GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / rds / ib_recv.c
blobdb32d37dc842a2802656cea7a0de99d1b111b258
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "ib.h"
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46 static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
48 rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 __free_page(frag->f_page);
50 frag->f_page = NULL;
53 static void rds_ib_frag_free(struct rds_page_frag *frag)
55 rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 BUG_ON(frag->f_page != NULL);
57 kmem_cache_free(rds_ib_frag_slab, frag);
61 * We map a page at a time. Its fragments are posted in order. This
62 * is called in fragment order as the fragments get send completion events.
63 * Only the last frag in the page performs the unmapping.
65 * It's OK for ring cleanup to call this in whatever order it likes because
66 * DMA is not in flight and so we can unmap while other ring entries still
67 * hold page references in their frags.
69 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
70 struct rds_ib_recv_work *recv)
72 struct rds_page_frag *frag = recv->r_frag;
74 rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 if (frag->f_mapped)
76 ib_dma_unmap_page(ic->i_cm_id->device,
77 frag->f_mapped,
78 RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 frag->f_mapped = 0;
82 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
84 struct rds_ib_recv_work *recv;
85 u32 i;
87 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 struct ib_sge *sge;
90 recv->r_ibinc = NULL;
91 recv->r_frag = NULL;
93 recv->r_wr.next = NULL;
94 recv->r_wr.wr_id = i;
95 recv->r_wr.sg_list = recv->r_sge;
96 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
98 sge = rds_ib_data_sge(ic, recv->r_sge);
99 sge->addr = 0;
100 sge->length = RDS_FRAG_SIZE;
101 sge->lkey = ic->i_mr->lkey;
103 sge = rds_ib_header_sge(ic, recv->r_sge);
104 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 sge->length = sizeof(struct rds_header);
106 sge->lkey = ic->i_mr->lkey;
110 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
111 struct rds_ib_recv_work *recv)
113 if (recv->r_ibinc) {
114 rds_inc_put(&recv->r_ibinc->ii_inc);
115 recv->r_ibinc = NULL;
117 if (recv->r_frag) {
118 rds_ib_recv_unmap_page(ic, recv);
119 if (recv->r_frag->f_page)
120 rds_ib_frag_drop_page(recv->r_frag);
121 rds_ib_frag_free(recv->r_frag);
122 recv->r_frag = NULL;
126 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
128 u32 i;
130 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
133 if (ic->i_frag.f_page)
134 rds_ib_frag_drop_page(&ic->i_frag);
137 static int rds_ib_recv_refill_one(struct rds_connection *conn,
138 struct rds_ib_recv_work *recv,
139 gfp_t kptr_gfp, gfp_t page_gfp)
141 struct rds_ib_connection *ic = conn->c_transport_data;
142 dma_addr_t dma_addr;
143 struct ib_sge *sge;
144 int ret = -ENOMEM;
146 if (recv->r_ibinc == NULL) {
147 if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
148 rds_ib_stats_inc(s_ib_rx_alloc_limit);
149 goto out;
151 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
152 kptr_gfp);
153 if (recv->r_ibinc == NULL) {
154 atomic_dec(&rds_ib_allocation);
155 goto out;
157 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
158 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
161 if (recv->r_frag == NULL) {
162 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
163 if (recv->r_frag == NULL)
164 goto out;
165 INIT_LIST_HEAD(&recv->r_frag->f_item);
166 recv->r_frag->f_page = NULL;
169 if (ic->i_frag.f_page == NULL) {
170 ic->i_frag.f_page = alloc_page(page_gfp);
171 if (ic->i_frag.f_page == NULL)
172 goto out;
173 ic->i_frag.f_offset = 0;
176 dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 ic->i_frag.f_page,
178 ic->i_frag.f_offset,
179 RDS_FRAG_SIZE,
180 DMA_FROM_DEVICE);
181 if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 goto out;
185 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
186 * must be called on this recv. This happens as completions hit
187 * in order or on connection shutdown.
