MINI2440: Updated early nand loader
[u-boot-openmoko/mini2440.git] / cpu / mpc86xx / spd_sdram.c
blob60a7818989898d9b897d3b22265b17eaafd63b3a
1 /*
2 * Copyright 2004 Freescale Semiconductor.
3 * (C) Copyright 2003 Motorola Inc.
4 * Xianghua Xiao (X.Xiao@motorola.com)
6 * See file CREDITS for list of people who contributed to this
7 * project.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
25 #include <common.h>
26 #include <asm/processor.h>
27 #include <i2c.h>
28 #include <spd.h>
29 #include <asm/mmu.h>
30 #include <asm/fsl_law.h>
32 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
33 extern void dma_init(void);
34 extern uint dma_check(void);
35 extern int dma_xfer(void *dest, uint count, void *src);
36 #endif
38 #ifdef CONFIG_SPD_EEPROM
40 #ifndef CFG_READ_SPD
41 #define CFG_READ_SPD i2c_read
42 #endif
45 * Only one of the following three should be 1; others should be 0
46 * By default the cache line interleaving is selected if
47 * the CONFIG_DDR_INTERLEAVE flag is defined
49 #define CFG_PAGE_INTERLEAVING 0
50 #define CFG_BANK_INTERLEAVING 0
51 #define CFG_SUPER_BANK_INTERLEAVING 0
54 * Convert picoseconds into DRAM clock cycles (rounding up if needed).
57 static unsigned int
58 picos_to_clk(unsigned int picos)
60 /* use unsigned long long to avoid rounding errors */
61 const unsigned long long ULL_2e12 = 2000000000000ULL;
62 unsigned long long clks;
63 unsigned long long clks_temp;
65 if (! picos)
66 return 0;
68 clks = get_bus_freq(0) * (unsigned long long) picos;
69 clks_temp = clks;
70 clks = clks / ULL_2e12;
71 if (clks_temp % ULL_2e12) {
72 clks++;
75 if (clks > 0xFFFFFFFFULL) {
76 clks = 0xFFFFFFFFULL;
79 return (unsigned int) clks;
84 * Calculate the Density of each Physical Rank.
85 * Returned size is in bytes.
87 * Study these table from Byte 31 of JEDEC SPD Spec.
89 * DDR I DDR II
90 * Bit Size Size
91 * --- ----- ------
92 * 7 high 512MB 512MB
93 * 6 256MB 256MB
94 * 5 128MB 128MB
95 * 4 64MB 16GB
96 * 3 32MB 8GB
97 * 2 16MB 4GB
98 * 1 2GB 2GB
99 * 0 low 1GB 1GB
101 * Reorder Table to be linear by stripping the bottom
102 * 2 or 5 bits off and shifting them up to the top.
105 unsigned int
106 compute_banksize(unsigned int mem_type, unsigned char row_dens)
108 unsigned int bsize;
110 if (mem_type == SPD_MEMTYPE_DDR) {
111 /* Bottom 2 bits up to the top. */
112 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
113 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
114 } else {
115 /* Bottom 5 bits up to the top. */
116 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
117 debug("DDR: DDR II rank density = 0x%08x\n", bsize);
119 return bsize;
124 * Convert a two-nibble BCD value into a cycle time.
125 * While the spec calls for nano-seconds, picos are returned.
127 * This implements the tables for bytes 9, 23 and 25 for both
128 * DDR I and II. No allowance for distinguishing the invalid
129 * fields absent for DDR I yet present in DDR II is made.
130 * (That is, cycle times of .25, .33, .66 and .75 ns are
131 * allowed for both DDR II and I.)
134 unsigned int
135 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
138 * Table look up the lower nibble, allow DDR I & II.
140 unsigned int tenths_ps[16] = {
142 100,
143 200,
144 300,
145 400,
146 500,
147 600,
148 700,
149 800,
150 900,
151 250,
152 330,
153 660,
154 750,
155 0, /* undefined */
156 0 /* undefined */
159 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
160 unsigned int tenth_ns = spd_val & 0x0F;
161 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
163 return ps;
168 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
169 * Table from SPD Spec, Byte 12, converted to picoseconds and
170 * filled in with "default" normal values.
