GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / toolchains / hndtools-arm-linux-2.6.36-uclibc-4.5.3 / arm-brcm-linux-uclibcgnueabi / include / c++ / 4.5.3 / tr1 / hashtable_policy.h
blob2a0e0ed4e1a71beffad2f760f5987e917338d7a0
1 // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
3 // Copyright (C) 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file tr1/hashtable_policy.h
26 * This is an internal header file, included by other library headers.
27 * You should not attempt to use it directly.
30 namespace std
32 namespace tr1
34 namespace __detail
36 // Helper function: return distance(first, last) for forward
37 // iterators, or 0 for input iterators.
38 template<class _Iterator>
39 inline typename std::iterator_traits<_Iterator>::difference_type
40 __distance_fw(_Iterator __first, _Iterator __last,
41 std::input_iterator_tag)
42 { return 0; }
44 template<class _Iterator>
45 inline typename std::iterator_traits<_Iterator>::difference_type
46 __distance_fw(_Iterator __first, _Iterator __last,
47 std::forward_iterator_tag)
48 { return std::distance(__first, __last); }
50 template<class _Iterator>
51 inline typename std::iterator_traits<_Iterator>::difference_type
52 __distance_fw(_Iterator __first, _Iterator __last)
54 typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
55 return __distance_fw(__first, __last, _Tag());
58 // Auxiliary types used for all instantiations of _Hashtable: nodes
59 // and iterators.
61 // Nodes, used to wrap elements stored in the hash table. A policy
62 // template parameter of class template _Hashtable controls whether
63 // nodes also store a hash code. In some cases (e.g. strings) this
64 // may be a performance win.
65 template<typename _Value, bool __cache_hash_code>
66 struct _Hash_node;
68 template<typename _Value>
69 struct _Hash_node<_Value, true>
71 _Value _M_v;
72 std::size_t _M_hash_code;
73 _Hash_node* _M_next;
76 template<typename _Value>
77 struct _Hash_node<_Value, false>
79 _Value _M_v;
80 _Hash_node* _M_next;
83 // Local iterators, used to iterate within a bucket but not between
84 // buckets.
85 template<typename _Value, bool __cache>
86 struct _Node_iterator_base
88 _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
89 : _M_cur(__p) { }
91 void
92 _M_incr()
93 { _M_cur = _M_cur->_M_next; }
95 _Hash_node<_Value, __cache>* _M_cur;
98 template<typename _Value, bool __cache>
99 inline bool
100 operator==(const _Node_iterator_base<_Value, __cache>& __x,
101 const _Node_iterator_base<_Value, __cache>& __y)
102 { return __x._M_cur == __y._M_cur; }
104 template<typename _Value, bool __cache>
105 inline bool
106 operator!=(const _Node_iterator_base<_Value, __cache>& __x,
107 const _Node_iterator_base<_Value, __cache>& __y)
108 { return __x._M_cur != __y._M_cur; }
110 template<typename _Value, bool __constant_iterators, bool __cache>
111 struct _Node_iterator
112 : public _Node_iterator_base<_Value, __cache>
114 typedef _Value value_type;
115 typedef typename
116 __gnu_cxx::__conditional_type<__constant_iterators,
117 const _Value*, _Value*>::__type
118 pointer;
119 typedef typename
120 __gnu_cxx::__conditional_type<__constant_iterators,
121 const _Value&, _Value&>::__type
122 reference;
123 typedef std::ptrdiff_t difference_type;
124 typedef std::forward_iterator_tag iterator_category;
126 _Node_iterator()
127 : _Node_iterator_base<_Value, __cache>(0) { }
129 explicit
130 _Node_iterator(_Hash_node<_Value, __cache>* __p)
131 : _Node_iterator_base<_Value, __cache>(__p) { }
133 reference
134 operator*() const
135 { return this->_M_cur->_M_v; }
137 pointer
138 operator->() const
139 { return &this->_M_cur->_M_v; }
141 _Node_iterator&
142 operator++()
144 this->_M_incr();
145 return *this;
148 _Node_iterator
149 operator++(int)
151 _Node_iterator __tmp(*this);
152 this->_M_incr();
153 return __tmp;
157 template<typename _Value, bool __constant_iterators, bool __cache>
158 struct _Node_const_iterator
159 : public _Node_iterator_base<_Value, __cache>
161 typedef _Value value_type;
162 typedef const _Value* pointer;
163 typedef const _Value& reference;
164 typedef std::ptrdiff_t difference_type;
165 typedef std::forward_iterator_tag iterator_category;
167 _Node_const_iterator()
168 : _Node_iterator_base<_Value, __cache>(0) { }
170 explicit
171 _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
172 : _Node_iterator_base<_Value, __cache>(__p) { }
174 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
175 __cache>& __x)