189 recv->r_frag->f_page = ic->i_frag.f_page;
190 recv->r_frag->f_offset = ic->i_frag.f_offset;
191 recv->r_frag->f_mapped = dma_addr;
193 sge = rds_ib_data_sge(ic, recv->r_sge);
194 sge->addr = dma_addr;
195 sge->length = RDS_FRAG_SIZE;
197 sge = rds_ib_header_sge(ic, recv->r_sge);
198 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 sge->length = sizeof(struct rds_header);
201 get_page(recv->r_frag->f_page);
203 if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 } else {
206 put_page(ic->i_frag.f_page);
207 ic->i_frag.f_page = NULL;
208 ic->i_frag.f_offset = 0;
211 ret = 0;
212 out:
213 return ret;
217 * This tries to allocate and post unused work requests after making sure that
218 * they have all the allocations they need to queue received fragments into
219 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
220 * pairs don't go unmatched.
222 * -1 is returned if posting fails due to temporary resource exhaustion.
224 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 gfp_t page_gfp, int prefill)
227 struct rds_ib_connection *ic = conn->c_transport_data;
228 struct rds_ib_recv_work *recv;
229 struct ib_recv_wr *failed_wr;
230 unsigned int posted = 0;
231 int ret = 0;
232 u32 pos;
234 while ((prefill || rds_conn_up(conn)) &&
235 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 if (pos >= ic->i_recv_ring.w_nr) {
237 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 pos);
239 ret = -EINVAL;
240 break;
243 recv = &ic->i_recvs[pos];
244 ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 if (ret) {
246 ret = -1;
247 break;
250 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
251 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
252 recv->r_ibinc, recv->r_frag->f_page,
253 (long) recv->r_frag->f_mapped, ret);
254 if (ret) {
255 rds_ib_conn_error(conn, "recv post on "
256 "%pI4 returned %d, disconnecting and "
257 "reconnecting\n", &conn->c_faddr,
258 ret);
259 ret = -1;
260 break;
263 posted++;
266 /* We're doing flow control - update the window. */
267 if (ic->i_flowctl && posted)
268 rds_ib_advertise_credits(conn, posted);
270 if (ret)
271 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
272 return ret;
275 void rds_ib_inc_purge(struct rds_incoming *inc)
277 struct rds_ib_incoming *ibinc;
278 struct rds_page_frag *frag;
279 struct rds_page_frag *pos;
281 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
282 rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
284 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
285 list_del_init(&frag->f_item);
286 rds_ib_frag_drop_page(frag);
287 rds_ib_frag_free(frag);
291 void rds_ib_inc_free(struct rds_incoming *inc)
293 struct rds_ib_incoming *ibinc;
295 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
297 rds_ib_inc_purge(inc);
298 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
299 BUG_ON(!list_empty(&ibinc->ii_frags));
300 kmem_cache_free(rds_ib_incoming_slab, ibinc);
301 atomic_dec(&rds_ib_allocation);
302 BUG_ON(atomic_read(&rds_ib_allocation) < 0);
305 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
306 size_t size)
308 struct rds_ib_incoming *ibinc;
309 struct rds_page_frag *frag;
310 struct iovec *iov = first_iov;
311 unsigned long to_copy;
312 unsigned long frag_off = 0;
313 unsigned long iov_off = 0;
314 int copied = 0;
315 int ret;
316 u32 len;
318 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
319 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
320 len = be32_to_cpu(inc->i_hdr.h_len);
322 while (copied < size && copied < len) {
323 if (frag_off == RDS_FRAG_SIZE) {
324 frag = list_entry(frag->f_item.next,
325 struct rds_page_frag, f_item);
326 frag_off = 0;
328 while (iov_off == iov->iov_len) {
329 iov_off = 0;
330 iov++;
333 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
334 to_copy = min_t(size_t, to_copy, size - copied);
335 to_copy = min_t(unsigned long, to_copy, len - copied);
337 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
338 "[%p, %lu] + %lu\n",
339 to_copy, iov->iov_base, iov->iov_len, iov_off,
340 frag->f_page, frag->f_offset, frag_off);
342 ret = rds_page_copy_to_user(frag->f_page,
343 frag->f_offset + frag_off,
344 iov->iov_base + iov_off,
345 to_copy);
346 if (ret) {
347 copied = ret;
348 break;
351 iov_off += to_copy;
352 frag_off += to_copy;
353 copied += to_copy;
356 return copied;
359 /* ic starts out kzalloc()ed */
360 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
362 struct ib_send_wr *wr = &ic->i_ack_wr;
363 struct ib_sge *sge = &ic->i_ack_sge;
365 sge->addr = ic->i_ack_dma;
366 sge->length = sizeof(struct rds_header);
367 sge->lkey = ic->i_mr->lkey;
369 wr->sg_list = sge;
370 wr->num_sge = 1;
371 wr->opcode = IB_WR_SEND;
372 wr->wr_id = RDS_IB_ACK_WR_ID;
373 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
377 * You'd think that with reliable IB connections you wouldn't need to ack
378 * messages that have been received. The problem is that IB hardware generates
379 * an ack message before it has DMAed the message into memory. This creates a
380 * potential message loss if the HCA is disabled for any reason between when it
381 * sends the ack and before the message is DMAed and processed. This is only a
382 * potential issue if another HCA is available for fail-over.