172 unsigned int determine_refresh_rate(unsigned int spd_refresh)
174 unsigned int refresh_time_ns[8] = {
175 15625000, /* 0 Normal 1.00x */
176 3900000, /* 1 Reduced .25x */
177 7800000, /* 2 Extended .50x */
178 31300000, /* 3 Extended 2.00x */
179 62500000, /* 4 Extended 4.00x */
180 125000000, /* 5 Extended 8.00x */
181 15625000, /* 6 Normal 1.00x filler */
182 15625000, /* 7 Normal 1.00x filler */
185 return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
189 long int
190 spd_init(unsigned char i2c_address, unsigned int ddr_num,
191 unsigned int dimm_num, unsigned int start_addr)
193 volatile immap_t *immap = (immap_t *)CFG_IMMR;
194 volatile ccsr_ddr_t *ddr;
195 volatile ccsr_gur_t *gur = &immap->im_gur;
196 spd_eeprom_t spd;
197 unsigned int n_ranks;
198 unsigned int rank_density;
199 unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits;
200 unsigned int odt_cfg, mode_odt_enable;
201 unsigned int refresh_clk;
202 #ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
203 unsigned char clk_adjust;
204 #endif
205 unsigned int dqs_cfg;
206 unsigned char twr_clk, twtr_clk, twr_auto_clk;
207 unsigned int tCKmin_ps, tCKmax_ps;
208 unsigned int max_data_rate;
209 unsigned int busfreq;
210 unsigned int memsize;
211 unsigned char caslat, caslat_ctrl;
212 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
213 unsigned int trcd_clk;
214 unsigned int trtp_clk;
215 unsigned char cke_min_clk;
216 unsigned char add_lat;
217 unsigned char wr_lat;
218 unsigned char wr_data_delay;
219 unsigned char four_act;
220 unsigned char cpo;
221 unsigned char burst_len;
222 unsigned int mode_caslat;
223 unsigned char d_init;
224 unsigned int tCycle_ps, modfreq;
226 if (ddr_num == 1)
227 ddr = &immap->im_ddr1;
228 else
229 ddr = &immap->im_ddr2;
232 * Read SPD information.
234 debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
235 memset((void *)&spd, 0, sizeof(spd));
236 CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
239 * Check for supported memory module types.
241 if (spd.mem_type != SPD_MEMTYPE_DDR &&
242 spd.mem_type != SPD_MEMTYPE_DDR2) {
243 debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
244 " Fundamental memory type is 0x%0x\n",
245 dimm_num,
246 ddr_num,
247 spd.mem_type);
248 return 0;
251 debug("\nFound memory of type 0x%02lx ", spd.mem_type);
252 if (spd.mem_type == SPD_MEMTYPE_DDR)
253 debug("DDR I\n");
254 else
255 debug("DDR II\n");
258 * These test gloss over DDR I and II differences in interpretation
259 * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
260 * are not supported on DDR I; and not encoded on DDR II.
262 * Also note that the 8548 controller can support:
263 * 12 <= nrow <= 16
264 * and
265 * 8 <= ncol <= 11 (still, for DDR)
266 * 6 <= ncol <= 9 (for FCRAM)
268 if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
269 printf("DDR: Unsupported number of Row Addr lines: %d.\n",
270 spd.nrow_addr);
271 return 0;
273 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
274 printf("DDR: Unsupported number of Column Addr lines: %d.\n",
275 spd.ncol_addr);
276 return 0;
280 * Determine the number of physical banks controlled by
281 * different Chip Select signals. This is not quite the
282 * same as the number of DIMM modules on the board. Feh.
284 if (spd.mem_type == SPD_MEMTYPE_DDR) {
285 n_ranks = spd.nrows;
286 } else {
287 n_ranks = (spd.nrows & 0x7) + 1;
290 debug("DDR: number of ranks = %d\n", n_ranks);
292 if (n_ranks > 2) {
293 printf("DDR: Only 2 chip selects are supported: %d\n",
294 n_ranks);
295 return 0;
299 * Adjust DDR II IO voltage biasing. Rev1 only
301 if (((get_svr() & 0xf0) == 0x10) && (spd.mem_type == SPD_MEMTYPE_DDR2)) {
302 gur->ddrioovcr = (0
303 | 0x80000000 /* Enable */
304 | 0x10000000 /* VSEL to 1.8V */
309 * Determine the size of each Rank in bytes.
311 rank_density = compute_banksize(spd.mem_type, spd.row_dens);
313 debug("Start address for this controller is 0x%08lx\n", start_addr);
316 * ODT configuration recommendation from DDR Controller Chapter.
318 odt_rd_cfg = 0; /* Never assert ODT */
319 odt_wr_cfg = 0; /* Never assert ODT */
320 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
321 odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
324 ba_bits = 0;
325 if (spd.nbanks == 0x8)
326 ba_bits = 1;
328 #ifdef CONFIG_DDR_INTERLEAVE
330 if (dimm_num != 1) {
331 printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
332 return 0;
333 } else {
335 * Since interleaved memory only uses CS0, the
336 * memory sticks have to be identical in size and quantity
337 * of ranks. That essentially gives double the size on
338 * one rank, i.e on CS0 for both controllers put together.
