GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / wireless / reg.c
blobb835ac97916ee665e163720e0fbb3a32406b9ea7
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49 do { \
50 printk(KERN_DEBUG format , ## args); \
51 } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
63 * Central wireless core regulatory domains, we only need two,
64 * the current one and a world regulatory domain in case we have no
65 * information to give us an alpha2
67 const struct ieee80211_regdomain *cfg80211_regdomain;
70 * Protects static reg.c components:
71 * - cfg80211_world_regdom
72 * - cfg80211_regdom
73 * - last_request
75 static DEFINE_MUTEX(reg_mutex);
76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
78 /* Used to queue up regulatory hints */
79 static LIST_HEAD(reg_requests_list);
80 static spinlock_t reg_requests_lock;
82 /* Used to queue up beacon hints for review */
83 static LIST_HEAD(reg_pending_beacons);
84 static spinlock_t reg_pending_beacons_lock;
86 /* Used to keep track of processed beacon hints */
87 static LIST_HEAD(reg_beacon_list);
89 struct reg_beacon {
90 struct list_head list;
91 struct ieee80211_channel chan;
94 /* We keep a static world regulatory domain in case of the absence of CRDA */
95 static const struct ieee80211_regdomain world_regdom = {
96 .n_reg_rules = 5,
97 .alpha2 = "00",
98 .reg_rules = {
99 /* IEEE 802.11b/g, channels 1..11 */
100 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101 /* IEEE 802.11b/g, channels 12..13. No HT40
102 * channel fits here. */
103 REG_RULE(2467-10, 2472+10, 20, 6, 20,
104 NL80211_RRF_PASSIVE_SCAN |
105 NL80211_RRF_NO_IBSS),
106 /* IEEE 802.11 channel 14 - Only JP enables
107 * this and for 802.11b only */
108 REG_RULE(2484-10, 2484+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN |
110 NL80211_RRF_NO_IBSS |
111 NL80211_RRF_NO_OFDM),
112 /* IEEE 802.11a, channel 36..48 */
113 REG_RULE(5180-10, 5240+10, 40, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS),
117 /* NB: 5260 MHz - 5700 MHz requies DFS */
119 /* IEEE 802.11a, channel 149..165 */
120 REG_RULE(5745-10, 5825+10, 40, 6, 20,
121 NL80211_RRF_PASSIVE_SCAN |
122 NL80211_RRF_NO_IBSS),
126 static const struct ieee80211_regdomain *cfg80211_world_regdom =
127 &world_regdom;
129 static char *ieee80211_regdom = "00";
130 static char user_alpha2[2];
132 module_param(ieee80211_regdom, charp, 0444);
133 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
135 static void reset_regdomains(void)
137 /* avoid freeing static information or freeing something twice */
138 if (cfg80211_regdomain == cfg80211_world_regdom)
139 cfg80211_regdomain = NULL;
140 if (cfg80211_world_regdom == &world_regdom)
141 cfg80211_world_regdom = NULL;
142 if (cfg80211_regdomain == &world_regdom)
143 cfg80211_regdomain = NULL;
145 kfree(cfg80211_regdomain);
146 kfree(cfg80211_world_regdom);
148 cfg80211_world_regdom = &world_regdom;
149 cfg80211_regdomain = NULL;
153 * Dynamic world regulatory domain requested by the wireless
154 * core upon initialization
156 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
158 BUG_ON(!last_request);
160 reset_regdomains();
162 cfg80211_world_regdom = rd;
163 cfg80211_regdomain = rd;
166 bool is_world_regdom(const char *alpha2)
168 if (!alpha2)
169 return false;
170 if (alpha2[0] == '0' && alpha2[1] == '0')
171 return true;
172 return false;
175 static bool is_alpha2_set(const char *alpha2)
177 if (!alpha2)
178 return false;
179 if (alpha2[0] != 0 && alpha2[1] != 0)
180 return true;
181 return false;
184 static bool is_alpha_upper(char letter)
186 /* ASCII A - Z */
187 if (letter >= 65 && letter <= 90)
188 return true;
189 return false;
192 static bool is_unknown_alpha2(const char *alpha2)
194 if (!alpha2)
195 return false;
197 * Special case where regulatory domain was built by driver
198 * but a specific alpha2 cannot be determined
200 if (alpha2[0] == '9' && alpha2[1] == '9')
201 return true;
202 return false;
205 static bool is_intersected_alpha2(const char *alpha2)
207 if (!alpha2)
208 return false;
210 * Special case where regulatory domain is the
211 * result of an intersection between two regulatory domain
212 * structures
214 if (alpha2[0] == '9' && alpha2[1] == '8')
215 return true;
216 return false;
219 static bool is_an_alpha2(const char *alpha2)
221 if (!alpha2)
222 return false;
223 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
224 return true;
225 return false;
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
230 if (!alpha2_x || !alpha2_y)
231 return false;
232 if (alpha2_x[0] == alpha2_y[0] &&
233 alpha2_x[1] == alpha2_y[1])
234 return true;
235 return false;
238 static bool regdom_changes(const char *alpha2)
240 assert_cfg80211_lock();
242 if (!cfg80211_regdomain)
243 return true;
244 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245 return false;
246 return true;
250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252 * has ever been issued.
254 static bool is_user_regdom_saved(void)
256 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257 return false;
259 /* This would indicate a mistake on the design */
260 if (WARN((!is_world_regdom(user_alpha2) &&
261 !is_an_alpha2(user_alpha2)),
262 "Unexpected user alpha2: %c%c\n",
263 user_alpha2[0],
264 user_alpha2[1]))
265 return false;
267 return true;
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271 const struct ieee80211_regdomain *src_regd)
273 struct ieee80211_regdomain *regd;
274 int size_of_regd = 0;
275 unsigned int i;
277 size_of_regd = sizeof(struct ieee80211_regdomain) +
278 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
280 regd = kzalloc(size_of_regd, GFP_KERNEL);
281 if (!regd)
282 return -ENOMEM;
284 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
286 for (i = 0; i < src_regd->n_reg_rules; i++)
287 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288 sizeof(struct ieee80211_reg_rule));
290 *dst_regd = regd;
291 return 0;
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296 char alpha2[2];
297 struct list_head list;
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
303 static void reg_regdb_search(struct work_struct *work)
305 struct reg_regdb_search_request *request;
306 const struct ieee80211_regdomain *curdom, *regdom;
307 int i, r;
309 mutex_lock(&reg_regdb_search_mutex);
310 while (!list_empty(&reg_regdb_search_list)) {
311 request = list_first_entry(&reg_regdb_search_list,
312 struct reg_regdb_search_request,
313 list);
314 list_del(&request->list);
316 for (i=0; i<reg_regdb_size; i++) {
317 curdom = reg_regdb[i];
319 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320 r = reg_copy_regd(&regdom, curdom);
321 if (r)
322 break;
323 mutex_lock(&cfg80211_mutex);
324 set_regdom(regdom);
325 mutex_unlock(&cfg80211_mutex);
326 break;
330 kfree(request);
332 mutex_unlock(&reg_regdb_search_mutex);
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
337 static void reg_regdb_query(const char *alpha2)
339 struct reg_regdb_search_request *request;
341 if (!alpha2)
342 return;
344 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345 if (!request)
346 return;
348 memcpy(request->alpha2, alpha2, 2);
350 mutex_lock(&reg_regdb_search_mutex);
351 list_add_tail(&request->list, &reg_regdb_search_list);
352 mutex_unlock(&reg_regdb_search_mutex);
354 schedule_work(&reg_regdb_work);
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
361 * This lets us keep regulatory code which is updated on a regulatory
362 * basis in userspace.