384 * When the remote host receives our ack they'll free the sent message from
385 * their send queue. To decrease the latency of this we always send an ack
386 * immediately after we've received messages.
388 * For simplicity, we only have one ack in flight at a time. This puts
389 * pressure on senders to have deep enough send queues to absorb the latency of
390 * a single ack frame being in flight. This might not be good enough.
392 * This is implemented by have a long-lived send_wr and sge which point to a
393 * statically allocated ack frame. This ack wr does not fall under the ring
394 * accounting that the tx and rx wrs do. The QP attribute specifically makes
395 * room for it beyond the ring size. Send completion notices its special
396 * wr_id and avoids working with the ring in that case.
398 #ifndef KERNEL_HAS_ATOMIC64
399 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
400 int ack_required)
402 unsigned long flags;
404 spin_lock_irqsave(&ic->i_ack_lock, flags);
405 ic->i_ack_next = seq;
406 if (ack_required)
407 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
408 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
413 unsigned long flags;
414 u64 seq;
416 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
418 spin_lock_irqsave(&ic->i_ack_lock, flags);
419 seq = ic->i_ack_next;
420 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
422 return seq;
424 #else
425 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
426 int ack_required)
428 atomic64_set(&ic->i_ack_next, seq);
429 if (ack_required) {
430 smp_mb__before_clear_bit();
431 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
435 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
437 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
438 smp_mb__after_clear_bit();
440 return atomic64_read(&ic->i_ack_next);
442 #endif
445 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
447 struct rds_header *hdr = ic->i_ack;
448 struct ib_send_wr *failed_wr;
449 u64 seq;
450 int ret;
452 seq = rds_ib_get_ack(ic);
454 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
455 rds_message_populate_header(hdr, 0, 0, 0);
456 hdr->h_ack = cpu_to_be64(seq);
457 hdr->h_credit = adv_credits;
458 rds_message_make_checksum(hdr);
459 ic->i_ack_queued = jiffies;
461 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
462 if (unlikely(ret)) {
463 /* Failed to send. Release the WR, and
464 * force another ACK.
466 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
467 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
469 rds_ib_stats_inc(s_ib_ack_send_failure);
471 rds_ib_conn_error(ic->conn, "sending ack failed\n");
472 } else
473 rds_ib_stats_inc(s_ib_ack_sent);
477 * There are 3 ways of getting acknowledgements to the peer:
478 * 1. We call rds_ib_attempt_ack from the recv completion handler
479 * to send an ACK-only frame.
480 * However, there can be only one such frame in the send queue
481 * at any time, so we may have to postpone it.
482 * 2. When another (data) packet is transmitted while there's
483 * an ACK in the queue, we piggyback the ACK sequence number
484 * on the data packet.
485 * 3. If the ACK WR is done sending, we get called from the
486 * send queue completion handler, and check whether there's
487 * another ACK pending (postponed because the WR was on the
488 * queue). If so, we transmit it.
490 * We maintain 2 variables:
491 * - i_ack_flags, which keeps track of whether the ACK WR
492 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
493 * - i_ack_next, which is the last sequence number we received
495 * Potentially, send queue and receive queue handlers can run concurrently.
496 * It would be nice to not have to use a spinlock to synchronize things,
497 * but the one problem that rules this out is that 64bit updates are
498 * not atomic on all platforms. Things would be a lot simpler if
499 * we had atomic64 or maybe cmpxchg64 everywhere.
501 * Reconnecting complicates this picture just slightly. When we
502 * reconnect, we may be seeing duplicate packets. The peer
503 * is retransmitting them, because it hasn't seen an ACK for
504 * them. It is important that we ACK these.
506 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
507 * this flag set *MUST* be acknowledged immediately.
511 * When we get here, we're called from the recv queue handler.
512 * Check whether we ought to transmit an ACK.
514 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
516 unsigned int adv_credits;
518 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
519 return;
521 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
522 rds_ib_stats_inc(s_ib_ack_send_delayed);
523 return;
526 /* Can we get a send credit? */
527 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
528 rds_ib_stats_inc(s_ib_tx_throttle);
529 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
530 return;
533 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
534 rds_ib_send_ack(ic, adv_credits);
538 * We get here from the send completion handler, when the
539 * adapter tells us the ACK frame was sent.
541 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
543 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
544 rds_ib_attempt_ack(ic);
548 * This is called by the regular xmit code when it wants to piggyback
549 * an ACK on an outgoing frame.
551 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
553 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
554 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
555 return rds_ib_get_ack(ic);
558 static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
559 struct rds_ib_recv_work *recv,
560 u32 data_len)
562 struct rds_ib_connection *ic = conn->c_transport_data;
563 void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
564 void *addr;
565 u32 misplaced_hdr_bytes;
568 * Support header at the front (RDS 3.1+) as well as header-at-end.
570 * Cases:
571 * 1) header all in header buff (great!)
572 * 2) header all in data page (copy all to header buff)
573 * 3) header split across hdr buf + data page
574 * (move bit in hdr buff to end before copying other bit from data page)
576 if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
577 return hdr_buff;
579 if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
580 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
581 memcpy(hdr_buff,
582 addr + recv->r_frag->f_offset + data_len,
583 sizeof(struct rds_header));
584 kunmap_atomic(addr, KM_SOFTIRQ0);
585 return hdr_buff;
588 misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
590 memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
592 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
593 memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
594 sizeof(struct rds_header) - misplaced_hdr_bytes);
595 kunmap_atomic(addr, KM_SOFTIRQ0);
596 return hdr_buff;
600 * It's kind of lame that we're copying from the posted receive pages into
601 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
602 * them. But receiving new congestion bitmaps should be a *rare* event, so
603 * hopefully we won't need to invest that complexity in making it more
604 * efficient. By copying we can share a simpler core with TCP which has to
605 * copy.
607 static void rds_ib_cong_recv(struct rds_connection *conn,
608 struct rds_ib_incoming *ibinc)
610 struct rds_cong_map *map;
611 unsigned int map_off;
612 unsigned int map_page;
613 struct rds_page_frag *frag;
614 unsigned long frag_off;
615 unsigned long to_copy;
616 unsigned long copied;
617 uint64_t uncongested = 0;
618 void *addr;
620 /* catch completely corrupt packets */
621 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
622 return;
624 map = conn->c_fcong;
625 map_page = 0;
626 map_off = 0;
628 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
629 frag_off = 0;
631 copied = 0;
633 while (copied < RDS_CONG_MAP_BYTES) {
634 uint64_t *src, *dst;
635 unsigned int k;
637 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
638 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
640 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
642 src = addr + frag_off;
643 dst = (void *)map->m_page_addrs[map_page] + map_off;
644 for (k = 0; k < to_copy; k += 8) {
645 /* Record ports that became uncongested, ie
646 * bits that changed from 0 to 1. */
647 uncongested |= ~(*src) & *dst;
648 *dst++ = *src++;
650 kunmap_atomic(addr, KM_SOFTIRQ0);
652 copied += to_copy;
654 map_off += to_copy;
655 if (map_off == PAGE_SIZE) {
656 map_off = 0;
657 map_page++;
660 frag_off += to_copy;
661 if (frag_off == RDS_FRAG_SIZE) {
662 frag = list_entry(frag->f_item.next,
663 struct rds_page_frag, f_item);
664 frag_off = 0;
668 /* the congestion map is in little endian order */
669 uncongested = le64_to_cpu(uncongested);
671 rds_cong_map_updated(map, uncongested);
675 * Rings are posted with all the allocations they'll need to queue the
676 * incoming message to the receiving socket so this can't fail.
677 * All fragments start with a header, so we can make sure we're not receiving
678 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
680 struct rds_ib_ack_state {
681 u64 ack_next;
682 u64 ack_recv;
683 unsigned int ack_required:1;
684 unsigned int ack_next_valid:1;
685 unsigned int ack_recv_valid:1;
688 static void rds_ib_process_recv(struct rds_connection *conn,
689 struct rds_ib_recv_work *recv, u32 data_len,
690 struct rds_ib_ack_state *state)
692 struct rds_ib_connection *ic = conn->c_transport_data;
693 struct rds_ib_incoming *ibinc = ic->i_ibinc;
694 struct rds_header *ihdr, *hdr;
697 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
698 data_len);
700 if (data_len < sizeof(struct rds_header)) {
701 rds_ib_conn_error(conn, "incoming message "
702 "from %pI4 didn't inclue a "
703 "header, disconnecting and "
704 "reconnecting\n",
705 &conn->c_faddr);
706 return;
708 data_len -= sizeof(struct rds_header);
710 ihdr = rds_ib_get_header(conn, recv, data_len);
712 /* Validate the checksum. */
713 if (!rds_message_verify_checksum(ihdr)) {
714 rds_ib_conn_error(conn, "incoming message "
715 "from %pI4 has corrupted header - "
716 "forcing a reconnect\n",
717 &conn->c_faddr);
718 rds_stats_inc(s_recv_drop_bad_checksum);
719 return;
722 /* Process the ACK sequence which comes with every packet */
723 state->ack_recv = be64_to_cpu(ihdr->h_ack);
724 state->ack_recv_valid = 1;
726 /* Process the credits update if there was one */
727 if (ihdr->h_credit)
728 rds_ib_send_add_credits(conn, ihdr->h_credit);
730 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
731 /* This is an ACK-only packet. The fact that it gets
732 * special treatment here is that historically, ACKs
733 * were rather special beasts.
735 rds_ib_stats_inc(s_ib_ack_received);
737 rds_ib_frag_drop_page(recv->r_frag);
738 return;
742 * If we don't already have an inc on the connection then this
743 * fragment has a header and starts a message.. copy its header
744 * into the inc and save the inc so we can hang upcoming fragments
745 * off its list.
747 if (ibinc == NULL) {
748 ibinc = recv->r_ibinc;
749 recv->r_ibinc = NULL;
750 ic->i_ibinc = ibinc;
752 hdr = &ibinc->ii_inc.i_hdr;
753 memcpy(hdr, ihdr, sizeof(*hdr));
754 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
756 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
757 ic->i_recv_data_rem, hdr->h_flags);
758 } else {
759 hdr = &ibinc->ii_inc.i_hdr;
760 /* We can't just use memcmp here; fragments of a
761 * single message may carry different ACKs */
762 if (hdr->h_sequence != ihdr->h_sequence ||
763 hdr->h_len != ihdr->h_len ||
764 hdr->h_sport != ihdr->h_sport ||
765 hdr->h_dport != ihdr->h_dport) {
766 rds_ib_conn_error(conn,
767 "fragment header mismatch; forcing reconnect\n");
768 return;
772 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
773 recv->r_frag = NULL;
775 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
776 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
777 else {
778 ic->i_recv_data_rem = 0;
779 ic->i_ibinc = NULL;
781 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
782 rds_ib_cong_recv(conn, ibinc);
783 else {
784 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
785 &ibinc->ii_inc, GFP_ATOMIC,
786 KM_SOFTIRQ0);
787 state->ack_next = be64_to_cpu(hdr->h_sequence);
788 state->ack_next_valid = 1;
791 /* Evaluate the ACK_REQUIRED flag *after* we received
792 * the complete frame, and after bumping the next_rx
793 * sequence. */
794 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
795 rds_stats_inc(s_recv_ack_required);
796 state->ack_required = 1;
799 rds_inc_put(&ibinc->ii_inc);
804 * Plucking the oldest entry from the ring can be done concurrently with
805 * the thread refilling the ring. Each ring operation is protected by
806 * spinlocks and the transient state of refilling doesn't change the
807 * recording of which entry is oldest.
809 * This relies on IB only calling one cq comp_handler for each cq so that
810 * there will only be one caller of rds_recv_incoming() per RDS connection.
812 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
814 struct rds_connection *conn = context;
815 struct rds_ib_connection *ic = conn->c_transport_data;
817 rdsdebug("conn %p cq %p\n", conn, cq);
819 rds_ib_stats_inc(s_ib_rx_cq_call);
821 tasklet_schedule(&ic->i_recv_tasklet);
824 static inline void rds_poll_cq(struct rds_ib_connection *ic,
825 struct rds_ib_ack_state *state)
827 struct rds_connection *conn = ic->conn;
828 struct ib_wc wc;
829 struct rds_ib_recv_work *recv;
831 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
832 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
833 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
834 be32_to_cpu(wc.ex.imm_data));
835 rds_ib_stats_inc(s_ib_rx_cq_event);
837 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
839 rds_ib_recv_unmap_page(ic, recv);
842 * Also process recvs in connecting state because it is possible
843 * to get a recv completion _before_ the rdmacm ESTABLISHED
844 * event is processed.
846 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
847 /* We expect errors as the qp is drained during shutdown */
848 if (wc.status == IB_WC_SUCCESS) {
849 rds_ib_process_recv(conn, recv, wc.byte_len, state);
850 } else {
851 rds_ib_conn_error(conn, "recv completion on "
852 "%pI4 had status %u, disconnecting and "
853 "reconnecting\n", &conn->c_faddr,
854 wc.status);
858 rds_ib_ring_free(&ic->i_recv_ring, 1);
862 void rds_ib_recv_tasklet_fn(unsigned long data)
864 struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
865 struct rds_connection *conn = ic->conn;
866 struct rds_ib_ack_state state = { 0, };
868 rds_poll_cq(ic, &state);
869 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
870 rds_poll_cq(ic, &state);
872 if (state.ack_next_valid)
873 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
874 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
875 rds_send_drop_acked(conn, state.ack_recv, NULL);
876 ic->i_ack_recv = state.ack_recv;
878 if (rds_conn_up(conn))
879 rds_ib_attempt_ack(ic);
881 /* If we ever end up with a really empty receive ring, we're
882 * in deep trouble, as the sender will definitely see RNR
883 * timeouts. */
884 if (rds_ib_ring_empty(&ic->i_recv_ring))
885 rds_ib_stats_inc(s_ib_rx_ring_empty);
888 * If the ring is running low, then schedule the thread to refill.
890 if (rds_ib_ring_low(&ic->i_recv_ring))
891 queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
894 int rds_ib_recv(struct rds_connection *conn)
896 struct rds_ib_connection *ic = conn->c_transport_data;
897 int ret = 0;
899 rdsdebug("conn %p\n", conn);
902 * If we get a temporary posting failure in this context then
903 * we're really low and we want the caller to back off for a bit.
905 mutex_lock(&ic->i_recv_mutex);
906 if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
907 ret = -ENOMEM;
908 else
909 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
910 mutex_unlock(&ic->i_recv_mutex);
912 if (rds_conn_up(conn))
913 rds_ib_attempt_ack(ic);
915 return ret;
918 int __init rds_ib_recv_init(void)
920 struct sysinfo si;
921 int ret = -ENOMEM;
923 /* Default to 30% of all available RAM for recv memory */
924 si_meminfo(&si);
925 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
927 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
928 sizeof(struct rds_ib_incoming),
929 0, 0, NULL);
930 if (rds_ib_incoming_slab == NULL)
931 goto out;
933 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
934 sizeof(struct rds_page_frag),
935 0, 0, NULL);
936 if (rds_ib_frag_slab == NULL)
937 kmem_cache_destroy(rds_ib_incoming_slab);
938 else
939 ret = 0;
940 out:
941 return ret;
944 void rds_ib_recv_exit(void)
946 kmem_cache_destroy(rds_ib_incoming_slab);
947 kmem_cache_destroy(rds_ib_frag_slab);