339 * Confirm this???
341 rank_density *= 2;
344 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
346 start_addr = 0;
347 ddr->cs0_bnds = (start_addr >> 8)
348 | (((start_addr + rank_density - 1) >> 24));
350 * Default interleaving mode to cache-line interleaving.
352 ddr->cs0_config = ( 1 << 31
353 #if (CFG_PAGE_INTERLEAVING == 1)
354 | (PAGE_INTERLEAVING)
355 #elif (CFG_BANK_INTERLEAVING == 1)
356 | (BANK_INTERLEAVING)
357 #elif (CFG_SUPER_BANK_INTERLEAVING == 1)
358 | (SUPER_BANK_INTERLEAVING)
359 #else
360 | (CACHE_LINE_INTERLEAVING)
361 #endif
362 | (odt_rd_cfg << 20)
363 | (odt_wr_cfg << 16)
364 | (ba_bits << 14)
365 | (spd.nrow_addr - 12) << 8
366 | (spd.ncol_addr - 8) );
368 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
369 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
372 * Adjustment for dual rank memory to get correct memory
373 * size (return value of this function).
375 if (n_ranks == 2) {
376 n_ranks = 1;
377 rank_density /= 2;
378 } else {
379 rank_density /= 2;
382 #else /* CONFIG_DDR_INTERLEAVE */
384 if (dimm_num == 1) {
386 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
388 ddr->cs0_bnds = (start_addr >> 8)
389 | (((start_addr + rank_density - 1) >> 24));
391 ddr->cs0_config = ( 1 << 31
392 | (odt_rd_cfg << 20)
393 | (odt_wr_cfg << 16)
394 | (ba_bits << 14)
395 | (spd.nrow_addr - 12) << 8
396 | (spd.ncol_addr - 8) );
398 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
399 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
401 if (n_ranks == 2) {
403 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
404 * second 256 Meg
406 ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
407 | (( start_addr + 2*rank_density - 1)
408 >> 24));
409 ddr->cs1_config = ( 1<<31
410 | (odt_rd_cfg << 20)
411 | (odt_wr_cfg << 16)
412 | (ba_bits << 14)
413 | (spd.nrow_addr - 12) << 8
414 | (spd.ncol_addr - 8) );
415 debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
416 debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
419 } else {
421 * This is the 2nd DIMM slot for this controller
424 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
426 ddr->cs2_bnds = (start_addr >> 8)
427 | (((start_addr + rank_density - 1) >> 24));
429 ddr->cs2_config = ( 1 << 31
430 | (odt_rd_cfg << 20)
431 | (odt_wr_cfg << 16)
432 | (ba_bits << 14)
433 | (spd.nrow_addr - 12) << 8
434 | (spd.ncol_addr - 8) );
436 debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds);
437 debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
439 if (n_ranks == 2) {
441 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
442 * second 256 Meg
444 ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
445 | (( start_addr + 2*rank_density - 1)
446 >> 24));
447 ddr->cs3_config = ( 1<<31
448 | (odt_rd_cfg << 20)
449 | (odt_wr_cfg << 16)
450 | (ba_bits << 14)
451 | (spd.nrow_addr - 12) << 8
452 | (spd.ncol_addr - 8) );
453 debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds);
454 debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
457 #endif /* CONFIG_DDR_INTERLEAVE */
460 * Find the largest CAS by locating the highest 1 bit
461 * in the spd.cas_lat field. Translate it to a DDR
462 * controller field value:
464 * CAS Lat DDR I DDR II Ctrl
465 * Clocks SPD Bit SPD Bit Value
466 * ------- ------- ------- -----
467 * 1.0 0 0001
468 * 1.5 1 0010
469 * 2.0 2 2 0011
470 * 2.5 3 0100
471 * 3.0 4 3 0101
472 * 3.5 5 0110
473 * 4.0 4 0111
474 * 4.5 1000
475 * 5.0 5 1001
477 caslat = __ilog2(spd.cas_lat);
478 if ((spd.mem_type == SPD_MEMTYPE_DDR)
479 && (caslat > 5)) {
480 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
481 return 0;
483 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
484 && (caslat < 2 || caslat > 5)) {
485 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
486 spd.cas_lat);
487 return 0;
489 debug("DDR: caslat SPD bit is %d\n", caslat);
492 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
493 * The SPD clk_cycle field (tCKmin) is measured in tenths of
494 * nanoseconds and represented as BCD.