364 static int call_crda(const char *alpha2)
366 char country_env[9 + 2] = "COUNTRY=";
367 char *envp[] = {
368 country_env,
369 NULL
372 if (!is_world_regdom((char *) alpha2))
373 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374 alpha2[0], alpha2[1]);
375 else
376 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377 "regulatory domain\n");
379 /* query internal regulatory database (if it exists) */
380 reg_regdb_query(alpha2);
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
391 assert_cfg80211_lock();
393 if (!last_request)
394 return false;
396 return alpha2_equal(last_request->alpha2, alpha2);
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 u32 freq_diff;
405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 return false;
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
415 return false;
417 return true;
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 const struct ieee80211_reg_rule *reg_rule = NULL;
423 unsigned int i;
425 if (!rd->n_reg_rules)
426 return false;
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
437 return true;
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
444 u32 start_freq_khz, end_freq_khz;
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
453 return false;
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
482 * Helper for regdom_intersect(), this does the real
483 * mathematical intersection fun
485 static int reg_rules_intersect(
486 const struct ieee80211_reg_rule *rule1,
487 const struct ieee80211_reg_rule *rule2,
488 struct ieee80211_reg_rule *intersected_rule)
490 const struct ieee80211_freq_range *freq_range1, *freq_range2;
491 struct ieee80211_freq_range *freq_range;
492 const struct ieee80211_power_rule *power_rule1, *power_rule2;
493 struct ieee80211_power_rule *power_rule;
494 u32 freq_diff;
496 freq_range1 = &rule1->freq_range;
497 freq_range2 = &rule2->freq_range;
498 freq_range = &intersected_rule->freq_range;
500 power_rule1 = &rule1->power_rule;
501 power_rule2 = &rule2->power_rule;
502 power_rule = &intersected_rule->power_rule;
504 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505 freq_range2->start_freq_khz);
506 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507 freq_range2->end_freq_khz);
508 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509 freq_range2->max_bandwidth_khz);
511 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512 if (freq_range->max_bandwidth_khz > freq_diff)
513 freq_range->max_bandwidth_khz = freq_diff;
515 power_rule->max_eirp = min(power_rule1->max_eirp,
516 power_rule2->max_eirp);
517 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518 power_rule2->max_antenna_gain);
520 intersected_rule->flags = (rule1->flags | rule2->flags);
522 if (!is_valid_reg_rule(intersected_rule))
523 return -EINVAL;
525 return 0;
529 * regdom_intersect - do the intersection between two regulatory domains
530 * @rd1: first regulatory domain
531 * @rd2: second regulatory domain
533 * Use this function to get the intersection between two regulatory domains.
534 * Once completed we will mark the alpha2 for the rd as intersected, "98",
535 * as no one single alpha2 can represent this regulatory domain.
537 * Returns a pointer to the regulatory domain structure which will hold the
538 * resulting intersection of rules between rd1 and rd2. We will
539 * kzalloc() this structure for you.
541 static struct ieee80211_regdomain *regdom_intersect(
542 const struct ieee80211_regdomain *rd1,
543 const struct ieee80211_regdomain *rd2)
545 int r, size_of_regd;
546 unsigned int x, y;
547 unsigned int num_rules = 0, rule_idx = 0;
548 const struct ieee80211_reg_rule *rule1, *rule2;
549 struct ieee80211_reg_rule *intersected_rule;
550 struct ieee80211_regdomain *rd;
551 /* This is just a dummy holder to help us count */
552 struct ieee80211_reg_rule irule;
554 /* Uses the stack temporarily for counter arithmetic */
555 intersected_rule = &irule;
557 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559 if (!rd1 || !rd2)
560 return NULL;
563 * First we get a count of the rules we'll need, then we actually
564 * build them. This is to so we can malloc() and free() a
565 * regdomain once. The reason we use reg_rules_intersect() here
566 * is it will return -EINVAL if the rule computed makes no sense.
567 * All rules that do check out OK are valid.
