GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / mm / slab.c
blobe02f5fb7a26310ac37acbc4de007efd1a82c5cf3
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 #ifndef ARCH_KMALLOC_FLAGS
148 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149 #endif
151 /* Legal flag mask for kmem_cache_create(). */
152 #if DEBUG
153 # define CREATE_MASK (SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155 SLAB_CACHE_DMA | \
156 SLAB_STORE_USER | \
157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
160 #else
161 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
162 SLAB_CACHE_DMA | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
166 #endif
169 * kmem_bufctl_t:
171 * Bufctl's are used for linking objs within a slab
172 * linked offsets.
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
187 typedef unsigned int kmem_bufctl_t;
188 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
190 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
194 * struct slab
196 * Manages the objs in a slab. Placed either at the beginning of mem allocated
197 * for a slab, or allocated from an general cache.
198 * Slabs are chained into three list: fully used, partial, fully free slabs.
200 struct slab {
201 struct list_head list;
202 unsigned long colouroff;
203 void *s_mem; /* including colour offset */
204 unsigned int inuse; /* num of objs active in slab */
205 kmem_bufctl_t free;
206 unsigned short nodeid;
210 * struct slab_rcu
212 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
213 * arrange for kmem_freepages to be called via RCU. This is useful if
214 * we need to approach a kernel structure obliquely, from its address
215 * obtained without the usual locking. We can lock the structure to
216 * stabilize it and check it's still at the given address, only if we
217 * can be sure that the memory has not been meanwhile reused for some
218 * other kind of object (which our subsystem's lock might corrupt).
220 * rcu_read_lock before reading the address, then rcu_read_unlock after
221 * taking the spinlock within the structure expected at that address.
223 * We assume struct slab_rcu can overlay struct slab when destroying.
225 struct slab_rcu {
226 struct rcu_head head;
227 struct kmem_cache *cachep;
228 void *addr;
232 * struct array_cache
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
243 struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
248 spinlock_t lock;
249 void *entry[]; /*
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
257 * bootstrap: The caches do not work without cpuarrays anymore, but the
258 * cpuarrays are allocated from the generic caches...
260 #define BOOT_CPUCACHE_ENTRIES 1
261 struct arraycache_init {
262 struct array_cache cache;
263 void *entries[BOOT_CPUCACHE_ENTRIES];
267 * The slab lists for all objects.
269 struct kmem_list3 {
270 struct list_head slabs_partial; /* partial list first, better asm code */
271 struct list_head slabs_full;
272 struct list_head slabs_free;
273 unsigned long free_objects;
274 unsigned int free_limit;
275 unsigned int colour_next; /* Per-node cache coloring */
276 spinlock_t list_lock;
277 struct array_cache *shared; /* shared per node */
278 struct array_cache **alien; /* on other nodes */
279 unsigned long next_reap; /* updated without locking */
280 int free_touched; /* updated without locking */
284 * Need this for bootstrapping a per node allocator.
286 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
287 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
288 #define CACHE_CACHE 0
289 #define SIZE_AC MAX_NUMNODES
290 #define SIZE_L3 (2 * MAX_NUMNODES)
292 static int drain_freelist(struct kmem_cache *cache,
293 struct kmem_list3 *l3, int tofree);
294 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
295 int node);
296 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
297 static void cache_reap(struct work_struct *unused);
300 * This function must be completely optimized away if a constant is passed to
301 * it. Mostly the same as what is in linux/slab.h except it returns an index.
303 static __always_inline int index_of(const size_t size)
305 extern void __bad_size(void);
307 if (__builtin_constant_p(size)) {
308 int i = 0;
310 #define CACHE(x) \
311 if (size <=x) \
312 return i; \
313 else \
314 i++;
315 #include <linux/kmalloc_sizes.h>
316 #undef CACHE
317 __bad_size();
318 } else
319 __bad_size();
320 return 0;
323 static int slab_early_init = 1;
325 #define INDEX_AC index_of(sizeof(struct arraycache_init))
326 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
328 static void kmem_list3_init(struct kmem_list3 *parent)
330 INIT_LIST_HEAD(&parent->slabs_full);
331 INIT_LIST_HEAD(&parent->slabs_partial);
332 INIT_LIST_HEAD(&parent->slabs_free);
333 parent->shared = NULL;
334 parent->alien = NULL;
335 parent->colour_next = 0;
336 spin_lock_init(&parent->list_lock);
337 parent->free_objects = 0;
338 parent->free_touched = 0;
341 #define MAKE_LIST(cachep, listp, slab, nodeid) \
342 do { \
343 INIT_LIST_HEAD(listp); \
344 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
345 } while (0)
347 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
348 do { \
349 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
350 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
352 } while (0)
354 #define CFLGS_OFF_SLAB (0x80000000UL)
355 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
357 #define BATCHREFILL_LIMIT 16
359 * Optimization question: fewer reaps means less probability for unnessary
360 * cpucache drain/refill cycles.
362 * OTOH the cpuarrays can contain lots of objects,
363 * which could lock up otherwise freeable slabs.
365 #define REAPTIMEOUT_CPUC (2*HZ)
366 #define REAPTIMEOUT_LIST3 (4*HZ)
368 #if STATS
369 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
370 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
371 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
372 #define STATS_INC_GROWN(x) ((x)->grown++)
373 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
374 #define STATS_SET_HIGH(x) \
375 do { \
376 if ((x)->num_active > (x)->high_mark) \
377 (x)->high_mark = (x)->num_active; \
378 } while (0)
379 #define STATS_INC_ERR(x) ((x)->errors++)
380 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
381 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
382 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
383 #define STATS_SET_FREEABLE(x, i) \
384 do { \
385 if ((x)->max_freeable < i) \
386 (x)->max_freeable = i; \
387 } while (0)
388 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
389 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
390 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
391 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
392 #else
393 #define STATS_INC_ACTIVE(x) do { } while (0)
394 #define STATS_DEC_ACTIVE(x) do { } while (0)
395 #define STATS_INC_ALLOCED(x) do { } while (0)
396 #define STATS_INC_GROWN(x) do { } while (0)
397 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
398 #define STATS_SET_HIGH(x) do { } while (0)
399 #define STATS_INC_ERR(x) do { } while (0)
400 #define STATS_INC_NODEALLOCS(x) do { } while (0)
401 #define STATS_INC_NODEFREES(x) do { } while (0)
402 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
403 #define STATS_SET_FREEABLE(x, i) do { } while (0)
404 #define STATS_INC_ALLOCHIT(x) do { } while (0)
405 #define STATS_INC_ALLOCMISS(x) do { } while (0)
406 #define STATS_INC_FREEHIT(x) do { } while (0)
407 #define STATS_INC_FREEMISS(x) do { } while (0)
408 #endif
410 #if DEBUG
413 * memory layout of objects:
414 * 0 : objp
415 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
416 * the end of an object is aligned with the end of the real
417 * allocation. Catches writes behind the end of the allocation.
418 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
419 * redzone word.
420 * cachep->obj_offset: The real object.
421 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
422 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
423 * [BYTES_PER_WORD long]
425 static int obj_offset(struct kmem_cache *cachep)
427 return cachep->obj_offset;
430 static int obj_size(struct kmem_cache *cachep)
432 return cachep->obj_size;
435 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
437 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
438 return (unsigned long long*) (objp + obj_offset(cachep) -
439 sizeof(unsigned long long));
442 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
444 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
445 if (cachep->flags & SLAB_STORE_USER)
446 return (unsigned long long *)(objp + cachep->buffer_size -
447 sizeof(unsigned long long) -
448 REDZONE_ALIGN);
449 return (unsigned long long *) (objp + cachep->buffer_size -
450 sizeof(unsigned long long));
453 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
455 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
456 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
459 #else
461 #define obj_offset(x) 0
462 #define obj_size(cachep) (cachep->buffer_size)
463 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
464 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
467 #endif
469 #ifdef CONFIG_TRACING
470 size_t slab_buffer_size(struct kmem_cache *cachep)
472 return cachep->buffer_size;
474 EXPORT_SYMBOL(slab_buffer_size);
475 #endif
478 * Do not go above this order unless 0 objects fit into the slab.
480 #define BREAK_GFP_ORDER_HI 1
481 #define BREAK_GFP_ORDER_LO 0
482 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
485 * Functions for storing/retrieving the cachep and or slab from the page
486 * allocator. These are used to find the slab an obj belongs to. With kfree(),
487 * these are used to find the cache which an obj belongs to.
489 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
491 page->lru.next = (struct list_head *)cache;
494 static inline struct kmem_cache *page_get_cache(struct page *page)
496 page = compound_head(page);
497 BUG_ON(!PageSlab(page));
498 return (struct kmem_cache *)page->lru.next;
501 static inline void page_set_slab(struct page *page, struct slab *slab)
503 page->lru.prev = (struct list_head *)slab;
506 static inline struct slab *page_get_slab(struct page *page)
508 BUG_ON(!PageSlab(page));
509 return (struct slab *)page->lru.prev;
512 static inline struct kmem_cache *virt_to_cache(const void *obj)
514 struct page *page = virt_to_head_page(obj);
515 return page_get_cache(page);
518 static inline struct slab *virt_to_slab(const void *obj)
520 struct page *page = virt_to_head_page(obj);
521 return page_get_slab(page);
524 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
525 unsigned int idx)
527 return slab->s_mem + cache->buffer_size * idx;
531 * We want to avoid an expensive divide : (offset / cache->buffer_size)
532 * Using the fact that buffer_size is a constant for a particular cache,
533 * we can replace (offset / cache->buffer_size) by
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
536 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
537 const struct slab *slab, void *obj)
539 u32 offset = (obj - slab->s_mem);
540 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
546 struct cache_sizes malloc_sizes[] = {
547 #define CACHE(x) { .cs_size = (x) },
548 #include <linux/kmalloc_sizes.h>
549 CACHE(ULONG_MAX)
550 #undef CACHE
552 EXPORT_SYMBOL(malloc_sizes);
554 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
555 struct cache_names {
556 char *name;
557 char *name_dma;
560 static struct cache_names __initdata cache_names[] = {
561 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562 #include <linux/kmalloc_sizes.h>
563 {NULL,}
564 #undef CACHE
567 static struct arraycache_init initarray_cache __initdata =
568 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
569 static struct arraycache_init initarray_generic =
570 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
572 /* internal cache of cache description objs */
573 static struct kmem_cache cache_cache = {
574 .batchcount = 1,
575 .limit = BOOT_CPUCACHE_ENTRIES,
576 .shared = 1,
577 .buffer_size = sizeof(struct kmem_cache),
578 .name = "kmem_cache",
581 #define BAD_ALIEN_MAGIC 0x01020304ul
584 * chicken and egg problem: delay the per-cpu array allocation
585 * until the general caches are up.
587 static enum {
588 NONE,
589 PARTIAL_AC,
590 PARTIAL_L3,
591 EARLY,
592 FULL
593 } g_cpucache_up;
596 * used by boot code to determine if it can use slab based allocator
598 int slab_is_available(void)
600 return g_cpucache_up >= EARLY;
603 #ifdef CONFIG_LOCKDEP
606 * Slab sometimes uses the kmalloc slabs to store the slab headers
607 * for other slabs "off slab".
608 * The locking for this is tricky in that it nests within the locks
609 * of all other slabs in a few places; to deal with this special
610 * locking we put on-slab caches into a separate lock-class.
612 * We set lock class for alien array caches which are up during init.
613 * The lock annotation will be lost if all cpus of a node goes down and
614 * then comes back up during hotplug
616 static struct lock_class_key on_slab_l3_key;
617 static struct lock_class_key on_slab_alc_key;
619 static void init_node_lock_keys(int q)
621 struct cache_sizes *s = malloc_sizes;
623 if (g_cpucache_up != FULL)
624 return;
626 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
627 struct array_cache **alc;
628 struct kmem_list3 *l3;
629 int r;
631 l3 = s->cs_cachep->nodelists[q];
632 if (!l3 || OFF_SLAB(s->cs_cachep))
633 continue;
634 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
635 alc = l3->alien;
636 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
637 continue;
638 for_each_node(r) {
639 if (alc[r])
640 lockdep_set_class(&alc[r]->lock,
641 &on_slab_alc_key);
646 static inline void init_lock_keys(void)
648 int node;
650 for_each_node(node)
651 init_node_lock_keys(node);
653 #else
654 static void init_node_lock_keys(int q)
658 static inline void init_lock_keys(void)
661 #endif
664 * Guard access to the cache-chain.
666 static DEFINE_MUTEX(cache_chain_mutex);
667 static struct list_head cache_chain;
669 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
671 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
673 return cachep->array[smp_processor_id()];
676 static inline struct kmem_cache *__find_general_cachep(size_t size,
677 gfp_t gfpflags)
679 struct cache_sizes *csizep = malloc_sizes;
681 #if DEBUG
682 /* This happens if someone tries to call
683 * kmem_cache_create(), or __kmalloc(), before
684 * the generic caches are initialized.
686 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
687 #endif
688 if (!size)
689 return ZERO_SIZE_PTR;
691 while (size > csizep->cs_size)
692 csizep++;
695 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
696 * has cs_{dma,}cachep==NULL. Thus no special case
697 * for large kmalloc calls required.
699 #ifdef CONFIG_ZONE_DMA
700 if (unlikely(gfpflags & GFP_DMA))
701 return csizep->cs_dmacachep;
702 #endif
703 return csizep->cs_cachep;
706 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
708 return __find_general_cachep(size, gfpflags);
711 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
713 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
717 * Calculate the number of objects and left-over bytes for a given buffer size.
719 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
720 size_t align, int flags, size_t *left_over,
721 unsigned int *num)
723 int nr_objs;
724 size_t mgmt_size;
725 size_t slab_size = PAGE_SIZE << gfporder;
728 * The slab management structure can be either off the slab or
729 * on it. For the latter case, the memory allocated for a
730 * slab is used for:
732 * - The struct slab
733 * - One kmem_bufctl_t for each object
734 * - Padding to respect alignment of @align
735 * - @buffer_size bytes for each object
737 * If the slab management structure is off the slab, then the
738 * alignment will already be calculated into the size. Because
739 * the slabs are all pages aligned, the objects will be at the
740 * correct alignment when allocated.
742 if (flags & CFLGS_OFF_SLAB) {
743 mgmt_size = 0;
744 nr_objs = slab_size / buffer_size;
746 if (nr_objs > SLAB_LIMIT)
747 nr_objs = SLAB_LIMIT;
748 } else {
750 * Ignore padding for the initial guess. The padding
751 * is at most @align-1 bytes, and @buffer_size is at
752 * least @align. In the worst case, this result will
753 * be one greater than the number of objects that fit
754 * into the memory allocation when taking the padding
755 * into account.
757 nr_objs = (slab_size - sizeof(struct slab)) /
758 (buffer_size + sizeof(kmem_bufctl_t));
761 * This calculated number will be either the right
762 * amount, or one greater than what we want.