496 tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
497 debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
500 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
502 max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
503 debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
507 * Adjust the CAS Latency to allow for bus speeds that
508 * are slower than the DDR module.
510 busfreq = get_bus_freq(0) / 1000000; /* MHz */
511 tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3);
512 modfreq = 2 * 1000 * 1000 / tCycle_ps;
514 if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
515 printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
516 return 0;
517 } else if (busfreq < 90) {
518 printf("DDR: platform frequency too low for correct DDR1 operation\n");
519 return 0;
522 if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
523 caslat -= 2;
524 } else {
525 tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
526 modfreq = 2 * 1000 * 1000 / tCycle_ps;
527 if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
528 caslat -= 1;
529 else if (busfreq > max_data_rate) {
530 printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
531 busfreq, max_data_rate);
532 return 0;
537 * Empirically set ~MCAS-to-preamble override for DDR 2.
538 * Your milage will vary.
540 cpo = 0;
541 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
542 if (busfreq <= 333) {
543 cpo = 0x7;
544 } else if (busfreq <= 400) {
545 cpo = 0x9;
546 } else {
547 cpo = 0xa;
552 * Convert caslat clocks to DDR controller value.
553 * Force caslat_ctrl to be DDR Controller field-sized.
555 if (spd.mem_type == SPD_MEMTYPE_DDR) {
556 caslat_ctrl = (caslat + 1) & 0x07;
557 } else {
558 caslat_ctrl = (2 * caslat - 1) & 0x0f;
561 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
562 caslat, caslat_ctrl);
565 * Timing Config 0.
566 * Avoid writing for DDR I. The new PQ38 DDR controller
567 * dreams up non-zero default values to be backwards compatible.
569 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
570 unsigned char taxpd_clk = 8; /* By the book. */
571 unsigned char tmrd_clk = 2; /* By the book. */
572 unsigned char act_pd_exit = 2; /* Empirical? */
573 unsigned char pre_pd_exit = 6; /* Empirical? */
575 ddr->timing_cfg_0 = (0
576 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
577 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
578 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
579 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
581 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
587 * Some Timing Config 1 values now.
588 * Sneak Extended Refresh Recovery in here too.
592 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
593 * use conservative value.
594 * For DDR II, they are bytes 36 and 37, in quarter nanos.
597 if (spd.mem_type == SPD_MEMTYPE_DDR) {
598 twr_clk = 3; /* Clocks */
599 twtr_clk = 1; /* Clocks */
600 } else {
601 twr_clk = picos_to_clk(spd.twr * 250);
602 twtr_clk = picos_to_clk(spd.twtr * 250);
606 * Calculate Trfc, in picos.
607 * DDR I: Byte 42 straight up in ns.
608 * DDR II: Byte 40 and 42 swizzled some, in ns.
610 if (spd.mem_type == SPD_MEMTYPE_DDR) {
611 trfc = spd.trfc * 1000; /* up to ps */
612 } else {
613 unsigned int byte40_table_ps[8] = {
615 250,
616 330,
617 500,
618 660,
619 750,
624 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
625 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
627 trfc_clk = picos_to_clk(trfc);
630 * Trcd, Byte 29, from quarter nanos to ps and clocks.
632 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
635 * Convert trfc_clk to DDR controller fields. DDR I should
636 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
637 * 8548 controller has an extended REFREC field of three bits.
638 * The controller automatically adds 8 clocks to this value,
639 * so preadjust it down 8 first before splitting it up.
641 trfc_low = (trfc_clk - 8) & 0xf;
642 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
645 * Sneak in some Extended Refresh Recovery.
647 ddr->ext_refrec = (trfc_high << 16);
648 debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
650 ddr->timing_cfg_1 =
652 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
653 | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
654 | (trcd_clk << 20) /* ACTTORW */
655 | (caslat_ctrl << 16) /* CASLAT */
656 | (trfc_low << 12) /* REFEC */
657 | ((twr_clk & 0x07) << 8) /* WRRREC */
658 | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
659 | ((twtr_clk & 0x07) << 0) /* WRTORD */
662 debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
666 * Timing_Config_2
667 * Was: 0x00000800;
671 * Additive Latency
672 * For DDR I, 0.