570 for (x = 0; x < rd1->n_reg_rules; x++) {
571 rule1 = &rd1->reg_rules[x];
572 for (y = 0; y < rd2->n_reg_rules; y++) {
573 rule2 = &rd2->reg_rules[y];
574 if (!reg_rules_intersect(rule1, rule2,
575 intersected_rule))
576 num_rules++;
577 memset(intersected_rule, 0,
578 sizeof(struct ieee80211_reg_rule));
582 if (!num_rules)
583 return NULL;
585 size_of_regd = sizeof(struct ieee80211_regdomain) +
586 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588 rd = kzalloc(size_of_regd, GFP_KERNEL);
589 if (!rd)
590 return NULL;
592 for (x = 0; x < rd1->n_reg_rules; x++) {
593 rule1 = &rd1->reg_rules[x];
594 for (y = 0; y < rd2->n_reg_rules; y++) {
595 rule2 = &rd2->reg_rules[y];
597 * This time around instead of using the stack lets
598 * write to the target rule directly saving ourselves
599 * a memcpy()
601 intersected_rule = &rd->reg_rules[rule_idx];
602 r = reg_rules_intersect(rule1, rule2,
603 intersected_rule);
605 * No need to memset here the intersected rule here as
606 * we're not using the stack anymore
608 if (r)
609 continue;
610 rule_idx++;
614 if (rule_idx != num_rules) {
615 kfree(rd);
616 return NULL;
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = '9';
621 rd->alpha2[1] = '8';
623 return rd;
626 static u32 map_regdom_flags(u32 rd_flags)
628 u32 channel_flags = 0;
629 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
630 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
631 if (rd_flags & NL80211_RRF_NO_IBSS)
632 channel_flags |= IEEE80211_CHAN_NO_IBSS;
633 if (rd_flags & NL80211_RRF_DFS)
634 channel_flags |= IEEE80211_CHAN_RADAR;
635 return channel_flags;
638 static int freq_reg_info_regd(struct wiphy *wiphy,
639 u32 center_freq,
640 u32 desired_bw_khz,
641 const struct ieee80211_reg_rule **reg_rule,
642 const struct ieee80211_regdomain *custom_regd)
644 int i;
645 bool band_rule_found = false;
646 const struct ieee80211_regdomain *regd;
647 bool bw_fits = false;
649 if (!desired_bw_khz)
650 desired_bw_khz = MHZ_TO_KHZ(20);
652 regd = custom_regd ? custom_regd : cfg80211_regdomain;
655 * Follow the driver's regulatory domain, if present, unless a country
656 * IE has been processed or a user wants to help complaince further
658 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
659 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
660 wiphy->regd)
661 regd = wiphy->regd;
663 if (!regd)
664 return -EINVAL;
666 for (i = 0; i < regd->n_reg_rules; i++) {
667 const struct ieee80211_reg_rule *rr;
668 const struct ieee80211_freq_range *fr = NULL;
669 const struct ieee80211_power_rule *pr = NULL;
671 rr = &regd->reg_rules[i];
672 fr = &rr->freq_range;
673 pr = &rr->power_rule;
676 * We only need to know if one frequency rule was
677 * was in center_freq's band, that's enough, so lets
678 * not overwrite it once found
680 if (!band_rule_found)
681 band_rule_found = freq_in_rule_band(fr, center_freq);
683 bw_fits = reg_does_bw_fit(fr,
684 center_freq,
685 desired_bw_khz);
687 if (band_rule_found && bw_fits) {
688 *reg_rule = rr;
689 return 0;
693 if (!band_rule_found)
694 return -ERANGE;
696 return -EINVAL;
699 int freq_reg_info(struct wiphy *wiphy,
700 u32 center_freq,
701 u32 desired_bw_khz,
702 const struct ieee80211_reg_rule **reg_rule)
704 assert_cfg80211_lock();
705 return freq_reg_info_regd(wiphy,
706 center_freq,
707 desired_bw_khz,
708 reg_rule,
709 NULL);
711 EXPORT_SYMBOL(freq_reg_info);
714 * Note that right now we assume the desired channel bandwidth
715 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
716 * per channel, the primary and the extension channel). To support
717 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
718 * new ieee80211_channel.target_bw and re run the regulatory check
719 * on the wiphy with the target_bw specified. Then we can simply use
720 * that below for the desired_bw_khz below.
722 static void handle_channel(struct wiphy *wiphy,
723 enum nl80211_reg_initiator initiator,
724 enum ieee80211_band band,
725 unsigned int chan_idx)
727 int r;
728 u32 flags, bw_flags = 0;
729 u32 desired_bw_khz = MHZ_TO_KHZ(20);
730 const struct ieee80211_reg_rule *reg_rule = NULL;
731 const struct ieee80211_power_rule *power_rule = NULL;
732 const struct ieee80211_freq_range *freq_range = NULL;
733 struct ieee80211_supported_band *sband;
734 struct ieee80211_channel *chan;
735 struct wiphy *request_wiphy = NULL;
737 assert_cfg80211_lock();
739 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
741 sband = wiphy->bands[band];
742 BUG_ON(chan_idx >= sband->n_channels);
743 chan = &sband->channels[chan_idx];
745 flags = chan->orig_flags;
747 r = freq_reg_info(wiphy,
748 MHZ_TO_KHZ(chan->center_freq),
749 desired_bw_khz,
750 &reg_rule);
752 if (r)
753 return;
755 power_rule = &reg_rule->power_rule;
756 freq_range = &reg_rule->freq_range;
758 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
759 bw_flags = IEEE80211_CHAN_NO_HT40;
761 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
762 request_wiphy && request_wiphy == wiphy &&
763 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
765 * This gaurantees the driver's requested regulatory domain
766 * will always be used as a base for further regulatory
767 * settings
769 chan->flags = chan->orig_flags =
770 map_regdom_flags(reg_rule->flags) | bw_flags;
771 chan->max_antenna_gain = chan->orig_mag =
772 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
773 chan->max_power = chan->orig_mpwr =
774 (int) MBM_TO_DBM(power_rule->max_eirp);
775 return;
778 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
779 chan->max_antenna_gain = min(chan->orig_mag,
780 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
781 if (chan->orig_mpwr)
782 chan->max_power = min(chan->orig_mpwr,
783 (int) MBM_TO_DBM(power_rule->max_eirp));
784 else
785 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
788 static void handle_band(struct wiphy *wiphy,
789 enum ieee80211_band band,
790 enum nl80211_reg_initiator initiator)
792 unsigned int i;
793 struct ieee80211_supported_band *sband;
795 BUG_ON(!wiphy->bands[band]);
796 sband = wiphy->bands[band];
798 for (i = 0; i < sband->n_channels; i++)
799 handle_channel(wiphy, initiator, band, i);
802 static bool ignore_reg_update(struct wiphy *wiphy,
803 enum nl80211_reg_initiator initiator)
805 if (!last_request)
806 return true;
807 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
808 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
809 return true;
811 * wiphy->regd will be set once the device has its own
812 * desired regulatory domain set
814 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
815 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
816 !is_world_regdom(last_request->alpha2))
817 return true;
818 return false;
821 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
823 struct cfg80211_registered_device *rdev;
825 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
826 wiphy_update_regulatory(&rdev->wiphy, initiator);
829 static void handle_reg_beacon(struct wiphy *wiphy,
830 unsigned int chan_idx,
831 struct reg_beacon *reg_beacon)
833 struct ieee80211_supported_band *sband;
834 struct ieee80211_channel *chan;
835 bool channel_changed = false;
836 struct ieee80211_channel chan_before;
838 assert_cfg80211_lock();
840 sband = wiphy->bands[reg_beacon->chan.band];
841 chan = &sband->channels[chan_idx];
843 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
844 return;
846 if (chan->beacon_found)
847 return;
849 chan->beacon_found = true;
851 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
852 return;
854 chan_before.center_freq = chan->center_freq;
855 chan_before.flags = chan->flags;
857 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
858 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
859 channel_changed = true;
862 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
863 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
864 channel_changed = true;
867 if (channel_changed)
868 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
872 * Called when a scan on a wiphy finds a beacon on
873 * new channel
875 static void wiphy_update_new_beacon(struct wiphy *wiphy,
876 struct reg_beacon *reg_beacon)
878 unsigned int i;
879 struct ieee80211_supported_band *sband;
881 assert_cfg80211_lock();
883 if (!wiphy->bands[reg_beacon->chan.band])
884 return;
886 sband = wiphy->bands[reg_beacon->chan.band];
888 for (i = 0; i < sband->n_channels; i++)
889 handle_reg_beacon(wiphy, i, reg_beacon);
893 * Called upon reg changes or a new wiphy is added
895 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
897 unsigned int i;
898 struct ieee80211_supported_band *sband;
899 struct reg_beacon *reg_beacon;
901 assert_cfg80211_lock();
903 if (list_empty(&reg_beacon_list))
904 return;
906 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
907 if (!wiphy->bands[reg_beacon->chan.band])
908 continue;
909 sband = wiphy->bands[reg_beacon->chan.band];
910 for (i = 0; i < sband->n_channels; i++)
911 handle_reg_beacon(wiphy, i, reg_beacon);
915 static bool reg_is_world_roaming(struct wiphy *wiphy)
917 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
918 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
919 return true;
920 if (last_request &&
921 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
922 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
923 return true;
924 return false;
927 /* Reap the advantages of previously found beacons */
928 static void reg_process_beacons(struct wiphy *wiphy)
931 * Means we are just firing up cfg80211, so no beacons would
932 * have been processed yet.
