdr->b_l1hdr.b_buf = buf;
2549 hdr->b_l1hdr.b_bufcnt += 1;
2552 * If the user wants the data from the hdr, we need to either copy or
2553 * decompress the data.
2555 if (fill) {
2556 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2559 return (0);
2562 static char *arc_onloan_tag = "onloan";
2564 static inline void
2565 arc_loaned_bytes_update(int64_t delta)
2567 atomic_add_64(&arc_loaned_bytes, delta);
2569 /* assert that it did not wrap around */
2570 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2574 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2575 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2576 * buffers must be returned to the arc before they can be used by the DMU or
2577 * freed.
2579 arc_buf_t *
2580 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2582 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2583 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2585 arc_loaned_bytes_update(arc_buf_size(buf));
2587 return (buf);
2590 arc_buf_t *
2591 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2592 enum zio_compress compression_type)
2594 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2595 psize, lsize, compression_type);
2597 arc_loaned_bytes_update(arc_buf_size(buf));
2599 return (buf);
2604 * Return a loaned arc buffer to the arc.
2606 void
2607 arc_return_buf(arc_buf_t *buf, void *tag)
2609 arc_buf_hdr_t *hdr = buf->b_hdr;
2611 ASSERT3P(buf->b_data, !=, NULL);
2612 ASSERT(HDR_HAS_L1HDR(hdr));
2613 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2614 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2616 arc_loaned_bytes_update(-arc_buf_size(buf));
2619 /* Detach an arc_buf from a dbuf (tag) */
2620 void
2621 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2623 arc_buf_hdr_t *hdr = buf->b_hdr;
2625 ASSERT3P(buf->b_data, !=, NULL);
2626 ASSERT(HDR_HAS_L1HDR(hdr));
2627 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2628 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2630 arc_loaned_bytes_update(arc_buf_size(buf));
2633 static void
2634 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2636 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2638 df->l2df_abd = abd;
2639 df->l2df_size = size;
2640 df->l2df_type = type;
2641 mutex_enter(&l2arc_free_on_write_mtx);
2642 list_insert_head(l2arc_free_on_write, df);
2643 mutex_exit(&l2arc_free_on_write_mtx);
2646 static void
2647 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2649 arc_state_t *state = hdr->b_l1hdr.b_state;
2650 arc_buf_contents_t type = arc_buf_type(hdr);
2651 uint64_t size = arc_hdr_size(hdr);
2653 /* protected by hash lock, if in the hash table */
2654 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2655 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2656 ASSERT(state != arc_anon && state != arc_l2c_only);
2658 (void) refcount_remove_many(&state->arcs_esize[type],
2659 size, hdr);
2661 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2662 if (type == ARC_BUFC_METADATA) {
2663 arc_space_return(size, ARC_SPACE_META);
2664 } else {
2665 ASSERT(type == ARC_BUFC_DATA);
2666 arc_space_return(size, ARC_SPACE_DATA);
2669 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2673 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2674 * data buffer, we transfer the refcount ownership to the hdr and update
2675 * the appropriate kstats.
2677 static void
2678 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2680 arc_state_t *state = hdr->b_l1hdr.b_state;
2682 ASSERT(arc_can_share(hdr, buf));
2683 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2684 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2687 * Start sharing the data buffer. We transfer the
2688 * refcount ownership to the hdr since it always owns
2689 * the refcount whenever an arc_buf_t is shared.
2691 refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2692 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2693 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2694 HDR_ISTYPE_METADATA(hdr));
2695 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2696 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2699 * Since we've transferred ownership to the hdr we need
2700 * to increment its compressed and uncompressed kstats and
2701 * decrement the overhead size.
2703 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2704 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2705 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2708 static void
2709 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2711 arc_state_t *state = hdr->b_l1hdr.b_state;
2713 ASSERT(arc_buf_is_shared(buf));
2714 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2715 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2718 * We are no longer sharing this buffer so we need
2719 * to transfer its ownership to the rightful owner.
2721 refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2722 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2723 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2724 abd_put(hdr->b_l1hdr.b_pabd);
2725 hdr->b_l1hdr.b_pabd = NULL;
2726 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2729 * Since the buffer is no longer shared between
2730 * the arc buf and the hdr, count it as overhead.
2732 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2733 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2734 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2738 * Remove an arc_buf_t from the hdr's buf list and return the last
2739 * arc_buf_t on the list. If no buffers remain on the list then return
2740 * NULL.
2742 static arc_buf_t *
2743 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2745 ASSERT(HDR_HAS_L1HDR(hdr));
2746 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2748 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2749 arc_buf_t *lastbuf = NULL;
2752 * Remove the buf from the hdr list and locate the last
2753 * remaining buffer on the list.
2755 while (*bufp != NULL) {
2756 if (*bufp == buf)
2757 *bufp = buf->b_next;
2760 * If we've removed a buffer in the middle of
2761 * the list then update the lastbuf and update
2762 * bufp.
2764 if (*bufp != NULL) {
2765 lastbuf = *bufp;
2766 bufp = &(*bufp)->b_next;
2769 buf->b_next = NULL;
2770 ASSERT3P(lastbuf, !=, buf);
2771 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2772 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2773 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2775 return (lastbuf);
2779 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2780 * list and free it.
2782 static void
2783 arc_buf_destroy_impl(arc_buf_t *buf)
2785 arc_buf_hdr_t *hdr = buf->b_hdr;
2788 * Free up the data associated with the buf but only if we're not
2789 * sharing this with the hdr. If we are sharing it with the hdr, the
2790 * hdr is responsible for doing the free.
2792 if (buf->b_data != NULL) {
2794 * We're about to change the hdr's b_flags. We must either
2795 * hold the hash_lock or be undiscoverable.
2797 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2799 arc_cksum_verify(buf);
2800 arc_buf_unwatch(buf);
2802 if (arc_buf_is_shared(buf)) {
2803 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2804 } else {
2805 uint64_t size = arc_buf_size(buf);
2806 arc_free_data_buf(hdr, buf->b_data, size, buf);
2807 ARCSTAT_INCR(arcstat_overhead_size, -size);
2809 buf->b_data = NULL;
2811 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2812 hdr->b_l1hdr.b_bufcnt -= 1;
2815 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2817 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2819 * If the current arc_buf_t is sharing its data buffer with the
2820 * hdr, then reassign the hdr's b_pabd to share it with the new
2821 * buffer at the end of the list. The shared buffer is always
2822 * the last one on the hdr's buffer list.
2824 * There is an equivalent case for compressed bufs, but since
2825 * they aren't guaranteed to be the last buf in the list and
2826 * that is an exceedingly rare case, we just allow that space be
2827 * wasted temporarily.
2829 if (lastbuf != NULL) {
2830 /* Only one buf can be shared at once */
2831 VERIFY(!arc_buf_is_shared(lastbuf));
2832 /* hdr is uncompressed so can't have compressed buf */
2833 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2835 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2836 arc_hdr_free_pabd(hdr);
2839 * We must setup a new shared block between the
2840 * last buffer and the hdr. The data would have
2841 * been allocated by the arc buf so we need to transfer
2842 * ownership to the hdr since it's now being shared.
2844 arc_share_buf(hdr, lastbuf);
2846 } else if (HDR_SHARED_DATA(hdr)) {
2848 * Uncompressed shared buffers are always at the end
2849 * of the list. Compressed buffers don't have the
2850 * same requirements. This makes it hard to
2851 * simply assert that the lastbuf is shared so
2852 * we rely on the hdr's compression flags to determine
2853 * if we have a compressed, shared buffer.
2855 ASSERT3P(lastbuf, !=, NULL);
2856 ASSERT(arc_buf_is_shared(lastbuf) ||
2857 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2861 * Free the checksum if we're removing the last uncompressed buf from
2862 * this hdr.
2864 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2865 arc_cksum_free(hdr);
2868 /* clean up the buf */
2869 buf->b_hdr = NULL;
2870 kmem_cache_free(buf_cache, buf);
2873 static void
2874 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2876 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2877 ASSERT(HDR_HAS_L1HDR(hdr));
2878 ASSERT(!HDR_SHARED_DATA(hdr));
2880 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2881 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2882 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2883 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2885 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2886 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2889 static void
2890 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2892 ASSERT(HDR_HAS_L1HDR(hdr));
2893 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2896 * If the hdr is currently being written to the l2arc then
2897 * we defer freeing the data by adding it to the l2arc_free_on_write
2898 * list. The l2arc will free the data once it's finished
2899 * writing it to the l2arc device.
2901 if (HDR_L2_WRITING(hdr)) {
2902 arc_hdr_free_on_write(hdr);
2903 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2904 } else {
2905 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2906 arc_hdr_size(hdr), hdr);
2908 hdr->b_l1hdr.b_pabd = NULL;
2909 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2911 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2912 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2915 static arc_buf_hdr_t *
2916 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2917 enum zio_compress compression_type, arc_buf_contents_t type)
2919 arc_buf_hdr_t *hdr;
2921 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2923 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2924 ASSERT(HDR_EMPTY(hdr));
2925 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2926 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2927 HDR_SET_PSIZE(hdr, psize);
2928 HDR_SET_LSIZE(hdr, lsize);
2929 hdr->b_spa = spa;
2930 hdr->b_type = type;
2931 hdr->b_flags = 0;
2932 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2933 arc_hdr_set_compress(hdr, compression_type);
2935 hdr->b_l1hdr.b_state = arc_anon;
2936 hdr->b_l1hdr.b_arc_access = 0;
2937 hdr->b_l1hdr.b_bufcnt = 0;
2938 hdr->b_l1hdr.b_buf = NULL;
2941 * Allocate the hdr's buffer. This will contain either
2942 * the compressed or uncompressed data depending on the block
2943 * it references and compressed arc enablement.
2945 arc_hdr_alloc_pabd(hdr);
2946 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2948 return (hdr);
2952 * Transition between the two allocation states for the arc_buf_hdr struct.
2953 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2954 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2955 * version is used when a cache buffer is only in the L2ARC in order to reduce
2956 * memory usage.
2958 static arc_buf_hdr_t *
2959 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2961 ASSERT(HDR_HAS_L2HDR(hdr));
2963 arc_buf_hdr_t *nhdr;
2964 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2966 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2967 (old == hdr_l2only_cache && new == hdr_full_cache));
2969 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2971 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2972 buf_hash_remove(hdr);
2974 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2976 if (new == hdr_full_cache) {
2977 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2979 * arc_access and arc_change_state need to be aware that a
2980 * header has just come out of L2ARC, so we set its state to
2981 * l2c_only even though it's about to change.
2983 nhdr->b_l1hdr.b_state = arc_l2c_only;
2985 /* Verify previous threads set to NULL before freeing */
2986 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2987 } else {
2988 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2989 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2990 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2993 * If we've reached here, We must have been called from
2994 * arc_evict_hdr(), as such we should have already been
2995 * removed from any ghost list we were previously on
2996 * (which protects us from racing with arc_evict_state),
2997 * thus no locking is needed during this check.
2999 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3002 * A buffer must not be moved into the arc_l2c_only
3003 * state if it's not finished being written out to the
3004 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3005 * might try to be accessed, even though it was removed.
3007 VERIFY(!HDR_L2_WRITING(hdr));
3008 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3010 #ifdef ZFS_DEBUG
3011 if (hdr->b_l1hdr.b_thawed != NULL) {
3012 kmem_free(hdr->b_l1hdr.b_thawed, 1);
3013 hdr->b_l1hdr.b_thawed = NULL;
3015 #endif
3017 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3020 * The header has been reallocated so we need to re-insert it into any
3021 * lists it was on.
3023 (void) buf_hash_insert(nhdr, NULL);
3025 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3027 mutex_enter(&dev->l2ad_mtx);
3030 * We must place the realloc'ed header back into the list at
3031 * the same spot. Otherwise, if it's placed earlier in the list,
3032 * l2arc_write_buffers() could find it during the function's
3033 * write phase, and try to write it out to the l2arc.
3035 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3036 list_remove(&dev->l2ad_buflist, hdr);
3038 mutex_exit(&dev->l2ad_mtx);
3041 * Since we're using the pointer address as the tag when
3042 * incrementing and decrementing the l2ad_alloc refcount, we
3043 * must remove the old pointer (that we're about to destroy) and
3044 * add the new pointer to the refcount. Otherwise we'd remove
3045 * the wrong pointer address when calling arc_hdr_destroy() later.
3048 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3049 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3051 buf_discard_identity(hdr);
3052 kmem_cache_free(old, hdr);
3054 return (nhdr);
3058 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3059 * The buf is returned thawed since we expect the consumer to modify it.
3061 arc_buf_t *
3062 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3064 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3065 ZIO_COMPRESS_OFF, type);
3066 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3068 arc_buf_t *buf = NULL;
3069 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3070 arc_buf_thaw(buf);
3072 return (buf);
3076 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3077 * for bufs containing metadata.
3079 arc_buf_t *
3080 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3081 enum zio_compress compression_type)
3083 ASSERT3U(lsize, >, 0);
3084 ASSERT3U(lsize, >=, psize);
3085 ASSERT(compression_type > ZIO_COMPRESS_OFF);
3086 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3088 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3089 compression_type, ARC_BUFC_DATA);
3090 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3092 arc_buf_t *buf = NULL;
3093 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3094 arc_buf_thaw(buf);
3095 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3097 if (!arc_buf_is_shared(buf)) {
3099 * To ensure that the hdr has the correct data in it if we call
3100 * arc_decompress() on this buf before it's been written to
3101 * disk, it's easiest if we just set up sharing between the
3102 * buf and the hdr.
3104 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3105 arc_hdr_free_pabd(hdr);
3106 arc_share_buf(hdr, buf);
3109 return (buf);
3112 static void
3113 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3115 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3116 l2arc_dev_t *dev = l2hdr->b_dev;
3117 uint64_t psize = arc_hdr_size(hdr);
3119 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3120 ASSERT(HDR_HAS_L2HDR(hdr));
3122 list_remove(&dev->l2ad_buflist, hdr);
3124 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3125 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3127 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3129 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3130 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3133 static void
3134 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3136 if (HDR_HAS_L1HDR(hdr)) {
3137 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3138 hdr->b_l1hdr.b_bufcnt > 0);
3139 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3140 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3142 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3143 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3145 if (!HDR_EMPTY(hdr))
3146 buf_discard_identity(hdr);
3148 if (HDR_HAS_L2HDR(hdr)) {
3149 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3150 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3152 if (!buflist_held)
3153 mutex_enter(&dev->l2ad_mtx);
3156 * Even though we checked this conditional above, we
3157 * need to check this again now that we have the
3158 * l2ad_mtx. This is because we could be racing with
3159 * another thread calling l2arc_evict() which might have
3160 * destroyed this header's L2 portion as we were waiting
3161 * to acquire the l2ad_mtx. If that happens, we don't
3162 * want to re-destroy the header's L2 portion.
3164 if (HDR_HAS_L2HDR(hdr))
3165 arc_hdr_l2hdr_destroy(hdr);
3167 if (!buflist_held)
3168 mutex_exit(&dev->l2ad_mtx);
3171 if (HDR_HAS_L1HDR(hdr)) {
3172 arc_cksum_free(hdr);
3174 while (hdr->b_l1hdr.b_buf != NULL)
3175 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3177 #ifdef ZFS_DEBUG
3178 if (hdr->b_l1hdr.b_thawed != NULL) {
3179 kmem_free(hdr->b_l1hdr.b_thawed, 1);
3180 hdr->b_l1hdr.b_thawed = NULL;
3182 #endif
3184 if (hdr->b_l1hdr.b_pabd != NULL) {
3185 arc_hdr_free_pabd(hdr);
3189 ASSERT3P(hdr->b_hash_next, ==, NULL);
3190 if (HDR_HAS_L1HDR(hdr)) {
3191 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3192 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3193 kmem_cache_free(hdr_full_cache, hdr);
3194 } else {
3195 kmem_cache_free(hdr_l2only_cache, hdr);
3199 void
3200 arc_buf_destroy(arc_buf_t *buf, void* tag)
3202 arc_buf_hdr_t *hdr = buf->b_hdr;
3203 kmutex_t *hash_lock = HDR_LOCK(hdr);
3205 if (hdr->b_l1hdr.b_state == arc_anon) {
3206 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3207 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3208 VERIFY0(remove_reference(hdr, NULL, tag));
3209 arc_hdr_destroy(hdr);
3210 return;
3213 mutex_enter(hash_lock);
3214 ASSERT3P(hdr, ==, buf->b_hdr);
3215 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3216 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3217 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3218 ASSERT3P(buf->b_data, !=, NULL);
3220 (void) remove_reference(hdr, hash_lock, tag);
3221 arc_buf_destroy_impl(buf);
3222 mutex_exit(hash_lock);
3226 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3227 * state of the header is dependent on it's state prior to entering this
3228 * function. The following transitions are possible:
3230 * - arc_mru -> arc_mru_ghost
3231 * - arc_mfu -> arc_mfu_ghost
3232 * - arc_mru_ghost -> arc_l2c_only
3233 * - arc_mru_ghost -> deleted
3234 * - arc_mfu_ghost -> arc_l2c_only
3235 * - arc_mfu_ghost -> deleted
3237 static int64_t
3238 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3240 arc_state_t *evicted_state, *state;
3241 int64_t bytes_evicted = 0;
3243 ASSERT(MUTEX_HELD(hash_lock));
3244 ASSERT(HDR_HAS_L1HDR(hdr));
3246 state = hdr->b_l1hdr.b_state;
3247 if (GHOST_STATE(state)) {
3248 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3249 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3252 * l2arc_write_buffers() relies on a header's L1 portion
3253 * (i.e. its b_pabd field) during it's write phase.