673 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
674 * which comes from Trcd, and also note that:
675 * add_lat + caslat must be >= 4
677 add_lat = 0;
678 if (spd.mem_type == SPD_MEMTYPE_DDR2
679 && (odt_wr_cfg || odt_rd_cfg)
680 && (caslat < 4)) {
681 add_lat = 4 - caslat;
682 if (add_lat >= trcd_clk) {
683 add_lat = trcd_clk - 1;
688 * Write Data Delay
689 * Historically 0x2 == 4/8 clock delay.
690 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
692 wr_data_delay = 3;
695 * Write Latency
696 * Read to Precharge
697 * Minimum CKE Pulse Width.
698 * Four Activate Window
700 if (spd.mem_type == SPD_MEMTYPE_DDR) {
702 * This is a lie. It should really be 1, but if it is
703 * set to 1, bits overlap into the old controller's
704 * otherwise unused ACSM field. If we leave it 0, then
705 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
707 wr_lat = 0;
709 trtp_clk = 2; /* By the book. */
710 cke_min_clk = 1; /* By the book. */
711 four_act = 1; /* By the book. */
713 } else {
714 wr_lat = caslat - 1;
716 /* Convert SPD value from quarter nanos to picos. */
717 trtp_clk = picos_to_clk(spd.trtp * 250);
719 cke_min_clk = 3; /* By the book. */
720 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
723 ddr->timing_cfg_2 = (0
724 | ((add_lat & 0x7) << 28) /* ADD_LAT */
725 | ((cpo & 0x1f) << 23) /* CPO */
726 | ((wr_lat & 0x7) << 19) /* WR_LAT */
727 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
728 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
729 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
730 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
733 debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
737 * Determine the Mode Register Set.
739 * This is nominally part specific, but it appears to be
740 * consistent for all DDR I devices, and for all DDR II devices.
742 * caslat must be programmed
743 * burst length is always 4
744 * burst type is sequential
746 * For DDR I:
747 * operating mode is "normal"
749 * For DDR II:
750 * other stuff
753 mode_caslat = 0;
756 * Table lookup from DDR I or II Device Operation Specs.
758 if (spd.mem_type == SPD_MEMTYPE_DDR) {
759 if (1 <= caslat && caslat <= 4) {
760 unsigned char mode_caslat_table[4] = {
761 0x5, /* 1.5 clocks */
762 0x2, /* 2.0 clocks */
763 0x6, /* 2.5 clocks */
764 0x3 /* 3.0 clocks */
766 mode_caslat = mode_caslat_table[caslat - 1];
767 } else {
768 puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
769 "2.5 and 3.0 clocks are supported.\n");
770 return 0;
773 } else {
774 if (2 <= caslat && caslat <= 5) {
775 mode_caslat = caslat;
776 } else {
777 puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
778 "4.0 and 5.0 clocks are supported.\n");
779 return 0;
784 * Encoded Burst Length of 4.
786 burst_len = 2; /* Fiat. */
788 if (spd.mem_type == SPD_MEMTYPE_DDR) {
789 twr_auto_clk = 0; /* Historical */
790 } else {
792 * Determine tCK max in picos. Grab tWR and convert to picos.
793 * Auto-precharge write recovery is:
794 * WR = roundup(tWR_ns/tCKmax_ns).
796 * Ponder: Is twr_auto_clk different than twr_clk?
798 tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
799 twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
803 * Mode Reg in bits 16 ~ 31,
804 * Extended Mode Reg 1 in bits 0 ~ 15.
806 mode_odt_enable = 0x0; /* Default disabled */
807 if (odt_wr_cfg || odt_rd_cfg) {
809 * Bits 6 and 2 in Extended MRS(1)
810 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
811 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
813 mode_odt_enable = 0x40; /* 150 Ohm */
816 ddr->sdram_mode_1 =
818 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
819 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
820 | (twr_auto_clk << 9) /* Write Recovery Autopre */
821 | (mode_caslat << 4) /* caslat */
822 | (burst_len << 0) /* Burst length */
825 debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1);
828 * Clear EMRS2 and EMRS3.
830 ddr->sdram_mode_2 = 0;
831 debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
834 * Determine Refresh Rate.
836 refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
839 * Set BSTOPRE to 0x100 for page mode
840 * If auto-charge is used, set BSTOPRE = 0
842 ddr->sdram_interval =
844 | (refresh_clk & 0x3fff) << 16
845 | 0x100
847 debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
851 * Is this an ECC DDR chip?
852 * But don't mess with it if the DDR controller will init mem.
854 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
855 if (spd.config == 0x02) {
856 ddr->err_disable = 0x0000000d;
857 ddr->err_sbe = 0x00ff0000;
859 debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
860 debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
861 #endif
863 asm volatile("sync;isync");
864 udelay(500);
867 * SDRAM Cfg 2
871 * When ODT is enabled, Chap 9 suggests asserting ODT to
872 * internal IOs only during reads.