934 if (!last_request)
935 return;
936 if (!reg_is_world_roaming(wiphy))
937 return;
938 wiphy_update_beacon_reg(wiphy);
941 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
943 if (!chan)
944 return true;
945 if (chan->flags & IEEE80211_CHAN_DISABLED)
946 return true;
947 /* This would happen when regulatory rules disallow HT40 completely */
948 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
949 return true;
950 return false;
953 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
954 enum ieee80211_band band,
955 unsigned int chan_idx)
957 struct ieee80211_supported_band *sband;
958 struct ieee80211_channel *channel;
959 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
960 unsigned int i;
962 assert_cfg80211_lock();
964 sband = wiphy->bands[band];
965 BUG_ON(chan_idx >= sband->n_channels);
966 channel = &sband->channels[chan_idx];
968 if (is_ht40_not_allowed(channel)) {
969 channel->flags |= IEEE80211_CHAN_NO_HT40;
970 return;
974 * We need to ensure the extension channels exist to
975 * be able to use HT40- or HT40+, this finds them (or not)
977 for (i = 0; i < sband->n_channels; i++) {
978 struct ieee80211_channel *c = &sband->channels[i];
979 if (c->center_freq == (channel->center_freq - 20))
980 channel_before = c;
981 if (c->center_freq == (channel->center_freq + 20))
982 channel_after = c;
986 * Please note that this assumes target bandwidth is 20 MHz,
987 * if that ever changes we also need to change the below logic
988 * to include that as well.
990 if (is_ht40_not_allowed(channel_before))
991 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
992 else
993 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
995 if (is_ht40_not_allowed(channel_after))
996 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
997 else
998 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1001 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1002 enum ieee80211_band band)
1004 unsigned int i;
1005 struct ieee80211_supported_band *sband;
1007 BUG_ON(!wiphy->bands[band]);
1008 sband = wiphy->bands[band];
1010 for (i = 0; i < sband->n_channels; i++)
1011 reg_process_ht_flags_channel(wiphy, band, i);
1014 static void reg_process_ht_flags(struct wiphy *wiphy)
1016 enum ieee80211_band band;
1018 if (!wiphy)
1019 return;
1021 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1022 if (wiphy->bands[band])
1023 reg_process_ht_flags_band(wiphy, band);
1028 void wiphy_update_regulatory(struct wiphy *wiphy,
1029 enum nl80211_reg_initiator initiator)
1031 enum ieee80211_band band;
1033 if (ignore_reg_update(wiphy, initiator))
1034 goto out;
1035 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1036 if (wiphy->bands[band])
1037 handle_band(wiphy, band, initiator);
1039 out:
1040 reg_process_beacons(wiphy);
1041 reg_process_ht_flags(wiphy);
1042 if (wiphy->reg_notifier)
1043 wiphy->reg_notifier(wiphy, last_request);
1046 static void handle_channel_custom(struct wiphy *wiphy,
1047 enum ieee80211_band band,
1048 unsigned int chan_idx,
1049 const struct ieee80211_regdomain *regd)
1051 int r;
1052 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1053 u32 bw_flags = 0;
1054 const struct ieee80211_reg_rule *reg_rule = NULL;
1055 const struct ieee80211_power_rule *power_rule = NULL;
1056 const struct ieee80211_freq_range *freq_range = NULL;
1057 struct ieee80211_supported_band *sband;
1058 struct ieee80211_channel *chan;
1060 assert_reg_lock();
1062 sband = wiphy->bands[band];
1063 BUG_ON(chan_idx >= sband->n_channels);
1064 chan = &sband->channels[chan_idx];
1066 r = freq_reg_info_regd(wiphy,
1067 MHZ_TO_KHZ(chan->center_freq),
1068 desired_bw_khz,
1069 &reg_rule,
1070 regd);
1072 if (r) {
1073 chan->flags = IEEE80211_CHAN_DISABLED;
1074 return;
1077 power_rule = &reg_rule->power_rule;
1078 freq_range = &reg_rule->freq_range;
1080 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1081 bw_flags = IEEE80211_CHAN_NO_HT40;
1083 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1084 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1085 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1088 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1089 const struct ieee80211_regdomain *regd)
1091 unsigned int i;
1092 struct ieee80211_supported_band *sband;
1094 BUG_ON(!wiphy->bands[band]);
1095 sband = wiphy->bands[band];
1097 for (i = 0; i < sband->n_channels; i++)
1098 handle_channel_custom(wiphy, band, i, regd);
1101 /* Used by drivers prior to wiphy registration */
1102 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1103 const struct ieee80211_regdomain *regd)
1105 enum ieee80211_band band;
1106 unsigned int bands_set = 0;
1108 mutex_lock(&reg_mutex);
1109 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 if (!wiphy->bands[band])
1111 continue;
1112 handle_band_custom(wiphy, band, regd);
1113 bands_set++;
1115 mutex_unlock(&reg_mutex);
1118 * no point in calling this if it won't have any effect
1119 * on your device's supportd bands.