3254 * Thus, we cannot push a header onto the arc_l2c_only
3255 * state (removing it's L1 piece) until the header is
3256 * done being written to the l2arc.
3258 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3259 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3260 return (bytes_evicted);
3263 ARCSTAT_BUMP(arcstat_deleted);
3264 bytes_evicted += HDR_GET_LSIZE(hdr);
3266 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3268 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3269 if (HDR_HAS_L2HDR(hdr)) {
3271 * This buffer is cached on the 2nd Level ARC;
3272 * don't destroy the header.
3274 arc_change_state(arc_l2c_only, hdr, hash_lock);
3276 * dropping from L1+L2 cached to L2-only,
3277 * realloc to remove the L1 header.
3279 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3280 hdr_l2only_cache);
3281 } else {
3282 arc_change_state(arc_anon, hdr, hash_lock);
3283 arc_hdr_destroy(hdr);
3285 return (bytes_evicted);
3288 ASSERT(state == arc_mru || state == arc_mfu);
3289 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3291 /* prefetch buffers have a minimum lifespan */
3292 if (HDR_IO_IN_PROGRESS(hdr) ||
3293 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3294 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3295 arc_min_prefetch_lifespan)) {
3296 ARCSTAT_BUMP(arcstat_evict_skip);
3297 return (bytes_evicted);
3300 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3301 while (hdr->b_l1hdr.b_buf) {
3302 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3303 if (!mutex_tryenter(&buf->b_evict_lock)) {
3304 ARCSTAT_BUMP(arcstat_mutex_miss);
3305 break;
3307 if (buf->b_data != NULL)
3308 bytes_evicted += HDR_GET_LSIZE(hdr);
3309 mutex_exit(&buf->b_evict_lock);
3310 arc_buf_destroy_impl(buf);
3313 if (HDR_HAS_L2HDR(hdr)) {
3314 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3315 } else {
3316 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3317 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3318 HDR_GET_LSIZE(hdr));
3319 } else {
3320 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3321 HDR_GET_LSIZE(hdr));
3325 if (hdr->b_l1hdr.b_bufcnt == 0) {
3326 arc_cksum_free(hdr);
3328 bytes_evicted += arc_hdr_size(hdr);
3331 * If this hdr is being evicted and has a compressed
3332 * buffer then we discard it here before we change states.
3333 * This ensures that the accounting is updated correctly
3334 * in arc_free_data_impl().
3336 arc_hdr_free_pabd(hdr);
3338 arc_change_state(evicted_state, hdr, hash_lock);
3339 ASSERT(HDR_IN_HASH_TABLE(hdr));
3340 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3341 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3344 return (bytes_evicted);
3347 static uint64_t
3348 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3349 uint64_t spa, int64_t bytes)
3351 multilist_sublist_t *mls;
3352 uint64_t bytes_evicted = 0;
3353 arc_buf_hdr_t *hdr;
3354 kmutex_t *hash_lock;
3355 int evict_count = 0;
3357 ASSERT3P(marker, !=, NULL);
3358 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3360 mls = multilist_sublist_lock(ml, idx);
3362 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3363 hdr = multilist_sublist_prev(mls, marker)) {
3364 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3365 (evict_count >= zfs_arc_evict_batch_limit))
3366 break;
3369 * To keep our iteration location, move the marker
3370 * forward. Since we're not holding hdr's hash lock, we
3371 * must be very careful and not remove 'hdr' from the
3372 * sublist. Otherwise, other consumers might mistake the
3373 * 'hdr' as not being on a sublist when they call the
3374 * multilist_link_active() function (they all rely on
3375 * the hash lock protecting concurrent insertions and
3376 * removals). multilist_sublist_move_forward() was
3377 * specifically implemented to ensure this is the case
3378 * (only 'marker' will be removed and re-inserted).
3380 multilist_sublist_move_forward(mls, marker);
3383 * The only case where the b_spa field should ever be
3384 * zero, is the marker headers inserted by
3385 * arc_evict_state(). It's possible for multiple threads
3386 * to be calling arc_evict_state() concurrently (e.g.
3387 * dsl_pool_close() and zio_inject_fault()), so we must
3388 * skip any markers we see from these other threads.
3390 if (hdr->b_spa == 0)
3391 continue;
3393 /* we're only interested in evicting buffers of a certain spa */
3394 if (spa != 0 && hdr->b_spa != spa) {
3395 ARCSTAT_BUMP(arcstat_evict_skip);
3396 continue;
3399 hash_lock = HDR_LOCK(hdr);
3402 * We aren't calling this function from any code path
3403 * that would already be holding a hash lock, so we're
3404 * asserting on this assumption to be defensive in case
3405 * this ever changes. Without this check, it would be
3406 * possible to incorrectly increment arcstat_mutex_miss
3407 * below (e.g. if the code changed such that we called
3408 * this function with a hash lock held).
3410 ASSERT(!MUTEX_HELD(hash_lock));
3412 if (mutex_tryenter(hash_lock)) {
3413 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3414 mutex_exit(hash_lock);
3416 bytes_evicted += evicted;
3419 * If evicted is zero, arc_evict_hdr() must have
3420 * decided to skip this header, don't increment
3421 * evict_count in this case.
3423 if (evicted != 0)
3424 evict_count++;
3427 * If arc_size isn't overflowing, signal any
3428 * threads that might happen to be waiting.
3430 * For each header evicted, we wake up a single
3431 * thread. If we used cv_broadcast, we could
3432 * wake up "too many" threads causing arc_size
3433 * to significantly overflow arc_c; since
3434 * arc_get_data_impl() doesn't check for overflow
3435 * when it's woken up (it doesn't because it's
3436 * possible for the ARC to be overflowing while
3437 * full of un-evictable buffers, and the
3438 * function should proceed in this case).
3440 * If threads are left sleeping, due to not
3441 * using cv_broadcast here, they will be woken
3442 * up via cv_broadcast in arc_adjust_cb() just
3443 * before arc_adjust_zthr sleeps.
3445 mutex_enter(&arc_adjust_lock);
3446 if (!arc_is_overflowing())
3447 cv_signal(&arc_adjust_waiters_cv);
3448 mutex_exit(&arc_adjust_lock);
3449 } else {
3450 ARCSTAT_BUMP(arcstat_mutex_miss);
3454 multilist_sublist_unlock(mls);
3456 return (bytes_evicted);
3460 * Evict buffers from the given arc state, until we've removed the
3461 * specified number of bytes. Move the removed buffers to the
3462 * appropriate evict state.
3464 * This function makes a "best effort". It skips over any buffers
3465 * it can't get a hash_lock on, and so, may not catch all candidates.
3466 * It may also return without evicting as much space as requested.
3468 * If bytes is specified using the special value ARC_EVICT_ALL, this
3469 * will evict all available (i.e. unlocked and evictable) buffers from
3470 * the given arc state; which is used by arc_flush().
3472 static uint64_t
3473 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3474 arc_buf_contents_t type)
3476 uint64_t total_evicted = 0;
3477 multilist_t *ml = state->arcs_list[type];
3478 int num_sublists;
3479 arc_buf_hdr_t **markers;
3481 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3483 num_sublists = multilist_get_num_sublists(ml);
3486 * If we've tried to evict from each sublist, made some
3487 * progress, but still have not hit the target number of bytes
3488 * to evict, we want to keep trying. The markers allow us to
3489 * pick up where we left off for each individual sublist, rather
3490 * than starting from the tail each time.
3492 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3493 for (int i = 0; i < num_sublists; i++) {
3494 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3497 * A b_spa of 0 is used to indicate that this header is
3498 * a marker. This fact is used in arc_adjust_type() and
3499 * arc_evict_state_impl().
3501 markers[i]->b_spa = 0;
3503 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3504 multilist_sublist_insert_tail(mls, markers[i]);
3505 multilist_sublist_unlock(mls);
3509 * While we haven't hit our target number of bytes to evict, or
3510 * we're evicting all available buffers.
3512 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3514 * Start eviction using a randomly selected sublist,
3515 * this is to try and evenly balance eviction across all
3516 * sublists. Always starting at the same sublist
3517 * (e.g. index 0) would cause evictions to favor certain
3518 * sublists over others.
3520 int sublist_idx = multilist_get_random_index(ml);
3521 uint64_t scan_evicted = 0;
3523 for (int i = 0; i < num_sublists; i++) {
3524 uint64_t bytes_remaining;
3525 uint64_t bytes_evicted;
3527 if (bytes == ARC_EVICT_ALL)
3528 bytes_remaining = ARC_EVICT_ALL;
3529 else if (total_evicted < bytes)
3530 bytes_remaining = bytes - total_evicted;
3531 else
3532 break;
3534 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3535 markers[sublist_idx], spa, bytes_remaining);
3537 scan_evicted += bytes_evicted;
3538 total_evicted += bytes_evicted;
3540 /* we've reached the end, wrap to the beginning */
3541 if (++sublist_idx >= num_sublists)
3542 sublist_idx = 0;
3546 * If we didn't evict anything during this scan, we have
3547 * no reason to believe we'll evict more during another
3548 * scan, so break the loop.
3550 if (scan_evicted == 0) {
3551 /* This isn't possible, let's make that obvious */
3552 ASSERT3S(bytes, !=, 0);
3555 * When bytes is ARC_EVICT_ALL, the only way to
3556 * break the loop is when scan_evicted is zero.
3557 * In that case, we actually have evicted enough,
3558 * so we don't want to increment the kstat.
3560 if (bytes != ARC_EVICT_ALL) {
3561 ASSERT3S(total_evicted, <, bytes);
3562 ARCSTAT_BUMP(arcstat_evict_not_enough);
3565 break;
3569 for (int i = 0; i < num_sublists; i++) {
3570 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3571 multilist_sublist_remove(mls, markers[i]);
3572 multilist_sublist_unlock(mls);
3574 kmem_cache_free(hdr_full_cache, markers[i]);
3576 kmem_free(markers, sizeof (*markers) * num_sublists);
3578 return (total_evicted);
3582 * Flush all "evictable" data of the given type from the arc state
3583 * specified. This will not evict any "active" buffers (i.e. referenced).
3585 * When 'retry' is set to B_FALSE, the function will make a single pass
3586 * over the state and evict any buffers that it can. Since it doesn't
3587 * continually retry the eviction, it might end up leaving some buffers
3588 * in the ARC due to lock misses.
3590 * When 'retry' is set to B_TRUE, the function will continually retry the
3591 * eviction until *all* evictable buffers have been removed from the
3592 * state. As a result, if concurrent insertions into the state are
3593 * allowed (e.g. if the ARC isn't shutting down), this function might
3594 * wind up in an infinite loop, continually trying to evict buffers.
3596 static uint64_t
3597 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3598 boolean_t retry)
3600 uint64_t evicted = 0;
3602 while (refcount_count(&state->arcs_esize[type]) != 0) {
3603 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3605 if (!retry)
3606 break;
3609 return (evicted);
3613 * Evict the specified number of bytes from the state specified,
3614 * restricting eviction to the spa and type given. This function
3615 * prevents us from trying to evict more from a state's list than
3616 * is "evictable", and to skip evicting altogether when passed a
3617 * negative value for "bytes". In contrast, arc_evict_state() will
3618 * evict everything it can, when passed a negative value for "bytes".
3620 static uint64_t
3621 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3622 arc_buf_contents_t type)
3624 int64_t delta;
3626 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3627 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3628 return (arc_evict_state(state, spa, delta, type));
3631 return (0);
3635 * Evict metadata buffers from the cache, such that arc_meta_used is
3636 * capped by the arc_meta_limit tunable.
3638 static uint64_t
3639 arc_adjust_meta(uint64_t meta_used)
3641 uint64_t total_evicted = 0;
3642 int64_t target;
3645 * If we're over the meta limit, we want to evict enough
3646 * metadata to get back under the meta limit. We don't want to
3647 * evict so much that we drop the MRU below arc_p, though. If
3648 * we're over the meta limit more than we're over arc_p, we
3649 * evict some from the MRU here, and some from the MFU below.
3651 target = MIN((int64_t)(meta_used - arc_meta_limit),
3652 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3653 refcount_count(&arc_mru->arcs_size) - arc_p));
3655 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3658 * Similar to the above, we want to evict enough bytes to get us
3659 * below the meta limit, but not so much as to drop us below the
3660 * space allotted to the MFU (which is defined as arc_c - arc_p).
3662 target = MIN((int64_t)(meta_used - arc_meta_limit),
3663 (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3664 (arc_c - arc_p)));
3666 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3668 return (total_evicted);
3672 * Return the type of the oldest buffer in the given arc state
3674 * This function will select a random sublist of type ARC_BUFC_DATA and
3675 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3676 * is compared, and the type which contains the "older" buffer will be
3677 * returned.
3679 static arc_buf_contents_t
3680 arc_adjust_type(arc_state_t *state)
3682 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3683 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3684 int data_idx = multilist_get_random_index(data_ml);
3685 int meta_idx = multilist_get_random_index(meta_ml);
3686 multilist_sublist_t *data_mls;
3687 multilist_sublist_t *meta_mls;
3688 arc_buf_contents_t type;
3689 arc_buf_hdr_t *data_hdr;
3690 arc_buf_hdr_t *meta_hdr;
3693 * We keep the sublist lock until we're finished, to prevent
3694 * the headers from being destroyed via arc_evict_state().
3696 data_mls = multilist_sublist_lock(data_ml, data_idx);
3697 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3700 * These two loops are to ensure we skip any markers that
3701 * might be at the tail of the lists due to arc_evict_state().
3704 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3705 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3706 if (data_hdr->b_spa != 0)
3707 break;
3710 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3711 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3712 if (meta_hdr->b_spa != 0)
3713 break;
3716 if (data_hdr == NULL && meta_hdr == NULL) {
3717 type = ARC_BUFC_DATA;
3718 } else if (data_hdr == NULL) {
3719 ASSERT3P(meta_hdr, !=, NULL);
3720 type = ARC_BUFC_METADATA;
3721 } else if (meta_hdr == NULL) {
3722 ASSERT3P(data_hdr, !=, NULL);
3723 type = ARC_BUFC_DATA;
3724 } else {
3725 ASSERT3P(data_hdr, !=, NULL);
3726 ASSERT3P(meta_hdr, !=, NULL);
3728 /* The headers can't be on the sublist without an L1 header */
3729 ASSERT(HDR_HAS_L1HDR(data_hdr));
3730 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3732 if (data_hdr->b_l1hdr.b_arc_access <
3733 meta_hdr->b_l1hdr.b_arc_access) {
3734 type = ARC_BUFC_DATA;
3735 } else {
3736 type = ARC_BUFC_METADATA;
3740 multilist_sublist_unlock(meta_mls);
3741 multilist_sublist_unlock(data_mls);
3743 return (type);
3747 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3749 static uint64_t
3750 arc_adjust(void)
3752 uint64_t total_evicted = 0;
3753 uint64_t bytes;
3754 int64_t target;
3755 uint64_t asize = aggsum_value(&arc_size);
3756 uint64_t ameta = aggsum_value(&arc_meta_used);
3759 * If we're over arc_meta_limit, we want to correct that before
3760 * potentially evicting data buffers below.
3762 total_evicted += arc_adjust_meta(ameta);
3765 * Adjust MRU size
3767 * If we're over the target cache size, we want to evict enough
3768 * from the list to get back to our target size. We don't want
3769 * to evict too much from the MRU, such that it drops below
3770 * arc_p. So, if we're over our target cache size more than
3771 * the MRU is over arc_p, we'll evict enough to get back to
3772 * arc_p here, and then evict more from the MFU below.
3774 target = MIN((int64_t)(asize - arc_c),
3775 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3776 refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
3779 * If we're below arc_meta_min, always prefer to evict data.
3780 * Otherwise, try to satisfy the requested number of bytes to
3781 * evict from the type which contains older buffers; in an
3782 * effort to keep newer buffers in the cache regardless of their
3783 * type. If we cannot satisfy the number of bytes from this
3784 * type, spill over into the next type.
3786 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3787 ameta > arc_meta_min) {
3788 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3789 total_evicted += bytes;
3792 * If we couldn't evict our target number of bytes from
3793 * metadata, we try to get the rest from data.
3795 target -= bytes;
3797 total_evicted +=
3798 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3799 } else {
3800 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3801 total_evicted += bytes;
3804 * If we couldn't evict our target number of bytes from
3805 * data, we try to get the rest from metadata.
3807 target -= bytes;
3809 total_evicted +=
3810 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3814 * Adjust MFU size
3816 * Now that we've tried to evict enough from the MRU to get its
3817 * size back to arc_p, if we're still above the target cache
3818 * size, we evict the rest from the MFU.
3820 target = asize - arc_c;
3822 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3823 ameta > arc_meta_min) {
3824 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3825 total_evicted += bytes;
3828 * If we couldn't evict our target number of bytes from
3829 * metadata, we try to get the rest from data.
3831 target -= bytes;
3833 total_evicted +=
3834 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3835 } else {
3836 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3837 total_evicted += bytes;
3840 * If we couldn't evict our target number of bytes from
3841 * data, we try to get the rest from data.
3843 target -= bytes;
3845 total_evicted +=
3846 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3850 * Adjust ghost lists
3852 * In addition to the above, the ARC also defines target values
3853 * for the ghost lists. The sum of the mru list and mru ghost
3854 * list should never exceed the target size of the cache, and
3855 * the sum of the mru list, mfu list, mru ghost list, and mfu
3856 * ghost list should never exceed twice the target size of the
3857 * cache. The following logic enforces these limits on the ghost
3858 * caches, and evicts from them as needed.
3860 target = refcount_count(&arc_mru->arcs_size) +
3861 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3863 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3864 total_evicted += bytes;
3866 target -= bytes;
3868 total_evicted +=
3869 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3872 * We assume the sum of the mru list and mfu list is less than
3873 * or equal to arc_c (we enforced this above), which means we
3874 * can use the simpler of the two equations below:
3876 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3877 * mru ghost + mfu ghost <= arc_c
3879 target = refcount_count(&arc_mru_ghost->arcs_size) +
3880 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3882 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3883 total_evicted += bytes;
3885 target -= bytes;
3887 total_evicted +=
3888 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3890 return (total_evicted);
3893 void
3894 arc_flush(spa_t *spa, boolean_t retry)
3896 uint64_t guid = 0;
3899 * If retry is B_TRUE, a spa must not be specified since we have
3900 * no good way to determine if all of a spa's buffers have been
3901 * evicted from an arc state.
3903 ASSERT(!retry || spa == 0);
3905 if (spa != NULL)
3906 guid = spa_load_guid(spa);
3908 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3909 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3911 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3912 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3914 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3915 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3917 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3918 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3921 static void
3922 arc_reduce_target_size(int64_t to_free)
3924 uint64_t asize = aggsum_value(&arc_size);
3925 if (arc_c > arc_c_min) {
3927 if (arc_c > arc_c_min + to_free)
3928 atomic_add_64(&arc_c, -to_free);
3929 else
3930 arc_c = arc_c_min;
3932 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3933 if (asize < arc_c)
3934 arc_c = MAX(asize, arc_c_min);
3935 if (arc_p > arc_c)
3936 arc_p = (arc_c >> 1);
3937 ASSERT(arc_c >= arc_c_min);
3938 ASSERT((int64_t)arc_p >= 0);
3941 if (asize > arc_c) {
3942 /* See comment in arc_adjust_cb_check() on why lock+flag */
3943 mutex_enter(&arc_adjust_lock);
3944 arc_adjust_needed = B_TRUE;
3945 mutex_exit(&arc_adjust_lock);
3946 zthr_wakeup(arc_adjust_zthr);
3950 typedef enum free_memory_reason_t {
3951 FMR_UNKNOWN,
3952 FMR_NEEDFREE,
3953 FMR_LOTSFREE,
3954 FMR_SWAPFS_MINFREE,
3955 FMR_PAGES_PP_MAXIMUM,
3956 FMR_HEAP_ARENA,
3957 FMR_ZIO_ARENA,
3958 } free_memory_reason_t;
3960 int64_t last_free_memory;
3961 free_memory_reason_t last_free_reason;
3964 * Additional reserve of pages for pp_reserve.
3966 int64_t arc_pages_pp_reserve = 64;
3969 * Additional reserve of pages for swapfs.
3971 int64_t arc_swapfs_reserve = 64;
3974 * Return the amount of memory that can be consumed before reclaim will be
3975 * needed. Positive if there is sufficient free memory, negative indicates
3976 * the amount of memory that needs to be freed up.
3978 static int64_t
3979 arc_available_memory(void)
3981 int64_t lowest = INT64_MAX;
3982 int64_t n;
3983 free_memory_reason_t r = FMR_UNKNOWN;
3985 #ifdef _KERNEL
3986 if (needfree > 0) {
3987 n = PAGESIZE * (-needfree);
3988 if (n < lowest) {
3989 lowest = n;
3990 r = FMR_NEEDFREE;
3995 * check that we're out of range of the pageout scanner. It starts to
3996 * schedule paging if freemem is less than lotsfree and needfree.
3997 * lotsfree is the high-water mark for pageout, and needfree is the
3998 * number of needed free pages. We add extra pages here to make sure
3999 * the scanner doesn't start up while we're freeing memory.
4001 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4002 if (n < lowest) {
4003 lowest = n;
4004 r = FMR_LOTSFREE;
4008 * check to make sure that swapfs has enough space so that anon
4009 * reservations can still succeed. anon_resvmem() checks that the
4010 * availrmem is greater than swapfs_minfree, and the number of reserved
4011 * swap pages. We also add a bit of extra here just to prevent
4012 * circumstances from getting really dire.
4014 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4015 desfree - arc_swapfs_reserve);
4016 if (n < lowest) {
4017 lowest = n;
4018 r = FMR_SWAPFS_MINFREE;
4023 * Check that we have enough availrmem that memory locking (e.g., via
4024 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4025 * stores the number of pages that cannot be locked; when availrmem
4026 * drops below pages_pp_maximum, page locking mechanisms such as
4027 * page_pp_lock() will fail.)
4029 n = PAGESIZE * (availrmem - pages_pp_maximum -
4030 arc_pages_pp_reserve);
4031 if (n < lowest) {
4032 lowest = n;
4033 r = FMR_PAGES_PP_MAXIMUM;
4036 #if defined(__i386)
4038 * If we're on an i386 platform, it's possible that we'll exhaust the
4039 * kernel heap space before we ever run out of available physical
4040 * memory. Most checks of the size of the heap_area compare against
4041 * tune.t_minarmem, which is the minimum available real memory that we
4042 * can have in the system. However, this is generally fixed at 25 pages
4043 * which is so low that it's useless. In this comparison, we seek to
4044 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4045 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4046 * free)
4048 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4049 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4050 if (n < lowest) {
4051 lowest = n;
4052 r = FMR_HEAP_ARENA;
4054 #endif
4057 * If zio data pages are being allocated out of a separate heap segment,
4058 * then enforce that the size of available vmem for this arena remains
4059 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4061 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4062 * memory (in the zio_arena) free, which can avoid memory
4063 * fragmentation issues.
4065 if (zio_arena != NULL) {
4066 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4067 (vmem_size(zio_arena, VMEM_ALLOC) >>
4068 arc_zio_arena_free_shift);
4069 if (n < lowest) {
4070 lowest = n;
4071 r = FMR_ZIO_ARENA;
4074 #else
4075 /* Every 100 calls, free a small amount */
4076 if (spa_get_random(100) == 0)
4077 lowest = -1024;
4078 #endif
4080 last_free_memory = lowest;
4081 last_free_reason = r;
4083 return (lowest);
4088 * Determine if the system is under memory pressure and is asking
4089 * to reclaim memory. A return value of B_TRUE indicates that the system
4090 * is under memory pressure and that the arc should adjust accordingly.
4092 static boolean_t
4093 arc_reclaim_needed(void)
4095 return (arc_available_memory() < 0);
4098 static void
4099 arc_kmem_reap_soon(void)
4101 size_t i;
4102 kmem_cache_t *prev_cache = NULL;
4103 kmem_cache_t *prev_data_cache = NULL;
4104 extern kmem_cache_t *zio_buf_cache[];
4105 extern kmem_cache_t *zio_data_buf_cache[];
4106 extern kmem_cache_t *range_seg_cache;
4107 extern kmem_cache_t *abd_chunk_cache;
4109 #ifdef _KERNEL
4110 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4112 * We are exceeding our meta-data cache limit.
4113 * Purge some DNLC entries to release holds on meta-data.
4115 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4117 #if defined(__i386)
4119 * Reclaim unused memory from all kmem caches.
4121 kmem_reap();
4122 #endif
4123 #endif
4125 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4126 if (zio_buf_cache[i] != prev_cache) {
4127 prev_cache = zio_buf_cache[i];
4128 kmem_cache_reap_soon(zio_buf_cache[i]);
4130 if (zio_data_buf_cache[i] != prev_data_cache) {
4131 prev_data_cache = zio_data_buf_cache[i];
4132 kmem_cache_reap_soon(zio_data_buf_cache[i]);
4135 kmem_cache_reap_soon(abd_chunk_cache);
4136 kmem_cache_reap_soon(buf_cache);
4137 kmem_cache_reap_soon(hdr_full_cache);
4138 kmem_cache_reap_soon(hdr_l2only_cache);
4139 kmem_cache_reap_soon(range_seg_cache);
4141 if (zio_arena != NULL) {
4143 * Ask the vmem arena to reclaim unused memory from its
4144 * quantum caches.
4146 vmem_qcache_reap(zio_arena);
4150 /* ARGSUSED */
4151 static boolean_t
4152 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4155 * This is necessary in order for the mdb ::arc dcmd to
4156 * show up to date information. Since the ::arc command
4157 * does not call the kstat's update function, without
4158 * this call, the command may show stale stats for the
4159 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4160 * with this change, the data might be up to 1 second
4161 * out of date(the arc_adjust_zthr has a maximum sleep
4162 * time of 1 second); but that should suffice. The
4163 * arc_state_t structures can be queried directly if more
4164 * accurate information is needed.
4166 if (arc_ksp != NULL)
4167 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4170 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4171 * rather than checking if we are overflowing here, so that we are
4172 * sure to not leave arc_get_data_impl() waiting on
4173 * arc_adjust_waiters_cv. If we have become "not overflowing" since
4174 * arc_get_data_impl() checked, we need to wake it up. We could
4175 * broadcast the CV here, but arc_get_data_impl() may have not yet
4176 * gone to sleep. We would need to use a mutex to ensure that this
4177 * function doesn't broadcast until arc_get_data_impl() has gone to
4178 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of
4179 * such a lock would necessarily be incorrect with respect to the
4180 * zthr_lock, which is held before this function is called, and is
4181 * held by arc_get_data_impl() when it calls zthr_wakeup().
4183 return (arc_adjust_needed);
4187 * Keep arc_size under arc_c by running arc_adjust which evicts data
4188 * from the ARC.
4190 /* ARGSUSED */
4191 static int
4192 arc_adjust_cb(void *arg, zthr_t *zthr)
4194 uint64_t evicted = 0;
4196 /* Evict from cache */
4197 evicted = arc_adjust();
4200 * If evicted is zero, we couldn't evict anything
4201 * via arc_adjust(). This could be due to hash lock
4202 * collisions, but more likely due to the majority of
4203 * arc buffers being unevictable. Therefore, even if
4204 * arc_size is above arc_c, another pass is unlikely to
4205 * be helpful and could potentially cause us to enter an
4206 * infinite loop. Additionally, zthr_iscancelled() is
4207 * checked here so that if the arc is shutting down, the
4208 * broadcast will wake any remaining arc adjust waiters.
4210 mutex_enter(&arc_adjust_lock);
4211 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4212 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4213 if (!arc_adjust_needed) {
4215 * We're either no longer overflowing, or we
4216 * can't evict anything more, so we should wake
4217 * up any waiters.
4219 cv_broadcast(&arc_adjust_waiters_cv);
4221 mutex_exit(&arc_adjust_lock);
4223 return (0);
4226 /* ARGSUSED */
4227 static boolean_t
4228 arc_reap_cb_check(void *arg, zthr_t *zthr)
4230 int64_t free_memory = arc_available_memory();
4233 * If a kmem reap is already active, don't schedule more. We must
4234 * check for this because kmem_cache_reap_soon() won't actually
4235 * block on the cache being reaped (this is to prevent callers from
4236 * becoming implicitly blocked by a system-wide kmem reap -- which,
4237 * on a system with many, many full magazines, can take minutes).
4239 if (!kmem_cache_reap_active() &&
4240 free_memory < 0) {
4241 arc_no_grow = B_TRUE;
4242 arc_warm = B_TRUE;
4244 * Wait at least zfs_grow_retry (default 60) seconds
4245 * before considering growing.
4247 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4248 return (B_TRUE);
4249 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4250 arc_no_grow = B_TRUE;
4251 } else if (gethrtime() >= arc_growtime) {
4252 arc_no_grow = B_FALSE;
4255 return (B_FALSE);
4259 * Keep enough free memory in the system by reaping the ARC's kmem
4260 * caches. To cause more slabs to be reapable, we may reduce the
4261 * target size of the cache (arc_c), causing the arc_adjust_cb()
4262 * to free more buffers.
4264 /* ARGSUSED */
4265 static int
4266 arc_reap_cb(void *arg, zthr_t *zthr)
4268 int64_t free_memory;
4271 * Kick off asynchronous kmem_reap()'s of all our caches.
4273 arc_kmem_reap_soon();
4276 * Wait at least arc_kmem_cache_reap_retry_ms between
4277 * arc_kmem_reap_soon() calls. Without this check it is possible to
4278 * end up in a situation where we spend lots of time reaping
4279 * caches, while we're near arc_c_min. Waiting here also gives the
4280 * subsequent free memory check a chance of finding that the
4281 * asynchronous reap has already freed enough memory, and we don't
4282 * need to call arc_reduce_target_size().
4284 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4287 * Reduce the target size as needed to maintain the amount of free
4288 * memory in the system at a fraction of the arc_size (1/128th by
4289 * default). If oversubscribed (free_memory < 0) then reduce the
4290 * target arc_size by the deficit amount plus the fractional
4291 * amount. If free memory is positive but less then the fractional
4292 * amount, reduce by what is needed to hit the fractional amount.
4294 free_memory = arc_available_memory();
4296 int64_t to_free =
4297 (arc_c >> arc_shrink_shift) - free_memory;
4298 if (to_free > 0) {
4299 #ifdef _KERNEL
4300 to_free = MAX(to_free, ptob(needfree));
4301 #endif
4302 arc_reduce_target_size(to_free);
4305 return (0);
4309 * Adapt arc info given the number of bytes we are trying to add and
4310 * the state that we are comming from. This function is only called
4311 * when we are adding new content to the cache.
4313 static void
4314 arc_adapt(int bytes, arc_state_t *state)
4316 int mult;
4317 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4318 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4319 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4321 if (state == arc_l2c_only)
4322 return;
4324 ASSERT(bytes > 0);
4326 * Adapt the target size of the MRU list:
4327 * - if we just hit in the MRU ghost list, then increase
4328 * the target size of the MRU list.
4329 * - if we just hit in the MFU ghost list, then increase
4330 * the target size of the MFU list by decreasing the
4331 * target size of the MRU list.
4333 if (state == arc_mru_ghost) {
4334 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4335 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4337 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4338 } else if (state == arc_mfu_ghost) {
4339 uint64_t delta;
4341 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4342 mult = MIN(mult, 10);
4344 delta = MIN(bytes * mult, arc_p);
4345 arc_p = MAX(arc_p_min, arc_p - delta);
4347 ASSERT((int64_t)arc_p >= 0);
4350 * Wake reap thread if we do not have any available memory
4352 if (arc_reclaim_needed()) {
4353 zthr_wakeup(arc_reap_zthr);
4354 return;
4358 if (arc_no_grow)
4359 return;
4361 if (arc_c >= arc_c_max)
4362 return;
4365 * If we're within (2 * maxblocksize) bytes of the target
4366 * cache size, increment the target cache size
4368 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4369 0) {
4370 atomic_add_64(&arc_c, (int64_t)bytes);
4371 if (arc_c > arc_c_max)
4372 arc_c = arc_c_max;
4373 else if (state == arc_anon)
4374 atomic_add_64(&arc_p, (int64_t)bytes);
4375 if (arc_p > arc_c)
4376 arc_p = arc_c;
4378 ASSERT((int64_t)arc_p >= 0);
4382 * Check if arc_size has grown past our upper threshold, determined by
4383 * zfs_arc_overflow_shift.
4385 static boolean_t
4386 arc_is_overflowing(void)
4388 /* Always allow at least one block of overflow */
4389 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4390 arc_c >> zfs_arc_overflow_shift);
4393 * We just compare the lower bound here for performance reasons. Our
4394 * primary goals are to make sure that the arc never grows without
4395 * bound, and that it can reach its maximum size. This check
4396 * accomplishes both goals. The maximum amount we could run over by is
4397 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4398 * in the ARC. In practice, that's in the tens of MB, which is low
4399 * enough to be safe.
4401 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4404 static abd_t *
4405 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4407 arc_buf_contents_t type = arc_buf_type(hdr);
4409 arc_get_data_impl(hdr, size, tag);
4410 if (type == ARC_BUFC_METADATA) {
4411 return (abd_alloc(size, B_TRUE));
4412 } else {
4413 ASSERT(type == ARC_BUFC_DATA);
4414 return (abd_alloc(size, B_FALSE));
4418 static void *
4419 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4421 arc_buf_contents_t type = arc_buf_type(hdr);
4423 arc_get_data_impl(hdr, size, tag);
4424 if (type == ARC_BUFC_METADATA) {
4425 return (zio_buf_alloc(size));
4426 } else {
4427 ASSERT(type == ARC_BUFC_DATA);
4428 return (zio_data_buf_alloc(size));
4433 * Allocate a block and return it to the caller. If we are hitting the
4434 * hard limit for the cache size, we must sleep, waiting for the eviction
4435 * thread to catch up. If we're past the target size but below the hard
4436 * limit, we'll only signal the reclaim thread and continue on.
4438 static void
4439 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4441 arc_state_t *state = hdr->b_l1hdr.b_state;
4442 arc_buf_contents_t type = arc_buf_type(hdr);
4444 arc_adapt(size, state);
4447 * If arc_size is currently overflowing, and has grown past our
4448 * upper limit, we must be adding data faster than the evict
4449 * thread can evict. Thus, to ensure we don't compound the
4450 * problem by adding more data and forcing arc_size to grow even
4451 * further past it's target size, we halt and wait for the
4452 * eviction thread to catch up.
4454 * It's also possible that the reclaim thread is unable to evict
4455 * enough buffers to get arc_size below the overflow limit (e.g.
4456 * due to buffers being un-evictable, or hash lock collisions).
4457 * In this case, we want to proceed regardless if we're
4458 * overflowing; thus we don't use a while loop here.
4460 if (arc_is_overflowing()) {
4461 mutex_enter(&arc_adjust_lock);
4464 * Now that we've acquired the lock, we may no longer be
4465 * over the overflow limit, lets check.
4467 * We're ignoring the case of spurious wake ups. If that
4468 * were to happen, it'd let this thread consume an ARC
4469 * buffer before it should have (i.e. before we're under
4470 * the overflow limit and were signalled by the reclaim
4471 * thread). As long as that is a rare occurrence, it
4472 * shouldn't cause any harm.
4474 if (arc_is_overflowing()) {
4475 arc_adjust_needed = B_TRUE;
4476 zthr_wakeup(arc_adjust_zthr);
4477 (void) cv_wait(&arc_adjust_waiters_cv,
4478 &arc_adjust_lock);
4480 mutex_exit(&arc_adjust_lock);
4483 VERIFY3U(hdr->b_type, ==, type);
4484 if (type == ARC_BUFC_METADATA) {
4485 arc_space_consume(size, ARC_SPACE_META);
4486 } else {
4487 arc_space_consume(size, ARC_SPACE_DATA);
4491 * Update the state size. Note that ghost states have a
4492 * "ghost size" and so don't need to be updated.
4494 if (!GHOST_STATE(state)) {
4496 (void) refcount_add_many(&state->arcs_size, size, tag);
4499 * If this is reached via arc_read, the link is
4500 * protected by the hash lock. If reached via
4501 * arc_buf_alloc, the header should not be accessed by
4502 * any other thread. And, if reached via arc_read_done,
4503 * the hash lock will protect it if it's found in the
4504 * hash table; otherwise no other thread should be
4505 * trying to [add|remove]_reference it.
4507 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4508 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4509 (void) refcount_add_many(&state->arcs_esize[type],
4510 size, tag);
4514 * If we are growing the cache, and we are adding anonymous
4515 * data, and we have outgrown arc_p, update arc_p
4517 if (aggsum_compare(&arc_size, arc_c) < 0 &&
4518 hdr->b_l1hdr.b_state == arc_anon &&
4519 (refcount_count(&arc_anon->arcs_size) +
4520 refcount_count(&arc_mru->arcs_size) > arc_p))
4521 arc_p = MIN(arc_c, arc_p + size);
4525 static void
4526 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4528 arc_free_data_impl(hdr, size, tag);
4529 abd_free(abd);
4532 static void
4533 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4535 arc_buf_contents_t type = arc_buf_type(hdr);
4537 arc_free_data_impl(hdr, size, tag);
4538 if (type == ARC_BUFC_METADATA) {
4539 zio_buf_free(buf, size);
4540 } else {
4541 ASSERT(type == ARC_BUFC_DATA);
4542 zio_data_buf_free(buf, size);
4547 * Free the arc data buffer.
4549 static void
4550 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4552 arc_state_t *state = hdr->b_l1hdr.b_state;
4553 arc_buf_contents_t type = arc_buf_type(hdr);
4555 /* protected by hash lock, if in the hash table */
4556 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4557 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4558 ASSERT(state != arc_anon && state != arc_l2c_only);
4560 (void) refcount_remove_many(&state->arcs_esize[type],
4561 size, tag);
4563 (void) refcount_remove_many(&state->arcs_size, size, tag);
4565 VERIFY3U(hdr->b_type, ==, type);
4566 if (type == ARC_BUFC_METADATA) {
4567 arc_space_return(size, ARC_SPACE_META);
4568 } else {
4569 ASSERT(type == ARC_BUFC_DATA);
4570 arc_space_return(size, ARC_SPACE_DATA);
4575 * This routine is called whenever a buffer is accessed.
4576 * NOTE: the hash lock is dropped in this function.
4578 static void
4579 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4581 clock_t now;
4583 ASSERT(MUTEX_HELD(hash_lock));
4584 ASSERT(HDR_HAS_L1HDR(hdr));
4586 if (hdr->b_l1hdr.b_state == arc_anon) {
4588 * This buffer is not in the cache, and does not
4589 * appear in our "ghost" list. Add the new buffer
4590 * to the MRU state.
4593 ASSERT0(hdr->b_l1hdr.b_arc_access);
4594 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4595 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4596 arc_change_state(arc_mru, hdr, hash_lock);
4598 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4599 now = ddi_get_lbolt();
4602 * If this buffer is here because of a prefetch, then either:
4603 * - clear the flag if this is a "referencing" read
4604 * (any subsequent access will bump this into the MFU state).
4605 * or
4606 * - move the buffer to the head of the list if this is
4607 * another prefetch (to make it less likely to be evicted).
4609 if (HDR_PREFETCH(hdr)) {
4610 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4611 /* link protected by hash lock */
4612 ASSERT(multilist_link_active(
4613 &hdr->b_l1hdr.b_arc_node));
4614 } else {
4615 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4616 ARCSTAT_BUMP(arcstat_mru_hits);
4618 hdr->b_l1hdr.b_arc_access = now;
4619 return;
4623 * This buffer has been "accessed" only once so far,
4624 * but it is still in the cache. Move it to the MFU
4625 * state.
4627 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4629 * More than 125ms have passed since we
4630 * instantiated this buffer. Move it to the
4631 * most frequently used state.
4633 hdr->b_l1hdr.b_arc_access = now;
4634 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4635 arc_change_state(arc_mfu, hdr, hash_lock);
4637 ARCSTAT_BUMP(arcstat_mru_hits);
4638 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4639 arc_state_t *new_state;
4641 * This buffer has been "accessed" recently, but
4642 * was evicted from the cache. Move it to the
4643 * MFU state.
4646 if (HDR_PREFETCH(hdr)) {
4647 new_state = arc_mru;
4648 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4649 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4650 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4651 } else {
4652 new_state = arc_mfu;
4653 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4656 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4657 arc_change_state(new_state, hdr, hash_lock);
4659 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4660 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4662 * This buffer has been accessed more than once and is
4663 * still in the cache. Keep it in the MFU state.
4665 * NOTE: an add_reference() that occurred when we did
4666 * the arc_read() will have kicked this off the list.
4667 * If it was a prefetch, we will explicitly move it to
4668 * the head of the list now.
4670 if ((HDR_PREFETCH(hdr)) != 0) {
4671 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4672 /* link protected by hash_lock */
4673 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4675 ARCSTAT_BUMP(arcstat_mfu_hits);
4676 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4677 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4678 arc_state_t *new_state = arc_mfu;
4680 * This buffer has been accessed more than once but has
4681 * been evicted from the cache. Move it back to the
4682 * MFU state.
4685 if (HDR_PREFETCH(hdr)) {
4687 * This is a prefetch access...
4688 * move this block back to the MRU state.
4690 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4691 new_state = arc_mru;
4694 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4695 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4696 arc_change_state(new_state, hdr, hash_lock);
4698 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4699 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4701 * This buffer is on the 2nd Level ARC.
4704 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4705 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4706 arc_change_state(arc_mfu, hdr, hash_lock);
4707 } else {
4708 ASSERT(!"invalid arc state");
4712 /* a generic arc_done_func_t which you can use */
4713 /* ARGSUSED */
4714 void
4715 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4717 if (zio == NULL || zio->io_error == 0)
4718 bcopy(buf->b_data, arg, arc_buf_size(buf));
4719 arc_buf_destroy(buf, arg);
4722 /* a generic arc_done_func_t */
4723 void
4724 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4726 arc_buf_t **bufp = arg;
4727 if (buf == NULL) {
4728 ASSERT(zio == NULL || zio->io_error != 0);
4729 *bufp = NULL;
4730 } else {
4731 ASSERT(zio == NULL || zio->io_error == 0);
4732 *bufp = buf;
4733 ASSERT(buf->b_data != NULL);
4737 static void
4738 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4740 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4741 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4742 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4743 } else {
4744 if (HDR_COMPRESSION_ENABLED(hdr)) {
4745 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4746 BP_GET_COMPRESS(bp));
4748 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4749 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4753 static void
4754 arc_read_done(zio_t *zio)
4756 arc_buf_hdr_t *hdr = zio->io_private;
4757 kmutex_t *hash_lock = NULL;
4758 arc_callback_t *callback_list;
4759 arc_callback_t *acb;
4760 boolean_t freeable = B_FALSE;
4761 boolean_t no_zio_error = (zio->io_error == 0);
4764 * The hdr was inserted into hash-table and removed from lists
4765 * prior to starting I/O. We should find this header, since
4766 * it's in the hash table, and it should be legit since it's
4767 * not possible to evict it during the I/O. The only possible
4768 * reason for it not to be found is if we were freed during the
4769 * read.
4771 if (HDR_IN_HASH_TABLE(hdr)) {
4772 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4773 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4774 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4775 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4776 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4778 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4779 &hash_lock);
4781 ASSERT((found == hdr &&
4782 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4783 (found == hdr && HDR_L2_READING(hdr)));
4784 ASSERT3P(hash_lock, !=, NULL);
4787 if (no_zio_error) {
4788 /* byteswap if necessary */
4789 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4790 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4791 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4792 } else {
4793 hdr->b_l1hdr.b_byteswap =
4794 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4796 } else {
4797 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4801 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4802 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4803 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4805 callback_list = hdr->b_l1hdr.b_acb;
4806 ASSERT3P(callback_list, !=, NULL);
4808 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4810 * Only call arc_access on anonymous buffers. This is because
4811 * if we've issued an I/O for an evicted buffer, we've already
4812 * called arc_access (to prevent any simultaneous readers from
4813 * getting confused).
4815 arc_access(hdr, hash_lock);
4819 * If a read request has a callback (i.e. acb_done is not NULL), then we
4820 * make a buf containing the data according to the parameters which were
4821 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4822 * aren't needlessly decompressing the data multiple times.
4824 int callback_cnt = 0;
4825 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4826 if (!acb->acb_done)
4827 continue;
4829 /* This is a demand read since prefetches don't use callbacks */
4830 callback_cnt++;
4832 if (no_zio_error) {
4833 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4834 acb->acb_compressed, zio->io_error == 0,
4835 &acb->acb_buf);
4836 if (error != 0) {
4838 * Decompression failed. Set io_error
4839 * so that when we call acb_done (below),
4840 * we will indicate that the read failed.
4841 * Note that in the unusual case where one
4842 * callback is compressed and another
4843 * uncompressed, we will mark all of them
4844 * as failed, even though the uncompressed
4845 * one can't actually fail. In this case,
4846 * the hdr will not be anonymous, because
4847 * if there are multiple callbacks, it's
4848 * because multiple threads found the same
4849 * arc buf in the hash table.
4851 zio->io_error = error;
4856 * If there are multiple callbacks, we must have the hash lock,
4857 * because the only way for multiple threads to find this hdr is
4858 * in the hash table. This ensures that if there are multiple
4859 * callbacks, the hdr is not anonymous. If it were anonymous,
4860 * we couldn't use arc_buf_destroy() in the error case below.
4862 ASSERT(callback_cnt < 2 || hash_lock != NULL);
4864 hdr->b_l1hdr.b_acb = NULL;
4865 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4866 if (callback_cnt == 0) {
4867 ASSERT(HDR_PREFETCH(hdr));
4868 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4869 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4872 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4873 callback_list != NULL);
4875 if (no_zio_error) {
4876 arc_hdr_verify(hdr, zio->io_bp);
4877 } else {
4878 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4879 if (hdr->b_l1hdr.b_state != arc_anon)
4880 arc_change_state(arc_anon, hdr, hash_lock);
4881 if (HDR_IN_HASH_TABLE(hdr))
4882 buf_hash_remove(hdr);
4883 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4887 * Broadcast before we drop the hash_lock to avoid the possibility
4888 * that the hdr (and hence the cv) might be freed before we get to
4889 * the cv_broadcast().
4891 cv_broadcast(&hdr->b_l1hdr.b_cv);
4893 if (hash_lock != NULL) {
4894 mutex_exit(hash_lock);
4895 } else {
4897 * This block was freed while we waited for the read to
4898 * complete. It has been removed from the hash table and
4899 * moved to the anonymous state (so that it won't show up
4900 * in the cache).
4902 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4903 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4906 /* execute each callback and free its structure */
4907 while ((acb = callback_list) != NULL) {
4908 if (acb->acb_done != NULL) {
4909 if (zio->io_error != 0 && acb->acb_buf != NULL) {
4911 * If arc_buf_alloc_impl() fails during
4912 * decompression, the buf will still be
4913 * allocated, and needs to be freed here.
4915 arc_buf_destroy(acb->acb_buf, acb->acb_private);
4916 acb->acb_buf = NULL;
4918 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4921 if (acb->acb_zio_dummy != NULL) {
4922 acb->acb_zio_dummy->io_error = zio->io_error;
4923 zio_nowait(acb->acb_zio_dummy);
4926 callback_list = acb->acb_next;
4927 kmem_free(acb, sizeof (arc_callback_t));
4930 if (freeable)
4931 arc_hdr_destroy(hdr);
4935 * "Read" the block at the specified DVA (in bp) via the
4936 * cache. If the block is found in the cache, invoke the provided
4937 * callback immediately and return. Note that the `zio' parameter
4938 * in the callback will be NULL in this case, since no IO was
4939 * required. If the block is not in the cache pass the read request
4940 * on to the spa with a substitute callback function, so that the
4941 * requested block will be added to the cache.
4943 * If a read request arrives for a block that has a read in-progress,
4944 * either wait for the in-progress read to complete (and return the
4945 * results); or, if this is a read with a "done" func, add a record
4946 * to the read to invoke the "done" func when the read completes,
4947 * and return; or just return.
4949 * arc_read_done() will invoke all the requested "done" functions
4950 * for readers of this block.
4953 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4954 void *private, zio_priority_t priority, int zio_flags,
4955 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4957 arc_buf_hdr_t *hdr = NULL;
4958 kmutex_t *hash_lock = NULL;
4959 zio_t *rzio;
4960 uint64_t guid = spa_load_guid(spa);
4961 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4963 ASSERT(!BP_IS_EMBEDDED(bp) ||
4964 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4966 top:
4967 if (!BP_IS_EMBEDDED(bp)) {
4969 * Embedded BP's have no DVA and require no I/O to "read".
4970 * Create an anonymous arc buf to back it.
4972 hdr = buf_hash_find(guid, bp, &hash_lock);
4975 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4976 arc_buf_t *buf = NULL;
4977 *arc_flags |= ARC_FLAG_CACHED;
4979 if (HDR_IO_IN_PROGRESS(hdr)) {
4981 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4982 priority == ZIO_PRIORITY_SYNC_READ) {
4984 * This sync read must wait for an
4985 * in-progress async read (e.g. a predictive
4986 * prefetch). Async reads are queued
4987 * separately at the vdev_queue layer, so
4988 * this is a form of priority inversion.
4989 * Ideally, we would "inherit" the demand
4990 * i/o's priority by moving the i/o from
4991 * the async queue to the synchronous queue,
4992 * but there is currently no mechanism to do
4993 * so. Track this so that we can evaluate
4994 * the magnitude of this potential performance
4995 * problem.
4997 * Note that if the prefetch i/o is already
4998 * active (has been issued to the device),
4999 * the prefetch improved performance, because
5000 * we issued it sooner than we would have
5001 * without the prefetch.
5003 DTRACE_PROBE1(arc__sync__wait__for__async,
5004 arc_buf_hdr_t *, hdr);
5005 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5007 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5008 arc_hdr_clear_flags(hdr,
5009 ARC_FLAG_PREDICTIVE_PREFETCH);
5012 if (*arc_flags & ARC_FLAG_WAIT) {
5013 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5014 mutex_exit(hash_lock);
5015 goto top;
5017 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5019 if (done) {
5020 arc_callback_t *acb = NULL;
5022 acb = kmem_zalloc(sizeof (arc_callback_t),
5023 KM_SLEEP);
5024 acb->acb_done = done;
5025 acb->acb_private = private;
5026 acb->acb_compressed = compressed_read;
5027 if (pio != NULL)
5028 acb->acb_zio_dummy = zio_null(pio,
5029 spa, NULL, NULL, NULL, zio_flags);
5031 ASSERT3P(acb->acb_done, !=, NULL);
5032 acb->acb_next = hdr->b_l1hdr.b_acb;
5033 hdr->b_l1hdr.b_acb = acb;
5034 mutex_exit(hash_lock);
5035 return (0);
5037 mutex_exit(hash_lock);
5038 return (0);
5041 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5042 hdr->b_l1hdr.b_state == arc_mfu);
5044 if (done) {
5045 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5047 * This is a demand read which does not have to
5048 * wait for i/o because we did a predictive
5049 * prefetch i/o for it, which has completed.
5051 DTRACE_PROBE1(
5052 arc__demand__hit__predictive__prefetch,
5053 arc_buf_hdr_t *, hdr);
5054 ARCSTAT_BUMP(
5055 arcstat_demand_hit_predictive_prefetch);
5056 arc_hdr_clear_flags(hdr,
5057 ARC_FLAG_PREDICTIVE_PREFETCH);
5059 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5061 /* Get a buf with the desired data in it. */
5062 VERIFY0(arc_buf_alloc_impl(hdr, private,
5063 compressed_read, B_TRUE, &buf));
5064 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5065 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5066 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5068 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5069 arc_access(hdr, hash_lock);
5070 if (*arc_flags & ARC_FLAG_L2CACHE)
5071 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5072 mutex_exit(hash_lock);
5073 ARCSTAT_BUMP(arcstat_hits);
5074 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5075 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5076 data, metadata, hits);
5078 if (done)
5079 done(NULL, buf, private);
5080 } else {
5081 uint64_t lsize = BP_GET_LSIZE(bp);
5082 uint64_t psize = BP_GET_PSIZE(bp);
5083 arc_callback_t *acb;
5084 vdev_t *vd = NULL;
5085 uint64_t addr = 0;
5086 boolean_t devw = B_FALSE;
5087 uint64_t size;
5089 if (hdr == NULL) {
5090 /* this block is not in the cache */
5091 arc_buf_hdr_t *exists = NULL;
5092 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5093 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5094 BP_GET_COMPRESS(bp), type);
5096 if (!BP_IS_EMBEDDED(bp)) {
5097 hdr->b_dva = *BP_IDENTITY(bp);
5098 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5099 exists = buf_hash_insert(hdr, &hash_lock);
5101 if (exists != NULL) {
5102 /* somebody beat us to the hash insert */
5103 mutex_exit(hash_lock);
5104 buf_discard_identity(hdr);
5105 arc_hdr_destroy(hdr);
5106 goto top; /* restart the IO request */
5108 } else {
5110 * This block is in the ghost cache. If it was L2-only
5111 * (and thus didn't have an L1 hdr), we realloc the
5112 * header to add an L1 hdr.
5114 if (!HDR_HAS_L1HDR(hdr)) {
5115 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5116 hdr_full_cache);
5118 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5119 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5120 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5121 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5122 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5123 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5126 * This is a delicate dance that we play here.
5127 * This hdr is in the ghost list so we access it
5128 * to move it out of the ghost list before we
5129 * initiate the read. If it's a prefetch then
5130 * it won't have a callback so we'll remove the
5131 * reference that arc_buf_alloc_impl() created. We
5132 * do this after we've called arc_access() to
5133 * avoid hitting an assert in remove_reference().
5135 arc_access(hdr, hash_lock);
5136 arc_hdr_alloc_pabd(hdr);
5138 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5139 size = arc_hdr_size(hdr);
5142 * If compression is enabled on the hdr, then will do
5143 * RAW I/O and will store the compressed data in the hdr's
5144 * data block. Otherwise, the hdr's data block will contain
5145 * the uncompressed data.
5147 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5148 zio_flags |= ZIO_FLAG_RAW;
5151 if (*arc_flags & ARC_FLAG_PREFETCH)
5152 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5153 if (*arc_flags & ARC_FLAG_L2CACHE)
5154 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5155 if (BP_GET_LEVEL(bp) > 0)
5156 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5157 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5158 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5159 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5161 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5162 acb->acb_done = done;
5163 acb->acb_private = private;
5164 acb->acb_compressed = compressed_read;
5166 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5167 hdr->b_l1hdr.b_acb = acb;
5168 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5170 if (HDR_HAS_L2HDR(hdr) &&
5171 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5172 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5173 addr = hdr->b_l2hdr.b_daddr;
5175 * Lock out L2ARC device removal.
5177 if (vdev_is_dead(vd) ||
5178 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5179 vd = NULL;
5182 if (priority == ZIO_PRIORITY_ASYNC_READ)
5183 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5184 else
5185 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5187 if (hash_lock != NULL)
5188 mutex_exit(hash_lock);
5191 * At this point, we have a level 1 cache miss. Try again in
5192 * L2ARC if possible.
5194 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5196 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5197 uint64_t, lsize, zbookmark_phys_t *, zb);
5198 ARCSTAT_BUMP(arcstat_misses);
5199 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5200 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5201 data, metadata, misses);
5203 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5205 * Read from the L2ARC if the following are true:
5206 * 1. The L2ARC vdev was previously cached.
5207 * 2. This buffer still has L2ARC metadata.
5208 * 3. This buffer isn't currently writing to the L2ARC.
5209 * 4. The L2ARC entry wasn't evicted, which may
5210 * also have invalidated the vdev.
5211 * 5. This isn't prefetch and l2arc_noprefetch is set.
5213 if (HDR_HAS_L2HDR(hdr) &&
5214 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5215 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5216 l2arc_read_callback_t *cb;
5217 abd_t *abd;
5218 uint64_t asize;
5220 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5221 ARCSTAT_BUMP(arcstat_l2_hits);
5223 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5224 KM_SLEEP);
5225 cb->l2rcb_hdr = hdr;
5226 cb->l2rcb_bp = *bp;
5227 cb->l2rcb_zb = *zb;
5228 cb->l2rcb_flags = zio_flags;
5230 asize = vdev_psize_to_asize(vd, size);
5231 if (asize != size) {
5232 abd = abd_alloc_for_io(asize,
5233 HDR_ISTYPE_METADATA(hdr));
5234 cb->l2rcb_abd = abd;
5235 } else {
5236 abd = hdr->b_l1hdr.b_pabd;
5239 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5240 addr + asize <= vd->vdev_psize -
5241 VDEV_LABEL_END_SIZE);
5244 * l2arc read. The SCL_L2ARC lock will be
5245 * released by l2arc_read_done().
5246 * Issue a null zio if the underlying buffer
5247 * was squashed to zero size by compression.
5249 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5250 ZIO_COMPRESS_EMPTY);
5251 rzio = zio_read_phys(pio, vd, addr,
5252 asize, abd,
5253 ZIO_CHECKSUM_OFF,
5254 l2arc_read_done, cb, priority,
5255 zio_flags | ZIO_FLAG_DONT_CACHE |
5256 ZIO_FLAG_CANFAIL |
5257 ZIO_FLAG_DONT_PROPAGATE |
5258 ZIO_FLAG_DONT_RETRY, B_FALSE);
5259 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5260 zio_t *, rzio);
5261 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5263 if (*arc_flags & ARC_FLAG_NOWAIT) {
5264 zio_nowait(rzio);
5265 return (0);
5268 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5269 if (zio_wait(rzio) == 0)
5270 return (0);
5272 /* l2arc read error; goto zio_read() */
5273 } else {
5274 DTRACE_PROBE1(l2arc__miss,
5275 arc_buf_hdr_t *, hdr);
5276 ARCSTAT_BUMP(arcstat_l2_misses);
5277 if (HDR_L2_WRITING(hdr))
5278 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5279 spa_config_exit(spa, SCL_L2ARC, vd);
5281 } else {
5282 if (vd != NULL)
5283 spa_config_exit(spa, SCL_L2ARC, vd);
5284 if (l2arc_ndev != 0) {
5285 DTRACE_PROBE1(l2arc__miss,
5286 arc_buf_hdr_t *, hdr);
5287 ARCSTAT_BUMP(arcstat_l2_misses);
5291 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5292 arc_read_done, hdr, priority, zio_flags, zb);
5294 if (*arc_flags & ARC_FLAG_WAIT)
5295 return (zio_wait(rzio));
5297 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5298 zio_nowait(rzio);
5300 return (0);
5304 * Notify the arc that a block was freed, and thus will never be used again.
5306 void
5307 arc_freed(spa_t *spa, const blkptr_t *bp)
5309 arc_buf_hdr_t *hdr;
5310 kmutex_t *hash_lock;
5311 uint64_t guid = spa_load_guid(spa);
5313 ASSERT(!BP_IS_EMBEDDED(bp));
5315 hdr = buf_hash_find(guid, bp, &hash_lock);
5316 if (hdr == NULL)
5317 return;
5320 * We might be trying to free a block that is still doing I/O
5321 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5322 * dmu_sync-ed block). If this block is being prefetched, then it
5323 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5324 * until the I/O completes. A block may also have a reference if it is
5325 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5326 * have written the new block to its final resting place on disk but
5327 * without the dedup flag set. This would have left the hdr in the MRU
5328 * state and discoverable. When the txg finally syncs it detects that
5329 * the block was overridden in open context and issues an override I/O.
5330 * Since this is a dedup block, the override I/O will determine if the
5331 * block is already in the DDT. If so, then it will replace the io_bp
5332 * with the bp from the DDT and allow the I/O to finish. When the I/O
5333 * reaches the done callback, dbuf_write_override_done, it will
5334 * check to see if the io_bp and io_bp_override are identical.
5335 * If they are not, then it indicates that the bp was replaced with
5336 * the bp in the DDT and the override bp is freed. This allows
5337 * us to arrive here with a reference on a block that is being
5338 * freed. So if we have an I/O in progress, or a reference to
5339 * this hdr, then we don't destroy the hdr.
5341 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5342 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5343 arc_change_state(arc_anon, hdr, hash_lock);
5344 arc_hdr_destroy(hdr);
5345 mutex_exit(hash_lock);
5346 } else {
5347 mutex_exit(hash_lock);
5353 * Release this buffer from the cache, making it an anonymous buffer. This
5354 * must be done after a read and prior to modifying the buffer contents.
5355 * If the buffer has more than one reference, we must make
5356 * a new hdr for the buffer.
5358 void
5359 arc_release(arc_buf_t *buf, void *tag)
5361 arc_buf_hdr_t *hdr = buf->b_hdr;
5364 * It would be nice to assert that if it's DMU metadata (level >
5365 * 0 || it's the dnode file), then it must be syncing context.
5366 * But we don't know that information at this level.
5369 mutex_enter(&buf->b_evict_lock);
5371 ASSERT(HDR_HAS_L1HDR(hdr));
5374 * We don't grab the hash lock prior to this check, because if
5375 * the buffer's header is in the arc_anon state, it won't be
5376 * linked into the hash table.
5378 if (hdr->b_l1hdr.b_state == arc_anon) {
5379 mutex_exit(&buf->b_evict_lock);
5380 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5381 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5382 ASSERT(!HDR_HAS_L2HDR(hdr));
5383 ASSERT(HDR_EMPTY(hdr));
5385 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5386 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5387 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5389 hdr->b_l1hdr.b_arc_access = 0;
5392 * If the buf is being overridden then it may already
5393 * have a hdr that is not empty.
5395 buf_discard_identity(hdr);
5396 arc_buf_thaw(buf);
5398 return;
5401 kmutex_t *hash_lock = HDR_LOCK(hdr);
5402 mutex_enter(hash_lock);
5405 * This assignment is only valid as long as the hash_lock is
5406 * held, we must be careful not to reference state or the
5407 * b_state field after dropping the lock.
5409 arc_state_t *state = hdr->b_l1hdr.b_state;
5410 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5411 ASSERT3P(state, !=, arc_anon);
5413 /* this buffer is not on any list */
5414 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5416 if (HDR_HAS_L2HDR(hdr)) {
5417 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5420 * We have to recheck this conditional again now that
5421 * we're holding the l2ad_mtx to prevent a race with
5422 * another thread which might be concurrently calling
5423 * l2arc_evict(). In that case, l2arc_evict() might have
5424 * destroyed the header's L2 portion as we were waiting
5425 * to acquire the l2ad_mtx.
5427 if (HDR_HAS_L2HDR(hdr))
5428 arc_hdr_l2hdr_destroy(hdr);
5430 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5434 * Do we have more than one buf?
5436 if (hdr->b_l1hdr.b_bufcnt > 1) {
5437 arc_buf_hdr_t *nhdr;
5438 uint64_t spa = hdr->b_spa;
5439 uint64_t psize = HDR_GET_PSIZE(hdr);
5440 uint64_t lsize = HDR_GET_LSIZE(hdr);
5441 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5442 arc_buf_contents_t type = arc_buf_type(hdr);
5443 VERIFY3U(hdr->b_type, ==, type);
5445 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5446 (void) remove_reference(hdr, hash_lock, tag);
5448 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5449 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5450 ASSERT(ARC_BUF_LAST(buf));
5454 * Pull the data off of this hdr and attach it to
5455 * a new anonymous hdr. Also find the last buffer
5456 * in the hdr's buffer list.
5458 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5459 ASSERT3P(lastbuf, !=, NULL);
5462 * If the current arc_buf_t and the hdr are sharing their data
5463 * buffer, then we must stop sharing that block.
5465 if (arc_buf_is_shared(buf)) {
5466 VERIFY(!arc_buf_is_shared(lastbuf));
5469 * First, sever the block sharing relationship between
5470 * buf and the arc_buf_hdr_t.
5472 arc_unshare_buf(hdr, buf);
5475 * Now we need to recreate the hdr's b_pabd. Since we
5476 * have lastbuf handy, we try to share with it, but if
5477 * we can't then we allocate a new b_pabd and copy the
5478 * data from buf into it.
5480 if (arc_can_share(hdr, lastbuf)) {
5481 arc_share_buf(hdr, lastbuf);
5482 } else {
5483 arc_hdr_alloc_pabd(hdr);
5484 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5485 buf->b_data, psize);
5487 VERIFY3P(lastbuf->b_data, !=, NULL);
5488 } else if (HDR_SHARED_DATA(hdr)) {
5490 * Uncompressed shared buffers are always at the end
5491 * of the list. Compressed buffers don't have the
5492 * same requirements. This makes it hard to
5493 * simply assert that the lastbuf is shared so
5494 * we rely on the hdr's compression flags to determine
5495 * if we have a compressed, shared buffer.
5497 ASSERT(arc_buf_is_shared(lastbuf) ||
5498 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5499 ASSERT(!ARC_BUF_SHARED(buf));
5501 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5502 ASSERT3P(state, !=, arc_l2c_only);
5504 (void) refcount_remove_many(&state->arcs_size,
5505 arc_buf_size(buf), buf);
5507 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5508 ASSERT3P(state, !=, arc_l2c_only);
5509 (void) refcount_remove_many(&state->arcs_esize[type],
5510 arc_buf_size(buf), buf);
5513 hdr->b_l1hdr.b_bufcnt -= 1;
5514 arc_cksum_verify(buf);
5515 arc_buf_unwatch(buf);
5517 mutex_exit(hash_lock);
5520 * Allocate a new hdr. The new hdr will contain a b_pabd
5521 * buffer which will be freed in arc_write().
5523 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5524 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5525 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5526 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5527 VERIFY3U(nhdr->b_type, ==, type);
5528 ASSERT(!HDR_SHARED_DATA(nhdr));
5530 nhdr->b_l1hdr.b_buf = buf;
5531 nhdr->b_l1hdr.b_bufcnt = 1;
5532 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5533 buf->b_hdr = nhdr;
5535 mutex_exit(&buf->b_evict_lock);
5536 (void) refcount_add_many(&arc_anon->arcs_size,
5537 arc_buf_size(buf), buf);
5538 } else {
5539 mutex_exit(&buf->b_evict_lock);
5540 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5541 /* protected by hash lock, or hdr is on arc_anon */
5542 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5543 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5544 arc_change_state(arc_anon, hdr, hash_lock);
5545 hdr->b_l1hdr.b_arc_access = 0;
5546 mutex_exit(hash_lock);
5548 buf_discard_identity(hdr);
5549 arc_buf_thaw(buf);
5554 arc_released(arc_buf_t *buf)
5556 int released;
5558 mutex_enter(&buf->b_evict_lock);
5559 released = (buf->b_data != NULL &&
5560 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5561 mutex_exit(&buf->b_evict_lock);
5562 return (released);
5565 #ifdef ZFS_DEBUG
5567 arc_referenced(arc_buf_t *buf)
5569 int referenced;
5571 mutex_enter(&buf->b_evict_lock);
5572 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5573 mutex_exit(&buf->b_evict_lock);
5574 return (referenced);
5576 #endif
5578 static void
5579 arc_write_ready(zio_t *zio)
5581 arc_write_callback_t *callback = zio->io_private;
5582 arc_buf_t *buf = callback->awcb_buf;
5583 arc_buf_hdr_t *hdr = buf->b_hdr;
5584 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5586 ASSERT(HDR_HAS_L1HDR(hdr));
5587 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5588 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5591 * If we're reexecuting this zio because the pool suspended, then
5592 * cleanup any state that was previously set the first time the
5593 * callback was invoked.
5595 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5596 arc_cksum_free(hdr);
5597 arc_buf_unwatch(buf);
5598 if (hdr->b_l1hdr.b_pabd != NULL) {
5599 if (arc_buf_is_shared(buf)) {
5600 arc_unshare_buf(hdr, buf);
5601 } else {
5602 arc_hdr_free_pabd(hdr);
5606 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5607 ASSERT(!HDR_SHARED_DATA(hdr));
5608 ASSERT(!arc_buf_is_shared(buf));
5610 callback->awcb_ready(zio, buf, callback->awcb_private);
5612 if (HDR_IO_IN_PROGRESS(hdr))
5613 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5615 arc_cksum_compute(buf);
5616 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5618 enum zio_compress compress;
5619 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5620 compress = ZIO_COMPRESS_OFF;
5621 } else {
5622 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5623 compress = BP_GET_COMPRESS(zio->io_bp);
5625 HDR_SET_PSIZE(hdr, psize);
5626 arc_hdr_set_compress(hdr, compress);
5630 * Fill the hdr with data. If the hdr is compressed, the data we want
5631 * is available from the zio, otherwise we can take it from the buf.
5633 * We might be able to share the buf's data with the hdr here. However,
5634 * doing so would cause the ARC to be full of linear ABDs if we write a
5635 * lot of shareable data. As a compromise, we check whether scattered
5636 * ABDs are allowed, and assume that if they are then the user wants
5637 * the ARC to be primarily filled with them regardless of the data being
5638 * written. Therefore, if they're allowed then we allocate one and copy
5639 * the data into it; otherwise, we share the data directly if we can.
5641 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5642 arc_hdr_alloc_pabd(hdr);
5645 * Ideally, we would always copy the io_abd into b_pabd, but the
5646 * user may have disabled compressed ARC, thus we must check the
5647 * hdr's compression setting rather than the io_bp's.
5649 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5650 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5651 ZIO_COMPRESS_OFF);
5652 ASSERT3U(psize, >, 0);
5654 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5655 } else {
5656 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5658 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5659 arc_buf_size(buf));
5661 } else {
5662 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5663 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5664 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5666 arc_share_buf(hdr, buf);
5669 arc_hdr_verify(hdr, zio->io_bp);
5672 static void
5673 arc_write_children_ready(zio_t *zio)
5675 arc_write_callback_t *callback = zio->io_private;
5676 arc_buf_t *buf = callback->awcb_buf;
5678 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5682 * The SPA calls this callback for each physical write that happens on behalf
5683 * of a logical write. See the comment in dbuf_write_physdone() for details.
5685 static void
5686 arc_write_physdone(zio_t *zio)
5688 arc_write_callback_t *cb = zio->io_private;
5689 if (cb->awcb_physdone != NULL)
5690 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5693 static void
5694 arc_write_done(zio_t *zio)
5696 arc_write_callback_t *callback = zio->io_private;
5697 arc_buf_t *buf = callback->awcb_buf;
5698 arc_buf_hdr_t *hdr = buf->b_hdr;
5700 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5702 if (zio->io_error == 0) {
5703 arc_hdr_verify(hdr, zio->io_bp);
5705 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5706 buf_discard_identity(hdr);
5707 } else {
5708 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5709 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5711 } else {
5712 ASSERT(HDR_EMPTY(hdr));
5716 * If the block to be written was all-zero or compressed enough to be
5717 * embedded in the BP, no write was performed so there will be no
5718 * dva/birth/checksum. The buffer must therefore remain anonymous
5719 * (and uncached).
5721 if (!HDR_EMPTY(hdr)) {
5722 arc_buf_hdr_t *exists;
5723 kmutex_t *hash_lock;
5725 ASSERT3U(zio->io_error, ==, 0);
5727 arc_cksum_verify(buf);
5729 exists = buf_hash_insert(hdr, &hash_lock);
5730 if (exists != NULL) {
5732 * This can only happen if we overwrite for
5733 * sync-to-convergence, because we remove
5734 * buffers from the hash table when we arc_free().
5736 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5737 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5738 panic("bad overwrite, hdr=%p exists=%p",
5739 (void *)hdr, (void *)exists);
5740 ASSERT(refcount_is_zero(
5741 &exists->b_l1hdr.b_refcnt));
5742 arc_change_state(arc_anon, exists, hash_lock);
5743 mutex_exit(hash_lock);
5744 arc_hdr_destroy(exists);
5745 exists = buf_hash_insert(hdr, &hash_lock);
5746 ASSERT3P(exists, ==, NULL);
5747 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5748 /* nopwrite */
5749 ASSERT(zio->io_prop.zp_nopwrite);
5750 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5751 panic("bad nopwrite, hdr=%p exists=%p",
5752 (void *)hdr, (void *)exists);
5753 } else {
5754 /* Dedup */
5755 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5756 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5757 ASSERT(BP_GET_DEDUP(zio->io_bp));
5758 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5761 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5762 /* if it's not anon, we are doing a scrub */
5763 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5764 arc_access(hdr, hash_lock);
5765 mutex_exit(hash_lock);
5766 } else {
5767 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5770 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5771 callback->awcb_done(zio, buf, callback->awcb_private);
5773 abd_put(zio->io_abd);
5774 kmem_free(callback, sizeof (arc_write_callback_t));
5777 zio_t *
5778 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5779 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5780 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5781 arc_done_func_t *done, void *private, zio_priority_t priority,
5782 int zio_flags, const zbookmark_phys_t *zb)
5784 arc_buf_hdr_t *hdr = buf->b_hdr;
5785 arc_write_callback_t *callback;
5786 zio_t *zio;
5787 zio_prop_t localprop = *zp;
5789 ASSERT3P(ready, !=, NULL);
5790 ASSERT3P(done, !=, NULL);
5791 ASSERT(!HDR_IO_ERROR(hdr));
5792 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5793 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5794 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5795 if (l2arc)
5796 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5797 if (ARC_BUF_COMPRESSED(buf)) {
5799 * We're writing a pre-compressed buffer. Make the
5800 * compression algorithm requested by the zio_prop_t match
5801 * the pre-compressed buffer's compression algorithm.
5803 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5805 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5806 zio_flags |= ZIO_FLAG_RAW;
5808 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5809 callback->awcb_ready = ready;
5810 callback->awcb_children_ready = children_ready;
5811 callback->awcb_physdone = physdone;
5812 callback->awcb_done = done;
5813 callback->awcb_private = private;
5814 callback->awcb_buf = buf;
5817 * The hdr's b_pabd is now stale, free it now. A new data block
5818 * will be allocated when the zio pipeline calls arc_write_ready().
5820 if (hdr->b_l1hdr.b_pabd != NULL) {
5822 * If the buf is currently sharing the data block with
5823 * the hdr then we need to break that relationship here.
5824 * The hdr will remain with a NULL data pointer and the
5825 * buf will take sole ownership of the block.
5827 if (arc_buf_is_shared(buf)) {
5828 arc_unshare_buf(hdr, buf);
5829 } else {
5830 arc_hdr_free_pabd(hdr);
5832 VERIFY3P(buf->b_data, !=, NULL);
5833 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5835 ASSERT(!arc_buf_is_shared(buf));
5836 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5838 zio = zio_write(pio, spa, txg, bp,
5839 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5840 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5841 (children_ready != NULL) ? arc_write_children_ready : NULL,
5842 arc_write_physdone, arc_write_done, callback,
5843 priority, zio_flags, zb);
5845 return (zio);
5848 static int
5849 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
5851 #ifdef _KERNEL
5852 uint64_t available_memory = ptob(freemem);
5854 #if defined(__i386)
5855 available_memory =
5856 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5857 #endif
5859 if (freemem > physmem * arc_lotsfree_percent / 100)
5860 return (0);
5862 if (txg > spa->spa_lowmem_last_txg) {
5863 spa->spa_lowmem_last_txg = txg;
5864 spa->spa_lowmem_page_load = 0;
5867 * If we are in pageout, we know that memory is already tight,
5868 * the arc is already going to be evicting, so we just want to
5869 * continue to let page writes occur as quickly as possible.
5871 if (curproc == proc_pageout) {
5872 if (spa->spa_lowmem_page_load >
5873 MAX(ptob(minfree), available_memory) / 4)
5874 return (SET_ERROR(ERESTART));
5875 /* Note: reserve is inflated, so we deflate */
5876 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
5877 return (0);
5878 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
5879 /* memory is low, delay before restarting */
5880 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5881 return (SET_ERROR(EAGAIN));
5883 spa->spa_lowmem_page_load = 0;
5884 #endif /* _KERNEL */
5885 return (0);
5888 void
5889 arc_tempreserve_clear(uint64_t reserve)
5891 atomic_add_64(&arc_tempreserve, -reserve);
5892 ASSERT((int64_t)arc_tempreserve >= 0);
5896 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
5898 int error;
5899 uint64_t anon_size;
5901 if (reserve > arc_c/4 && !arc_no_grow)
5902 arc_c = MIN(arc_c_max, reserve * 4);
5903 if (reserve > arc_c)
5904 return (SET_ERROR(ENOMEM));
5907 * Don't count loaned bufs as in flight dirty data to prevent long
5908 * network delays from blocking transactions that are ready to be
5909 * assigned to a txg.
5912 /* assert that it has not wrapped around */
5913 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5915 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5916 arc_loaned_bytes), 0);
5919 * Writes will, almost always, require additional memory allocations
5920 * in order to compress/encrypt/etc the data. We therefore need to
5921 * make sure that there is sufficient available memory for this.
5923 error = arc_memory_throttle(spa, reserve, txg);
5924 if (error != 0)
5925 return (error);
5928 * Throttle writes when the amount of dirty data in the cache
5929 * gets too large. We try to keep the cache less than half full
5930 * of dirty blocks so that our sync times don't grow too large.
5932 * In the case of one pool being built on another pool, we want
5933 * to make sure we don't end up throttling the lower (backing)
5934 * pool when the upper pool is the majority contributor to dirty
5935 * data. To insure we make forward progress during throttling, we
5936 * also check the current pool's net dirty data and only throttle
5937 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
5938 * data in the cache.
5940 * Note: if two requests come in concurrently, we might let them
5941 * both succeed, when one of them should fail. Not a huge deal.
5943 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
5944 uint64_t spa_dirty_anon = spa_dirty_data(spa);
5946 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
5947 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
5948 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
5949 uint64_t meta_esize =
5950 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5951 uint64_t data_esize =
5952 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5953 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5954 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5955 arc_tempreserve >> 10, meta_esize >> 10,
5956 data_esize >> 10, reserve >> 10, arc_c >> 10);
5957 return (SET_ERROR(ERESTART));
5959 atomic_add_64(&arc_tempreserve, reserve);
5960 return (0);
5963 static void
5964 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5965 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5967 size->value.ui64 = refcount_count(&state->arcs_size);
5968 evict_data->value.ui64 =
5969 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5970 evict_metadata->value.ui64 =
5971 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5974 static int
5975 arc_kstat_update(kstat_t *ksp, int rw)
5977 arc_stats_t *as = ksp->ks_data;
5979 if (rw == KSTAT_WRITE) {
5980 return (EACCES);
5981 } else {
5982 arc_kstat_update_state(arc_anon,
5983 &as->arcstat_anon_size,
5984 &as->arcstat_anon_evictable_data,
5985 &as->arcstat_anon_evictable_metadata);
5986 arc_kstat_update_state(arc_mru,
5987 &as->arcstat_mru_size,
5988 &as->arcstat_mru_evictable_data,
5989 &as->arcstat_mru_evictable_metadata);
5990 arc_kstat_update_state(arc_mru_ghost,
5991 &as->arcstat_mru_ghost_size,
5992 &as->arcstat_mru_ghost_evictable_data,
5993 &as->arcstat_mru_ghost_evictable_metadata);
5994 arc_kstat_update_state(arc_mfu,
5995 &as->arcstat_mfu_size,
5996 &as->arcstat_mfu_evictable_data,
5997 &as->arcstat_mfu_evictable_metadata);
5998 arc_kstat_update_state(arc_mfu_ghost,
5999 &as->arcstat_mfu_ghost_size,
6000 &as->arcstat_mfu_ghost_evictable_data,
6001 &as->arcstat_mfu_ghost_evictable_metadata);
6003 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6004 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6005 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6006 ARCSTAT(arcstat_metadata_size) =
6007 aggsum_value(&astat_metadata_size);
6008 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6009 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6010 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6013 return (0);
6017 * This function *must* return indices evenly distributed between all
6018 * sublists of the multilist. This is needed due to how the ARC eviction
6019 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6020 * distributed between all sublists and uses this assumption when
6021 * deciding which sublist to evict from and how much to evict from it.
6023 unsigned int
6024 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6026 arc_buf_hdr_t *hdr = obj;
6029 * We rely on b_dva to generate evenly distributed index
6030 * numbers using buf_hash below. So, as an added precaution,
6031 * let's make sure we never add empty buffers to the arc lists.
6033 ASSERT(!HDR_EMPTY(hdr));
6036 * The assumption here, is the hash value for a given
6037 * arc_buf_hdr_t will remain constant throughout it's lifetime
6038 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6039 * Thus, we don't need to store the header's sublist index
6040 * on insertion, as this index can be recalculated on removal.
6042 * Also, the low order bits of the hash value are thought to be
6043 * distributed evenly. Otherwise, in the case that the multilist
6044 * has a power of two number of sublists, each sublists' usage
6045 * would not be evenly distributed.
6047 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6048 multilist_get_num_sublists(ml));
6051 static void
6052 arc_state_init(void)
6054 arc_anon = &ARC_anon;
6055 arc_mru = &ARC_mru;
6056 arc_mru_ghost = &ARC_mru_ghost;
6057 arc_mfu = &ARC_mfu;
6058 arc_mfu_ghost = &ARC_mfu_ghost;
6059 arc_l2c_only = &ARC_l2c_only;
6061 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6062 multilist_create(sizeof (arc_buf_hdr_t),
6063 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6064 arc_state_multilist_index_func);
6065 arc_mru->arcs_list[ARC_BUFC_DATA] =
6066 multilist_create(sizeof (arc_buf_hdr_t),
6067 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6068 arc_state_multilist_index_func);
6069 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6070 multilist_create(sizeof (arc_buf_hdr_t),
6071 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6072 arc_state_multilist_index_func);
6073 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6074 multilist_create(sizeof (arc_buf_hdr_t),
6075 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6076 arc_state_multilist_index_func);
6077 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6078 multilist_create(sizeof (arc_buf_hdr_t),
6079 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6080 arc_state_multilist_index_func);
6081 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6082 multilist_create(sizeof (arc_buf_hdr_t),
6083 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6084 arc_state_multilist_index_func);
6085 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6086 multilist_create(sizeof (arc_buf_hdr_t),
6087 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6088 arc_state_multilist_index_func);
6089 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6090 multilist_create(sizeof (arc_buf_hdr_t),
6091 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6092 arc_state_multilist_index_func);
6093 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6094 multilist_create(sizeof (arc_buf_hdr_t),
6095 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6096 arc_state_multilist_index_func);
6097 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6098 multilist_create(sizeof (arc_buf_hdr_t),
6099 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6100 arc_state_multilist_index_func);
6102 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6103 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6104 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6105 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6106 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6107 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6108 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6109 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6110 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6111 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6112 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6113 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6115 refcount_create(&arc_anon->arcs_size);
6116 refcount_create(&arc_mru->arcs_size);
6117 refcount_create(&arc_mru_ghost->arcs_size);
6118 refcount_create(&arc_mfu->arcs_size);
6119 refcount_create(&arc_mfu_ghost->arcs_size);
6120 refcount_create(&arc_l2c_only->arcs_size);
6122 aggsum_init(&arc_meta_used, 0);
6123 aggsum_init(&arc_size, 0);
6124 aggsum_init(&astat_data_size, 0);
6125 aggsum_init(&astat_metadata_size, 0);
6126 aggsum_init(&astat_hdr_size, 0);
6127 aggsum_init(&astat_other_size, 0);
6128 aggsum_init(&astat_l2_hdr_size, 0);
6131 static void
6132 arc_state_fini(void)
6134 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6135 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6136 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6137 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6138 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6139 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6140 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6141 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6142 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6143 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6144 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6145 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6147 refcount_destroy(&arc_anon->arcs_size);
6148 refcount_destroy(&arc_mru->arcs_size);
6149 refcount_destroy(&arc_mru_ghost->arcs_size);
6150 refcount_destroy(&arc_mfu->arcs_size);
6151 refcount_destroy(&arc_mfu_ghost->arcs_size);
6152 refcount_destroy(&arc_l2c_only->arcs_size);
6154 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6155 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6156 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6157 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6158 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6159 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6160 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6161 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6164 uint64_t
6165 arc_max_bytes(void)
6167 return (arc_c_max);
6170 void
6171 arc_init(void)
6174 * allmem is "all memory that we could possibly use".
6176 #ifdef _KERNEL
6177 uint64_t allmem = ptob(physmem - swapfs_minfree);
6178 #else
6179 uint64_t allmem = (physmem * PAGESIZE) / 2;
6180 #endif
6181 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
6182 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
6184 /* Convert seconds to clock ticks */
6185 arc_min_prefetch_lifespan = 1 * hz;
6187 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6188 arc_c_min = MAX(allmem / 32, 64 << 20);
6189 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6190 if (allmem >= 1 << 30)
6191 arc_c_max = allmem - (1 << 30);
6192 else
6193 arc_c_max = arc_c_min;
6194 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6197 * In userland, there's only the memory pressure that we artificially
6198 * create (see arc_available_memory()). Don't let arc_c get too
6199 * small, because it can cause transactions to be larger than
6200 * arc_c, causing arc_tempreserve_space() to fail.
6202 #ifndef _KERNEL
6203 arc_c_min = arc_c_max / 2;
6204 #endif
6207 * Allow the tunables to override our calculations if they are
6208 * reasonable (ie. over 64MB)
6210 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6211 arc_c_max = zfs_arc_max;
6212 arc_c_min = MIN(arc_c_min, arc_c_max);
6214 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6215 arc_c_min = zfs_arc_min;
6217 arc_c = arc_c_max;
6218 arc_p = (arc_c >> 1);
6220 /* limit meta-data to 1/4 of the arc capacity */
6221 arc_meta_limit = arc_c_max / 4;
6223 #ifdef _KERNEL
6225 * Metadata is stored in the kernel's heap. Don't let us
6226 * use more than half the heap for the ARC.