874 odt_cfg = 0;
875 if (odt_rd_cfg | odt_wr_cfg) {
876 odt_cfg = 0x2; /* ODT to IOs during reads */
880 * Try to use differential DQS with DDR II.
882 if (spd.mem_type == SPD_MEMTYPE_DDR) {
883 dqs_cfg = 0; /* No Differential DQS for DDR I */
884 } else {
885 dqs_cfg = 0x1; /* Differential DQS for DDR II */
888 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
890 * Use the DDR controller to auto initialize memory.
892 d_init = 1;
893 ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
894 debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
895 #else
897 * Memory will be initialized via DMA, or not at all.
899 d_init = 0;
900 #endif
902 ddr->sdram_cfg_2 = (0
903 | (dqs_cfg << 26) /* Differential DQS */
904 | (odt_cfg << 21) /* ODT */
905 | (d_init << 4) /* D_INIT auto init DDR */
908 debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
911 #ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
913 * Setup the clock control.
914 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
915 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
916 * 0110 3/4 cycle late
917 * 0111 7/8 cycle late
919 if (spd.mem_type == SPD_MEMTYPE_DDR)
920 clk_adjust = 0x6;
921 else
922 clk_adjust = 0x7;
924 ddr->sdram_clk_cntl = (0
925 | 0x80000000
926 | (clk_adjust << 23)
928 debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
929 #endif
932 * Figure out memory size in Megabytes.
934 debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
935 memsize = n_ranks * rank_density / 0x100000;
936 return memsize;
940 unsigned int enable_ddr(unsigned int ddr_num)
942 volatile immap_t *immap = (immap_t *)CFG_IMMR;
943 spd_eeprom_t spd1,spd2;
944 volatile ccsr_ddr_t *ddr;
945 unsigned sdram_cfg_1;
946 unsigned char sdram_type, mem_type, mod_attr;
947 unsigned char d_init;
948 unsigned int no_dimm1=0, no_dimm2=0;
950 /* Set up pointer to enable the current ddr controller */
951 if (ddr_num == 1)
952 ddr = &immap->im_ddr1;
953 else
954 ddr = &immap->im_ddr2;
957 * Read both dimm slots and decide whether
958 * or not to enable this controller.
960 memset((void *)&spd1, 0, sizeof(spd1));
961 memset((void *)&spd2, 0, sizeof(spd2));
963 if (ddr_num == 1) {
964 CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
965 0, 1, (uchar *) &spd1, sizeof(spd1));
966 #if defined(SPD_EEPROM_ADDRESS2)
967 CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
968 0, 1, (uchar *) &spd2, sizeof(spd2));
969 #endif
970 } else {
971 #if defined(SPD_EEPROM_ADDRESS3)
972 CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
973 0, 1, (uchar *) &spd1, sizeof(spd1));
974 #endif
975 #if defined(SPD_EEPROM_ADDRESS4)
976 CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
977 0, 1, (uchar *) &spd2, sizeof(spd2));
978 #endif
982 * Check for supported memory module types.
984 if (spd1.mem_type != SPD_MEMTYPE_DDR
985 && spd1.mem_type != SPD_MEMTYPE_DDR2) {
986 no_dimm1 = 1;
987 } else {
988 debug("\nFound memory of type 0x%02lx ",spd1.mem_type );
989 if (spd1.mem_type == SPD_MEMTYPE_DDR)
990 debug("DDR I\n");
991 else
992 debug("DDR II\n");
995 if (spd2.mem_type != SPD_MEMTYPE_DDR &&
996 spd2.mem_type != SPD_MEMTYPE_DDR2) {
997 no_dimm2 = 1;
998 } else {
999 debug("\nFound memory of type 0x%02lx ",spd2.mem_type );
1000 if (spd2.mem_type == SPD_MEMTYPE_DDR)
1001 debug("DDR I\n");
1002 else
1003 debug("DDR II\n");
1006 #ifdef CONFIG_DDR_INTERLEAVE
1007 if (no_dimm1) {
1008 printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
1009 return 0;
1011 #endif
1014 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
1016 if (no_dimm1 && no_dimm2) {
1017 printf("No memory modules found for DDR controller %d!!\n", ddr_num);
1018 return 0;
1019 } else {
1021 #if defined(CONFIG_DDR_ECC)
1022 unsigned char config;
1023 #endif
1024 mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
1027 * Figure out the settings for the sdram_cfg register.