176 : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
178 reference
179 operator*() const
180 { return this->_M_cur->_M_v; }
182 pointer
183 operator->() const
184 { return &this->_M_cur->_M_v; }
186 _Node_const_iterator&
187 operator++()
189 this->_M_incr();
190 return *this;
193 _Node_const_iterator
194 operator++(int)
196 _Node_const_iterator __tmp(*this);
197 this->_M_incr();
198 return __tmp;
202 template<typename _Value, bool __cache>
203 struct _Hashtable_iterator_base
205 _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
206 _Hash_node<_Value, __cache>** __bucket)
207 : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
209 void
210 _M_incr()
212 _M_cur_node = _M_cur_node->_M_next;
213 if (!_M_cur_node)
214 _M_incr_bucket();
217 void
218 _M_incr_bucket();
220 _Hash_node<_Value, __cache>* _M_cur_node;
221 _Hash_node<_Value, __cache>** _M_cur_bucket;
224 // Global iterators, used for arbitrary iteration within a hash
225 // table. Larger and more expensive than local iterators.
226 template<typename _Value, bool __cache>
227 void
228 _Hashtable_iterator_base<_Value, __cache>::
229 _M_incr_bucket()
231 ++_M_cur_bucket;
233 // This loop requires the bucket array to have a non-null sentinel.
234 while (!*_M_cur_bucket)
235 ++_M_cur_bucket;
236 _M_cur_node = *_M_cur_bucket;
239 template<typename _Value, bool __cache>
240 inline bool
241 operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
242 const _Hashtable_iterator_base<_Value, __cache>& __y)
243 { return __x._M_cur_node == __y._M_cur_node; }
245 template<typename _Value, bool __cache>
246 inline bool
247 operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
248 const _Hashtable_iterator_base<_Value, __cache>& __y)
249 { return __x._M_cur_node != __y._M_cur_node; }
251 template<typename _Value, bool __constant_iterators, bool __cache>
252 struct _Hashtable_iterator
253 : public _Hashtable_iterator_base<_Value, __cache>
255 typedef _Value value_type;
256 typedef typename
257 __gnu_cxx::__conditional_type<__constant_iterators,
258 const _Value*, _Value*>::__type
259 pointer;
260 typedef typename
261 __gnu_cxx::__conditional_type<__constant_iterators,
262 const _Value&, _Value&>::__type
263 reference;
264 typedef std::ptrdiff_t difference_type;
265 typedef std::forward_iterator_tag iterator_category;
267 _Hashtable_iterator()
268 : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
270 _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
271 _Hash_node<_Value, __cache>** __b)
272 : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
274 explicit
275 _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
276 : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
278 reference
279 operator*() const
280 { return this->_M_cur_node->_M_v; }
282 pointer
283 operator->() const
284 { return &this->_M_cur_node->_M_v; }
286 _Hashtable_iterator&
287 operator++()
289 this->_M_incr();
290 return *this;
293 _Hashtable_iterator
294 operator++(int)
296 _Hashtable_iterator __tmp(*this);
297 this->_M_incr();
298 return __tmp;
302 template<typename _Value, bool __constant_iterators, bool __cache>
303 struct _Hashtable_const_iterator
304 : public _Hashtable_iterator_base<_Value, __cache>
306 typedef _Value value_type;
307 typedef const _Value* pointer;
308 typedef const _Value& reference;
309 typedef std::ptrdiff_t difference_type;
310 typedef std::forward_iterator_tag iterator_category;
312 _Hashtable_const_iterator()
313 : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
315 _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
316 _Hash_node<_Value, __cache>** __b)
317 : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
319 explicit
320 _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
321 : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
323 _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
324 __constant_iterators, __cache>& __x)
325 : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
326 __x._M_cur_bucket) { }
328 reference
329 operator*() const
330 { return this->_M_cur_node->_M_v; }
332 pointer
333 operator->() const
334 { return &this->_M_cur_node->_M_v; }
336 _Hashtable_const_iterator&
337 operator++()
339 this->_M_incr();
340 return *this;
343 _Hashtable_const_iterator
344 operator++(int)
346 _Hashtable_const_iterator __tmp(*this);
347 this->_M_incr();
348 return __tmp;
353 // Many of class template _Hashtable's template parameters are policy
354 // classes. These are defaults for the policies.
356 // Default range hashing function: use division to fold a large number
357 // into the range [0, N).
358 struct _Mod_range_hashing
360 typedef std::size_t first_argument_type;
361 typedef std::size_t second_argument_type;
362 typedef std::size_t result_type;
364 result_type
365 operator()(first_argument_type __num, second_argument_type __den) const
366 { return __num % __den; }
369 // Default ranged hash function H. In principle it should be a
370 // function object composed from objects of type H1 and H2 such that
371 // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
372 // h1 and h2. So instead we'll just use a tag to tell class template
373 // hashtable to do that composition.
374 struct _Default_ranged_hash { };
376 // Default value for rehash policy. Bucket size is (usually) the
377 // smallest prime that keeps the load factor small enough.
378 struct _Prime_rehash_policy
380 _Prime_rehash_policy(float __z = 1.0)
381 : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
383 float
384 max_load_factor() const
385 { return _M_max_load_factor; }
387 // Return a bucket size no smaller than n.
388 std::size_t
389 _M_next_bkt(std::size_t __n) const;
391 // Return a bucket count appropriate for n elements
392 std::size_t
393 _M_bkt_for_elements(std::size_t __n) const;
395 // __n_bkt is current bucket count, __n_elt is current element count,
396 // and __n_ins is number of elements to be inserted. Do we need to
397 // increase bucket count? If so, return make_pair(true, n), where n
398 // is the new bucket count. If not, return make_pair(false, 0).
399 std::pair<bool, std::size_t>
400 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
401 std::size_t __n_ins) const;
403 enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
405 float _M_max_load_factor;
406 float _M_growth_factor;
407 mutable std::size_t _M_next_resize;
410 extern const unsigned long __prime_list[];
412 // XXX This is a hack. There's no good reason for any of
413 // _Prime_rehash_policy's member functions to be inline.
415 // Return a prime no smaller than n.
416 inline std::size_t
417 _Prime_rehash_policy::
418 _M_next_bkt(std::size_t __n) const
420 const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
421 + _S_n_primes, __n);
422 _M_next_resize =
423 static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
424 return *__p;
427 // Return the smallest prime p such that alpha p >= n, where alpha
428 // is the load factor.
429 inline std::size_t
430 _Prime_rehash_policy::
431 _M_bkt_for_elements(std::size_t __n) const
433 const float __min_bkts = __n / _M_max_load_factor;
434 const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
435 + _S_n_primes, __min_bkts);
436 _M_next_resize =
437 static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
438 return *__p;
441 // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
442 // If p > __n_bkt, return make_pair(true, p); otherwise return
443 // make_pair(false, 0). In principle this isn't very different from
444 // _M_bkt_for_elements.
446 // The only tricky part is that we're caching the element count at
447 // which we need to rehash, so we don't have to do a floating-point
448 // multiply for every insertion.
450 inline std::pair<bool, std::size_t>
451 _Prime_rehash_policy::
452 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
453 std::size_t __n_ins) const
455 if (__n_elt + __n_ins > _M_next_resize)
457 float __min_bkts = ((float(__n_ins) + float(__n_elt))
458 / _M_max_load_factor);
459 if (__min_bkts > __n_bkt)
461 __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
462 const unsigned long* __p =
463 std::lower_bound(__prime_list, __prime_list + _S_n_primes,
464 __min_bkts);
465 _M_next_resize = static_cast<std::size_t>
466 (__builtin_ceil(*__p * _M_max_load_factor));
467 return std::make_pair(true, *__p);
469 else
471 _M_next_resize = static_cast<std::size_t>
472 (__builtin_ceil(__n_bkt * _M_max_load_factor));
473 return std::make_pair(false, 0);
476 else
477 return std::make_pair(false, 0);
480 // Base classes for std::tr1::_Hashtable. We define these base
481 // classes because in some cases we want to do different things
482 // depending on the value of a policy class. In some cases the
483 // policy class affects which member functions and nested typedefs
484 // are defined; we handle that by specializing base class templates.
485 // Several of the base class templates need to access other members
486 // of class template _Hashtable, so we use the "curiously recurring
487 // template pattern" for them.
489 // class template _Map_base. If the hashtable has a value type of the
490 // form pair<T1, T2> and a key extraction policy that returns the
491 // first part of the pair, the hashtable gets a mapped_type typedef.
492 // If it satisfies those criteria and also has unique keys, then it
493 // also gets an operator[].
494 template<typename _Key, typename _Value, typename _Ex, bool __unique,
495 typename _Hashtable>
496 struct _Map_base { };
498 template<typename _Key, typename _Pair, typename _Hashtable>
499 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
501 typedef typename _Pair::second_type mapped_type;
504 template<typename _Key, typename _Pair, typename _Hashtable>
505 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
507 typedef typename _Pair::second_type mapped_type;
509 mapped_type&
510 operator[](const _Key& __k);
513 template<typename _Key, typename _Pair, typename _Hashtable>
514 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
515 true, _Hashtable>::mapped_type&
516 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
517 operator[](const _Key& __k)
519 _Hashtable* __h = static_cast<_Hashtable*>(this);
520 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
521 std::size_t __n = __h->_M_bucket_index(__k, __code,
522 __h->_M_bucket_count);
524 typename _Hashtable::_Node* __p =
525 __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
526 if (!__p)
527 return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
528 __n, __code)->second;
529 return (__p->_M_v).second;
532 // class template _Rehash_base. Give hashtable the max_load_factor
533 // functions iff the rehash policy is _Prime_rehash_policy.
534 template<typename _RehashPolicy, typename _Hashtable>
535 struct _Rehash_base { };
537 template<typename _Hashtable>
538 struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
540 float
541 max_load_factor() const
543 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
544 return __this->__rehash_policy().max_load_factor();
547 void
548 max_load_factor(float __z)
550 _Hashtable* __this = static_cast<_Hashtable*>(this);
551 __this->__rehash_policy(_Prime_rehash_policy(__z));
555 // Class template _Hash_code_base. Encapsulates two policy issues that
556 // aren't quite orthogonal.
557 // (1) the difference between using a ranged hash function and using
558 // the combination of a hash function and a range-hashing function.
559 // In the former case we don't have such things as hash codes, so
560 // we have a dummy type as placeholder.
561 // (2) Whether or not we cache hash codes. Caching hash codes is
562 // meaningless if we have a ranged hash function.
563 // We also put the key extraction and equality comparison function
564 // objects here, for convenience.
566 // Primary template: unused except as a hook for specializations.
567 template<typename _Key, typename _Value,
568 typename _ExtractKey, typename _Equal,
569 typename _H1, typename _H2, typename _Hash,
570 bool __cache_hash_code>
571 struct _Hash_code_base;
573 // Specialization: ranged hash function, no caching hash codes. H1
574 // and H2 are provided but ignored. We define a dummy hash code type.
575 template<typename _Key, typename _Value,
576 typename _ExtractKey, typename _Equal,
577 typename _H1, typename _H2, typename _Hash>
578 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
579 _Hash, false>
581 protected:
582 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
583 const _H1&, const _H2&, const _Hash& __h)
584 : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
586 typedef void* _Hash_code_type;
588 _Hash_code_type
589 _M_hash_code(const _Key& __key) const
590 { return 0; }
592 std::size_t
593 _M_bucket_index(const _Key& __k, _Hash_code_type,
594 std::size_t __n) const
595 { return _M_ranged_hash(__k, __n); }
597 std::size_t
598 _M_bucket_index(const _Hash_node<_Value, false>* __p,
599 std::size_t __n) const
600 { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
602 bool
603 _M_compare(const _Key& __k, _Hash_code_type,
604 _Hash_node<_Value, false>* __n) const
605 { return _M_eq(__k, _M_extract(__n->_M_v)); }
607 void
608 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
611 void
612 _M_copy_code(_Hash_node<_Value, false>*,
613 const _Hash_node<_Value, false>*) const
616 void
617 _M_swap(_Hash_code_base& __x)
619 std::swap(_M_extract, __x._M_extract);
620 std::swap(_M_eq, __x._M_eq);
621 std::swap(_M_ranged_hash, __x._M_ranged_hash);
624 protected:
625 _ExtractKey _M_extract;
626 _Equal _M_eq;
627 _Hash _M_ranged_hash;
631 // No specialization for ranged hash function while caching hash codes.
632 // That combination is meaningless, and trying to do it is an error.
635 // Specialization: ranged hash function, cache hash codes. This
636 // combination is meaningless, so we provide only a declaration
637 // and no definition.
638 template<typename _Key, typename _Value,
639 typename _ExtractKey, typename _Equal,
640 typename _H1, typename _H2, typename _Hash>
641 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
642 _Hash, true>;
644 // Specialization: hash function and range-hashing function, no
645 // caching of hash codes. H is provided but ignored. Provides
646 // typedef and accessor required by TR1.
647 template<typename _Key, typename _Value,
648 typename _ExtractKey, typename _Equal,
649 typename _H1, typename _H2>
650 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
651 _Default_ranged_hash, false>
653 typedef _H1 hasher;
655 hasher
656 hash_function() const
657 { return _M_h1; }
659 protected:
660 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
661 const _H1& __h1, const _H2& __h2,
662 const _Default_ranged_hash&)
663 : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
665 typedef std::size_t _Hash_code_type;
667 _Hash_code_type
668 _M_hash_code(const _Key& __k) const
669 { return _M_h1(__k); }
671 std::size_t
672 _M_bucket_index(const _Key&, _Hash_code_type __c,
673 std::size_t __n) const
674 { return _M_h2(__c, __n); }
676 std::size_t
677 _M_bucket_index(const _Hash_node<_Value, false>* __p,
678 std::size_t __n) const
679 { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
681 bool
682 _M_compare(const _Key& __k, _Hash_code_type,
683 _Hash_node<_Value, false>* __n) const
684 { return _M_eq(__k, _M_extract(__n->_M_v)); }
686 void
687 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
690 void
691 _M_copy_code(_Hash_node<_Value, false>*,
692 const _Hash_node<_Value, false>*) const
695 void
696 _M_swap(_Hash_code_base& __x)
698 std::swap(_M_extract, __x._M_extract);
699 std::swap(_M_eq, __x._M_eq);
700 std::swap(_M_h1, __x._M_h1);
701 std::swap(_M_h2, __x._M_h2);
704 protected:
705 _ExtractKey _M_extract;
706 _Equal _M_eq;
707 _H1 _M_h1;
708 _H2 _M_h2;
711 // Specialization: hash function and range-hashing function,
712 // caching hash codes. H is provided but ignored. Provides
713 // typedef and accessor required by TR1.
714 template<typename _Key, typename _Value,
715 typename _ExtractKey, typename _Equal,
716 typename _H1, typename _H2>
717 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
718 _Default_ranged_hash, true>
720 typedef _H1 hasher;
722 hasher
723 hash_function() const
724 { return _M_h1; }
726 protected:
727 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
728 const _H1& __h1, const _H2& __h2,
729 const _Default_ranged_hash&)
730 : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
732 typedef std::size_t _Hash_code_type;
734 _Hash_code_type
735 _M_hash_code(const _Key& __k) const
736 { return _M_h1(__k); }
738 std::size_t
739 _M_bucket_index(const _Key&, _Hash_code_type __c,
740 std::size_t __n) const
741 { return _M_h2(__c, __n); }
743 std::size_t
744 _M_bucket_index(const _Hash_node<_Value, true>* __p,
745 std::size_t __n) const
746 { return _M_h2(__p->_M_hash_code, __n); }
748 bool
749 _M_compare(const _Key& __k, _Hash_code_type __c,
750 _Hash_node<_Value, true>* __n) const
751 { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
753 void
754 _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
755 { __n->_M_hash_code = __c; }
757 void
758 _M_copy_code(_Hash_node<_Value, true>* __to,
759 const _Hash_node<_Value, true>* __from) const
760 { __to->_M_hash_code = __from->_M_hash_code; }
762 void
763 _M_swap(_Hash_code_base& __x)
765 std::swap(_M_extract, __x._M_extract);
766 std::swap(_M_eq, __x._M_eq);
767 std::swap(_M_h1, __x._M_h1);
768 std::swap(_M_h2, __x._M_h2);
771 protected:
772 _ExtractKey _M_extract;
773 _Equal _M_eq;
774 _H1 _M_h1;
775 _H2 _M_h2;
777 } // namespace __detail