6228 arc_meta_limit = MIN(arc_meta_limit,
6229 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6230 #endif
6232 /* Allow the tunable to override if it is reasonable */
6233 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6234 arc_meta_limit = zfs_arc_meta_limit;
6236 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6237 arc_c_min = arc_meta_limit / 2;
6239 if (zfs_arc_meta_min > 0) {
6240 arc_meta_min = zfs_arc_meta_min;
6241 } else {
6242 arc_meta_min = arc_c_min / 2;
6245 if (zfs_arc_grow_retry > 0)
6246 arc_grow_retry = zfs_arc_grow_retry;
6248 if (zfs_arc_shrink_shift > 0)
6249 arc_shrink_shift = zfs_arc_shrink_shift;
6252 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6254 if (arc_no_grow_shift >= arc_shrink_shift)
6255 arc_no_grow_shift = arc_shrink_shift - 1;
6257 if (zfs_arc_p_min_shift > 0)
6258 arc_p_min_shift = zfs_arc_p_min_shift;
6260 /* if kmem_flags are set, lets try to use less memory */
6261 if (kmem_debugging())
6262 arc_c = arc_c / 2;
6263 if (arc_c < arc_c_min)
6264 arc_c = arc_c_min;
6266 arc_state_init();
6269 * The arc must be "uninitialized", so that hdr_recl() (which is
6270 * registered by buf_init()) will not access arc_reap_zthr before
6271 * it is created.
6273 ASSERT(!arc_initialized);
6274 buf_init();
6276 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6277 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6279 if (arc_ksp != NULL) {
6280 arc_ksp->ks_data = &arc_stats;
6281 arc_ksp->ks_update = arc_kstat_update;
6282 kstat_install(arc_ksp);
6285 arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
6286 arc_adjust_cb, NULL);
6287 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
6288 arc_reap_cb, NULL, SEC2NSEC(1));
6290 arc_initialized = B_TRUE;
6291 arc_warm = B_FALSE;
6294 * Calculate maximum amount of dirty data per pool.
6296 * If it has been set by /etc/system, take that.
6297 * Otherwise, use a percentage of physical memory defined by
6298 * zfs_dirty_data_max_percent (default 10%) with a cap at
6299 * zfs_dirty_data_max_max (default 4GB).
6301 if (zfs_dirty_data_max == 0) {
6302 zfs_dirty_data_max = physmem * PAGESIZE *
6303 zfs_dirty_data_max_percent / 100;
6304 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6305 zfs_dirty_data_max_max);
6309 void
6310 arc_fini(void)
6312 /* Use B_TRUE to ensure *all* buffers are evicted */
6313 arc_flush(NULL, B_TRUE);
6315 arc_initialized = B_FALSE;
6317 if (arc_ksp != NULL) {
6318 kstat_delete(arc_ksp);
6319 arc_ksp = NULL;
6322 (void) zthr_cancel(arc_adjust_zthr);
6323 zthr_destroy(arc_adjust_zthr);
6325 (void) zthr_cancel(arc_reap_zthr);
6326 zthr_destroy(arc_reap_zthr);
6328 mutex_destroy(&arc_adjust_lock);
6329 cv_destroy(&arc_adjust_waiters_cv);
6331 arc_state_fini();
6332 buf_fini();
6334 ASSERT0(arc_loaned_bytes);
6338 * Level 2 ARC
6340 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6341 * It uses dedicated storage devices to hold cached data, which are populated
6342 * using large infrequent writes. The main role of this cache is to boost
6343 * the performance of random read workloads. The intended L2ARC devices
6344 * include short-stroked disks, solid state disks, and other media with
6345 * substantially faster read latency than disk.
6347 * +-----------------------+
6348 * | ARC |
6349 * +-----------------------+
6350 * | ^ ^
6351 * | | |
6352 * l2arc_feed_thread() arc_read()
6353 * | | |
6354 * | l2arc read |
6355 * V | |
6356 * +---------------+ |
6357 * | L2ARC | |
6358 * +---------------+ |
6359 * | ^ |
6360 * l2arc_write() | |
6361 * | | |
6362 * V | |
6363 * +-------+ +-------+
6364 * | vdev | | vdev |
6365 * | cache | | cache |
6366 * +-------+ +-------+
6367 * +=========+ .-----.
6368 * : L2ARC : |-_____-|
6369 * : devices : | Disks |
6370 * +=========+ `-_____-'
6372 * Read requests are satisfied from the following sources, in order:
6374 * 1) ARC
6375 * 2) vdev cache of L2ARC devices
6376 * 3) L2ARC devices
6377 * 4) vdev cache of disks
6378 * 5) disks
6380 * Some L2ARC device types exhibit extremely slow write performance.
6381 * To accommodate for this there are some significant differences between
6382 * the L2ARC and traditional cache design:
6384 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6385 * the ARC behave as usual, freeing buffers and placing headers on ghost
6386 * lists. The ARC does not send buffers to the L2ARC during eviction as
6387 * this would add inflated write latencies for all ARC memory pressure.
6389 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6390 * It does this by periodically scanning buffers from the eviction-end of
6391 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6392 * not already there. It scans until a headroom of buffers is satisfied,
6393 * which itself is a buffer for ARC eviction. If a compressible buffer is
6394 * found during scanning and selected for writing to an L2ARC device, we
6395 * temporarily boost scanning headroom during the next scan cycle to make
6396 * sure we adapt to compression effects (which might significantly reduce
6397 * the data volume we write to L2ARC). The thread that does this is
6398 * l2arc_feed_thread(), illustrated below; example sizes are included to
6399 * provide a better sense of ratio than this diagram:
6401 * head --> tail
6402 * +---------------------+----------+
6403 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6404 * +---------------------+----------+ | o L2ARC eligible
6405 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6406 * +---------------------+----------+ |
6407 * 15.9 Gbytes ^ 32 Mbytes |
6408 * headroom |
6409 * l2arc_feed_thread()
6411 * l2arc write hand <--[oooo]--'
6412 * | 8 Mbyte
6413 * | write max
6415 * +==============================+
6416 * L2ARC dev |####|#|###|###| |####| ... |
6417 * +==============================+
6418 * 32 Gbytes
6420 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6421 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6422 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6423 * safe to say that this is an uncommon case, since buffers at the end of
6424 * the ARC lists have moved there due to inactivity.
6426 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6427 * then the L2ARC simply misses copying some buffers. This serves as a
6428 * pressure valve to prevent heavy read workloads from both stalling the ARC
6429 * with waits and clogging the L2ARC with writes. This also helps prevent
6430 * the potential for the L2ARC to churn if it attempts to cache content too
6431 * quickly, such as during backups of the entire pool.
6433 * 5. After system boot and before the ARC has filled main memory, there are
6434 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6435 * lists can remain mostly static. Instead of searching from tail of these
6436 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6437 * for eligible buffers, greatly increasing its chance of finding them.
6439 * The L2ARC device write speed is also boosted during this time so that
6440 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6441 * there are no L2ARC reads, and no fear of degrading read performance
6442 * through increased writes.
6444 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6445 * the vdev queue can aggregate them into larger and fewer writes. Each
6446 * device is written to in a rotor fashion, sweeping writes through
6447 * available space then repeating.
6449 * 7. The L2ARC does not store dirty content. It never needs to flush
6450 * write buffers back to disk based storage.
6452 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6453 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6455 * The performance of the L2ARC can be tweaked by a number of tunables, which
6456 * may be necessary for different workloads:
6458 * l2arc_write_max max write bytes per interval
6459 * l2arc_write_boost extra write bytes during device warmup
6460 * l2arc_noprefetch skip caching prefetched buffers
6461 * l2arc_headroom number of max device writes to precache
6462 * l2arc_headroom_boost when we find compressed buffers during ARC
6463 * scanning, we multiply headroom by this
6464 * percentage factor for the next scan cycle,
6465 * since more compressed buffers are likely to
6466 * be present
6467 * l2arc_feed_secs seconds between L2ARC writing
6469 * Tunables may be removed or added as future performance improvements are
6470 * integrated, and also may become zpool properties.
6472 * There are three key functions that control how the L2ARC warms up:
6474 * l2arc_write_eligible() check if a buffer is eligible to cache
6475 * l2arc_write_size() calculate how much to write
6476 * l2arc_write_interval() calculate sleep delay between writes
6478 * These three functions determine what to write, how much, and how quickly
6479 * to send writes.
6482 static boolean_t
6483 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6486 * A buffer is *not* eligible for the L2ARC if it:
6487 * 1. belongs to a different spa.
6488 * 2. is already cached on the L2ARC.
6489 * 3. has an I/O in progress (it may be an incomplete read).
6490 * 4. is flagged not eligible (zfs property).
6492 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6493 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6494 return (B_FALSE);
6496 return (B_TRUE);
6499 static uint64_t
6500 l2arc_write_size(void)
6502 uint64_t size;
6505 * Make sure our globals have meaningful values in case the user
6506 * altered them.
6508 size = l2arc_write_max;
6509 if (size == 0) {
6510 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6511 "be greater than zero, resetting it to the default (%d)",
6512 L2ARC_WRITE_SIZE);
6513 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6516 if (arc_warm == B_FALSE)
6517 size += l2arc_write_boost;
6519 return (size);
6523 static clock_t
6524 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6526 clock_t interval, next, now;
6529 * If the ARC lists are busy, increase our write rate; if the
6530 * lists are stale, idle back. This is achieved by checking
6531 * how much we previously wrote - if it was more than half of
6532 * what we wanted, schedule the next write much sooner.
6534 if (l2arc_feed_again && wrote > (wanted / 2))
6535 interval = (hz * l2arc_feed_min_ms) / 1000;
6536 else
6537 interval = hz * l2arc_feed_secs;
6539 now = ddi_get_lbolt();
6540 next = MAX(now, MIN(now + interval, began + interval));
6542 return (next);
6546 * Cycle through L2ARC devices. This is how L2ARC load balances.
6547 * If a device is returned, this also returns holding the spa config lock.
6549 static l2arc_dev_t *
6550 l2arc_dev_get_next(void)
6552 l2arc_dev_t *first, *next = NULL;
6555 * Lock out the removal of spas (spa_namespace_lock), then removal
6556 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6557 * both locks will be dropped and a spa config lock held instead.
6559 mutex_enter(&spa_namespace_lock);
6560 mutex_enter(&l2arc_dev_mtx);
6562 /* if there are no vdevs, there is nothing to do */
6563 if (l2arc_ndev == 0)
6564 goto out;
6566 first = NULL;
6567 next = l2arc_dev_last;
6568 do {
6569 /* loop around the list looking for a non-faulted vdev */
6570 if (next == NULL) {
6571 next = list_head(l2arc_dev_list);
6572 } else {
6573 next = list_next(l2arc_dev_list, next);
6574 if (next == NULL)
6575 next = list_head(l2arc_dev_list);
6578 /* if we have come back to the start, bail out */
6579 if (first == NULL)
6580 first = next;
6581 else if (next == first)
6582 break;
6584 } while (vdev_is_dead(next->l2ad_vdev));
6586 /* if we were unable to find any usable vdevs, return NULL */
6587 if (vdev_is_dead(next->l2ad_vdev))
6588 next = NULL;
6590 l2arc_dev_last = next;
6592 out:
6593 mutex_exit(&l2arc_dev_mtx);
6596 * Grab the config lock to prevent the 'next' device from being
6597 * removed while we are writing to it.
6599 if (next != NULL)
6600 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6601 mutex_exit(&spa_namespace_lock);
6603 return (next);
6607 * Free buffers that were tagged for destruction.
6609 static void
6610 l2arc_do_free_on_write()
6612 list_t *buflist;
6613 l2arc_data_free_t *df, *df_prev;
6615 mutex_enter(&l2arc_free_on_write_mtx);
6616 buflist = l2arc_free_on_write;
6618 for (df = list_tail(buflist); df; df = df_prev) {
6619 df_prev = list_prev(buflist, df);
6620 ASSERT3P(df->l2df_abd, !=, NULL);
6621 abd_free(df->l2df_abd);
6622 list_remove(buflist, df);
6623 kmem_free(df, sizeof (l2arc_data_free_t));
6626 mutex_exit(&l2arc_free_on_write_mtx);
6630 * A write to a cache device has completed. Update all headers to allow
6631 * reads from these buffers to begin.
6633 static void
6634 l2arc_write_done(zio_t *zio)
6636 l2arc_write_callback_t *cb;
6637 l2arc_dev_t *dev;
6638 list_t *buflist;
6639 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6640 kmutex_t *hash_lock;
6641 int64_t bytes_dropped = 0;
6643 cb = zio->io_private;
6644 ASSERT3P(cb, !=, NULL);
6645 dev = cb->l2wcb_dev;
6646 ASSERT3P(dev, !=, NULL);
6647 head = cb->l2wcb_head;
6648 ASSERT3P(head, !=, NULL);
6649 buflist = &dev->l2ad_buflist;
6650 ASSERT3P(buflist, !=, NULL);
6651 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6652 l2arc_write_callback_t *, cb);
6654 if (zio->io_error != 0)
6655 ARCSTAT_BUMP(arcstat_l2_writes_error);
6658 * All writes completed, or an error was hit.
6660 top:
6661 mutex_enter(&dev->l2ad_mtx);
6662 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6663 hdr_prev = list_prev(buflist, hdr);
6665 hash_lock = HDR_LOCK(hdr);
6668 * We cannot use mutex_enter or else we can deadlock
6669 * with l2arc_write_buffers (due to swapping the order
6670 * the hash lock and l2ad_mtx are taken).
6672 if (!mutex_tryenter(hash_lock)) {
6674 * Missed the hash lock. We must retry so we
6675 * don't leave the ARC_FLAG_L2_WRITING bit set.
6677 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6680 * We don't want to rescan the headers we've
6681 * already marked as having been written out, so
6682 * we reinsert the head node so we can pick up
6683 * where we left off.
6685 list_remove(buflist, head);
6686 list_insert_after(buflist, hdr, head);
6688 mutex_exit(&dev->l2ad_mtx);
6691 * We wait for the hash lock to become available
6692 * to try and prevent busy waiting, and increase
6693 * the chance we'll be able to acquire the lock
6694 * the next time around.
6696 mutex_enter(hash_lock);
6697 mutex_exit(hash_lock);
6698 goto top;
6702 * We could not have been moved into the arc_l2c_only
6703 * state while in-flight due to our ARC_FLAG_L2_WRITING
6704 * bit being set. Let's just ensure that's being enforced.
6706 ASSERT(HDR_HAS_L1HDR(hdr));
6708 if (zio->io_error != 0) {
6710 * Error - drop L2ARC entry.
6712 list_remove(buflist, hdr);
6713 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6715 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6716 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6718 bytes_dropped += arc_hdr_size(hdr);
6719 (void) refcount_remove_many(&dev->l2ad_alloc,
6720 arc_hdr_size(hdr), hdr);
6724 * Allow ARC to begin reads and ghost list evictions to
6725 * this L2ARC entry.
6727 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6729 mutex_exit(hash_lock);
6732 atomic_inc_64(&l2arc_writes_done);
6733 list_remove(buflist, head);
6734 ASSERT(!HDR_HAS_L1HDR(head));
6735 kmem_cache_free(hdr_l2only_cache, head);
6736 mutex_exit(&dev->l2ad_mtx);
6738 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6740 l2arc_do_free_on_write();
6742 kmem_free(cb, sizeof (l2arc_write_callback_t));
6746 * A read to a cache device completed. Validate buffer contents before
6747 * handing over to the regular ARC routines.
6749 static void
6750 l2arc_read_done(zio_t *zio)
6752 l2arc_read_callback_t *cb;
6753 arc_buf_hdr_t *hdr;
6754 kmutex_t *hash_lock;
6755 boolean_t valid_cksum;
6757 ASSERT3P(zio->io_vd, !=, NULL);
6758 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6760 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6762 cb = zio->io_private;
6763 ASSERT3P(cb, !=, NULL);
6764 hdr = cb->l2rcb_hdr;
6765 ASSERT3P(hdr, !=, NULL);
6767 hash_lock = HDR_LOCK(hdr);
6768 mutex_enter(hash_lock);
6769 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6772 * If the data was read into a temporary buffer,
6773 * move it and free the buffer.
6775 if (cb->l2rcb_abd != NULL) {
6776 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6777 if (zio->io_error == 0) {
6778 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6779 arc_hdr_size(hdr));
6783 * The following must be done regardless of whether
6784 * there was an error:
6785 * - free the temporary buffer
6786 * - point zio to the real ARC buffer
6787 * - set zio size accordingly
6788 * These are required because zio is either re-used for
6789 * an I/O of the block in the case of the error
6790 * or the zio is passed to arc_read_done() and it
6791 * needs real data.
6793 abd_free(cb->l2rcb_abd);
6794 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6795 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6798 ASSERT3P(zio->io_abd, !=, NULL);
6801 * Check this survived the L2ARC journey.
6803 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6804 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6805 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6807 valid_cksum = arc_cksum_is_equal(hdr, zio);
6808 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6809 mutex_exit(hash_lock);
6810 zio->io_private = hdr;
6811 arc_read_done(zio);
6812 } else {
6813 mutex_exit(hash_lock);
6815 * Buffer didn't survive caching. Increment stats and
6816 * reissue to the original storage device.
6818 if (zio->io_error != 0) {
6819 ARCSTAT_BUMP(arcstat_l2_io_error);
6820 } else {
6821 zio->io_error = SET_ERROR(EIO);
6823 if (!valid_cksum)
6824 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6827 * If there's no waiter, issue an async i/o to the primary
6828 * storage now. If there *is* a waiter, the caller must
6829 * issue the i/o in a context where it's OK to block.
6831 if (zio->io_waiter == NULL) {
6832 zio_t *pio = zio_unique_parent(zio);
6834 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6836 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6837 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6838 hdr, zio->io_priority, cb->l2rcb_flags,
6839 &cb->l2rcb_zb));
6843 kmem_free(cb, sizeof (l2arc_read_callback_t));
6847 * This is the list priority from which the L2ARC will search for pages to
6848 * cache. This is used within loops (0..3) to cycle through lists in the
6849 * desired order. This order can have a significant effect on cache
6850 * performance.
6852 * Currently the metadata lists are hit first, MFU then MRU, followed by
6853 * the data lists. This function returns a locked list, and also returns
6854 * the lock pointer.
6856 static multilist_sublist_t *
6857 l2arc_sublist_lock(int list_num)
6859 multilist_t *ml = NULL;
6860 unsigned int idx;
6862 ASSERT(list_num >= 0 && list_num <= 3);
6864 switch (list_num) {
6865 case 0:
6866 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6867 break;
6868 case 1:
6869 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6870 break;
6871 case 2:
6872 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6873 break;
6874 case 3:
6875 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6876 break;
6880 * Return a randomly-selected sublist. This is acceptable
6881 * because the caller feeds only a little bit of data for each
6882 * call (8MB). Subsequent calls will result in different
6883 * sublists being selected.
6885 idx = multilist_get_random_index(ml);
6886 return (multilist_sublist_lock(ml, idx));
6890 * Evict buffers from the device write hand to the distance specified in
6891 * bytes. This distance may span populated buffers, it may span nothing.
6892 * This is clearing a region on the L2ARC device ready for writing.
6893 * If the 'all' boolean is set, every buffer is evicted.
6895 static void
6896 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6898 list_t *buflist;
6899 arc_buf_hdr_t *hdr, *hdr_prev;
6900 kmutex_t *hash_lock;
6901 uint64_t taddr;
6903 buflist = &dev->l2ad_buflist;
6905 if (!all && dev->l2ad_first) {
6907 * This is the first sweep through the device. There is
6908 * nothing to evict.
6910 return;
6913 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6915 * When nearing the end of the device, evict to the end
6916 * before the device write hand jumps to the start.
6918 taddr = dev->l2ad_end;
6919 } else {
6920 taddr = dev->l2ad_hand + distance;
6922 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6923 uint64_t, taddr, boolean_t, all);
6925 top:
6926 mutex_enter(&dev->l2ad_mtx);
6927 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6928 hdr_prev = list_prev(buflist, hdr);
6930 hash_lock = HDR_LOCK(hdr);
6933 * We cannot use mutex_enter or else we can deadlock
6934 * with l2arc_write_buffers (due to swapping the order
6935 * the hash lock and l2ad_mtx are taken).
6937 if (!mutex_tryenter(hash_lock)) {
6939 * Missed the hash lock. Retry.
6941 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6942 mutex_exit(&dev->l2ad_mtx);
6943 mutex_enter(hash_lock);
6944 mutex_exit(hash_lock);
6945 goto top;
6949 * A header can't be on this list if it doesn't have L2 header.
6951 ASSERT(HDR_HAS_L2HDR(hdr));
6953 /* Ensure this header has finished being written. */
6954 ASSERT(!HDR_L2_WRITING(hdr));
6955 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6957 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6958 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6960 * We've evicted to the target address,
6961 * or the end of the device.
6963 mutex_exit(hash_lock);
6964 break;
6967 if (!HDR_HAS_L1HDR(hdr)) {
6968 ASSERT(!HDR_L2_READING(hdr));
6970 * This doesn't exist in the ARC. Destroy.
6971 * arc_hdr_destroy() will call list_remove()
6972 * and decrement arcstat_l2_lsize.
6974 arc_change_state(arc_anon, hdr, hash_lock);
6975 arc_hdr_destroy(hdr);
6976 } else {
6977 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6978 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6980 * Invalidate issued or about to be issued
6981 * reads, since we may be about to write
6982 * over this location.
6984 if (HDR_L2_READING(hdr)) {
6985 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6986 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6989 arc_hdr_l2hdr_destroy(hdr);
6991 mutex_exit(hash_lock);
6993 mutex_exit(&dev->l2ad_mtx);
6997 * Find and write ARC buffers to the L2ARC device.
6999 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7000 * for reading until they have completed writing.
7001 * The headroom_boost is an in-out parameter used to maintain headroom boost
7002 * state between calls to this function.
7004 * Returns the number of bytes actually written (which may be smaller than
7005 * the delta by which the device hand has changed due to alignment).
7007 static uint64_t
7008 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7010 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7011 uint64_t write_asize, write_psize, write_lsize, headroom;
7012 boolean_t full;
7013 l2arc_write_callback_t *cb;
7014 zio_t *pio, *wzio;
7015 uint64_t guid = spa_load_guid(spa);
7017 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7019 pio = NULL;
7020 write_lsize = write_asize = write_psize = 0;
7021 full = B_FALSE;
7022 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7023 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7026 * Copy buffers for L2ARC writing.
7028 for (int try = 0; try <= 3; try++) {
7029 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7030 uint64_t passed_sz = 0;
7033 * L2ARC fast warmup.
7035 * Until the ARC is warm and starts to evict, read from the
7036 * head of the ARC lists rather than the tail.
7038 if (arc_warm == B_FALSE)
7039 hdr = multilist_sublist_head(mls);
7040 else
7041 hdr = multilist_sublist_tail(mls);
7043 headroom = target_sz * l2arc_headroom;
7044 if (zfs_compressed_arc_enabled)
7045 headroom = (headroom * l2arc_headroom_boost) / 100;
7047 for (; hdr; hdr = hdr_prev) {
7048 kmutex_t *hash_lock;
7050 if (arc_warm == B_FALSE)
7051 hdr_prev = multilist_sublist_next(mls, hdr);
7052 else
7053 hdr_prev = multilist_sublist_prev(mls, hdr);
7055 hash_lock = HDR_LOCK(hdr);
7056 if (!mutex_tryenter(hash_lock)) {
7058 * Skip this buffer rather than waiting.
7060 continue;
7063 passed_sz += HDR_GET_LSIZE(hdr);
7064 if (passed_sz > headroom) {
7066 * Searched too far.
7068 mutex_exit(hash_lock);
7069 break;
7072 if (!l2arc_write_eligible(guid, hdr)) {
7073 mutex_exit(hash_lock);
7074 continue;
7078 * We rely on the L1 portion of the header below, so
7079 * it's invalid for this header to have been evicted out
7080 * of the ghost cache, prior to being written out. The
7081 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7083 ASSERT(HDR_HAS_L1HDR(hdr));
7085 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7086 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7087 ASSERT3U(arc_hdr_size(hdr), >, 0);
7088 uint64_t psize = arc_hdr_size(hdr);
7089 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7090 psize);
7092 if ((write_asize + asize) > target_sz) {
7093 full = B_TRUE;
7094 mutex_exit(hash_lock);
7095 break;
7098 if (pio == NULL) {
7100 * Insert a dummy header on the buflist so
7101 * l2arc_write_done() can find where the
7102 * write buffers begin without searching.
7104 mutex_enter(&dev->l2ad_mtx);
7105 list_insert_head(&dev->l2ad_buflist, head);
7106 mutex_exit(&dev->l2ad_mtx);
7108 cb = kmem_alloc(
7109 sizeof (l2arc_write_callback_t), KM_SLEEP);
7110 cb->l2wcb_dev = dev;
7111 cb->l2wcb_head = head;
7112 pio = zio_root(spa, l2arc_write_done, cb,
7113 ZIO_FLAG_CANFAIL);
7116 hdr->b_l2hdr.b_dev = dev;
7117 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7118 arc_hdr_set_flags(hdr,
7119 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7121 mutex_enter(&dev->l2ad_mtx);
7122 list_insert_head(&dev->l2ad_buflist, hdr);
7123 mutex_exit(&dev->l2ad_mtx);
7125 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7128 * Normally the L2ARC can use the hdr's data, but if
7129 * we're sharing data between the hdr and one of its
7130 * bufs, L2ARC needs its own copy of the data so that
7131 * the ZIO below can't race with the buf consumer.
7132 * Another case where we need to create a copy of the
7133 * data is when the buffer size is not device-aligned
7134 * and we need to pad the block to make it such.
7135 * That also keeps the clock hand suitably aligned.
7137 * To ensure that the copy will be available for the
7138 * lifetime of the ZIO and be cleaned up afterwards, we
7139 * add it to the l2arc_free_on_write queue.
7141 abd_t *to_write;
7142 if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7143 to_write = hdr->b_l1hdr.b_pabd;
7144 } else {
7145 to_write = abd_alloc_for_io(asize,
7146 HDR_ISTYPE_METADATA(hdr));
7147 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7148 if (asize != psize) {
7149 abd_zero_off(to_write, psize,
7150 asize - psize);
7152 l2arc_free_abd_on_write(to_write, asize,
7153 arc_buf_type(hdr));
7155 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7156 hdr->b_l2hdr.b_daddr, asize, to_write,
7157 ZIO_CHECKSUM_OFF, NULL, hdr,
7158 ZIO_PRIORITY_ASYNC_WRITE,
7159 ZIO_FLAG_CANFAIL, B_FALSE);
7161 write_lsize += HDR_GET_LSIZE(hdr);
7162 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7163 zio_t *, wzio);
7165 write_psize += psize;
7166 write_asize += asize;
7167 dev->l2ad_hand += asize;
7169 mutex_exit(hash_lock);
7171 (void) zio_nowait(wzio);
7174 multilist_sublist_unlock(mls);
7176 if (full == B_TRUE)
7177 break;
7180 /* No buffers selected for writing? */
7181 if (pio == NULL) {
7182 ASSERT0(write_lsize);
7183 ASSERT(!HDR_HAS_L1HDR(head));
7184 kmem_cache_free(hdr_l2only_cache, head);
7185 return (0);
7188 ASSERT3U(write_asize, <=, target_sz);
7189 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7190 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7191 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7192 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7193 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7196 * Bump device hand to the device start if it is approaching the end.
7197 * l2arc_evict() will already have evicted ahead for this case.
7199 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7200 dev->l2ad_hand = dev->l2ad_start;
7201 dev->l2ad_first = B_FALSE;
7204 dev->l2ad_writing = B_TRUE;
7205 (void) zio_wait(pio);
7206 dev->l2ad_writing = B_FALSE;
7208 return (write_asize);
7212 * This thread feeds the L2ARC at regular intervals. This is the beating
7213 * heart of the L2ARC.
7215 /* ARGSUSED */
7216 static void
7217 l2arc_feed_thread(void *unused)
7219 callb_cpr_t cpr;
7220 l2arc_dev_t *dev;
7221 spa_t *spa;
7222 uint64_t size, wrote;
7223 clock_t begin, next = ddi_get_lbolt();
7225 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7227 mutex_enter(&l2arc_feed_thr_lock);
7229 while (l2arc_thread_exit == 0) {
7230 CALLB_CPR_SAFE_BEGIN(&cpr);
7231 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7232 next);
7233 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7234 next = ddi_get_lbolt() + hz;
7237 * Quick check for L2ARC devices.
7239 mutex_enter(&l2arc_dev_mtx);
7240 if (l2arc_ndev == 0) {
7241 mutex_exit(&l2arc_dev_mtx);
7242 continue;
7244 mutex_exit(&l2arc_dev_mtx);
7245 begin = ddi_get_lbolt();
7248 * This selects the next l2arc device to write to, and in
7249 * doing so the next spa to feed from: dev->l2ad_spa. This
7250 * will return NULL if there are now no l2arc devices or if
7251 * they are all faulted.
7253 * If a device is returned, its spa's config lock is also
7254 * held to prevent device removal. l2arc_dev_get_next()
7255 * will grab and release l2arc_dev_mtx.
7257 if ((dev = l2arc_dev_get_next()) == NULL)
7258 continue;
7260 spa = dev->l2ad_spa;
7261 ASSERT3P(spa, !=, NULL);
7264 * If the pool is read-only then force the feed thread to
7265 * sleep a little longer.
7267 if (!spa_writeable(spa)) {
7268 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7269 spa_config_exit(spa, SCL_L2ARC, dev);
7270 continue;
7274 * Avoid contributing to memory pressure.
7276 if (arc_reclaim_needed()) {
7277 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7278 spa_config_exit(spa, SCL_L2ARC, dev);
7279 continue;
7282 ARCSTAT_BUMP(arcstat_l2_feeds);
7284 size = l2arc_write_size();
7287 * Evict L2ARC buffers that will be overwritten.
7289 l2arc_evict(dev, size, B_FALSE);
7292 * Write ARC buffers.
7294 wrote = l2arc_write_buffers(spa, dev, size);
7297 * Calculate interval between writes.
7299 next = l2arc_write_interval(begin, size, wrote);
7300 spa_config_exit(spa, SCL_L2ARC, dev);
7303 l2arc_thread_exit = 0;
7304 cv_broadcast(&l2arc_feed_thr_cv);
7305 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7306 thread_exit();
7309 boolean_t
7310 l2arc_vdev_present(vdev_t *vd)
7312 l2arc_dev_t *dev;
7314 mutex_enter(&l2arc_dev_mtx);
7315 for (dev = list_head(l2arc_dev_list); dev != NULL;
7316 dev = list_next(l2arc_dev_list, dev)) {
7317 if (dev->l2ad_vdev == vd)
7318 break;
7320 mutex_exit(&l2arc_dev_mtx);
7322 return (dev != NULL);
7326 * Add a vdev for use by the L2ARC. By this point the spa has already
7327 * validated the vdev and opened it.
7329 void
7330 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7332 l2arc_dev_t *adddev;
7334 ASSERT(!l2arc_vdev_present(vd));
7337 * Create a new l2arc device entry.
7339 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7340 adddev->l2ad_spa = spa;
7341 adddev->l2ad_vdev = vd;
7342 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7343 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7344 adddev->l2ad_hand = adddev->l2ad_start;
7345 adddev->l2ad_first = B_TRUE;
7346 adddev->l2ad_writing = B_FALSE;
7348 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7350 * This is a list of all ARC buffers that are still valid on the
7351 * device.
7353 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7354 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7356 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7357 refcount_create(&adddev->l2ad_alloc);
7360 * Add device to global list
7362 mutex_enter(&l2arc_dev_mtx);
7363 list_insert_head(l2arc_dev_list, adddev);
7364 atomic_inc_64(&l2arc_ndev);
7365 mutex_exit(&l2arc_dev_mtx);
7369 * Remove a vdev from the L2ARC.
7371 void
7372 l2arc_remove_vdev(vdev_t *vd)
7374 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7377 * Find the device by vdev
7379 mutex_enter(&l2arc_dev_mtx);
7380 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7381 nextdev = list_next(l2arc_dev_list, dev);
7382 if (vd == dev->l2ad_vdev) {
7383 remdev = dev;
7384 break;
7387 ASSERT3P(remdev, !=, NULL);
7390 * Remove device from global list
7392 list_remove(l2arc_dev_list, remdev);
7393 l2arc_dev_last = NULL; /* may have been invalidated */
7394 atomic_dec_64(&l2arc_ndev);
7395 mutex_exit(&l2arc_dev_mtx);
7398 * Clear all buflists and ARC references. L2ARC device flush.
7400 l2arc_evict(remdev, 0, B_TRUE);
7401 list_destroy(&remdev->l2ad_buflist);
7402 mutex_destroy(&remdev->l2ad_mtx);
7403 refcount_destroy(&remdev->l2ad_alloc);
7404 kmem_free(remdev, sizeof (l2arc_dev_t));
7407 void
7408 l2arc_init(void)
7410 l2arc_thread_exit = 0;
7411 l2arc_ndev = 0;
7412 l2arc_writes_sent = 0;
7413 l2arc_writes_done = 0;
7415 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7416 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7417 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7418 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7420 l2arc_dev_list = &L2ARC_dev_list;
7421 l2arc_free_on_write = &L2ARC_free_on_write;
7422 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7423 offsetof(l2arc_dev_t, l2ad_node));
7424 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7425 offsetof(l2arc_data_free_t, l2df_list_node));
7428 void
7429 l2arc_fini(void)
7432 * This is called from dmu_fini(), which is called from spa_fini();
7433 * Because of this, we can assume that all l2arc devices have
7434 * already been removed when the pools themselves were removed.
7437 l2arc_do_free_on_write();
7439 mutex_destroy(&l2arc_feed_thr_lock);
7440 cv_destroy(&l2arc_feed_thr_cv);
7441 mutex_destroy(&l2arc_dev_mtx);
7442 mutex_destroy(&l2arc_free_on_write_mtx);
7444 list_destroy(l2arc_dev_list);
7445 list_destroy(l2arc_free_on_write);
7448 void
7449 l2arc_start(void)
7451 if (!(spa_mode_global & FWRITE))
7452 return;
7454 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7455 TS_RUN, minclsyspri);
7458 void
7459 l2arc_stop(void)
7461 if (!(spa_mode_global & FWRITE))
7462 return;
7464 mutex_enter(&l2arc_feed_thr_lock);
7465 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7466 l2arc_thread_exit = 1;
7467 while (l2arc_thread_exit != 0)
7468 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7469 mutex_exit(&l2arc_feed_thr_lock);