1028 * Build up the entire register in 'sdram_cfg' before
1029 * writing since the write into the register will
1030 * actually enable the memory controller; all settings
1031 * must be done before enabling.
1033 * sdram_cfg[0] = 1 (ddr sdram logic enable)
1034 * sdram_cfg[1] = 1 (self-refresh-enable)
1035 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
1036 * 010 DDR 1 SDRAM
1037 * 011 DDR 2 SDRAM
1039 sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
1040 sdram_cfg_1 = (0
1041 | (1 << 31) /* Enable */
1042 | (1 << 30) /* Self refresh */
1043 | (sdram_type << 24) /* SDRAM type */
1047 * sdram_cfg[3] = RD_EN - registered DIMM enable
1048 * A value of 0x26 indicates micron registered
1049 * DIMMS (micron.com)
1051 mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
1052 if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
1053 sdram_cfg_1 |= 0x10000000; /* RD_EN */
1056 #if defined(CONFIG_DDR_ECC)
1058 config = no_dimm2 ? spd1.config : spd2.config;
1061 * If the user wanted ECC (enabled via sdram_cfg[2])
1063 if (config == 0x02) {
1064 ddr->err_disable = 0x00000000;
1065 asm volatile("sync;isync;");
1066 ddr->err_sbe = 0x00ff0000;
1067 ddr->err_int_en = 0x0000000d;
1068 sdram_cfg_1 |= 0x20000000; /* ECC_EN */
1070 #endif
1073 * Set 1T or 2T timing based on 1 or 2 modules
1076 if (!(no_dimm1 || no_dimm2)) {
1078 * 2T timing,because both DIMMS are present.
1079 * Enable 2T timing by setting sdram_cfg[16].
1081 sdram_cfg_1 |= 0x8000; /* 2T_EN */
1086 * 200 painful micro-seconds must elapse between
1087 * the DDR clock setup and the DDR config enable.
1089 udelay(200);
1092 * Go!
1094 ddr->sdram_cfg_1 = sdram_cfg_1;
1096 asm volatile("sync;isync");
1097 udelay(500);
1099 debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1);
1102 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1103 d_init = 1;
1104 debug("DDR: memory initializing\n");
1107 * Poll until memory is initialized.
1108 * 512 Meg at 400 might hit this 200 times or so.
1110 while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
1111 udelay(1000);
1113 debug("DDR: memory initialized\n\n");
1114 #endif
1116 debug("Enabled DDR Controller %d\n", ddr_num);
1117 return 1;
1122 long int
1123 spd_sdram(void)
1125 int memsize_ddr1_dimm1 = 0;
1126 int memsize_ddr1_dimm2 = 0;
1127 int memsize_ddr1 = 0;
1128 unsigned int law_size_ddr1;
1129 #ifdef CONFIG_DDR_INTERLEAVE
1130 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1131 volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
1132 #endif
1134 #if (CONFIG_NUM_DDR_CONTROLLERS > 1)
1135 int memsize_ddr2_dimm1 = 0;
1136 int memsize_ddr2_dimm2 = 0;
1137 int memsize_ddr2 = 0;
1138 unsigned int law_size_ddr2;
1139 #endif
1141 unsigned int ddr1_enabled = 0;
1142 unsigned int ddr2_enabled = 0;
1143 int memsize_total = 0;
1145 #ifdef CONFIG_DDR_INTERLEAVE
1146 unsigned int law_size_interleaved;
1147 volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;
1149 memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1150 1, 1,
1151 (unsigned int)memsize_total * 1024*1024);
1152 memsize_total += memsize_ddr1_dimm1;
1154 memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
1155 2, 1,
1156 (unsigned int)memsize_total * 1024*1024);
1157 memsize_total += memsize_ddr2_dimm1;
1159 if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
1160 if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1)
1161 memsize_total -= memsize_ddr1_dimm1;
1162 else
1163 memsize_total -= memsize_ddr2_dimm1;
1164 debug("Total memory available for interleaving 0x%08lx\n",
1165 memsize_total * 1024 * 1024);
1166 debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
1167 ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
1168 ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
1169 debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds);
1170 debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds);
1173 ddr1_enabled = enable_ddr(1);
1174 ddr2_enabled = enable_ddr(2);
1177 * Both controllers need to be enabled for interleaving.
1179 if (ddr1_enabled && ddr2_enabled) {
1180 law_size_interleaved = 19 + __ilog2(memsize_total);
1183 * Set up LAWBAR for DDR 1 space.