764 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
765 > slab_size)
766 nr_objs--;
768 if (nr_objs > SLAB_LIMIT)
769 nr_objs = SLAB_LIMIT;
771 mgmt_size = slab_mgmt_size(nr_objs, align);
773 *num = nr_objs;
774 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
777 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
779 static void __slab_error(const char *function, struct kmem_cache *cachep,
780 char *msg)
782 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
783 function, cachep->name, msg);
784 dump_stack();
788 * By default on NUMA we use alien caches to stage the freeing of
789 * objects allocated from other nodes. This causes massive memory
790 * inefficiencies when using fake NUMA setup to split memory into a
791 * large number of small nodes, so it can be disabled on the command
792 * line
795 static int use_alien_caches __read_mostly = 1;
796 static int __init noaliencache_setup(char *s)
798 use_alien_caches = 0;
799 return 1;
801 __setup("noaliencache", noaliencache_setup);
803 #ifdef CONFIG_NUMA
805 * Special reaping functions for NUMA systems called from cache_reap().
806 * These take care of doing round robin flushing of alien caches (containing
807 * objects freed on different nodes from which they were allocated) and the
808 * flushing of remote pcps by calling drain_node_pages.
810 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
812 static void init_reap_node(int cpu)
814 int node;
816 node = next_node(cpu_to_mem(cpu), node_online_map);
817 if (node == MAX_NUMNODES)
818 node = first_node(node_online_map);
820 per_cpu(slab_reap_node, cpu) = node;
823 static void next_reap_node(void)
825 int node = __get_cpu_var(slab_reap_node);
827 node = next_node(node, node_online_map);
828 if (unlikely(node >= MAX_NUMNODES))
829 node = first_node(node_online_map);
830 __get_cpu_var(slab_reap_node) = node;
833 #else
834 #define init_reap_node(cpu) do { } while (0)
835 #define next_reap_node(void) do { } while (0)
836 #endif
839 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
840 * via the workqueue/eventd.
841 * Add the CPU number into the expiration time to minimize the possibility of
842 * the CPUs getting into lockstep and contending for the global cache chain
843 * lock.
845 static void __cpuinit start_cpu_timer(int cpu)
847 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
850 * When this gets called from do_initcalls via cpucache_init(),
851 * init_workqueues() has already run, so keventd will be setup
852 * at that time.
854 if (keventd_up() && reap_work->work.func == NULL) {
855 init_reap_node(cpu);
856 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
857 schedule_delayed_work_on(cpu, reap_work,
858 __round_jiffies_relative(HZ, cpu));
862 static struct array_cache *alloc_arraycache(int node, int entries,
863 int batchcount, gfp_t gfp)
865 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
866 struct array_cache *nc = NULL;
868 nc = kmalloc_node(memsize, gfp, node);
870 * The array_cache structures contain pointers to free object.
871 * However, when such objects are allocated or transfered to another
872 * cache the pointers are not cleared and they could be counted as
873 * valid references during a kmemleak scan. Therefore, kmemleak must
874 * not scan such objects.
876 kmemleak_no_scan(nc);
877 if (nc) {
878 nc->avail = 0;
879 nc->limit = entries;
880 nc->batchcount = batchcount;
881 nc->touched = 0;
882 spin_lock_init(&nc->lock);
884 return nc;
888 * Transfer objects in one arraycache to another.
889 * Locking must be handled by the caller.
891 * Return the number of entries transferred.
893 static int transfer_objects(struct array_cache *to,
894 struct array_cache *from, unsigned int max)
896 /* Figure out how many entries to transfer */
897 int nr = min(min(from->avail, max), to->limit - to->avail);
899 if (!nr)
900 return 0;
902 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
903 sizeof(void *) *nr);
905 from->avail -= nr;
906 to->avail += nr;
907 return nr;
910 #ifndef CONFIG_NUMA
912 #define drain_alien_cache(cachep, alien) do { } while (0)
913 #define reap_alien(cachep, l3) do { } while (0)
915 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
917 return (struct array_cache **)BAD_ALIEN_MAGIC;
920 static inline void free_alien_cache(struct array_cache **ac_ptr)
924 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
926 return 0;
929 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
930 gfp_t flags)
932 return NULL;
935 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
936 gfp_t flags, int nodeid)
938 return NULL;
941 #else /* CONFIG_NUMA */
943 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
944 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
946 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
948 struct array_cache **ac_ptr;
949 int memsize = sizeof(void *) * nr_node_ids;
950 int i;
952 if (limit > 1)
953 limit = 12;
954 ac_ptr = kzalloc_node(memsize, gfp, node);
955 if (ac_ptr) {
956 for_each_node(i) {
957 if (i == node || !node_online(i))
958 continue;
959 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
960 if (!ac_ptr[i]) {
961 for (i--; i >= 0; i--)
962 kfree(ac_ptr[i]);
963 kfree(ac_ptr);
964 return NULL;
968 return ac_ptr;
971 static void free_alien_cache(struct array_cache **ac_ptr)
973 int i;
975 if (!ac_ptr)
976 return;
977 for_each_node(i)
978 kfree(ac_ptr[i]);
979 kfree(ac_ptr);
982 static void __drain_alien_cache(struct kmem_cache *cachep,
983 struct array_cache *ac, int node)
985 struct kmem_list3 *rl3 = cachep->nodelists[node];
987 if (ac->avail) {
988 spin_lock(&rl3->list_lock);
990 * Stuff objects into the remote nodes shared array first.
991 * That way we could avoid the overhead of putting the objects
992 * into the free lists and getting them back later.
994 if (rl3->shared)
995 transfer_objects(rl3->shared, ac, ac->limit);
997 free_block(cachep, ac->entry, ac->avail, node);
998 ac->avail = 0;
999 spin_unlock(&rl3->list_lock);
1004 * Called from cache_reap() to regularly drain alien caches round robin.
1006 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1008 int node = __get_cpu_var(slab_reap_node);
1010 if (l3->alien) {
1011 struct array_cache *ac = l3->alien[node];
1013 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1014 __drain_alien_cache(cachep, ac, node);
1015 spin_unlock_irq(&ac->lock);
1020 static void drain_alien_cache(struct kmem_cache *cachep,
1021 struct array_cache **alien)
1023 int i = 0;
1024 struct array_cache *ac;
1025 unsigned long flags;
1027 for_each_online_node(i) {
1028 ac = alien[i];
1029 if (ac) {
1030 spin_lock_irqsave(&ac->lock, flags);
1031 __drain_alien_cache(cachep, ac, i);
1032 spin_unlock_irqrestore(&ac->lock, flags);
1037 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1039 struct slab *slabp = virt_to_slab(objp);
1040 int nodeid = slabp->nodeid;
1041 struct kmem_list3 *l3;
1042 struct array_cache *alien = NULL;
1043 int node;
1045 node = numa_mem_id();
1048 * Make sure we are not freeing a object from another node to the array
1049 * cache on this cpu.
1051 if (likely(slabp->nodeid == node))
1052 return 0;
1054 l3 = cachep->nodelists[node];
1055 STATS_INC_NODEFREES(cachep);
1056 if (l3->alien && l3->alien[nodeid]) {
1057 alien = l3->alien[nodeid];
1058 spin_lock(&alien->lock);
1059 if (unlikely(alien->avail == alien->limit)) {
1060 STATS_INC_ACOVERFLOW(cachep);
1061 __drain_alien_cache(cachep, alien, nodeid);
1063 alien->entry[alien->avail++] = objp;
1064 spin_unlock(&alien->lock);
1065 } else {
1066 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1067 free_block(cachep, &objp, 1, nodeid);
1068 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1070 return 1;
1072 #endif
1075 * Allocates and initializes nodelists for a node on each slab cache, used for
1076 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1077 * will be allocated off-node since memory is not yet online for the new node.
1078 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1079 * already in use.
1081 * Must hold cache_chain_mutex.
1083 static int init_cache_nodelists_node(int node)
1085 struct kmem_cache *cachep;
1086 struct kmem_list3 *l3;
1087 const int memsize = sizeof(struct kmem_list3);
1089 list_for_each_entry(cachep, &cache_chain, next) {
1091 * Set up the size64 kmemlist for cpu before we can
1092 * begin anything. Make sure some other cpu on this
1093 * node has not already allocated this
1095 if (!cachep->nodelists[node]) {
1096 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1097 if (!l3)
1098 return -ENOMEM;
1099 kmem_list3_init(l3);
1100 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1101 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1104 * The l3s don't come and go as CPUs come and
1105 * go. cache_chain_mutex is sufficient
1106 * protection here.
1108 cachep->nodelists[node] = l3;
1111 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1112 cachep->nodelists[node]->free_limit =
1113 (1 + nr_cpus_node(node)) *
1114 cachep->batchcount + cachep->num;
1115 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1117 return 0;
1120 static void __cpuinit cpuup_canceled(long cpu)
1122 struct kmem_cache *cachep;
1123 struct kmem_list3 *l3 = NULL;
1124 int node = cpu_to_mem(cpu);
1125 const struct cpumask *mask = cpumask_of_node(node);
1127 list_for_each_entry(cachep, &cache_chain, next) {
1128 struct array_cache *nc;
1129 struct array_cache *shared;
1130 struct array_cache **alien;
1132 /* cpu is dead; no one can alloc from it. */
1133 nc = cachep->array[cpu];
1134 cachep->array[cpu] = NULL;
1135 l3 = cachep->nodelists[node];
1137 if (!l3)
1138 goto free_array_cache;
1140 spin_lock_irq(&l3->list_lock);
1142 /* Free limit for this kmem_list3 */
1143 l3->free_limit -= cachep->batchcount;
1144 if (nc)
1145 free_block(cachep, nc->entry, nc->avail, node);
1147 if (!cpumask_empty(mask)) {
1148 spin_unlock_irq(&l3->list_lock);
1149 goto free_array_cache;
1152 shared = l3->shared;
1153 if (shared) {
1154 free_block(cachep, shared->entry,
1155 shared->avail, node);
1156 l3->shared = NULL;
1159 alien = l3->alien;
1160 l3->alien = NULL;
1162 spin_unlock_irq(&l3->list_lock);
1164 kfree(shared);
1165 if (alien) {
1166 drain_alien_cache(cachep, alien);
1167 free_alien_cache(alien);
1169 free_array_cache:
1170 kfree(nc);
1173 * In the previous loop, all the objects were freed to
1174 * the respective cache's slabs, now we can go ahead and
1175 * shrink each nodelist to its limit.
1177 list_for_each_entry(cachep, &cache_chain, next) {
1178 l3 = cachep->nodelists[node];
1179 if (!l3)
1180 continue;
1181 drain_freelist(cachep, l3, l3->free_objects);
1185 static int __cpuinit cpuup_prepare(long cpu)
1187 struct kmem_cache *cachep;
1188 struct kmem_list3 *l3 = NULL;
1189 int node = cpu_to_mem(cpu);
1190 int err;
1193 * We need to do this right in the beginning since
1194 * alloc_arraycache's are going to use this list.
1195 * kmalloc_node allows us to add the slab to the right
1196 * kmem_list3 and not this cpu's kmem_list3
1198 err = init_cache_nodelists_node(node);
1199 if (err < 0)
1200 goto bad;
1203 * Now we can go ahead with allocating the shared arrays and
1204 * array caches
1206 list_for_each_entry(cachep, &cache_chain, next) {
1207 struct array_cache *nc;
1208 struct array_cache *shared = NULL;
1209 struct array_cache **alien = NULL;
1211 nc = alloc_arraycache(node, cachep->limit,
1212 cachep->batchcount, GFP_KERNEL);
1213 if (!nc)
1214 goto bad;
1215 if (cachep->shared) {
1216 shared = alloc_arraycache(node,
1217 cachep->shared * cachep->batchcount,
1218 0xbaadf00d, GFP_KERNEL);
1219 if (!shared) {
1220 kfree(nc);
1221 goto bad;
1224 if (use_alien_caches) {
1225 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1226 if (!alien) {
1227 kfree(shared);
1228 kfree(nc);
1229 goto bad;
1232 cachep->array[cpu] = nc;
1233 l3 = cachep->nodelists[node];
1234 BUG_ON(!l3);
1236 spin_lock_irq(&l3->list_lock);
1237 if (!l3->shared) {
1239 * We are serialised from CPU_DEAD or
1240 * CPU_UP_CANCELLED by the cpucontrol lock
1242 l3->shared = shared;
1243 shared = NULL;
1245 #ifdef CONFIG_NUMA
1246 if (!l3->alien) {
1247 l3->alien = alien;
1248 alien = NULL;
1250 #endif
1251 spin_unlock_irq(&l3->list_lock);
1252 kfree(shared);
1253 free_alien_cache(alien);
1255 init_node_lock_keys(node);
1257 return 0;
1258 bad:
1259 cpuup_canceled(cpu);
1260 return -ENOMEM;
1263 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1264 unsigned long action, void *hcpu)
1266 long cpu = (long)hcpu;
1267 int err = 0;
1269 switch (action) {
1270 case CPU_UP_PREPARE:
1271 case CPU_UP_PREPARE_FROZEN:
1272 mutex_lock(&cache_chain_mutex);
1273 err = cpuup_prepare(cpu);
1274 mutex_unlock(&cache_chain_mutex);
1275 break;
1276 case CPU_ONLINE:
1277 case CPU_ONLINE_FROZEN:
1278 start_cpu_timer(cpu);
1279 break;
1280 #ifdef CONFIG_HOTPLUG_CPU
1281 case CPU_DOWN_PREPARE:
1282 case CPU_DOWN_PREPARE_FROZEN:
1284 * Shutdown cache reaper. Note that the cache_chain_mutex is
1285 * held so that if cache_reap() is invoked it cannot do
1286 * anything expensive but will only modify reap_work
1287 * and reschedule the timer.
1289 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1290 /* Now the cache_reaper is guaranteed to be not running. */
1291 per_cpu(slab_reap_work, cpu).work.func = NULL;
1292 break;
1293 case CPU_DOWN_FAILED:
1294 case CPU_DOWN_FAILED_FROZEN:
1295 start_cpu_timer(cpu);
1296 break;
1297 case CPU_DEAD:
1298 case CPU_DEAD_FROZEN:
1300 * Even if all the cpus of a node are down, we don't free the
1301 * kmem_list3 of any cache. This to avoid a race between
1302 * cpu_down, and a kmalloc allocation from another cpu for
1303 * memory from the node of the cpu going down. The list3
1304 * structure is usually allocated from kmem_cache_create() and
1305 * gets destroyed at kmem_cache_destroy().
1307 /* fall through */
1308 #endif
1309 case CPU_UP_CANCELED:
1310 case CPU_UP_CANCELED_FROZEN:
1311 mutex_lock(&cache_chain_mutex);
1312 cpuup_canceled(cpu);
1313 mutex_unlock(&cache_chain_mutex);
1314 break;
1316 return notifier_from_errno(err);
1319 static struct notifier_block __cpuinitdata cpucache_notifier = {
1320 &cpuup_callback, NULL, 0
1323 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1325 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1326 * Returns -EBUSY if all objects cannot be drained so that the node is not
1327 * removed.
1329 * Must hold cache_chain_mutex.
1331 static int __meminit drain_cache_nodelists_node(int node)
1333 struct kmem_cache *cachep;
1334 int ret = 0;
1336 list_for_each_entry(cachep, &cache_chain, next) {
1337 struct kmem_list3 *l3;
1339 l3 = cachep->nodelists[node];
1340 if (!l3)
1341 continue;
1343 drain_freelist(cachep, l3, l3->free_objects);
1345 if (!list_empty(&l3->slabs_full) ||
1346 !list_empty(&l3->slabs_partial)) {
1347 ret = -EBUSY;
1348 break;
1351 return ret;
1354 static int __meminit slab_memory_callback(struct notifier_block *self,
1355 unsigned long action, void *arg)
1357 struct memory_notify *mnb = arg;
1358 int ret = 0;
1359 int nid;
1361 nid = mnb->status_change_nid;
1362 if (nid < 0)
1363 goto out;
1365 switch (action) {
1366 case MEM_GOING_ONLINE:
1367 mutex_lock(&cache_chain_mutex);
1368 ret = init_cache_nodelists_node(nid);
1369 mutex_unlock(&cache_chain_mutex);
1370 break;
1371 case MEM_GOING_OFFLINE:
1372 mutex_lock(&cache_chain_mutex);
1373 ret = drain_cache_nodelists_node(nid);
1374 mutex_unlock(&cache_chain_mutex);
1375 break;
1376 case MEM_ONLINE:
1377 case MEM_OFFLINE:
1378 case MEM_CANCEL_ONLINE:
1379 case MEM_CANCEL_OFFLINE:
1380 break;
1382 out:
1383 return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1385 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1388 * swap the static kmem_list3 with kmalloced memory
1390 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1391 int nodeid)
1393 struct kmem_list3 *ptr;
1395 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1396 BUG_ON(!ptr);
1398 memcpy(ptr, list, sizeof(struct kmem_list3));
1400 * Do not assume that spinlocks can be initialized via memcpy:
1402 spin_lock_init(&ptr->list_lock);
1404 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1405 cachep->nodelists[nodeid] = ptr;
1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1410 * size of kmem_list3.
1412 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1414 int node;
1416 for_each_online_node(node) {
1417 cachep->nodelists[node] = &initkmem_list3[index + node];
1418 cachep->nodelists[node]->next_reap = jiffies +
1419 REAPTIMEOUT_LIST3 +
1420 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1425 * Initialisation. Called after the page allocator have been initialised and
1426 * before smp_init().
1428 void __init kmem_cache_init(void)
1430 size_t left_over;
1431 struct cache_sizes *sizes;
1432 struct cache_names *names;
1433 int i;
1434 int order;
1435 int node;
1437 if (num_possible_nodes() == 1)
1438 use_alien_caches = 0;
1440 for (i = 0; i < NUM_INIT_LISTS; i++) {
1441 kmem_list3_init(&initkmem_list3[i]);
1442 if (i < MAX_NUMNODES)
1443 cache_cache.nodelists[i] = NULL;
1445 set_up_list3s(&cache_cache, CACHE_CACHE);
1448 * Fragmentation resistance on low memory - only use bigger
1449 * page orders on machines with more than 32MB of memory.
1451 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1452 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1454 /* Bootstrap is tricky, because several objects are allocated
1455 * from caches that do not exist yet:
1456 * 1) initialize the cache_cache cache: it contains the struct
1457 * kmem_cache structures of all caches, except cache_cache itself:
1458 * cache_cache is statically allocated.
1459 * Initially an __init data area is used for the head array and the
1460 * kmem_list3 structures, it's replaced with a kmalloc allocated
1461 * array at the end of the bootstrap.
1462 * 2) Create the first kmalloc cache.
1463 * The struct kmem_cache for the new cache is allocated normally.
1464 * An __init data area is used for the head array.
1465 * 3) Create the remaining kmalloc caches, with minimally sized
1466 * head arrays.
1467 * 4) Replace the __init data head arrays for cache_cache and the first
1468 * kmalloc cache with kmalloc allocated arrays.
1469 * 5) Replace the __init data for kmem_list3 for cache_cache and
1470 * the other cache's with kmalloc allocated memory.
1471 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1474 node = numa_mem_id();
1476 /* 1) create the cache_cache */
1477 INIT_LIST_HEAD(&cache_chain);
1478 list_add(&cache_cache.next, &cache_chain);
1479 cache_cache.colour_off = cache_line_size();
1480 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1481 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1484 * struct kmem_cache size depends on nr_node_ids, which
1485 * can be less than MAX_NUMNODES.
1487 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1488 nr_node_ids * sizeof(struct kmem_list3 *);
1489 #if DEBUG
1490 cache_cache.obj_size = cache_cache.buffer_size;
1491 #endif
1492 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1493 cache_line_size());
1494 cache_cache.reciprocal_buffer_size =
1495 reciprocal_value(cache_cache.buffer_size);
1497 for (order = 0; order < MAX_ORDER; order++) {
1498 cache_estimate(order, cache_cache.buffer_size,
1499 cache_line_size(), 0, &left_over, &cache_cache.num);
1500 if (cache_cache.num)
1501 break;
1503 BUG_ON(!cache_cache.num);
1504 cache_cache.gfporder = order;
1505 cache_cache.colour = left_over / cache_cache.colour_off;
1506 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1507 sizeof(struct slab), cache_line_size());
1509 /* 2+3) create the kmalloc caches */
1510 sizes = malloc_sizes;
1511 names = cache_names;
1514 * Initialize the caches that provide memory for the array cache and the
1515 * kmem_list3 structures first. Without this, further allocations will
1516 * bug.
1519 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1520 sizes[INDEX_AC].cs_size,
1521 ARCH_KMALLOC_MINALIGN,
1522 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1523 NULL);
1525 if (INDEX_AC != INDEX_L3) {
1526 sizes[INDEX_L3].cs_cachep =
1527 kmem_cache_create(names[INDEX_L3].name,
1528 sizes[INDEX_L3].cs_size,
1529 ARCH_KMALLOC_MINALIGN,
1530 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1531 NULL);
1534 slab_early_init = 0;
1536 while (sizes->cs_size != ULONG_MAX) {
1538 * For performance, all the general caches are L1 aligned.
1539 * This should be particularly beneficial on SMP boxes, as it
1540 * eliminates "false sharing".
1541 * Note for systems short on memory removing the alignment will
1542 * allow tighter packing of the smaller caches.
1544 if (!sizes->cs_cachep) {
1545 sizes->cs_cachep = kmem_cache_create(names->name,
1546 sizes->cs_size,
1547 ARCH_KMALLOC_MINALIGN,
1548 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1549 NULL);
1551 #ifdef CONFIG_ZONE_DMA
1552 sizes->cs_dmacachep = kmem_cache_create(
1553 names->name_dma,
1554 sizes->cs_size,
1555 ARCH_KMALLOC_MINALIGN,
1556 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1557 SLAB_PANIC,
1558 NULL);
1559 #endif
1560 sizes++;
1561 names++;
1563 /* 4) Replace the bootstrap head arrays */
1565 struct array_cache *ptr;
1567 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1569 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1570 memcpy(ptr, cpu_cache_get(&cache_cache),
1571 sizeof(struct arraycache_init));
1573 * Do not assume that spinlocks can be initialized via memcpy:
1575 spin_lock_init(&ptr->lock);
1577 cache_cache.array[smp_processor_id()] = ptr;
1579 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1581 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1582 != &initarray_generic.cache);
1583 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1584 sizeof(struct arraycache_init));
1586 * Do not assume that spinlocks can be initialized via memcpy:
1588 spin_lock_init(&ptr->lock);
1590 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1591 ptr;
1593 /* 5) Replace the bootstrap kmem_list3's */
1595 int nid;
1597 for_each_online_node(nid) {
1598 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1600 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1601 &initkmem_list3[SIZE_AC + nid], nid);
1603 if (INDEX_AC != INDEX_L3) {
1604 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1605 &initkmem_list3[SIZE_L3 + nid], nid);
1610 g_cpucache_up = EARLY;
1613 void __init kmem_cache_init_late(void)
1615 struct kmem_cache *cachep;
1617 /* 6) resize the head arrays to their final sizes */
1618 mutex_lock(&cache_chain_mutex);
1619 list_for_each_entry(cachep, &cache_chain, next)
1620 if (enable_cpucache(cachep, GFP_NOWAIT))
1621 BUG();
1622 mutex_unlock(&cache_chain_mutex);
1624 /* Done! */
1625 g_cpucache_up = FULL;
1627 /* Annotate slab for lockdep -- annotate the malloc caches */
1628 init_lock_keys();
1631 * Register a cpu startup notifier callback that initializes
1632 * cpu_cache_get for all new cpus
1634 register_cpu_notifier(&cpucache_notifier);
1636 #ifdef CONFIG_NUMA
1638 * Register a memory hotplug callback that initializes and frees
1639 * nodelists.
1641 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1642 #endif
1645 * The reap timers are started later, with a module init call: That part
1646 * of the kernel is not yet operational.
1650 static int __init cpucache_init(void)
1652 int cpu;
1655 * Register the timers that return unneeded pages to the page allocator
1657 for_each_online_cpu(cpu)
1658 start_cpu_timer(cpu);
1659 return 0;
1661 __initcall(cpucache_init);
1664 * Interface to system's page allocator. No need to hold the cache-lock.
1666 * If we requested dmaable memory, we will get it. Even if we
1667 * did not request dmaable memory, we might get it, but that
1668 * would be relatively rare and ignorable.
1670 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1672 struct page *page;
1673 int nr_pages;
1674 int i;
1676 #ifndef CONFIG_MMU
1678 * Nommu uses slab's for process anonymous memory allocations, and thus
1679 * requires __GFP_COMP to properly refcount higher order allocations
1681 flags |= __GFP_COMP;
1682 #endif
1684 flags |= cachep->gfpflags;
1685 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1686 flags |= __GFP_RECLAIMABLE;
1688 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1689 if (!page)
1690 return NULL;
1692 nr_pages = (1 << cachep->gfporder);
1693 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1694 add_zone_page_state(page_zone(page),
1695 NR_SLAB_RECLAIMABLE, nr_pages);
1696 else
1697 add_zone_page_state(page_zone(page),
1698 NR_SLAB_UNRECLAIMABLE, nr_pages);
1699 for (i = 0; i < nr_pages; i++)
1700 __SetPageSlab(page + i);
1702 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1703 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1705 if (cachep->ctor)
1706 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1707 else
1708 kmemcheck_mark_unallocated_pages(page, nr_pages);
1711 return page_address(page);
1715 * Interface to system's page release.
1717 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1719 unsigned long i = (1 << cachep->gfporder);
1720 struct page *page = virt_to_page(addr);
1721 const unsigned long nr_freed = i;
1723 kmemcheck_free_shadow(page, cachep->gfporder);
1725 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1726 sub_zone_page_state(page_zone(page),
1727 NR_SLAB_RECLAIMABLE, nr_freed);
1728 else
1729 sub_zone_page_state(page_zone(page),
1730 NR_SLAB_UNRECLAIMABLE, nr_freed);
1731 while (i--) {
1732 BUG_ON(!PageSlab(page));
1733 __ClearPageSlab(page);
1734 page++;
1736 if (current->reclaim_state)
1737 current->reclaim_state->reclaimed_slab += nr_freed;
1738 free_pages((unsigned long)addr, cachep->gfporder);
1741 static void kmem_rcu_free(struct rcu_head *head)
1743 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1744 struct kmem_cache *cachep = slab_rcu->cachep;
1746 kmem_freepages(cachep, slab_rcu->addr);
1747 if (OFF_SLAB(cachep))
1748 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1751 #if DEBUG
1753 #ifdef CONFIG_DEBUG_PAGEALLOC
1754 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1755 unsigned long caller)
1757 int size = obj_size(cachep);
1759 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1761 if (size < 5 * sizeof(unsigned long))
1762 return;
1764 *addr++ = 0x12345678;
1765 *addr++ = caller;
1766 *addr++ = smp_processor_id();
1767 size -= 3 * sizeof(unsigned long);
1769 unsigned long *sptr = &caller;
1770 unsigned long svalue;
1772 while (!kstack_end(sptr)) {
1773 svalue = *sptr++;
1774 if (kernel_text_address(svalue)) {
1775 *addr++ = svalue;
1776 size -= sizeof(unsigned long);
1777 if (size <= sizeof(unsigned long))
1778 break;
1783 *addr++ = 0x87654321;
1785 #endif
1787 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1789 int size = obj_size(cachep);
1790 addr = &((char *)addr)[obj_offset(cachep)];
1792 memset(addr, val, size);
1793 *(unsigned char *)(addr + size - 1) = POISON_END;
1796 static void dump_line(char *data, int offset, int limit)
1798 int i;
1799 unsigned char error = 0;
1800 int bad_count = 0;
1802 printk(KERN_ERR "%03x:", offset);
1803 for (i = 0; i < limit; i++) {
1804 if (data[offset + i] != POISON_FREE) {
1805 error = data[offset + i];
1806 bad_count++;
1808 printk(" %02x", (unsigned char)data[offset + i]);
1810 printk("\n");
1812 if (bad_count == 1) {
1813 error ^= POISON_FREE;
1814 if (!(error & (error - 1))) {
1815 printk(KERN_ERR "Single bit error detected. Probably "
1816 "bad RAM.\n");
1817 #ifdef CONFIG_X86
1818 printk(KERN_ERR "Run memtest86+ or a similar memory "
1819 "test tool.\n");
1820 #else
1821 printk(KERN_ERR "Run a memory test tool.\n");
1822 #endif
1826 #endif
1828 #if DEBUG
1830 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1832 int i, size;
1833 char *realobj;
1835 if (cachep->flags & SLAB_RED_ZONE) {
1836 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1837 *dbg_redzone1(cachep, objp),
1838 *dbg_redzone2(cachep, objp));
1841 if (cachep->flags & SLAB_STORE_USER) {
1842 printk(KERN_ERR "Last user: [<%p>]",
1843 *dbg_userword(cachep, objp));
1844 print_symbol("(%s)",
1845 (unsigned long)*dbg_userword(cachep, objp));
1846 printk("\n");
1848 realobj = (char *)objp + obj_offset(cachep);
1849 size = obj_size(cachep);
1850 for (i = 0; i < size && lines; i += 16, lines--) {
1851 int limit;
1852 limit = 16;
1853 if (i + limit > size)
1854 limit = size - i;
1855 dump_line(realobj, i, limit);
1859 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1861 char *realobj;
1862 int size, i;
1863 int lines = 0;
1865 realobj = (char *)objp + obj_offset(cachep);
1866 size = obj_size(cachep);
1868 for (i = 0; i < size; i++) {
1869 char exp = POISON_FREE;
1870 if (i == size - 1)
1871 exp = POISON_END;
1872 if (realobj[i] != exp) {
1873 int limit;
1874 /* Mismatch ! */
1875 /* Print header */
1876 if (lines == 0) {
1877 printk(KERN_ERR
1878 "Slab corruption: %s start=%p, len=%d\n",
1879 cachep->name, realobj, size);
1880 print_objinfo(cachep, objp, 0);
1882 /* Hexdump the affected line */
1883 i = (i / 16) * 16;
1884 limit = 16;
1885 if (i + limit > size)
1886 limit = size - i;
1887 dump_line(realobj, i, limit);
1888 i += 16;
1889 lines++;
1890 /* Limit to 5 lines */
1891 if (lines > 5)
1892 break;
1895 if (lines != 0) {
1896 /* Print some data about the neighboring objects, if they
1897 * exist:
1899 struct slab *slabp = virt_to_slab(objp);
1900 unsigned int objnr;
1902 objnr = obj_to_index(cachep, slabp, objp);
1903 if (objnr) {
1904 objp = index_to_obj(cachep, slabp, objnr - 1);
1905 realobj = (char *)objp + obj_offset(cachep);
1906 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1907 realobj, size);
1908 print_objinfo(cachep, objp, 2);
1910 if (objnr + 1 < cachep->num) {
1911 objp = index_to_obj(cachep, slabp, objnr + 1);
1912 realobj = (char *)objp + obj_offset(cachep);
1913 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1914 realobj, size);
1915 print_objinfo(cachep, objp, 2);
1919 #endif
1921 #if DEBUG
1922 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1924 int i;
1925 for (i = 0; i < cachep->num; i++) {
1926 void *objp = index_to_obj(cachep, slabp, i);
1928 if (cachep->flags & SLAB_POISON) {
1929 #ifdef CONFIG_DEBUG_PAGEALLOC
1930 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1931 OFF_SLAB(cachep))
1932 kernel_map_pages(virt_to_page(objp),
1933 cachep->buffer_size / PAGE_SIZE, 1);
1934 else
1935 check_poison_obj(cachep, objp);
1936 #else
1937 check_poison_obj(cachep, objp);
1938 #endif
1940 if (cachep->flags & SLAB_RED_ZONE) {
1941 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1942 slab_error(cachep, "start of a freed object "
1943 "was overwritten");
1944 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1945 slab_error(cachep, "end of a freed object "
1946 "was overwritten");
1950 #else
1951 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1954 #endif
1957 * slab_destroy - destroy and release all objects in a slab
1958 * @cachep: cache pointer being destroyed
1959 * @slabp: slab pointer being destroyed
1961 * Destroy all the objs in a slab, and release the mem back to the system.
1962 * Before calling the slab must have been unlinked from the cache. The
1963 * cache-lock is not held/needed.
1965 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1967 void *addr = slabp->s_mem - slabp->colouroff;
1969 slab_destroy_debugcheck(cachep, slabp);
1970 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1971 struct slab_rcu *slab_rcu;
1973 slab_rcu = (struct slab_rcu *)slabp;
1974 slab_rcu->cachep = cachep;
1975 slab_rcu->addr = addr;
1976 call_rcu(&slab_rcu->head, kmem_rcu_free);
1977 } else {
1978 kmem_freepages(cachep, addr);
1979 if (OFF_SLAB(cachep))
1980 kmem_cache_free(cachep->slabp_cache, slabp);
1984 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1986 int i;
1987 struct kmem_list3 *l3;
1989 for_each_online_cpu(i)
1990 kfree(cachep->array[i]);
1992 /* NUMA: free the list3 structures */
1993 for_each_online_node(i) {
1994 l3 = cachep->nodelists[i];
1995 if (l3) {
1996 kfree(l3->shared);
1997 free_alien_cache(l3->alien);
1998 kfree(l3);
2001 kmem_cache_free(&cache_cache, cachep);
2006 * calculate_slab_order - calculate size (page order) of slabs
2007 * @cachep: pointer to the cache that is being created
2008 * @size: size of objects to be created in this cache.
2009 * @align: required alignment for the objects.
2010 * @flags: slab allocation flags
2012 * Also calculates the number of objects per slab.
2014 * This could be made much more intelligent. For now, try to avoid using
2015 * high order pages for slabs. When the gfp() functions are more friendly
2016 * towards high-order requests, this should be changed.
2018 static size_t calculate_slab_order(struct kmem_cache *cachep,
2019 size_t size, size_t align, unsigned long flags)
2021 unsigned long offslab_limit;
2022 size_t left_over = 0;
2023 int gfporder;
2025 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2026 unsigned int num;
2027 size_t remainder;
2029 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2030 if (!num)
2031 continue;
2033 if (flags & CFLGS_OFF_SLAB) {
2035 * Max number of objs-per-slab for caches which
2036 * use off-slab slabs. Needed to avoid a possible
2037 * looping condition in cache_grow().
2039 offslab_limit = size - sizeof(struct slab);
2040 offslab_limit /= sizeof(kmem_bufctl_t);
2042 if (num > offslab_limit)
2043 break;
2046 /* Found something acceptable - save it away */
2047 cachep->num = num;
2048 cachep->gfporder = gfporder;
2049 left_over = remainder;
2052 * A VFS-reclaimable slab tends to have most allocations
2053 * as GFP_NOFS and we really don't want to have to be allocating
2054 * higher-order pages when we are unable to shrink dcache.
2056 if (flags & SLAB_RECLAIM_ACCOUNT)
2057 break;
2060 * Large number of objects is good, but very large slabs are
2061 * currently bad for the gfp()s.
2063 if (gfporder >= slab_break_gfp_order)
2064 break;
2067 * Acceptable internal fragmentation?
2069 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2070 break;
2072 return left_over;
2075 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2077 if (g_cpucache_up == FULL)
2078 return enable_cpucache(cachep, gfp);
2080 if (g_cpucache_up == NONE) {
2082 * Note: the first kmem_cache_create must create the cache
2083 * that's used by kmalloc(24), otherwise the creation of
2084 * further caches will BUG().
2086 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2089 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2090 * the first cache, then we need to set up all its list3s,
2091 * otherwise the creation of further caches will BUG().
2093 set_up_list3s(cachep, SIZE_AC);
2094 if (INDEX_AC == INDEX_L3)
2095 g_cpucache_up = PARTIAL_L3;
2096 else
2097 g_cpucache_up = PARTIAL_AC;
2098 } else {
2099 cachep->array[smp_processor_id()] =
2100 kmalloc(sizeof(struct arraycache_init), gfp);
2102 if (g_cpucache_up == PARTIAL_AC) {
2103 set_up_list3s(cachep, SIZE_L3);
2104 g_cpucache_up = PARTIAL_L3;
2105 } else {
2106 int node;
2107 for_each_online_node(node) {
2108 cachep->nodelists[node] =
2109 kmalloc_node(sizeof(struct kmem_list3),
2110 gfp, node);
2111 BUG_ON(!cachep->nodelists[node]);
2112 kmem_list3_init(cachep->nodelists[node]);
2116 cachep->nodelists[numa_mem_id()]->next_reap =
2117 jiffies + REAPTIMEOUT_LIST3 +
2118 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2120 cpu_cache_get(cachep)->avail = 0;
2121 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2122 cpu_cache_get(cachep)->batchcount = 1;
2123 cpu_cache_get(cachep)->touched = 0;
2124 cachep->batchcount = 1;
2125 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2126 return 0;
2130 * kmem_cache_create - Create a cache.
2131 * @name: A string which is used in /proc/slabinfo to identify this cache.
2132 * @size: The size of objects to be created in this cache.
2133 * @align: The required alignment for the objects.
2134 * @flags: SLAB flags
2135 * @ctor: A constructor for the objects.
2137 * Returns a ptr to the cache on success, NULL on failure.
2138 * Cannot be called within a int, but can be interrupted.
2139 * The @ctor is run when new pages are allocated by the cache.
2141 * @name must be valid until the cache is destroyed. This implies that
2142 * the module calling this has to destroy the cache before getting unloaded.
2143 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2144 * therefore applications must manage it themselves.
2146 * The flags are
2148 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2149 * to catch references to uninitialised memory.
2151 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2152 * for buffer overruns.
2154 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2155 * cacheline. This can be beneficial if you're counting cycles as closely
2156 * as davem.
2158 struct kmem_cache *
2159 kmem_cache_create (const char *name, size_t size, size_t align,
2160 unsigned long flags, void (*ctor)(void *))
2162 size_t left_over, slab_size, ralign;
2163 struct kmem_cache *cachep = NULL, *pc;
2164 gfp_t gfp;
2167 * Sanity checks... these are all serious usage bugs.
2169 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2170 size > KMALLOC_MAX_SIZE) {
2171 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2172 name);
2173 BUG();
2177 * We use cache_chain_mutex to ensure a consistent view of
2178 * cpu_online_mask as well. Please see cpuup_callback
2180 if (slab_is_available()) {
2181 get_online_cpus();
2182 mutex_lock(&cache_chain_mutex);
2185 list_for_each_entry(pc, &cache_chain, next) {
2186 char tmp;
2187 int res;
2190 * This happens when the module gets unloaded and doesn't
2191 * destroy its slab cache and no-one else reuses the vmalloc
2192 * area of the module. Print a warning.
2194 res = probe_kernel_address(pc->name, tmp);
2195 if (res) {
2196 printk(KERN_ERR
2197 "SLAB: cache with size %d has lost its name\n",
2198 pc->buffer_size);
2199 continue;
2202 if (!strcmp(pc->name, name)) {
2203 printk(KERN_ERR
2204 "kmem_cache_create: duplicate cache %s\n", name);
2205 dump_stack();
2206 goto oops;
2210 #if DEBUG
2211 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2212 #if FORCED_DEBUG
2214 * Enable redzoning and last user accounting, except for caches with
2215 * large objects, if the increased size would increase the object size
2216 * above the next power of two: caches with object sizes just above a
2217 * power of two have a significant amount of internal fragmentation.
2219 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2220 2 * sizeof(unsigned long long)))
2221 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2222 if (!(flags & SLAB_DESTROY_BY_RCU))
2223 flags |= SLAB_POISON;
2224 #endif
2225 if (flags & SLAB_DESTROY_BY_RCU)
2226 BUG_ON(flags & SLAB_POISON);
2227 #endif
2229 * Always checks flags, a caller might be expecting debug support which
2230 * isn't available.
2232 BUG_ON(flags & ~CREATE_MASK);
2235 * Check that size is in terms of words. This is needed to avoid
2236 * unaligned accesses for some archs when redzoning is used, and makes
2237 * sure any on-slab bufctl's are also correctly aligned.
2239 if (size & (BYTES_PER_WORD - 1)) {
2240 size += (BYTES_PER_WORD - 1);
2241 size &= ~(BYTES_PER_WORD - 1);
2244 /* calculate the final buffer alignment: */
2246 /* 1) arch recommendation: can be overridden for debug */
2247 if (flags & SLAB_HWCACHE_ALIGN) {
2249 * Default alignment: as specified by the arch code. Except if
2250 * an object is really small, then squeeze multiple objects into
2251 * one cacheline.
2253 ralign = cache_line_size();
2254 while (size <= ralign / 2)
2255 ralign /= 2;
2256 } else {
2257 ralign = BYTES_PER_WORD;
2261 * Redzoning and user store require word alignment or possibly larger.
2262 * Note this will be overridden by architecture or caller mandated
2263 * alignment if either is greater than BYTES_PER_WORD.
2265 if (flags & SLAB_STORE_USER)
2266 ralign = BYTES_PER_WORD;
2268 if (flags & SLAB_RED_ZONE) {
2269 ralign = REDZONE_ALIGN;
2270 /* If redzoning, ensure that the second redzone is suitably
2271 * aligned, by adjusting the object size accordingly. */
2272 size += REDZONE_ALIGN - 1;
2273 size &= ~(REDZONE_ALIGN - 1);
2276 /* 2) arch mandated alignment */
2277 if (ralign < ARCH_SLAB_MINALIGN) {
2278 ralign = ARCH_SLAB_MINALIGN;
2280 /* 3) caller mandated alignment */
2281 if (ralign < align) {
2282 ralign = align;
2284 /* disable debug if not aligning with REDZONE_ALIGN */
2285 if (ralign & (__alignof__(unsigned long long) - 1))
2286 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2288 * 4) Store it.
2290 align = ralign;
2292 if (slab_is_available())
2293 gfp = GFP_KERNEL;
2294 else
2295 gfp = GFP_NOWAIT;
2297 /* Get cache's description obj. */
2298 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2299 if (!cachep)
2300 goto oops;
2302 #if DEBUG
2303 cachep->obj_size = size;
2306 * Both debugging options require word-alignment which is calculated
2307 * into align above.
2309 if (flags & SLAB_RED_ZONE) {
2310 /* add space for red zone words */
2311 cachep->obj_offset += align;
2312 size += align + sizeof(unsigned long long);
2314 if (flags & SLAB_STORE_USER) {
2315 /* user store requires one word storage behind the end of
2316 * the real object. But if the second red zone needs to be
2317 * aligned to 64 bits, we must allow that much space.
2319 if (flags & SLAB_RED_ZONE)
2320 size += REDZONE_ALIGN;
2321 else
2322 size += BYTES_PER_WORD;
2324 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2325 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2326 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2327 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2328 size = PAGE_SIZE;
2330 #endif
2331 #endif
2334 * Determine if the slab management is 'on' or 'off' slab.
2335 * (bootstrapping cannot cope with offslab caches so don't do
2336 * it too early on. Always use on-slab management when
2337 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2339 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2340 !(flags & SLAB_NOLEAKTRACE))
2342 * Size is large, assume best to place the slab management obj
2343 * off-slab (should allow better packing of objs).
2345 flags |= CFLGS_OFF_SLAB;
2347 size = ALIGN(size, align);
2349 left_over = calculate_slab_order(cachep, size, align, flags);
2351 if (!cachep->num) {
2352 printk(KERN_ERR
2353 "kmem_cache_create: couldn't create cache %s.\n", name);
2354 kmem_cache_free(&cache_cache, cachep);
2355 cachep = NULL;
2356 goto oops;
2358 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2359 + sizeof(struct slab), align);
2362 * If the slab has been placed off-slab, and we have enough space then
2363 * move it on-slab. This is at the expense of any extra colouring.
2365 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2366 flags &= ~CFLGS_OFF_SLAB;
2367 left_over -= slab_size;
2370 if (flags & CFLGS_OFF_SLAB) {
2371 /* really off slab. No need for manual alignment */
2372 slab_size =
2373 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2375 #ifdef CONFIG_PAGE_POISONING
2376 /* If we're going to use the generic kernel_map_pages()
2377 * poisoning, then it's going to smash the contents of
2378 * the redzone and userword anyhow, so switch them off.
2380 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2381 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2382 #endif
2385 cachep->colour_off = cache_line_size();
2386 /* Offset must be a multiple of the alignment. */
2387 if (cachep->colour_off < align)
2388 cachep->colour_off = align;
2389 cachep->colour = left_over / cachep->colour_off;
2390 cachep->slab_size = slab_size;
2391 cachep->flags = flags;
2392 cachep->gfpflags = 0;
2393 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2394 cachep->gfpflags |= GFP_DMA;
2395 cachep->buffer_size = size;
2396 cachep->reciprocal_buffer_size = reciprocal_value(size);
2398 if (flags & CFLGS_OFF_SLAB) {
2399 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2401 * This is a possibility for one of the malloc_sizes caches.
2402 * But since we go off slab only for object size greater than
2403 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2404 * this should not happen at all.
2405 * But leave a BUG_ON for some lucky dude.
2407 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2409 cachep->ctor = ctor;
2410 cachep->name = name;
2412 if (setup_cpu_cache(cachep, gfp)) {
2413 __kmem_cache_destroy(cachep);
2414 cachep = NULL;
2415 goto oops;
2418 /* cache setup completed, link it into the list */
2419 list_add(&cachep->next, &cache_chain);
2420 oops:
2421 if (!cachep && (flags & SLAB_PANIC))
2422 panic("kmem_cache_create(): failed to create slab `%s'\n",
2423 name);
2424 if (slab_is_available()) {
2425 mutex_unlock(&cache_chain_mutex);
2426 put_online_cpus();
2428 return cachep;
2430 EXPORT_SYMBOL(kmem_cache_create);
2432 #if DEBUG
2433 static void check_irq_off(void)
2435 BUG_ON(!irqs_disabled());
2438 static void check_irq_on(void)
2440 BUG_ON(irqs_disabled());
2443 static void check_spinlock_acquired(struct kmem_cache *cachep)
2445 #ifdef CONFIG_SMP
2446 check_irq_off();
2447 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2448 #endif
2451 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2453 #ifdef CONFIG_SMP
2454 check_irq_off();
2455 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2456 #endif
2459 #else
2460 #define check_irq_off() do { } while(0)
2461 #define check_irq_on() do { } while(0)
2462 #define check_spinlock_acquired(x) do { } while(0)
2463 #define check_spinlock_acquired_node(x, y) do { } while(0)
2464 #endif
2466 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2467 struct array_cache *ac,
2468 int force, int node);
2470 static void do_drain(void *arg)
2472 struct kmem_cache *cachep = arg;
2473 struct array_cache *ac;
2474 int node = numa_mem_id();
2476 check_irq_off();
2477 ac = cpu_cache_get(cachep);
2478 spin_lock(&cachep->nodelists[node]->list_lock);
2479 free_block(cachep, ac->entry, ac->avail, node);
2480 spin_unlock(&cachep->nodelists[node]->list_lock);
2481 ac->avail = 0;
2484 static void drain_cpu_caches(struct kmem_cache *cachep)
2486 struct kmem_list3 *l3;
2487 int node;
2489 on_each_cpu(do_drain, cachep, 1);
2490 check_irq_on();
2491 for_each_online_node(node) {
2492 l3 = cachep->nodelists[node];
2493 if (l3 && l3->alien)
2494 drain_alien_cache(cachep, l3->alien);
2497 for_each_online_node(node) {
2498 l3 = cachep->nodelists[node];
2499 if (l3)
2500 drain_array(cachep, l3, l3->shared, 1, node);
2505 * Remove slabs from the list of free slabs.
2506 * Specify the number of slabs to drain in tofree.
2508 * Returns the actual number of slabs released.
2510 static int drain_freelist(struct kmem_cache *cache,
2511 struct kmem_list3 *l3, int tofree)
2513 struct list_head *p;
2514 int nr_freed;
2515 struct slab *slabp;
2517 nr_freed = 0;
2518 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2520 spin_lock_irq(&l3->list_lock);
2521 p = l3->slabs_free.prev;
2522 if (p == &l3->slabs_free) {
2523 spin_unlock_irq(&l3->list_lock);
2524 goto out;
2527 slabp = list_entry(p, struct slab, list);
2528 #if DEBUG
2529 BUG_ON(slabp->inuse);
2530 #endif
2531 list_del(&slabp->list);
2533 * Safe to drop the lock. The slab is no longer linked
2534 * to the cache.
2536 l3->free_objects -= cache->num;
2537 spin_unlock_irq(&l3->list_lock);
2538 slab_destroy(cache, slabp);
2539 nr_freed++;
2541 out:
2542 return nr_freed;
2545 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2546 static int __cache_shrink(struct kmem_cache *cachep)
2548 int ret = 0, i = 0;
2549 struct kmem_list3 *l3;
2551 drain_cpu_caches(cachep);
2553 check_irq_on();
2554 for_each_online_node(i) {
2555 l3 = cachep->nodelists[i];
2556 if (!l3)
2557 continue;
2559 drain_freelist(cachep, l3, l3->free_objects);
2561 ret += !list_empty(&l3->slabs_full) ||
2562 !list_empty(&l3->slabs_partial);
2564 return (ret ? 1 : 0);
2568 * kmem_cache_shrink - Shrink a cache.
2569 * @cachep: The cache to shrink.
2571 * Releases as many slabs as possible for a cache.
2572 * To help debugging, a zero exit status indicates all slabs were released.
2574 int kmem_cache_shrink(struct kmem_cache *cachep)
2576 int ret;
2577 BUG_ON(!cachep || in_interrupt());
2579 get_online_cpus();
2580 mutex_lock(&cache_chain_mutex);
2581 ret = __cache_shrink(cachep);
2582 mutex_unlock(&cache_chain_mutex);
2583 put_online_cpus();
2584 return ret;
2586 EXPORT_SYMBOL(kmem_cache_shrink);
2589 * kmem_cache_destroy - delete a cache
2590 * @cachep: the cache to destroy
2592 * Remove a &struct kmem_cache object from the slab cache.
2594 * It is expected this function will be called by a module when it is
2595 * unloaded. This will remove the cache completely, and avoid a duplicate
2596 * cache being allocated each time a module is loaded and unloaded, if the
2597 * module doesn't have persistent in-kernel storage across loads and unloads.
2599 * The cache must be empty before calling this function.
2601 * The caller must guarantee that noone will allocate memory from the cache
2602 * during the kmem_cache_destroy().
2604 void kmem_cache_destroy(struct kmem_cache *cachep)
2606 BUG_ON(!cachep || in_interrupt());
2608 /* Find the cache in the chain of caches. */
2609 get_online_cpus();
2610 mutex_lock(&cache_chain_mutex);
2612 * the chain is never empty, cache_cache is never destroyed
2614 list_del(&cachep->next);
2615 if (__cache_shrink(cachep)) {
2616 slab_error(cachep, "Can't free all objects");
2617 list_add(&cachep->next, &cache_chain);
2618 mutex_unlock(&cache_chain_mutex);
2619 put_online_cpus();
2620 return;
2623 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2624 rcu_barrier();
2626 __kmem_cache_destroy(cachep);
2627 mutex_unlock(&cache_chain_mutex);
2628 put_online_cpus();
2630 EXPORT_SYMBOL(kmem_cache_destroy);
2633 * Get the memory for a slab management obj.
2634 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2635 * always come from malloc_sizes caches. The slab descriptor cannot
2636 * come from the same cache which is getting created because,
2637 * when we are searching for an appropriate cache for these
2638 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2639 * If we are creating a malloc_sizes cache here it would not be visible to
2640 * kmem_find_general_cachep till the initialization is complete.
2641 * Hence we cannot have slabp_cache same as the original cache.
2643 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2644 int colour_off, gfp_t local_flags,
2645 int nodeid)
2647 struct slab *slabp;
2649 if (OFF_SLAB(cachep)) {
2650 /* Slab management obj is off-slab. */
2651 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2652 local_flags, nodeid);
2654 * If the first object in the slab is leaked (it's allocated
2655 * but no one has a reference to it), we want to make sure
2656 * kmemleak does not treat the ->s_mem pointer as a reference
2657 * to the object. Otherwise we will not report the leak.
2659 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2660 local_flags);
2661 if (!slabp)
2662 return NULL;
2663 } else {
2664 slabp = objp + colour_off;
2665 colour_off += cachep->slab_size;
2667 slabp->inuse = 0;
2668 slabp->colouroff = colour_off;
2669 slabp->s_mem = objp + colour_off;
2670 slabp->nodeid = nodeid;
2671 slabp->free = 0;
2672 return slabp;
2675 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2677 return (kmem_bufctl_t *) (slabp + 1);
2680 static void cache_init_objs(struct kmem_cache *cachep,
2681 struct slab *slabp)
2683 int i;
2685 for (i = 0; i < cachep->num; i++) {
2686 void *objp = index_to_obj(cachep, slabp, i);
2687 #if DEBUG
2688 /* need to poison the objs? */
2689 if (cachep->flags & SLAB_POISON)
2690 poison_obj(cachep, objp, POISON_FREE);
2691 if (cachep->flags & SLAB_STORE_USER)
2692 *dbg_userword(cachep, objp) = NULL;
2694 if (cachep->flags & SLAB_RED_ZONE) {
2695 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2696 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2699 * Constructors are not allowed to allocate memory from the same
2700 * cache which they are a constructor for. Otherwise, deadlock.
2701 * They must also be threaded.
2703 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2704 cachep->ctor(objp + obj_offset(cachep));
2706 if (cachep->flags & SLAB_RED_ZONE) {
2707 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2708 slab_error(cachep, "constructor overwrote the"
2709 " end of an object");
2710 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2711 slab_error(cachep, "constructor overwrote the"
2712 " start of an object");
2714 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2715 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2716 kernel_map_pages(virt_to_page(objp),
2717 cachep->buffer_size / PAGE_SIZE, 0);
2718 #else
2719 if (cachep->ctor)
2720 cachep->ctor(objp);
2721 #endif
2722 slab_bufctl(slabp)[i] = i + 1;
2724 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2727 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2729 if (CONFIG_ZONE_DMA_FLAG) {
2730 if (flags & GFP_DMA)
2731 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2732 else
2733 BUG_ON(cachep->gfpflags & GFP_DMA);
2737 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2738 int nodeid)
2740 void *objp = index_to_obj(cachep, slabp, slabp->free);
2741 kmem_bufctl_t next;
2743 slabp->inuse++;
2744 next = slab_bufctl(slabp)[slabp->free];
2745 #if DEBUG
2746 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2747 WARN_ON(slabp->nodeid != nodeid);
2748 #endif
2749 slabp->free = next;
2751 return objp;
2754 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2755 void *objp, int nodeid)
2757 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2759 #if DEBUG
2760 /* Verify that the slab belongs to the intended node */
2761 WARN_ON(slabp->nodeid != nodeid);
2763 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2764 printk(KERN_ERR "slab: double free detected in cache "
2765 "'%s', objp %p\n", cachep->name, objp);
2766 BUG();
2768 #endif
2769 slab_bufctl(slabp)[objnr] = slabp->free;
2770 slabp->free = objnr;
2771 slabp->inuse--;
2775 * Map pages beginning at addr to the given cache and slab. This is required
2776 * for the slab allocator to be able to lookup the cache and slab of a
2777 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2779 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2780 void *addr)
2782 int nr_pages;
2783 struct page *page;
2785 page = virt_to_page(addr);
2787 nr_pages = 1;
2788 if (likely(!PageCompound(page)))
2789 nr_pages <<= cache->gfporder;
2791 do {
2792 page_set_cache(page, cache);
2793 page_set_slab(page, slab);
2794 page++;
2795 } while (--nr_pages);
2799 * Grow (by 1) the number of slabs within a cache. This is called by
2800 * kmem_cache_alloc() when there are no active objs left in a cache.
2802 static int cache_grow(struct kmem_cache *cachep,
2803 gfp_t flags, int nodeid, void *objp)
2805 struct slab *slabp;
2806 size_t offset;
2807 gfp_t local_flags;
2808 struct kmem_list3 *l3;
2811 * Be lazy and only check for valid flags here, keeping it out of the
2812 * critical path in kmem_cache_alloc().
2814 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2815 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2817 /* Take the l3 list lock to change the colour_next on this node */
2818 check_irq_off();
2819 l3 = cachep->nodelists[nodeid];
2820 spin_lock(&l3->list_lock);
2822 /* Get colour for the slab, and cal the next value. */
2823 offset = l3->colour_next;
2824 l3->colour_next++;
2825 if (l3->colour_next >= cachep->colour)
2826 l3->colour_next = 0;
2827 spin_unlock(&l3->list_lock);
2829 offset *= cachep->colour_off;
2831 if (local_flags & __GFP_WAIT)
2832 local_irq_enable();
2835 * The test for missing atomic flag is performed here, rather than
2836 * the more obvious place, simply to reduce the critical path length
2837 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2838 * will eventually be caught here (where it matters).
2840 kmem_flagcheck(cachep, flags);
2843 * Get mem for the objs. Attempt to allocate a physical page from
2844 * 'nodeid'.
2846 if (!objp)
2847 objp = kmem_getpages(cachep, local_flags, nodeid);
2848 if (!objp)
2849 goto failed;
2851 /* Get slab management. */
2852 slabp = alloc_slabmgmt(cachep, objp, offset,
2853 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2854 if (!slabp)
2855 goto opps1;
2857 slab_map_pages(cachep, slabp, objp);
2859 cache_init_objs(cachep, slabp);
2861 if (local_flags & __GFP_WAIT)
2862 local_irq_disable();
2863 check_irq_off();
2864 spin_lock(&l3->list_lock);
2866 /* Make slab active. */
2867 list_add_tail(&slabp->list, &(l3->slabs_free));
2868 STATS_INC_GROWN(cachep);
2869 l3->free_objects += cachep->num;
2870 spin_unlock(&l3->list_lock);
2871 return 1;
2872 opps1:
2873 kmem_freepages(cachep, objp);
2874 failed:
2875 if (local_flags & __GFP_WAIT)
2876 local_irq_disable();
2877 return 0;
2880 #if DEBUG
2883 * Perform extra freeing checks:
2884 * - detect bad pointers.
2885 * - POISON/RED_ZONE checking
2887 static void kfree_debugcheck(const void *objp)
2889 if (!virt_addr_valid(objp)) {
2890 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2891 (unsigned long)objp);
2892 BUG();
2896 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2898 unsigned long long redzone1, redzone2;
2900 redzone1 = *dbg_redzone1(cache, obj);
2901 redzone2 = *dbg_redzone2(cache, obj);
2904 * Redzone is ok.
2906 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2907 return;
2909 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2910 slab_error(cache, "double free detected");
2911 else
2912 slab_error(cache, "memory outside object was overwritten");
2914 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2915 obj, redzone1, redzone2);
2918 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2919 void *caller)
2921 struct page *page;
2922 unsigned int objnr;
2923 struct slab *slabp;
2925 BUG_ON(virt_to_cache(objp) != cachep);
2927 objp -= obj_offset(cachep);
2928 kfree_debugcheck(objp);
2929 page = virt_to_head_page(objp);
2931 slabp = page_get_slab(page);
2933 if (cachep->flags & SLAB_RED_ZONE) {
2934 verify_redzone_free(cachep, objp);
2935 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2936 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2938 if (cachep->flags & SLAB_STORE_USER)
2939 *dbg_userword(cachep, objp) = caller;
2941 objnr = obj_to_index(cachep, slabp, objp);
2943 BUG_ON(objnr >= cachep->num);
2944 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2946 #ifdef CONFIG_DEBUG_SLAB_LEAK
2947 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2948 #endif
2949 if (cachep->flags & SLAB_POISON) {
2950 #ifdef CONFIG_DEBUG_PAGEALLOC
2951 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2952 store_stackinfo(cachep, objp, (unsigned long)caller);
2953 kernel_map_pages(virt_to_page(objp),
2954 cachep->buffer_size / PAGE_SIZE, 0);
2955 } else {
2956 poison_obj(cachep, objp, POISON_FREE);
2958 #else
2959 poison_obj(cachep, objp, POISON_FREE);
2960 #endif
2962 return objp;
2965 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2967 kmem_bufctl_t i;
2968 int entries = 0;
2970 /* Check slab's freelist to see if this obj is there. */
2971 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2972 entries++;
2973 if (entries > cachep->num || i >= cachep->num)
2974 goto bad;
2976 if (entries != cachep->num - slabp->inuse) {
2977 bad:
2978 printk(KERN_ERR "slab: Internal list corruption detected in "
2979 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2980 cachep->name, cachep->num, slabp, slabp->inuse);
2981 for (i = 0;
2982 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2983 i++) {
2984 if (i % 16 == 0)
2985 printk("\n%03x:", i);
2986 printk(" %02x", ((unsigned char *)slabp)[i]);
2988 printk("\n");
2989 BUG();
2992 #else
2993 #define kfree_debugcheck(x) do { } while(0)
2994 #define cache_free_debugcheck(x,objp,z) (objp)
2995 #define check_slabp(x,y) do { } while(0)
2996 #endif
2998 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3000 int batchcount;
3001 struct kmem_list3 *l3;
3002 struct array_cache *ac;
3003 int node;
3005 retry:
3006 check_irq_off();
3007 node = numa_mem_id();
3008 ac = cpu_cache_get(cachep);
3009 batchcount = ac->batchcount;
3010 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3012 * If there was little recent activity on this cache, then
3013 * perform only a partial refill. Otherwise we could generate
3014 * refill bouncing.
3016 batchcount = BATCHREFILL_LIMIT;
3018 l3 = cachep->nodelists[node];
3020 BUG_ON(ac->avail > 0 || !l3);
3021 spin_lock(&l3->list_lock);
3023 /* See if we can refill from the shared array */
3024 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3025 l3->shared->touched = 1;
3026 goto alloc_done;
3029 while (batchcount > 0) {
3030 struct list_head *entry;
3031 struct slab *slabp;
3032 /* Get slab alloc is to come from. */
3033 entry = l3->slabs_partial.next;
3034 if (entry == &l3->slabs_partial) {
3035 l3->free_touched = 1;
3036 entry = l3->slabs_free.next;
3037 if (entry == &l3->slabs_free)
3038 goto must_grow;
3041 slabp = list_entry(entry, struct slab, list);
3042 check_slabp(cachep, slabp);
3043 check_spinlock_acquired(cachep);
3046 * The slab was either on partial or free list so
3047 * there must be at least one object available for
3048 * allocation.
3050 BUG_ON(slabp->inuse >= cachep->num);
3052 while (slabp->inuse < cachep->num && batchcount--) {
3053 STATS_INC_ALLOCED(cachep);
3054 STATS_INC_ACTIVE(cachep);
3055 STATS_SET_HIGH(cachep);
3057 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3058 node);
3060 check_slabp(cachep, slabp);
3062 /* move slabp to correct slabp list: */
3063 list_del(&slabp->list);
3064 if (slabp->free == BUFCTL_END)
3065 list_add(&slabp->list, &l3->slabs_full);
3066 else
3067 list_add(&slabp->list, &l3->slabs_partial);
3070 must_grow:
3071 l3->free_objects -= ac->avail;
3072 alloc_done:
3073 spin_unlock(&l3->list_lock);
3075 if (unlikely(!ac->avail)) {
3076 int x;
3077 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3079 /* cache_grow can reenable interrupts, then ac could change. */
3080 ac = cpu_cache_get(cachep);
3081 if (!x && ac->avail == 0) /* no objects in sight? abort */
3082 return NULL;
3084 if (!ac->avail) /* objects refilled by interrupt? */
3085 goto retry;
3087 ac->touched = 1;
3088 return ac->entry[--ac->avail];
3091 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3092 gfp_t flags)
3094 might_sleep_if(flags & __GFP_WAIT);
3095 #if DEBUG
3096 kmem_flagcheck(cachep, flags);
3097 #endif
3100 #if DEBUG
3101 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3102 gfp_t flags, void *objp, void *caller)
3104 if (!objp)
3105 return objp;
3106 if (cachep->flags & SLAB_POISON) {
3107 #ifdef CONFIG_DEBUG_PAGEALLOC
3108 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3109 kernel_map_pages(virt_to_page(objp),
3110 cachep->buffer_size / PAGE_SIZE, 1);
3111 else
3112 check_poison_obj(cachep, objp);
3113 #else
3114 check_poison_obj(cachep, objp);
3115 #endif
3116 poison_obj(cachep, objp, POISON_INUSE);
3118 if (cachep->flags & SLAB_STORE_USER)
3119 *dbg_userword(cachep, objp) = caller;
3121 if (cachep->flags & SLAB_RED_ZONE) {
3122 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3123 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3124 slab_error(cachep, "double free, or memory outside"
3125 " object was overwritten");
3126 printk(KERN_ERR
3127 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3128 objp, *dbg_redzone1(cachep, objp),
3129 *dbg_redzone2(cachep, objp));
3131 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3132 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3134 #ifdef CONFIG_DEBUG_SLAB_LEAK
3136 struct slab *slabp;
3137 unsigned objnr;
3139 slabp = page_get_slab(virt_to_head_page(objp));
3140 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3141 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3143 #endif
3144 objp += obj_offset(cachep);
3145 if (cachep->ctor && cachep->flags & SLAB_POISON)
3146 cachep->ctor(objp);
3147 #if ARCH_SLAB_MINALIGN
3148 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3149 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3150 objp, ARCH_SLAB_MINALIGN);
3152 #endif
3153 return objp;
3155 #else
3156 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3157 #endif
3159 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3161 if (cachep == &cache_cache)
3162 return false;
3164 return should_failslab(obj_size(cachep), flags, cachep->flags);
3167 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3169 void *objp;
3170 struct array_cache *ac;
3172 check_irq_off();
3174 ac = cpu_cache_get(cachep);
3175 if (likely(ac->avail)) {
3176 STATS_INC_ALLOCHIT(cachep);
3177 ac->touched = 1;
3178 objp = ac->entry[--ac->avail];
3179 } else {
3180 STATS_INC_ALLOCMISS(cachep);
3181 objp = cache_alloc_refill(cachep, flags);
3183 * the 'ac' may be updated by cache_alloc_refill(),
3184 * and kmemleak_erase() requires its correct value.
3186 ac = cpu_cache_get(cachep);
3189 * To avoid a false negative, if an object that is in one of the
3190 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3191 * treat the array pointers as a reference to the object.
3193 if (objp)
3194 kmemleak_erase(&ac->entry[ac->avail]);
3195 return objp;
3198 #ifdef CONFIG_NUMA
3200 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3202 * If we are in_interrupt, then process context, including cpusets and
3203 * mempolicy, may not apply and should not be used for allocation policy.
3205 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3207 int nid_alloc, nid_here;
3209 if (in_interrupt() || (flags & __GFP_THISNODE))
3210 return NULL;
3211 nid_alloc = nid_here = numa_mem_id();
3212 get_mems_allowed();
3213 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3214 nid_alloc = cpuset_slab_spread_node();
3215 else if (current->mempolicy)
3216 nid_alloc = slab_node(current->mempolicy);
3217 put_mems_allowed();
3218 if (nid_alloc != nid_here)
3219 return ____cache_alloc_node(cachep, flags, nid_alloc);
3220 return NULL;
3224 * Fallback function if there was no memory available and no objects on a
3225 * certain node and fall back is permitted. First we scan all the
3226 * available nodelists for available objects. If that fails then we
3227 * perform an allocation without specifying a node. This allows the page
3228 * allocator to do its reclaim / fallback magic. We then insert the
3229 * slab into the proper nodelist and then allocate from it.
3231 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3233 struct zonelist *zonelist;
3234 gfp_t local_flags;
3235 struct zoneref *z;
3236 struct zone *zone;
3237 enum zone_type high_zoneidx = gfp_zone(flags);
3238 void *obj = NULL;
3239 int nid;
3241 if (flags & __GFP_THISNODE)
3242 return NULL;
3244 get_mems_allowed();
3245 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3246 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3248 retry:
3250 * Look through allowed nodes for objects available
3251 * from existing per node queues.
3253 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3254 nid = zone_to_nid(zone);
3256 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3257 cache->nodelists[nid] &&
3258 cache->nodelists[nid]->free_objects) {
3259 obj = ____cache_alloc_node(cache,
3260 flags | GFP_THISNODE, nid);
3261 if (obj)
3262 break;
3266 if (!obj) {
3268 * This allocation will be performed within the constraints
3269 * of the current cpuset / memory policy requirements.
3270 * We may trigger various forms of reclaim on the allowed
3271 * set and go into memory reserves if necessary.
3273 if (local_flags & __GFP_WAIT)
3274 local_irq_enable();
3275 kmem_flagcheck(cache, flags);
3276 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3277 if (local_flags & __GFP_WAIT)
3278 local_irq_disable();
3279 if (obj) {
3281 * Insert into the appropriate per node queues
3283 nid = page_to_nid(virt_to_page(obj));
3284 if (cache_grow(cache, flags, nid, obj)) {
3285 obj = ____cache_alloc_node(cache,
3286 flags | GFP_THISNODE, nid);
3287 if (!obj)
3289 * Another processor may allocate the
3290 * objects in the slab since we are
3291 * not holding any locks.
3293 goto retry;
3294 } else {
3295 /* cache_grow already freed obj */
3296 obj = NULL;
3300 put_mems_allowed();
3301 return obj;
3305 * A interface to enable slab creation on nodeid
3307 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3308 int nodeid)
3310 struct list_head *entry;
3311 struct slab *slabp;
3312 struct kmem_list3 *l3;
3313 void *obj;
3314 int x;
3316 l3 = cachep->nodelists[nodeid];
3317 BUG_ON(!l3);
3319 retry:
3320 check_irq_off();
3321 spin_lock(&l3->list_lock);
3322 entry = l3->slabs_partial.next;
3323 if (entry == &l3->slabs_partial) {
3324 l3->free_touched = 1;
3325 entry = l3->slabs_free.next;
3326 if (entry == &l3->slabs_free)
3327 goto must_grow;
3330 slabp = list_entry(entry, struct slab, list);
3331 check_spinlock_acquired_node(cachep, nodeid);
3332 check_slabp(cachep, slabp);
3334 STATS_INC_NODEALLOCS(cachep);
3335 STATS_INC_ACTIVE(cachep);
3336 STATS_SET_HIGH(cachep);
3338 BUG_ON(slabp->inuse == cachep->num);
3340 obj = slab_get_obj(cachep, slabp, nodeid);
3341 check_slabp(cachep, slabp);
3342 l3->free_objects--;
3343 /* move slabp to correct slabp list: */
3344 list_del(&slabp->list);
3346 if (slabp->free == BUFCTL_END)
3347 list_add(&slabp->list, &l3->slabs_full);
3348 else
3349 list_add(&slabp->list, &l3->slabs_partial);
3351 spin_unlock(&l3->list_lock);
3352 goto done;
3354 must_grow:
3355 spin_unlock(&l3->list_lock);
3356 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3357 if (x)
3358 goto retry;
3360 return fallback_alloc(cachep, flags);
3362 done:
3363 return obj;
3367 * kmem_cache_alloc_node - Allocate an object on the specified node
3368 * @cachep: The cache to allocate from.
3369 * @flags: See kmalloc().
3370 * @nodeid: node number of the target node.
3371 * @caller: return address of caller, used for debug information
3373 * Identical to kmem_cache_alloc but it will allocate memory on the given
3374 * node, which can improve the performance for cpu bound structures.
3376 * Fallback to other node is possible if __GFP_THISNODE is not set.
3378 static __always_inline void *
3379 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3380 void *caller)
3382 unsigned long save_flags;
3383 void *ptr;
3384 int slab_node = numa_mem_id();
3386 flags &= gfp_allowed_mask;
3388 lockdep_trace_alloc(flags);
3390 if (slab_should_failslab(cachep, flags))
3391 return NULL;
3393 cache_alloc_debugcheck_before(cachep, flags);
3394 local_irq_save(save_flags);
3396 if (nodeid == -1)
3397 nodeid = slab_node;
3399 if (unlikely(!cachep->nodelists[nodeid])) {
3400 /* Node not bootstrapped yet */
3401 ptr = fallback_alloc(cachep, flags);
3402 goto out;
3405 if (nodeid == slab_node) {
3407 * Use the locally cached objects if possible.
3408 * However ____cache_alloc does not allow fallback
3409 * to other nodes. It may fail while we still have
3410 * objects on other nodes available.
3412 ptr = ____cache_alloc(cachep, flags);
3413 if (ptr)
3414 goto out;
3416 /* ___cache_alloc_node can fall back to other nodes */
3417 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3418 out:
3419 local_irq_restore(save_flags);
3420 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3421 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3422 flags);
3424 if (likely(ptr))
3425 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3427 if (unlikely((flags & __GFP_ZERO) && ptr))
3428 memset(ptr, 0, obj_size(cachep));
3430 return ptr;
3433 static __always_inline void *
3434 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3436 void *objp;
3438 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3439 objp = alternate_node_alloc(cache, flags);
3440 if (objp)
3441 goto out;
3443 objp = ____cache_alloc(cache, flags);
3446 * We may just have run out of memory on the local node.
3447 * ____cache_alloc_node() knows how to locate memory on other nodes
3449 if (!objp)
3450 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3452 out:
3453 return objp;
3455 #else
3457 static __always_inline void *
3458 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3460 return ____cache_alloc(cachep, flags);
3463 #endif /* CONFIG_NUMA */
3465 static __always_inline void *
3466 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3468 unsigned long save_flags;
3469 void *objp;
3471 flags &= gfp_allowed_mask;
3473 lockdep_trace_alloc(flags);
3475 if (slab_should_failslab(cachep, flags))
3476 return NULL;
3478 cache_alloc_debugcheck_before(cachep, flags);
3479 local_irq_save(save_flags);
3480 objp = __do_cache_alloc(cachep, flags);
3481 local_irq_restore(save_flags);
3482 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3483 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3484 flags);
3485 prefetchw(objp);
3487 if (likely(objp))
3488 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3490 if (unlikely((flags & __GFP_ZERO) && objp))
3491 memset(objp, 0, obj_size(cachep));
3493 return objp;
3497 * Caller needs to acquire correct kmem_list's list_lock
3499 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3500 int node)
3502 int i;
3503 struct kmem_list3 *l3;
3505 for (i = 0; i < nr_objects; i++) {
3506 void *objp = objpp[i];
3507 struct slab *slabp;
3509 slabp = virt_to_slab(objp);
3510 l3 = cachep->nodelists[node];
3511 list_del(&slabp->list);
3512 check_spinlock_acquired_node(cachep, node);
3513 check_slabp(cachep, slabp);
3514 slab_put_obj(cachep, slabp, objp, node);
3515 STATS_DEC_ACTIVE(cachep);
3516 l3->free_objects++;
3517 check_slabp(cachep, slabp);
3519 /* fixup slab chains */
3520 if (slabp->inuse == 0) {
3521 if (l3->free_objects > l3->free_limit) {
3522 l3->free_objects -= cachep->num;
3523 /* No need to drop any previously held
3524 * lock here, even if we have a off-slab slab
3525 * descriptor it is guaranteed to come from
3526 * a different cache, refer to comments before
3527 * alloc_slabmgmt.
3529 slab_destroy(cachep, slabp);
3530 } else {
3531 list_add(&slabp->list, &l3->slabs_free);
3533 } else {
3534 /* Unconditionally move a slab to the end of the
3535 * partial list on free - maximum time for the
3536 * other objects to be freed, too.
3538 list_add_tail(&slabp->list, &l3->slabs_partial);
3543 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3545 int batchcount;
3546 struct kmem_list3 *l3;
3547 int node = numa_mem_id();
3549 batchcount = ac->batchcount;
3550 #if DEBUG
3551 BUG_ON(!batchcount || batchcount > ac->avail);
3552 #endif
3553 check_irq_off();
3554 l3 = cachep->nodelists[node];
3555 spin_lock(&l3->list_lock);
3556 if (l3->shared) {
3557 struct array_cache *shared_array = l3->shared;
3558 int max = shared_array->limit - shared_array->avail;
3559 if (max) {
3560 if (batchcount > max)
3561 batchcount = max;
3562 memcpy(&(shared_array->entry[shared_array->avail]),
3563 ac->entry, sizeof(void *) * batchcount);
3564 shared_array->avail += batchcount;
3565 goto free_done;
3569 free_block(cachep, ac->entry, batchcount, node);
3570 free_done:
3571 #if STATS
3573 int i = 0;
3574 struct list_head *p;
3576 p = l3->slabs_free.next;
3577 while (p != &(l3->slabs_free)) {
3578 struct slab *slabp;
3580 slabp = list_entry(p, struct slab, list);
3581 BUG_ON(slabp->inuse);
3583 i++;
3584 p = p->next;
3586 STATS_SET_FREEABLE(cachep, i);
3588 #endif
3589 spin_unlock(&l3->list_lock);
3590 ac->avail -= batchcount;
3591 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3595 * Release an obj back to its cache. If the obj has a constructed state, it must
3596 * be in this state _before_ it is released. Called with disabled ints.
3598 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3600 struct array_cache *ac = cpu_cache_get(cachep);
3602 check_irq_off();
3603 kmemleak_free_recursive(objp, cachep->flags);
3604 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3606 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3609 * Skip calling cache_free_alien() when the platform is not numa.
3610 * This will avoid cache misses that happen while accessing slabp (which
3611 * is per page memory reference) to get nodeid. Instead use a global
3612 * variable to skip the call, which is mostly likely to be present in
3613 * the cache.
3615 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3616 return;
3618 if (likely(ac->avail < ac->limit)) {
3619 STATS_INC_FREEHIT(cachep);
3620 ac->entry[ac->avail++] = objp;
3621 return;
3622 } else {
3623 STATS_INC_FREEMISS(cachep);
3624 cache_flusharray(cachep, ac);
3625 ac->entry[ac->avail++] = objp;
3630 * kmem_cache_alloc - Allocate an object
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3634 * Allocate an object from this cache. The flags are only relevant
3635 * if the cache has no available objects.
3637 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3639 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3641 trace_kmem_cache_alloc(_RET_IP_, ret,
3642 obj_size(cachep), cachep->buffer_size, flags);
3644 return ret;
3646 EXPORT_SYMBOL(kmem_cache_alloc);
3648 #ifdef CONFIG_TRACING
3649 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3651 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3653 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3654 #endif
3657 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3658 * @cachep: the cache we're checking against
3659 * @ptr: pointer to validate
3661 * This verifies that the untrusted pointer looks sane;
3662 * it is _not_ a guarantee that the pointer is actually
3663 * part of the slab cache in question, but it at least
3664 * validates that the pointer can be dereferenced and
3665 * looks half-way sane.
3667 * Currently only used for dentry validation.
3669 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3671 unsigned long size = cachep->buffer_size;
3672 struct page *page;
3674 if (unlikely(!kern_ptr_validate(ptr, size)))
3675 goto out;
3676 page = virt_to_page(ptr);
3677 if (unlikely(!PageSlab(page)))
3678 goto out;
3679 if (unlikely(page_get_cache(page) != cachep))
3680 goto out;
3681 return 1;
3682 out:
3683 return 0;
3686 #ifdef CONFIG_NUMA
3687 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3689 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3690 __builtin_return_address(0));
3692 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3693 obj_size(cachep), cachep->buffer_size,
3694 flags, nodeid);
3696 return ret;
3698 EXPORT_SYMBOL(kmem_cache_alloc_node);
3700 #ifdef CONFIG_TRACING
3701 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3702 gfp_t flags,
3703 int nodeid)
3705 return __cache_alloc_node(cachep, flags, nodeid,
3706 __builtin_return_address(0));
3708 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3709 #endif
3711 static __always_inline void *
3712 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3714 struct kmem_cache *cachep;
3715 void *ret;
3717 cachep = kmem_find_general_cachep(size, flags);
3718 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3719 return cachep;
3720 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3722 trace_kmalloc_node((unsigned long) caller, ret,
3723 size, cachep->buffer_size, flags, node);
3725 return ret;
3728 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3729 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3731 return __do_kmalloc_node(size, flags, node,
3732 __builtin_return_address(0));
3734 EXPORT_SYMBOL(__kmalloc_node);
3736 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3737 int node, unsigned long caller)
3739 return __do_kmalloc_node(size, flags, node, (void *)caller);
3741 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3742 #else
3743 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3745 return __do_kmalloc_node(size, flags, node, NULL);
3747 EXPORT_SYMBOL(__kmalloc_node);
3748 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3749 #endif /* CONFIG_NUMA */
3752 * __do_kmalloc - allocate memory
3753 * @size: how many bytes of memory are required.
3754 * @flags: the type of memory to allocate (see kmalloc).
3755 * @caller: function caller for debug tracking of the caller
3757 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3758 void *caller)
3760 struct kmem_cache *cachep;
3761 void *ret;
3763 /* If you want to save a few bytes .text space: replace
3764 * __ with kmem_.
3765 * Then kmalloc uses the uninlined functions instead of the inline
3766 * functions.
3768 cachep = __find_general_cachep(size, flags);
3769 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3770 return cachep;
3771 ret = __cache_alloc(cachep, flags, caller);
3773 trace_kmalloc((unsigned long) caller, ret,
3774 size, cachep->buffer_size, flags);
3776 return ret;
3780 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3781 void *__kmalloc(size_t size, gfp_t flags)
3783 return __do_kmalloc(size, flags, __builtin_return_address(0));
3785 EXPORT_SYMBOL(__kmalloc);
3787 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3789 return __do_kmalloc(size, flags, (void *)caller);
3791 EXPORT_SYMBOL(__kmalloc_track_caller);
3793 #else
3794 void *__kmalloc(size_t size, gfp_t flags)
3796 return __do_kmalloc(size, flags, NULL);
3798 EXPORT_SYMBOL(__kmalloc);
3799 #endif
3802 * kmem_cache_free - Deallocate an object
3803 * @cachep: The cache the allocation was from.
3804 * @objp: The previously allocated object.
3806 * Free an object which was previously allocated from this
3807 * cache.
3809 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3811 unsigned long flags;
3813 local_irq_save(flags);
3814 debug_check_no_locks_freed(objp, obj_size(cachep));
3815 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3816 debug_check_no_obj_freed(objp, obj_size(cachep));
3817 __cache_free(cachep, objp);
3818 local_irq_restore(flags);
3820 trace_kmem_cache_free(_RET_IP_, objp);
3822 EXPORT_SYMBOL(kmem_cache_free);
3825 * kfree - free previously allocated memory
3826 * @objp: pointer returned by kmalloc.
3828 * If @objp is NULL, no operation is performed.
3830 * Don't free memory not originally allocated by kmalloc()
3831 * or you will run into trouble.
3833 void kfree(const void *objp)
3835 struct kmem_cache *c;
3836 unsigned long flags;
3838 trace_kfree(_RET_IP_, objp);
3840 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3841 return;
3842 local_irq_save(flags);
3843 kfree_debugcheck(objp);
3844 c = virt_to_cache(objp);
3845 debug_check_no_locks_freed(objp, obj_size(c));
3846 debug_check_no_obj_freed(objp, obj_size(c));
3847 __cache_free(c, (void *)objp);
3848 local_irq_restore(flags);
3850 EXPORT_SYMBOL(kfree);
3852 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3854 return obj_size(cachep);
3856 EXPORT_SYMBOL(kmem_cache_size);
3858 const char *kmem_cache_name(struct kmem_cache *cachep)
3860 return cachep->name;
3862 EXPORT_SYMBOL_GPL(kmem_cache_name);
3865 * This initializes kmem_list3 or resizes various caches for all nodes.
3867 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3869 int node;
3870 struct kmem_list3 *l3;
3871 struct array_cache *new_shared;
3872 struct array_cache **new_alien = NULL;
3874 for_each_online_node(node) {
3876 if (use_alien_caches) {
3877 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3878 if (!new_alien)
3879 goto fail;
3882 new_shared = NULL;
3883 if (cachep->shared) {
3884 new_shared = alloc_arraycache(node,
3885 cachep->shared*cachep->batchcount,
3886 0xbaadf00d, gfp);
3887 if (!new_shared) {
3888 free_alien_cache(new_alien);
3889 goto fail;
3893 l3 = cachep->nodelists[node];
3894 if (l3) {
3895 struct array_cache *shared = l3->shared;
3897 spin_lock_irq(&l3->list_lock);
3899 if (shared)
3900 free_block(cachep, shared->entry,
3901 shared->avail, node);
3903 l3->shared = new_shared;
3904 if (!l3->alien) {
3905 l3->alien = new_alien;
3906 new_alien = NULL;
3908 l3->free_limit = (1 + nr_cpus_node(node)) *
3909 cachep->batchcount + cachep->num;
3910 spin_unlock_irq(&l3->list_lock);
3911 kfree(shared);
3912 free_alien_cache(new_alien);
3913 continue;
3915 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3916 if (!l3) {
3917 free_alien_cache(new_alien);
3918 kfree(new_shared);
3919 goto fail;
3922 kmem_list3_init(l3);
3923 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3924 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3925 l3->shared = new_shared;
3926 l3->alien = new_alien;
3927 l3->free_limit = (1 + nr_cpus_node(node)) *
3928 cachep->batchcount + cachep->num;
3929 cachep->nodelists[node] = l3;
3931 return 0;
3933 fail:
3934 if (!cachep->next.next) {
3935 /* Cache is not active yet. Roll back what we did */
3936 node--;
3937 while (node >= 0) {
3938 if (cachep->nodelists[node]) {
3939 l3 = cachep->nodelists[node];
3941 kfree(l3->shared);
3942 free_alien_cache(l3->alien);
3943 kfree(l3);
3944 cachep->nodelists[node] = NULL;
3946 node--;
3949 return -ENOMEM;
3952 struct ccupdate_struct {
3953 struct kmem_cache *cachep;
3954 struct array_cache *new[NR_CPUS];
3957 static void do_ccupdate_local(void *info)
3959 struct ccupdate_struct *new = info;
3960 struct array_cache *old;
3962 check_irq_off();
3963 old = cpu_cache_get(new->cachep);
3965 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3966 new->new[smp_processor_id()] = old;
3969 /* Always called with the cache_chain_mutex held */
3970 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3971 int batchcount, int shared, gfp_t gfp)
3973 struct ccupdate_struct *new;
3974 int i;
3976 new = kzalloc(sizeof(*new), gfp);
3977 if (!new)
3978 return -ENOMEM;
3980 for_each_online_cpu(i) {
3981 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3982 batchcount, gfp);
3983 if (!new->new[i]) {
3984 for (i--; i >= 0; i--)
3985 kfree(new->new[i]);
3986 kfree(new);
3987 return -ENOMEM;
3990 new->cachep = cachep;
3992 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3994 check_irq_on();
3995 cachep->batchcount = batchcount;
3996 cachep->limit = limit;
3997 cachep->shared = shared;
3999 for_each_online_cpu(i) {
4000 struct array_cache *ccold = new->new[i];
4001 if (!ccold)
4002 continue;
4003 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4004 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4005 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4006 kfree(ccold);
4008 kfree(new);
4009 return alloc_kmemlist(cachep, gfp);
4012 /* Called with cache_chain_mutex held always */
4013 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4015 int err;
4016 int limit, shared;
4019 * The head array serves three purposes:
4020 * - create a LIFO ordering, i.e. return objects that are cache-warm
4021 * - reduce the number of spinlock operations.
4022 * - reduce the number of linked list operations on the slab and
4023 * bufctl chains: array operations are cheaper.
4024 * The numbers are guessed, we should auto-tune as described by
4025 * Bonwick.
4027 if (cachep->buffer_size > 131072)
4028 limit = 1;
4029 else if (cachep->buffer_size > PAGE_SIZE)
4030 limit = 8;
4031 else if (cachep->buffer_size > 1024)
4032 limit = 24;
4033 else if (cachep->buffer_size > 256)
4034 limit = 54;
4035 else
4036 limit = 120;
4039 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4040 * allocation behaviour: Most allocs on one cpu, most free operations
4041 * on another cpu. For these cases, an efficient object passing between
4042 * cpus is necessary. This is provided by a shared array. The array
4043 * replaces Bonwick's magazine layer.
4044 * On uniprocessor, it's functionally equivalent (but less efficient)
4045 * to a larger limit. Thus disabled by default.
4047 shared = 0;
4048 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4049 shared = 8;
4051 #if DEBUG
4053 * With debugging enabled, large batchcount lead to excessively long
4054 * periods with disabled local interrupts. Limit the batchcount
4056 if (limit > 32)
4057 limit = 32;
4058 #endif
4059 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4060 if (err)
4061 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4062 cachep->name, -err);
4063 return err;
4067 * Drain an array if it contains any elements taking the l3 lock only if
4068 * necessary. Note that the l3 listlock also protects the array_cache
4069 * if drain_array() is used on the shared array.
4071 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4072 struct array_cache *ac, int force, int node)
4074 int tofree;
4076 if (!ac || !ac->avail)
4077 return;
4078 if (ac->touched && !force) {
4079 ac->touched = 0;
4080 } else {
4081 spin_lock_irq(&l3->list_lock);
4082 if (ac->avail) {
4083 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4084 if (tofree > ac->avail)
4085 tofree = (ac->avail + 1) / 2;
4086 free_block(cachep, ac->entry, tofree, node);
4087 ac->avail -= tofree;
4088 memmove(ac->entry, &(ac->entry[tofree]),
4089 sizeof(void *) * ac->avail);
4091 spin_unlock_irq(&l3->list_lock);
4096 * cache_reap - Reclaim memory from caches.
4097 * @w: work descriptor
4099 * Called from workqueue/eventd every few seconds.
4100 * Purpose:
4101 * - clear the per-cpu caches for this CPU.
4102 * - return freeable pages to the main free memory pool.
4104 * If we cannot acquire the cache chain mutex then just give up - we'll try
4105 * again on the next iteration.
4107 static void cache_reap(struct work_struct *w)
4109 struct kmem_cache *searchp;
4110 struct kmem_list3 *l3;
4111 int node = numa_mem_id();
4112 struct delayed_work *work = to_delayed_work(w);
4114 if (!mutex_trylock(&cache_chain_mutex))
4115 /* Give up. Setup the next iteration. */
4116 goto out;
4118 list_for_each_entry(searchp, &cache_chain, next) {
4119 check_irq_on();
4122 * We only take the l3 lock if absolutely necessary and we
4123 * have established with reasonable certainty that
4124 * we can do some work if the lock was obtained.
4126 l3 = searchp->nodelists[node];
4128 reap_alien(searchp, l3);
4130 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4133 * These are racy checks but it does not matter
4134 * if we skip one check or scan twice.
4136 if (time_after(l3->next_reap, jiffies))
4137 goto next;
4139 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4141 drain_array(searchp, l3, l3->shared, 0, node);
4143 if (l3->free_touched)
4144 l3->free_touched = 0;
4145 else {
4146 int freed;
4148 freed = drain_freelist(searchp, l3, (l3->free_limit +
4149 5 * searchp->num - 1) / (5 * searchp->num));
4150 STATS_ADD_REAPED(searchp, freed);
4152 next:
4153 cond_resched();
4155 check_irq_on();
4156 mutex_unlock(&cache_chain_mutex);
4157 next_reap_node();
4158 out:
4159 /* Set up the next iteration */
4160 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4163 #ifdef CONFIG_SLABINFO
4165 static void print_slabinfo_header(struct seq_file *m)
4168 * Output format version, so at least we can change it
4169 * without _too_ many complaints.
4171 #if STATS
4172 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4173 #else
4174 seq_puts(m, "slabinfo - version: 2.1\n");
4175 #endif
4176 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4177 "<objperslab> <pagesperslab>");
4178 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4179 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4180 #if STATS
4181 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4182 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4183 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4184 #endif
4185 seq_putc(m, '\n');
4188 static void *s_start(struct seq_file *m, loff_t *pos)
4190 loff_t n = *pos;
4192 mutex_lock(&cache_chain_mutex);
4193 if (!n)
4194 print_slabinfo_header(m);
4196 return seq_list_start(&cache_chain, *pos);
4199 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4201 return seq_list_next(p, &cache_chain, pos);
4204 static void s_stop(struct seq_file *m, void *p)
4206 mutex_unlock(&cache_chain_mutex);
4209 static int s_show(struct seq_file *m, void *p)
4211 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4212 struct slab *slabp;
4213 unsigned long active_objs;
4214 unsigned long num_objs;
4215 unsigned long active_slabs = 0;
4216 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4217 const char *name;
4218 char *error = NULL;
4219 int node;
4220 struct kmem_list3 *l3;
4222 active_objs = 0;
4223 num_slabs = 0;
4224 for_each_online_node(node) {
4225 l3 = cachep->nodelists[node];
4226 if (!l3)
4227 continue;
4229 check_irq_on();
4230 spin_lock_irq(&l3->list_lock);
4232 list_for_each_entry(slabp, &l3->slabs_full, list) {
4233 if (slabp->inuse != cachep->num && !error)
4234 error = "slabs_full accounting error";
4235 active_objs += cachep->num;
4236 active_slabs++;
4238 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4239 if (slabp->inuse == cachep->num && !error)
4240 error = "slabs_partial inuse accounting error";
4241 if (!slabp->inuse && !error)
4242 error = "slabs_partial/inuse accounting error";
4243 active_objs += slabp->inuse;
4244 active_slabs++;
4246 list_for_each_entry(slabp, &l3->slabs_free, list) {
4247 if (slabp->inuse && !error)
4248 error = "slabs_free/inuse accounting error";
4249 num_slabs++;
4251 free_objects += l3->free_objects;
4252 if (l3->shared)
4253 shared_avail += l3->shared->avail;
4255 spin_unlock_irq(&l3->list_lock);
4257 num_slabs += active_slabs;
4258 num_objs = num_slabs * cachep->num;
4259 if (num_objs - active_objs != free_objects && !error)
4260 error = "free_objects accounting error";
4262 name = cachep->name;
4263 if (error)
4264 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4266 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4267 name, active_objs, num_objs, cachep->buffer_size,
4268 cachep->num, (1 << cachep->gfporder));
4269 seq_printf(m, " : tunables %4u %4u %4u",
4270 cachep->limit, cachep->batchcount, cachep->shared);
4271 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4272 active_slabs, num_slabs, shared_avail);
4273 #if STATS
4274 { /* list3 stats */
4275 unsigned long high = cachep->high_mark;
4276 unsigned long allocs = cachep->num_allocations;
4277 unsigned long grown = cachep->grown;
4278 unsigned long reaped = cachep->reaped;
4279 unsigned long errors = cachep->errors;
4280 unsigned long max_freeable = cachep->max_freeable;
4281 unsigned long node_allocs = cachep->node_allocs;
4282 unsigned long node_frees = cachep->node_frees;
4283 unsigned long overflows = cachep->node_overflow;
4285 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4286 "%4lu %4lu %4lu %4lu %4lu",
4287 allocs, high, grown,
4288 reaped, errors, max_freeable, node_allocs,
4289 node_frees, overflows);
4291 /* cpu stats */
4293 unsigned long allochit = atomic_read(&cachep->allochit);
4294 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4295 unsigned long freehit = atomic_read(&cachep->freehit);
4296 unsigned long freemiss = atomic_read(&cachep->freemiss);
4298 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4299 allochit, allocmiss, freehit, freemiss);
4301 #endif
4302 seq_putc(m, '\n');
4303 return 0;
4307 * slabinfo_op - iterator that generates /proc/slabinfo
4309 * Output layout:
4310 * cache-name
4311 * num-active-objs
4312 * total-objs
4313 * object size
4314 * num-active-slabs
4315 * total-slabs
4316 * num-pages-per-slab
4317 * + further values on SMP and with statistics enabled
4320 static const struct seq_operations slabinfo_op = {
4321 .start = s_start,
4322 .next = s_next,
4323 .stop = s_stop,
4324 .show = s_show,
4327 #define MAX_SLABINFO_WRITE 128
4329 * slabinfo_write - Tuning for the slab allocator
4330 * @file: unused
4331 * @buffer: user buffer
4332 * @count: data length
4333 * @ppos: unused
4335 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4336 size_t count, loff_t *ppos)
4338 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4339 int limit, batchcount, shared, res;
4340 struct kmem_cache *cachep;
4342 if (count > MAX_SLABINFO_WRITE)
4343 return -EINVAL;
4344 if (copy_from_user(&kbuf, buffer, count))
4345 return -EFAULT;
4346 kbuf[MAX_SLABINFO_WRITE] = '\0';
4348 tmp = strchr(kbuf, ' ');
4349 if (!tmp)
4350 return -EINVAL;
4351 *tmp = '\0';
4352 tmp++;
4353 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4354 return -EINVAL;
4356 /* Find the cache in the chain of caches. */
4357 mutex_lock(&cache_chain_mutex);
4358 res = -EINVAL;
4359 list_for_each_entry(cachep, &cache_chain, next) {
4360 if (!strcmp(cachep->name, kbuf)) {
4361 if (limit < 1 || batchcount < 1 ||
4362 batchcount > limit || shared < 0) {
4363 res = 0;
4364 } else {
4365 res = do_tune_cpucache(cachep, limit,
4366 batchcount, shared,
4367 GFP_KERNEL);
4369 break;
4372 mutex_unlock(&cache_chain_mutex);
4373 if (res >= 0)
4374 res = count;
4375 return res;
4378 static int slabinfo_open(struct inode *inode, struct file *file)
4380 return seq_open(file, &slabinfo_op);
4383 static const struct file_operations proc_slabinfo_operations = {
4384 .open = slabinfo_open,
4385 .read = seq_read,
4386 .write = slabinfo_write,
4387 .llseek = seq_lseek,
4388 .release = seq_release,
4391 #ifdef CONFIG_DEBUG_SLAB_LEAK
4393 static void *leaks_start(struct seq_file *m, loff_t *pos)
4395 mutex_lock(&cache_chain_mutex);
4396 return seq_list_start(&cache_chain, *pos);
4399 static inline int add_caller(unsigned long *n, unsigned long v)
4401 unsigned long *p;
4402 int l;
4403 if (!v)
4404 return 1;
4405 l = n[1];
4406 p = n + 2;
4407 while (l) {
4408 int i = l/2;
4409 unsigned long *q = p + 2 * i;
4410 if (*q == v) {
4411 q[1]++;
4412 return 1;
4414 if (*q > v) {
4415 l = i;
4416 } else {
4417 p = q + 2;
4418 l -= i + 1;
4421 if (++n[1] == n[0])
4422 return 0;
4423 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4424 p[0] = v;
4425 p[1] = 1;
4426 return 1;
4429 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4431 void *p;
4432 int i;
4433 if (n[0] == n[1])
4434 return;
4435 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4436 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4437 continue;
4438 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4439 return;
4443 static void show_symbol(struct seq_file *m, unsigned long address)
4445 #ifdef CONFIG_KALLSYMS
4446 unsigned long offset, size;
4447 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4449 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4450 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4451 if (modname[0])
4452 seq_printf(m, " [%s]", modname);
4453 return;
4455 #endif
4456 seq_printf(m, "%p", (void *)address);
4459 static int leaks_show(struct seq_file *m, void *p)
4461 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4462 struct slab *slabp;
4463 struct kmem_list3 *l3;
4464 const char *name;
4465 unsigned long *n = m->private;
4466 int node;
4467 int i;
4469 if (!(cachep->flags & SLAB_STORE_USER))
4470 return 0;
4471 if (!(cachep->flags & SLAB_RED_ZONE))
4472 return 0;
4474 /* OK, we can do it */
4476 n[1] = 0;
4478 for_each_online_node(node) {
4479 l3 = cachep->nodelists[node];
4480 if (!l3)
4481 continue;
4483 check_irq_on();
4484 spin_lock_irq(&l3->list_lock);
4486 list_for_each_entry(slabp, &l3->slabs_full, list)
4487 handle_slab(n, cachep, slabp);
4488 list_for_each_entry(slabp, &l3->slabs_partial, list)
4489 handle_slab(n, cachep, slabp);
4490 spin_unlock_irq(&l3->list_lock);
4492 name = cachep->name;
4493 if (n[0] == n[1]) {
4494 /* Increase the buffer size */
4495 mutex_unlock(&cache_chain_mutex);
4496 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4497 if (!m->private) {
4498 /* Too bad, we are really out */
4499 m->private = n;
4500 mutex_lock(&cache_chain_mutex);
4501 return -ENOMEM;
4503 *(unsigned long *)m->private = n[0] * 2;
4504 kfree(n);
4505 mutex_lock(&cache_chain_mutex);
4506 /* Now make sure this entry will be retried */
4507 m->count = m->size;
4508 return 0;
4510 for (i = 0; i < n[1]; i++) {
4511 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4512 show_symbol(m, n[2*i+2]);
4513 seq_putc(m, '\n');
4516 return 0;
4519 static const struct seq_operations slabstats_op = {
4520 .start = leaks_start,
4521 .next = s_next,
4522 .stop = s_stop,
4523 .show = leaks_show,
4526 static int slabstats_open(struct inode *inode, struct file *file)
4528 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4529 int ret = -ENOMEM;
4530 if (n) {
4531 ret = seq_open(file, &slabstats_op);
4532 if (!ret) {
4533 struct seq_file *m = file->private_data;
4534 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4535 m->private = n;
4536 n = NULL;
4538 kfree(n);
4540 return ret;
4543 static const struct file_operations proc_slabstats_operations = {
4544 .open = slabstats_open,
4545 .read = seq_read,
4546 .llseek = seq_lseek,
4547 .release = seq_release_private,
4549 #endif
4551 static int __init slab_proc_init(void)
4553 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4554 #ifdef CONFIG_DEBUG_SLAB_LEAK
4555 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4556 #endif
4557 return 0;
4559 module_init(slab_proc_init);
4560 #endif
4563 * ksize - get the actual amount of memory allocated for a given object
4564 * @objp: Pointer to the object
4566 * kmalloc may internally round up allocations and return more memory
4567 * than requested. ksize() can be used to determine the actual amount of
4568 * memory allocated. The caller may use this additional memory, even though
4569 * a smaller amount of memory was initially specified with the kmalloc call.
4570 * The caller must guarantee that objp points to a valid object previously
4571 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4572 * must not be freed during the duration of the call.
4574 size_t ksize(const void *objp)
4576 BUG_ON(!objp);
4577 if (unlikely(objp == ZERO_SIZE_PTR))
4578 return 0;
4580 return obj_size(virt_to_cache(objp));
4582 EXPORT_SYMBOL(ksize);