1121 WARN_ON(!bands_set);
1123 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1126 * Return value which can be used by ignore_request() to indicate
1127 * it has been determined we should intersect two regulatory domains
1129 #define REG_INTERSECT 1
1131 /* This has the logic which determines when a new request
1132 * should be ignored. */
1133 static int ignore_request(struct wiphy *wiphy,
1134 struct regulatory_request *pending_request)
1136 struct wiphy *last_wiphy = NULL;
1138 assert_cfg80211_lock();
1140 /* All initial requests are respected */
1141 if (!last_request)
1142 return 0;
1144 switch (pending_request->initiator) {
1145 case NL80211_REGDOM_SET_BY_CORE:
1146 return 0;
1147 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1149 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1151 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1152 return -EINVAL;
1153 if (last_request->initiator ==
1154 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1155 if (last_wiphy != wiphy) {
1157 * Two cards with two APs claiming different
1158 * Country IE alpha2s. We could
1159 * intersect them, but that seems unlikely
1160 * to be correct. Reject second one for now.
1162 if (regdom_changes(pending_request->alpha2))
1163 return -EOPNOTSUPP;
1164 return -EALREADY;
1167 * Two consecutive Country IE hints on the same wiphy.
1168 * This should be picked up early by the driver/stack
1170 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1171 return 0;
1172 return -EALREADY;
1174 return 0;
1175 case NL80211_REGDOM_SET_BY_DRIVER:
1176 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1177 if (regdom_changes(pending_request->alpha2))
1178 return 0;
1179 return -EALREADY;
1183 * This would happen if you unplug and plug your card
1184 * back in or if you add a new device for which the previously
1185 * loaded card also agrees on the regulatory domain.
1187 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1188 !regdom_changes(pending_request->alpha2))
1189 return -EALREADY;
1191 return REG_INTERSECT;
1192 case NL80211_REGDOM_SET_BY_USER:
1193 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1194 return REG_INTERSECT;
1196 * If the user knows better the user should set the regdom
1197 * to their country before the IE is picked up
1199 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1200 last_request->intersect)
1201 return -EOPNOTSUPP;
1203 * Process user requests only after previous user/driver/core
1204 * requests have been processed
1206 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1207 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1208 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1209 if (regdom_changes(last_request->alpha2))
1210 return -EAGAIN;
1213 if (!regdom_changes(pending_request->alpha2))
1214 return -EALREADY;
1216 return 0;
1219 return -EINVAL;
1223 * __regulatory_hint - hint to the wireless core a regulatory domain
1224 * @wiphy: if the hint comes from country information from an AP, this
1225 * is required to be set to the wiphy that received the information
1226 * @pending_request: the regulatory request currently being processed
1228 * The Wireless subsystem can use this function to hint to the wireless core
1229 * what it believes should be the current regulatory domain.
1231 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1232 * already been set or other standard error codes.
1234 * Caller must hold &cfg80211_mutex and &reg_mutex
1236 static int __regulatory_hint(struct wiphy *wiphy,
1237 struct regulatory_request *pending_request)
1239 bool intersect = false;
1240 int r = 0;
1242 assert_cfg80211_lock();
1244 r = ignore_request(wiphy, pending_request);
1246 if (r == REG_INTERSECT) {
1247 if (pending_request->initiator ==
1248 NL80211_REGDOM_SET_BY_DRIVER) {
1249 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1250 if (r) {
1251 kfree(pending_request);
1252 return r;
1255 intersect = true;
1256 } else if (r) {
1258 * If the regulatory domain being requested by the
1259 * driver has already been set just copy it to the
1260 * wiphy
1262 if (r == -EALREADY &&
1263 pending_request->initiator ==
1264 NL80211_REGDOM_SET_BY_DRIVER) {
1265 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1266 if (r) {
1267 kfree(pending_request);
1268 return r;
1270 r = -EALREADY;
1271 goto new_request;
1273 kfree(pending_request);
1274 return r;
1277 new_request:
1278 kfree(last_request);
1280 last_request = pending_request;
1281 last_request->intersect = intersect;
1283 pending_request = NULL;
1285 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1286 user_alpha2[0] = last_request->alpha2[0];
1287 user_alpha2[1] = last_request->alpha2[1];
1290 /* When r == REG_INTERSECT we do need to call CRDA */
1291 if (r < 0) {
1293 * Since CRDA will not be called in this case as we already
1294 * have applied the requested regulatory domain before we just
1295 * inform userspace we have processed the request
1297 if (r == -EALREADY)
1298 nl80211_send_reg_change_event(last_request);
1299 return r;
1302 return call_crda(last_request->alpha2);
1305 /* This processes *all* regulatory hints */
1306 static void reg_process_hint(struct regulatory_request *reg_request)
1308 int r = 0;
1309 struct wiphy *wiphy = NULL;
1310 enum nl80211_reg_initiator initiator = reg_request->initiator;
1312 BUG_ON(!reg_request->alpha2);
1314 mutex_lock(&cfg80211_mutex);
1315 mutex_lock(&reg_mutex);
1317 if (wiphy_idx_valid(reg_request->wiphy_idx))
1318 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1320 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1321 !wiphy) {
1322 kfree(reg_request);
1323 goto out;
1326 r = __regulatory_hint(wiphy, reg_request);
1327 /* This is required so that the orig_* parameters are saved */
1328 if (r == -EALREADY && wiphy &&
1329 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1330 wiphy_update_regulatory(wiphy, initiator);
1331 out:
1332 mutex_unlock(&reg_mutex);
1333 mutex_unlock(&cfg80211_mutex);
1336 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1337 static void reg_process_pending_hints(void)
1339 struct regulatory_request *reg_request;
1341 spin_lock(&reg_requests_lock);
1342 while (!list_empty(&reg_requests_list)) {
1343 reg_request = list_first_entry(&reg_requests_list,
1344 struct regulatory_request,
1345 list);
1346 list_del_init(&reg_request->list);
1348 spin_unlock(&reg_requests_lock);
1349 reg_process_hint(reg_request);
1350 spin_lock(&reg_requests_lock);
1352 spin_unlock(&reg_requests_lock);
1355 /* Processes beacon hints -- this has nothing to do with country IEs */
1356 static void reg_process_pending_beacon_hints(void)
1358 struct cfg80211_registered_device *rdev;
1359 struct reg_beacon *pending_beacon, *tmp;
1362 * No need to hold the reg_mutex here as we just touch wiphys
1363 * and do not read or access regulatory variables.
1365 mutex_lock(&cfg80211_mutex);
1367 /* This goes through the _pending_ beacon list */
1368 spin_lock_bh(&reg_pending_beacons_lock);
1370 if (list_empty(&reg_pending_beacons)) {
1371 spin_unlock_bh(&reg_pending_beacons_lock);
1372 goto out;
1375 list_for_each_entry_safe(pending_beacon, tmp,
1376 &reg_pending_beacons, list) {
1378 list_del_init(&pending_beacon->list);
1380 /* Applies the beacon hint to current wiphys */
1381 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1382 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1384 /* Remembers the beacon hint for new wiphys or reg changes */
1385 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1388 spin_unlock_bh(&reg_pending_beacons_lock);
1389 out:
1390 mutex_unlock(&cfg80211_mutex);
1393 static void reg_todo(struct work_struct *work)
1395 reg_process_pending_hints();
1396 reg_process_pending_beacon_hints();
1399 static DECLARE_WORK(reg_work, reg_todo);
1401 static void queue_regulatory_request(struct regulatory_request *request)
1403 spin_lock(&reg_requests_lock);
1404 list_add_tail(&request->list, &reg_requests_list);
1405 spin_unlock(&reg_requests_lock);
1407 schedule_work(&reg_work);
1411 * Core regulatory hint -- happens during cfg80211_init()
1412 * and when we restore regulatory settings.
1414 static int regulatory_hint_core(const char *alpha2)
1416 struct regulatory_request *request;
1418 kfree(last_request);
1419 last_request = NULL;
1421 request = kzalloc(sizeof(struct regulatory_request),
1422 GFP_KERNEL);
1423 if (!request)
1424 return -ENOMEM;
1426 request->alpha2[0] = alpha2[0];
1427 request->alpha2[1] = alpha2[1];
1428 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1431 * This ensures last_request is populated once modules
1432 * come swinging in and calling regulatory hints and
1433 * wiphy_apply_custom_regulatory().
1435 reg_process_hint(request);
1437 return 0;
1440 /* User hints */
1441 int regulatory_hint_user(const char *alpha2)
1443 struct regulatory_request *request;
1445 BUG_ON(!alpha2);
1447 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1448 if (!request)
1449 return -ENOMEM;
1451 request->wiphy_idx = WIPHY_IDX_STALE;
1452 request->alpha2[0] = alpha2[0];
1453 request->alpha2[1] = alpha2[1];
1454 request->initiator = NL80211_REGDOM_SET_BY_USER;
1456 queue_regulatory_request(request);
1458 return 0;
1461 /* Driver hints */
1462 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1464 struct regulatory_request *request;
1466 BUG_ON(!alpha2);
1467 BUG_ON(!wiphy);
1469 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1470 if (!request)
1471 return -ENOMEM;
1473 request->wiphy_idx = get_wiphy_idx(wiphy);
1475 /* Must have registered wiphy first */
1476 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1478 request->alpha2[0] = alpha2[0];
1479 request->alpha2[1] = alpha2[1];
1480 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1482 queue_regulatory_request(request);
1484 return 0;
1486 EXPORT_SYMBOL(regulatory_hint);
1489 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1490 * therefore cannot iterate over the rdev list here.
1492 void regulatory_hint_11d(struct wiphy *wiphy,
1493 enum ieee80211_band band,
1494 u8 *country_ie,
1495 u8 country_ie_len)
1497 char alpha2[2];
1498 enum environment_cap env = ENVIRON_ANY;
1499 struct regulatory_request *request;
1501 mutex_lock(&reg_mutex);
1503 if (unlikely(!last_request))
1504 goto out;
1506 /* IE len must be evenly divisible by 2 */
1507 if (country_ie_len & 0x01)
1508 goto out;
1510 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1511 goto out;
1513 alpha2[0] = country_ie[0];
1514 alpha2[1] = country_ie[1];
1516 if (country_ie[2] == 'I')
1517 env = ENVIRON_INDOOR;
1518 else if (country_ie[2] == 'O')
1519 env = ENVIRON_OUTDOOR;
1522 * We will run this only upon a successful connection on cfg80211.
1523 * We leave conflict resolution to the workqueue, where can hold
1524 * cfg80211_mutex.
1526 if (likely(last_request->initiator ==
1527 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1528 wiphy_idx_valid(last_request->wiphy_idx)))
1529 goto out;
1531 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1532 if (!request)
1533 goto out;
1535 request->wiphy_idx = get_wiphy_idx(wiphy);
1536 request->alpha2[0] = alpha2[0];
1537 request->alpha2[1] = alpha2[1];
1538 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1539 request->country_ie_env = env;
1541 mutex_unlock(&reg_mutex);
1543 queue_regulatory_request(request);
1545 return;
1547 out:
1548 mutex_unlock(&reg_mutex);
1551 static void restore_alpha2(char *alpha2, bool reset_user)
1553 /* indicates there is no alpha2 to consider for restoration */
1554 alpha2[0] = '9';
1555 alpha2[1] = '7';
1557 /* The user setting has precedence over the module parameter */
1558 if (is_user_regdom_saved()) {
1559 /* Unless we're asked to ignore it and reset it */
1560 if (reset_user) {
1561 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1562 "including user preference\n");
1563 user_alpha2[0] = '9';
1564 user_alpha2[1] = '7';
1567 * If we're ignoring user settings, we still need to
1568 * check the module parameter to ensure we put things
1569 * back as they were for a full restore.
1571 if (!is_world_regdom(ieee80211_regdom)) {
1572 REG_DBG_PRINT("cfg80211: Keeping preference on "
1573 "module parameter ieee80211_regdom: %c%c\n",
1574 ieee80211_regdom[0],
1575 ieee80211_regdom[1]);
1576 alpha2[0] = ieee80211_regdom[0];
1577 alpha2[1] = ieee80211_regdom[1];
1579 } else {
1580 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1581 "while preserving user preference for: %c%c\n",
1582 user_alpha2[0],
1583 user_alpha2[1]);
1584 alpha2[0] = user_alpha2[0];
1585 alpha2[1] = user_alpha2[1];
1587 } else if (!is_world_regdom(ieee80211_regdom)) {
1588 REG_DBG_PRINT("cfg80211: Keeping preference on "
1589 "module parameter ieee80211_regdom: %c%c\n",
1590 ieee80211_regdom[0],
1591 ieee80211_regdom[1]);
1592 alpha2[0] = ieee80211_regdom[0];
1593 alpha2[1] = ieee80211_regdom[1];
1594 } else
1595 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1599 * Restoring regulatory settings involves ingoring any
1600 * possibly stale country IE information and user regulatory
1601 * settings if so desired, this includes any beacon hints
1602 * learned as we could have traveled outside to another country
1603 * after disconnection. To restore regulatory settings we do
1604 * exactly what we did at bootup:
1606 * - send a core regulatory hint
1607 * - send a user regulatory hint if applicable
1609 * Device drivers that send a regulatory hint for a specific country
1610 * keep their own regulatory domain on wiphy->regd so that does does
1611 * not need to be remembered.
1613 static void restore_regulatory_settings(bool reset_user)
1615 char alpha2[2];
1616 struct reg_beacon *reg_beacon, *btmp;
1618 mutex_lock(&cfg80211_mutex);
1619 mutex_lock(&reg_mutex);
1621 reset_regdomains();
1622 restore_alpha2(alpha2, reset_user);
1624 /* Clear beacon hints */
1625 spin_lock_bh(&reg_pending_beacons_lock);
1626 if (!list_empty(&reg_pending_beacons)) {
1627 list_for_each_entry_safe(reg_beacon, btmp,
1628 &reg_pending_beacons, list) {
1629 list_del(&reg_beacon->list);
1630 kfree(reg_beacon);
1633 spin_unlock_bh(&reg_pending_beacons_lock);
1635 if (!list_empty(&reg_beacon_list)) {
1636 list_for_each_entry_safe(reg_beacon, btmp,
1637 &reg_beacon_list, list) {
1638 list_del(&reg_beacon->list);
1639 kfree(reg_beacon);
1643 /* First restore to the basic regulatory settings */
1644 cfg80211_regdomain = cfg80211_world_regdom;
1646 mutex_unlock(&reg_mutex);
1647 mutex_unlock(&cfg80211_mutex);
1649 regulatory_hint_core(cfg80211_regdomain->alpha2);
1652 * This restores the ieee80211_regdom module parameter
1653 * preference or the last user requested regulatory
1654 * settings, user regulatory settings takes precedence.
1656 if (is_an_alpha2(alpha2))
1657 regulatory_hint_user(user_alpha2);
1661 void regulatory_hint_disconnect(void)
1663 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1664 "restore regulatory settings\n");
1665 restore_regulatory_settings(false);
1668 static bool freq_is_chan_12_13_14(u16 freq)
1670 if (freq == ieee80211_channel_to_frequency(12) ||
1671 freq == ieee80211_channel_to_frequency(13) ||
1672 freq == ieee80211_channel_to_frequency(14))
1673 return true;
1674 return false;
1677 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1678 struct ieee80211_channel *beacon_chan,
1679 gfp_t gfp)
1681 struct reg_beacon *reg_beacon;
1683 if (likely((beacon_chan->beacon_found ||
1684 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1685 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1686 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1687 return 0;
1689 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1690 if (!reg_beacon)
1691 return -ENOMEM;
1693 REG_DBG_PRINT("cfg80211: Found new beacon on "
1694 "frequency: %d MHz (Ch %d) on %s\n",
1695 beacon_chan->center_freq,
1696 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1697 wiphy_name(wiphy));
1699 memcpy(&reg_beacon->chan, beacon_chan,
1700 sizeof(struct ieee80211_channel));
1704 * Since we can be called from BH or and non-BH context
1705 * we must use spin_lock_bh()
1707 spin_lock_bh(&reg_pending_beacons_lock);
1708 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1709 spin_unlock_bh(&reg_pending_beacons_lock);
1711 schedule_work(&reg_work);
1713 return 0;
1716 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1718 unsigned int i;
1719 const struct ieee80211_reg_rule *reg_rule = NULL;
1720 const struct ieee80211_freq_range *freq_range = NULL;
1721 const struct ieee80211_power_rule *power_rule = NULL;
1723 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
1724 "(max_antenna_gain, max_eirp)\n");
1726 for (i = 0; i < rd->n_reg_rules; i++) {
1727 reg_rule = &rd->reg_rules[i];
1728 freq_range = &reg_rule->freq_range;
1729 power_rule = &reg_rule->power_rule;
1732 * There may not be documentation for max antenna gain
1733 * in certain regions
1735 if (power_rule->max_antenna_gain)
1736 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1737 "(%d mBi, %d mBm)\n",
1738 freq_range->start_freq_khz,
1739 freq_range->end_freq_khz,
1740 freq_range->max_bandwidth_khz,
1741 power_rule->max_antenna_gain,
1742 power_rule->max_eirp);
1743 else
1744 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1745 "(N/A, %d mBm)\n",
1746 freq_range->start_freq_khz,
1747 freq_range->end_freq_khz,
1748 freq_range->max_bandwidth_khz,
1749 power_rule->max_eirp);
1753 static void print_regdomain(const struct ieee80211_regdomain *rd)
1756 if (is_intersected_alpha2(rd->alpha2)) {
1758 if (last_request->initiator ==
1759 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1760 struct cfg80211_registered_device *rdev;
1761 rdev = cfg80211_rdev_by_wiphy_idx(
1762 last_request->wiphy_idx);
1763 if (rdev) {
1764 printk(KERN_INFO "cfg80211: Current regulatory "
1765 "domain updated by AP to: %c%c\n",
1766 rdev->country_ie_alpha2[0],
1767 rdev->country_ie_alpha2[1]);
1768 } else
1769 printk(KERN_INFO "cfg80211: Current regulatory "
1770 "domain intersected:\n");
1771 } else
1772 printk(KERN_INFO "cfg80211: Current regulatory "
1773 "domain intersected:\n");
1774 } else if (is_world_regdom(rd->alpha2))
1775 printk(KERN_INFO "cfg80211: World regulatory "
1776 "domain updated:\n");
1777 else {
1778 if (is_unknown_alpha2(rd->alpha2))
1779 printk(KERN_INFO "cfg80211: Regulatory domain "
1780 "changed to driver built-in settings "
1781 "(unknown country)\n");
1782 else
1783 printk(KERN_INFO "cfg80211: Regulatory domain "
1784 "changed to country: %c%c\n",
1785 rd->alpha2[0], rd->alpha2[1]);
1787 print_rd_rules(rd);
1790 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1792 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1793 rd->alpha2[0], rd->alpha2[1]);
1794 print_rd_rules(rd);
1797 /* Takes ownership of rd only if it doesn't fail */
1798 static int __set_regdom(const struct ieee80211_regdomain *rd)
1800 const struct ieee80211_regdomain *intersected_rd = NULL;
1801 struct cfg80211_registered_device *rdev = NULL;
1802 struct wiphy *request_wiphy;
1803 /* Some basic sanity checks first */
1805 if (is_world_regdom(rd->alpha2)) {
1806 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1807 return -EINVAL;
1808 update_world_regdomain(rd);
1809 return 0;
1812 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1813 !is_unknown_alpha2(rd->alpha2))
1814 return -EINVAL;
1816 if (!last_request)
1817 return -EINVAL;
1820 * Lets only bother proceeding on the same alpha2 if the current
1821 * rd is non static (it means CRDA was present and was used last)
1822 * and the pending request came in from a country IE
1824 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1826 * If someone else asked us to change the rd lets only bother
1827 * checking if the alpha2 changes if CRDA was already called
1829 if (!regdom_changes(rd->alpha2))
1830 return -EINVAL;
1834 * Now lets set the regulatory domain, update all driver channels
1835 * and finally inform them of what we have done, in case they want
1836 * to review or adjust their own settings based on their own
1837 * internal EEPROM data
1840 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1841 return -EINVAL;
1843 if (!is_valid_rd(rd)) {
1844 printk(KERN_ERR "cfg80211: Invalid "
1845 "regulatory domain detected:\n");
1846 print_regdomain_info(rd);
1847 return -EINVAL;
1850 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1852 if (!last_request->intersect) {
1853 int r;
1855 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1856 reset_regdomains();
1857 cfg80211_regdomain = rd;
1858 return 0;
1862 * For a driver hint, lets copy the regulatory domain the
1863 * driver wanted to the wiphy to deal with conflicts
1867 * Userspace could have sent two replies with only
1868 * one kernel request.
1870 if (request_wiphy->regd)
1871 return -EALREADY;
1873 r = reg_copy_regd(&request_wiphy->regd, rd);
1874 if (r)
1875 return r;
1877 reset_regdomains();
1878 cfg80211_regdomain = rd;
1879 return 0;
1882 /* Intersection requires a bit more work */
1884 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1886 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1887 if (!intersected_rd)
1888 return -EINVAL;
1891 * We can trash what CRDA provided now.
1892 * However if a driver requested this specific regulatory
1893 * domain we keep it for its private use
1895 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1896 request_wiphy->regd = rd;
1897 else
1898 kfree(rd);
1900 rd = NULL;
1902 reset_regdomains();
1903 cfg80211_regdomain = intersected_rd;
1905 return 0;
1908 if (!intersected_rd)
1909 return -EINVAL;
1911 rdev = wiphy_to_dev(request_wiphy);
1913 rdev->country_ie_alpha2[0] = rd->alpha2[0];
1914 rdev->country_ie_alpha2[1] = rd->alpha2[1];
1915 rdev->env = last_request->country_ie_env;
1917 BUG_ON(intersected_rd == rd);
1919 kfree(rd);
1920 rd = NULL;
1922 reset_regdomains();
1923 cfg80211_regdomain = intersected_rd;
1925 return 0;
1930 * Use this call to set the current regulatory domain. Conflicts with
1931 * multiple drivers can be ironed out later. Caller must've already
1932 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1934 int set_regdom(const struct ieee80211_regdomain *rd)
1936 int r;
1938 assert_cfg80211_lock();
1940 mutex_lock(&reg_mutex);
1942 /* Note that this doesn't update the wiphys, this is done below */
1943 r = __set_regdom(rd);
1944 if (r) {
1945 kfree(rd);
1946 mutex_unlock(&reg_mutex);
1947 return r;
1950 /* This would make this whole thing pointless */
1951 if (!last_request->intersect)
1952 BUG_ON(rd != cfg80211_regdomain);
1954 /* update all wiphys now with the new established regulatory domain */
1955 update_all_wiphy_regulatory(last_request->initiator);
1957 print_regdomain(cfg80211_regdomain);
1959 nl80211_send_reg_change_event(last_request);
1961 mutex_unlock(&reg_mutex);
1963 return r;
1966 /* Caller must hold cfg80211_mutex */
1967 void reg_device_remove(struct wiphy *wiphy)
1969 struct wiphy *request_wiphy = NULL;
1971 assert_cfg80211_lock();
1973 mutex_lock(&reg_mutex);
1975 kfree(wiphy->regd);
1977 if (last_request)
1978 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1980 if (!request_wiphy || request_wiphy != wiphy)
1981 goto out;
1983 last_request->wiphy_idx = WIPHY_IDX_STALE;
1984 last_request->country_ie_env = ENVIRON_ANY;
1985 out:
1986 mutex_unlock(&reg_mutex);
1989 int __init regulatory_init(void)
1991 int err = 0;
1993 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1994 if (IS_ERR(reg_pdev))
1995 return PTR_ERR(reg_pdev);
1997 spin_lock_init(&reg_requests_lock);
1998 spin_lock_init(&reg_pending_beacons_lock);
2000 cfg80211_regdomain = cfg80211_world_regdom;
2002 user_alpha2[0] = '9';
2003 user_alpha2[1] = '7';
2005 /* We always try to get an update for the static regdomain */
2006 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2007 if (err) {
2008 if (err == -ENOMEM)
2009 return err;
2011 * N.B. kobject_uevent_env() can fail mainly for when we're out
2012 * memory which is handled and propagated appropriately above
2013 * but it can also fail during a netlink_broadcast() or during
2014 * early boot for call_usermodehelper(). For now treat these
2015 * errors as non-fatal.
2017 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2018 "to call CRDA during init");
2019 #ifdef CONFIG_CFG80211_REG_DEBUG
2020 /* We want to find out exactly why when debugging */
2021 WARN_ON(err);
2022 #endif
2026 * Finally, if the user set the module parameter treat it
2027 * as a user hint.
2029 if (!is_world_regdom(ieee80211_regdom))
2030 regulatory_hint_user(ieee80211_regdom);
2032 return 0;
2035 void /* __init_or_exit */ regulatory_exit(void)
2037 struct regulatory_request *reg_request, *tmp;
2038 struct reg_beacon *reg_beacon, *btmp;
2040 cancel_work_sync(&reg_work);
2042 mutex_lock(&cfg80211_mutex);
2043 mutex_lock(&reg_mutex);
2045 reset_regdomains();
2047 kfree(last_request);
2049 platform_device_unregister(reg_pdev);
2051 spin_lock_bh(&reg_pending_beacons_lock);
2052 if (!list_empty(&reg_pending_beacons)) {
2053 list_for_each_entry_safe(reg_beacon, btmp,
2054 &reg_pending_beacons, list) {
2055 list_del(&reg_beacon->list);
2056 kfree(reg_beacon);
2059 spin_unlock_bh(&reg_pending_beacons_lock);
2061 if (!list_empty(&reg_beacon_list)) {
2062 list_for_each_entry_safe(reg_beacon, btmp,
2063 &reg_beacon_list, list) {
2064 list_del(&reg_beacon->list);
2065 kfree(reg_beacon);
2069 spin_lock(&reg_requests_lock);
2070 if (!list_empty(&reg_requests_list)) {
2071 list_for_each_entry_safe(reg_request, tmp,
2072 &reg_requests_list, list) {
2073 list_del(&reg_request->list);
2074 kfree(reg_request);
2077 spin_unlock(&reg_requests_lock);
2079 mutex_unlock(&reg_mutex);
2080 mutex_unlock(&cfg80211_mutex);