1185 #ifdef CONFIG_FSL_LAW
1186 set_law(1, CFG_DDR_SDRAM_BASE, law_size_interleaved, LAW_TRGT_IF_DDR_INTRLV);
1187 #endif
1188 debug("Interleaved memory size is 0x%08lx\n", memsize_total);
1190 #if (CFG_PAGE_INTERLEAVING == 1)
1191 printf("Page ");
1192 #elif (CFG_BANK_INTERLEAVING == 1)
1193 printf("Bank ");
1194 #elif (CFG_SUPER_BANK_INTERLEAVING == 1)
1195 printf("Super-bank ");
1196 #else
1197 printf("Cache-line ");
1198 #endif
1199 printf("Interleaved");
1200 return memsize_total * 1024 * 1024;
1201 } else {
1202 printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
1203 return 0;
1206 #else
1208 * Call spd_sdram() routine to init ddr1 - pass I2c address,
1209 * controller number, dimm number, and starting address.
1211 memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1212 1, 1,
1213 (unsigned int)memsize_total * 1024*1024);
1214 memsize_total += memsize_ddr1_dimm1;
1216 #if defined(SPD_EEPROM_ADDRESS2)
1217 memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
1218 1, 2,
1219 (unsigned int)memsize_total * 1024*1024);
1220 #endif
1221 memsize_total += memsize_ddr1_dimm2;
1224 * Enable the DDR controller - pass ddr controller number.
1226 ddr1_enabled = enable_ddr(1);
1228 /* Keep track of memory to be addressed by DDR1 */
1229 memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;
1232 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
1234 if (ddr1_enabled) {
1235 law_size_ddr1 = 19 + __ilog2(memsize_ddr1);
1238 * Set up LAWBAR for DDR 1 space.
1240 #ifdef CONFIG_FSL_LAW
1241 set_law(1, CFG_DDR_SDRAM_BASE, law_size_ddr1, LAW_TRGT_IF_DDR_1);
1242 #endif
1245 #if (CONFIG_NUM_DDR_CONTROLLERS > 1)
1246 memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
1247 2, 1,
1248 (unsigned int)memsize_total * 1024*1024);
1249 memsize_total += memsize_ddr2_dimm1;
1251 memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
1252 2, 2,
1253 (unsigned int)memsize_total * 1024*1024);
1254 memsize_total += memsize_ddr2_dimm2;
1256 ddr2_enabled = enable_ddr(2);
1258 /* Keep track of memory to be addressed by DDR2 */
1259 memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;
1261 if (ddr2_enabled) {
1262 law_size_ddr2 = 19 + __ilog2(memsize_ddr2);
1265 * Set up LAWBAR for DDR 2 space.
1267 #ifdef CONFIG_FSL_LAW
1268 set_law(8,
1269 (ddr1_enabled ? (memsize_ddr1 * 1024 * 1024) : CFG_DDR_SDRAM_BASE),
1270 law_size_ddr2, LAW_TRGT_IF_DDR_2);
1271 #endif
1274 debug("\nMemory size of DDR2 = 0x%08lx\n", memsize_ddr2);
1276 #endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */
1278 debug("\nMemory size of DDR1 = 0x%08lx\n", memsize_ddr1);
1281 * If neither DDR controller is enabled return 0.
1283 if (!ddr1_enabled && !ddr2_enabled)
1284 return 0;
1286 printf("Non-interleaved");
1287 return memsize_total * 1024 * 1024;
1289 #endif /* CONFIG_DDR_INTERLEAVE */
1293 #endif /* CONFIG_SPD_EEPROM */
1296 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1299 * Initialize all of memory for ECC, then enable errors.
1302 void
1303 ddr_enable_ecc(unsigned int dram_size)
1305 uint *p = 0;
1306 uint i = 0;
1307 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1308 volatile ccsr_ddr_t *ddr1= &immap->im_ddr1;
1310 dma_init();
1312 for (*p = 0; p < (uint *)(8 * 1024); p++) {
1313 if (((unsigned int)p & 0x1f) == 0) {
1314 ppcDcbz((unsigned long) p);
1316 *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
1317 if (((unsigned int)p & 0x1c) == 0x1c) {
1318 ppcDcbf((unsigned long) p);
1322 dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
1323 dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
1324 dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
1325 dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
1326 dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
1327 dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
1328 dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
1329 dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
1330 dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
1331 dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
1333 for (i = 1; i < dram_size / 0x800000; i++) {
1334 dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
1338 * Enable errors for ECC.
1340 debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
1341 ddr1->err_disable = 0x00000000;
1342 asm volatile("sync;isync");
1343 debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
1346 #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */