GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / mm / mmap.c
blobac046ccc20b39138eac4da90cedc52bc734441c8
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
37 #include "internal.h"
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
41 #endif
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
45 #endif
47 static void unmap_region(struct mm_struct *mm,
48 struct vm_area_struct *vma, struct vm_area_struct *prev,
49 unsigned long start, unsigned long end);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
55 #undef DEBUG_MM_RB
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
61 * map_type prot
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map[16] = {
73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 return __pgprot(pgprot_val(protection_map[vm_flags &
80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 EXPORT_SYMBOL(vm_get_page_prot);
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 unsigned long free, allowed;
110 vm_acct_memory(pages);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 return 0;
118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 unsigned long n;
121 free = global_page_state(NR_FILE_PAGES);
122 free += nr_swap_pages;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free += global_page_state(NR_SLAB_RECLAIMABLE);
133 * Leave the last 3% for root
135 if (!cap_sys_admin)
136 free -= free / 32;
138 if (free > pages)
139 return 0;
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
145 n = nr_free_pages();
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n <= totalreserve_pages)
151 goto error;
152 else
153 n -= totalreserve_pages;
156 * Leave the last 3% for root
158 if (!cap_sys_admin)
159 n -= n / 32;
160 free += n;
162 if (free > pages)
163 return 0;
165 goto error;
168 allowed = (totalram_pages - hugetlb_total_pages())
169 * sysctl_overcommit_ratio / 100;
171 * Leave the last 3% for root
173 if (!cap_sys_admin)
174 allowed -= allowed / 32;
175 allowed += total_swap_pages;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
179 if (mm)
180 allowed -= mm->total_vm / 32;
182 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 return 0;
184 error:
185 vm_unacct_memory(pages);
187 return -ENOMEM;
191 * Requires inode->i_mapping->i_mmap_lock
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 struct file *file, struct address_space *mapping)
196 if (vma->vm_flags & VM_DENYWRITE)
197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 if (vma->vm_flags & VM_SHARED)
199 mapping->i_mmap_writable--;
201 flush_dcache_mmap_lock(mapping);
202 if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 list_del_init(&vma->shared.vm_set.list);
204 else
205 vma_prio_tree_remove(vma, &mapping->i_mmap);
206 flush_dcache_mmap_unlock(mapping);
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
213 void unlink_file_vma(struct vm_area_struct *vma)
215 struct file *file = vma->vm_file;
217 if (file) {
218 struct address_space *mapping = file->f_mapping;
219 spin_lock(&mapping->i_mmap_lock);
220 __remove_shared_vm_struct(vma, file, mapping);
221 spin_unlock(&mapping->i_mmap_lock);
226 * Close a vm structure and free it, returning the next.
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 struct vm_area_struct *next = vma->vm_next;
232 might_sleep();
233 if (vma->vm_ops && vma->vm_ops->close)
234 vma->vm_ops->close(vma);
235 if (vma->vm_file) {
236 fput(vma->vm_file);
237 if (vma->vm_flags & VM_EXECUTABLE)
238 removed_exe_file_vma(vma->vm_mm);
240 mpol_put(vma_policy(vma));
241 kmem_cache_free(vm_area_cachep, vma);
242 return next;
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
252 down_write(&mm->mmap_sem);
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk = mm->end_code;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
330 void validate_mm(struct mm_struct *mm)
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *tmp = mm->mmap;
335 while (tmp) {
336 tmp = tmp->vm_next;
337 i++;
339 if (i != mm->map_count)
340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 i = browse_rb(&mm->mm_rb);
342 if (i != mm->map_count)
343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 BUG_ON(bug);
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 struct rb_node ** rb_parent)
355 struct vm_area_struct * vma;
356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358 __rb_link = &mm->mm_rb.rb_node;
359 rb_prev = __rb_parent = NULL;
360 vma = NULL;
362 while (*__rb_link) {
363 struct vm_area_struct *vma_tmp;
365 __rb_parent = *__rb_link;
366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368 if (vma_tmp->vm_end > addr) {
369 vma = vma_tmp;
370 if (vma_tmp->vm_start <= addr)
371 break;
372 __rb_link = &__rb_parent->rb_left;
373 } else {
374 rb_prev = __rb_parent;
375 __rb_link = &__rb_parent->rb_right;
379 *pprev = NULL;
380 if (rb_prev)
381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 *rb_link = __rb_link;
383 *rb_parent = __rb_parent;
384 return vma;
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 struct vm_area_struct *prev, struct rb_node *rb_parent)
391 struct vm_area_struct *next;
393 vma->vm_prev = prev;
394 if (prev) {
395 next = prev->vm_next;
396 prev->vm_next = vma;
397 } else {
398 mm->mmap = vma;
399 if (rb_parent)
400 next = rb_entry(rb_parent,
401 struct vm_area_struct, vm_rb);
402 else
403 next = NULL;
405 vma->vm_next = next;
406 if (next)
407 next->vm_prev = vma;
410 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
411 struct rb_node **rb_link, struct rb_node *rb_parent)
413 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
414 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
417 static void __vma_link_file(struct vm_area_struct *vma)
419 struct file *file;
421 file = vma->vm_file;
422 if (file) {
423 struct address_space *mapping = file->f_mapping;
425 if (vma->vm_flags & VM_DENYWRITE)
426 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
427 if (vma->vm_flags & VM_SHARED)
428 mapping->i_mmap_writable++;
430 flush_dcache_mmap_lock(mapping);
431 if (unlikely(vma->vm_flags & VM_NONLINEAR))
432 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
433 else
434 vma_prio_tree_insert(vma, &mapping->i_mmap);
435 flush_dcache_mmap_unlock(mapping);
439 static void
440 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
441 struct vm_area_struct *prev, struct rb_node **rb_link,
442 struct rb_node *rb_parent)
444 __vma_link_list(mm, vma, prev, rb_parent);
445 __vma_link_rb(mm, vma, rb_link, rb_parent);
448 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
449 struct vm_area_struct *prev, struct rb_node **rb_link,
450 struct rb_node *rb_parent)
452 struct address_space *mapping = NULL;
454 if (vma->vm_file)
455 mapping = vma->vm_file->f_mapping;
457 if (mapping) {
458 spin_lock(&mapping->i_mmap_lock);
459 vma->vm_truncate_count = mapping->truncate_count;
462 __vma_link(mm, vma, prev, rb_link, rb_parent);
463 __vma_link_file(vma);
465 if (mapping)
466 spin_unlock(&mapping->i_mmap_lock);
468 mm->map_count++;
469 validate_mm(mm);
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
477 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
479 struct vm_area_struct *__vma, *prev;
480 struct rb_node **rb_link, *rb_parent;
482 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484 __vma_link(mm, vma, prev, rb_link, rb_parent);
485 mm->map_count++;
488 static inline void
489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490 struct vm_area_struct *prev)
492 struct vm_area_struct *next = vma->vm_next;
494 prev->vm_next = next;
495 if (next)
496 next->vm_prev = prev;
497 rb_erase(&vma->vm_rb, &mm->mm_rb);
498 if (mm->mmap_cache == vma)
499 mm->mmap_cache = prev;
503 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
504 * is already present in an i_mmap tree without adjusting the tree.
505 * The following helper function should be used when such adjustments
506 * are necessary. The "insert" vma (if any) is to be inserted
507 * before we drop the necessary locks.
509 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
510 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
512 struct mm_struct *mm = vma->vm_mm;
513 struct vm_area_struct *next = vma->vm_next;
514 struct vm_area_struct *importer = NULL;
515 struct address_space *mapping = NULL;
516 struct prio_tree_root *root = NULL;
517 struct anon_vma *anon_vma = NULL;
518 struct file *file = vma->vm_file;
519 long adjust_next = 0;
520 int remove_next = 0;
522 if (next && !insert) {
523 struct vm_area_struct *exporter = NULL;
525 if (end >= next->vm_end) {
527 * vma expands, overlapping all the next, and
528 * perhaps the one after too (mprotect case 6).
530 again: remove_next = 1 + (end > next->vm_end);
531 end = next->vm_end;
532 exporter = next;
533 importer = vma;
534 } else if (end > next->vm_start) {
536 * vma expands, overlapping part of the next:
537 * mprotect case 5 shifting the boundary up.
539 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
540 exporter = next;
541 importer = vma;
542 } else if (end < vma->vm_end) {
544 * vma shrinks, and !insert tells it's not
545 * split_vma inserting another: so it must be
546 * mprotect case 4 shifting the boundary down.
548 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
549 exporter = vma;
550 importer = next;
554 * Easily overlooked: when mprotect shifts the boundary,
555 * make sure the expanding vma has anon_vma set if the
556 * shrinking vma had, to cover any anon pages imported.
558 if (exporter && exporter->anon_vma && !importer->anon_vma) {
559 if (anon_vma_clone(importer, exporter))
560 return -ENOMEM;
561 importer->anon_vma = exporter->anon_vma;
565 if (file) {
566 mapping = file->f_mapping;
567 if (!(vma->vm_flags & VM_NONLINEAR))
568 root = &mapping->i_mmap;
569 spin_lock(&mapping->i_mmap_lock);
570 if (importer &&
571 vma->vm_truncate_count != next->vm_truncate_count) {
573 * unmap_mapping_range might be in progress:
574 * ensure that the expanding vma is rescanned.
576 importer->vm_truncate_count = 0;
578 if (insert) {
579 insert->vm_truncate_count = vma->vm_truncate_count;
581 * Put into prio_tree now, so instantiated pages
582 * are visible to arm/parisc __flush_dcache_page
583 * throughout; but we cannot insert into address
584 * space until vma start or end is updated.
586 __vma_link_file(insert);
591 * When changing only vma->vm_end, we don't really need anon_vma
592 * lock. This is a fairly rare case by itself, but the anon_vma
593 * lock may be shared between many sibling processes. Skipping
594 * the lock for brk adjustments makes a difference sometimes.
596 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
597 anon_vma = vma->anon_vma;
598 anon_vma_lock(anon_vma);
601 if (root) {
602 flush_dcache_mmap_lock(mapping);
603 vma_prio_tree_remove(vma, root);
604 if (adjust_next)
605 vma_prio_tree_remove(next, root);
608 vma->vm_start = start;
609 vma->vm_end = end;
610 vma->vm_pgoff = pgoff;
611 if (adjust_next) {
612 next->vm_start += adjust_next << PAGE_SHIFT;
613 next->vm_pgoff += adjust_next;
616 if (root) {
617 if (adjust_next)
618 vma_prio_tree_insert(next, root);
619 vma_prio_tree_insert(vma, root);
620 flush_dcache_mmap_unlock(mapping);
623 if (remove_next) {
625 * vma_merge has merged next into vma, and needs
626 * us to remove next before dropping the locks.
628 __vma_unlink(mm, next, vma);
629 if (file)
630 __remove_shared_vm_struct(next, file, mapping);
631 } else if (insert) {
633 * split_vma has split insert from vma, and needs
634 * us to insert it before dropping the locks
635 * (it may either follow vma or precede it).
637 __insert_vm_struct(mm, insert);
640 if (anon_vma)
641 anon_vma_unlock(anon_vma);
642 if (mapping)
643 spin_unlock(&mapping->i_mmap_lock);
645 if (remove_next) {
646 if (file) {
647 fput(file);
648 if (next->vm_flags & VM_EXECUTABLE)
649 removed_exe_file_vma(mm);
651 if (next->anon_vma)
652 anon_vma_merge(vma, next);
653 mm->map_count--;
654 mpol_put(vma_policy(next));
655 kmem_cache_free(vm_area_cachep, next);
657 * In mprotect's case 6 (see comments on vma_merge),
658 * we must remove another next too. It would clutter
659 * up the code too much to do both in one go.
661 if (remove_next == 2) {
662 next = vma->vm_next;
663 goto again;
667 validate_mm(mm);
669 return 0;
673 * If the vma has a ->close operation then the driver probably needs to release
674 * per-vma resources, so we don't attempt to merge those.
676 static inline int is_mergeable_vma(struct vm_area_struct *vma,
677 struct file *file, unsigned long vm_flags)
679 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
680 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
681 return 0;
682 if (vma->vm_file != file)
683 return 0;
684 if (vma->vm_ops && vma->vm_ops->close)
685 return 0;
686 return 1;
689 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
690 struct anon_vma *anon_vma2)
692 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
696 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
697 * in front of (at a lower virtual address and file offset than) the vma.
699 * We cannot merge two vmas if they have differently assigned (non-NULL)
700 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 * We don't check here for the merged mmap wrapping around the end of pagecache
703 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
704 * wrap, nor mmaps which cover the final page at index -1UL.
706 static int
707 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
708 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 if (is_mergeable_vma(vma, file, vm_flags) &&
711 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
712 if (vma->vm_pgoff == vm_pgoff)
713 return 1;
715 return 0;
719 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
720 * beyond (at a higher virtual address and file offset than) the vma.
722 * We cannot merge two vmas if they have differently assigned (non-NULL)
723 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 static int
726 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
727 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 if (is_mergeable_vma(vma, file, vm_flags) &&
730 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
731 pgoff_t vm_pglen;
732 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
733 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
734 return 1;
736 return 0;
739 struct vm_area_struct *vma_merge(struct mm_struct *mm,
740 struct vm_area_struct *prev, unsigned long addr,
741 unsigned long end, unsigned long vm_flags,
742 struct anon_vma *anon_vma, struct file *file,
743 pgoff_t pgoff, struct mempolicy *policy)
745 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
746 struct vm_area_struct *area, *next;
747 int err;
750 * We later require that vma->vm_flags == vm_flags,
751 * so this tests vma->vm_flags & VM_SPECIAL, too.
753 if (vm_flags & VM_SPECIAL)
754 return NULL;
756 if (prev)
757 next = prev->vm_next;
758 else
759 next = mm->mmap;
760 area = next;
761 if (next && next->vm_end == end) /* cases 6, 7, 8 */
762 next = next->vm_next;
765 * Can it merge with the predecessor?
767 if (prev && prev->vm_end == addr &&
768 mpol_equal(vma_policy(prev), policy) &&
769 can_vma_merge_after(prev, vm_flags,
770 anon_vma, file, pgoff)) {
772 * OK, it can. Can we now merge in the successor as well?
774 if (next && end == next->vm_start &&
775 mpol_equal(policy, vma_policy(next)) &&
776 can_vma_merge_before(next, vm_flags,
777 anon_vma, file, pgoff+pglen) &&
778 is_mergeable_anon_vma(prev->anon_vma,
779 next->anon_vma)) {
780 /* cases 1, 6 */
781 err = vma_adjust(prev, prev->vm_start,
782 next->vm_end, prev->vm_pgoff, NULL);
783 } else /* cases 2, 5, 7 */
784 err = vma_adjust(prev, prev->vm_start,
785 end, prev->vm_pgoff, NULL);
786 if (err)
787 return NULL;
788 return prev;
792 * Can this new request be merged in front of next?
794 if (next && end == next->vm_start &&
795 mpol_equal(policy, vma_policy(next)) &&
796 can_vma_merge_before(next, vm_flags,
797 anon_vma, file, pgoff+pglen)) {
798 if (prev && addr < prev->vm_end) /* case 4 */
799 err = vma_adjust(prev, prev->vm_start,
800 addr, prev->vm_pgoff, NULL);
801 else /* cases 3, 8 */
802 err = vma_adjust(area, addr, next->vm_end,
803 next->vm_pgoff - pglen, NULL);
804 if (err)
805 return NULL;
806 return area;
809 return NULL;
813 * Rough compatbility check to quickly see if it's even worth looking
814 * at sharing an anon_vma.
816 * They need to have the same vm_file, and the flags can only differ
817 * in things that mprotect may change.
819 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
820 * we can merge the two vma's. For example, we refuse to merge a vma if
821 * there is a vm_ops->close() function, because that indicates that the
822 * driver is doing some kind of reference counting. But that doesn't
823 * really matter for the anon_vma sharing case.
825 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
827 return a->vm_end == b->vm_start &&
828 mpol_equal(vma_policy(a), vma_policy(b)) &&
829 a->vm_file == b->vm_file &&
830 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
831 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
835 * Do some basic sanity checking to see if we can re-use the anon_vma
836 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
837 * the same as 'old', the other will be the new one that is trying
838 * to share the anon_vma.
840 * NOTE! This runs with mm_sem held for reading, so it is possible that
841 * the anon_vma of 'old' is concurrently in the process of being set up
842 * by another page fault trying to merge _that_. But that's ok: if it
843 * is being set up, that automatically means that it will be a singleton
844 * acceptable for merging, so we can do all of this optimistically. But
845 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
847 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
848 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
849 * is to return an anon_vma that is "complex" due to having gone through
850 * a fork).
852 * We also make sure that the two vma's are compatible (adjacent,
853 * and with the same memory policies). That's all stable, even with just
854 * a read lock on the mm_sem.
856 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
858 if (anon_vma_compatible(a, b)) {
859 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
861 if (anon_vma && list_is_singular(&old->anon_vma_chain))
862 return anon_vma;
864 return NULL;
868 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
869 * neighbouring vmas for a suitable anon_vma, before it goes off
870 * to allocate a new anon_vma. It checks because a repetitive
871 * sequence of mprotects and faults may otherwise lead to distinct
872 * anon_vmas being allocated, preventing vma merge in subsequent
873 * mprotect.
875 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
877 struct anon_vma *anon_vma;
878 struct vm_area_struct *near;
880 near = vma->vm_next;
881 if (!near)
882 goto try_prev;
884 anon_vma = reusable_anon_vma(near, vma, near);
885 if (anon_vma)
886 return anon_vma;
887 try_prev:
889 * It is potentially slow to have to call find_vma_prev here.
890 * But it's only on the first write fault on the vma, not
891 * every time, and we could devise a way to avoid it later
892 * (e.g. stash info in next's anon_vma_node when assigning
893 * an anon_vma, or when trying vma_merge). Another time.
895 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
896 if (!near)
897 goto none;
899 anon_vma = reusable_anon_vma(near, near, vma);
900 if (anon_vma)
901 return anon_vma;
902 none:
904 * There's no absolute need to look only at touching neighbours:
905 * we could search further afield for "compatible" anon_vmas.
906 * But it would probably just be a waste of time searching,
907 * or lead to too many vmas hanging off the same anon_vma.
908 * We're trying to allow mprotect remerging later on,
909 * not trying to minimize memory used for anon_vmas.
911 return NULL;
914 #ifdef CONFIG_PROC_FS
915 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
916 struct file *file, long pages)
918 const unsigned long stack_flags
919 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
921 if (file) {
922 mm->shared_vm += pages;
923 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
924 mm->exec_vm += pages;
925 } else if (flags & stack_flags)
926 mm->stack_vm += pages;
927 if (flags & (VM_RESERVED|VM_IO))
928 mm->reserved_vm += pages;
930 #endif /* CONFIG_PROC_FS */
933 * The caller must hold down_write(&current->mm->mmap_sem).
936 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
937 unsigned long len, unsigned long prot,
938 unsigned long flags, unsigned long pgoff)
940 struct mm_struct * mm = current->mm;
941 struct inode *inode;
942 unsigned int vm_flags;
943 int error;
944 unsigned long reqprot = prot;
947 * Does the application expect PROT_READ to imply PROT_EXEC?
949 * (the exception is when the underlying filesystem is noexec
950 * mounted, in which case we dont add PROT_EXEC.)
952 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
953 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
954 prot |= PROT_EXEC;
956 if (!len)
957 return -EINVAL;
959 if (!(flags & MAP_FIXED))
960 addr = round_hint_to_min(addr);
962 /* Careful about overflows.. */
963 len = PAGE_ALIGN(len);
964 if (!len)
965 return -ENOMEM;
967 /* offset overflow? */
968 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
969 return -EOVERFLOW;
971 /* Too many mappings? */
972 if (mm->map_count > sysctl_max_map_count)
973 return -ENOMEM;
975 /* Obtain the address to map to. we verify (or select) it and ensure
976 * that it represents a valid section of the address space.
978 addr = get_unmapped_area(file, addr, len, pgoff, flags);
979 if (addr & ~PAGE_MASK)
980 return addr;
982 /* Do simple checking here so the lower-level routines won't have
983 * to. we assume access permissions have been handled by the open
984 * of the memory object, so we don't do any here.
986 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
987 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
989 if (flags & MAP_LOCKED)
990 if (!can_do_mlock())
991 return -EPERM;
993 /* mlock MCL_FUTURE? */
994 if (vm_flags & VM_LOCKED) {
995 unsigned long locked, lock_limit;
996 locked = len >> PAGE_SHIFT;
997 locked += mm->locked_vm;
998 lock_limit = rlimit(RLIMIT_MEMLOCK);
999 lock_limit >>= PAGE_SHIFT;
1000 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1001 return -EAGAIN;
1004 inode = file ? file->f_path.dentry->d_inode : NULL;
1006 if (file) {
1007 switch (flags & MAP_TYPE) {
1008 case MAP_SHARED:
1009 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1010 return -EACCES;
1013 * Make sure we don't allow writing to an append-only
1014 * file..
1016 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1017 return -EACCES;
1020 * Make sure there are no mandatory locks on the file.
1022 if (locks_verify_locked(inode))
1023 return -EAGAIN;
1025 vm_flags |= VM_SHARED | VM_MAYSHARE;
1026 if (!(file->f_mode & FMODE_WRITE))
1027 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1029 /* fall through */
1030 case MAP_PRIVATE:
1031 if (!(file->f_mode & FMODE_READ))
1032 return -EACCES;
1033 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1034 if (vm_flags & VM_EXEC)
1035 return -EPERM;
1036 vm_flags &= ~VM_MAYEXEC;
1039 if (!file->f_op || !file->f_op->mmap)
1040 return -ENODEV;
1041 break;
1043 default:
1044 return -EINVAL;
1046 } else {
1047 switch (flags & MAP_TYPE) {
1048 case MAP_SHARED:
1050 * Ignore pgoff.
1052 pgoff = 0;
1053 vm_flags |= VM_SHARED | VM_MAYSHARE;
1054 break;
1055 case MAP_PRIVATE:
1057 * Set pgoff according to addr for anon_vma.
1059 pgoff = addr >> PAGE_SHIFT;
1060 break;
1061 default:
1062 return -EINVAL;
1066 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1067 if (error)
1068 return error;
1070 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1072 EXPORT_SYMBOL(do_mmap_pgoff);
1074 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1075 unsigned long, prot, unsigned long, flags,
1076 unsigned long, fd, unsigned long, pgoff)
1078 struct file *file = NULL;
1079 unsigned long retval = -EBADF;
1081 if (!(flags & MAP_ANONYMOUS)) {
1082 if (unlikely(flags & MAP_HUGETLB))
1083 return -EINVAL;
1084 file = fget(fd);
1085 if (!file)
1086 goto out;
1087 } else if (flags & MAP_HUGETLB) {
1088 struct user_struct *user = NULL;
1090 * VM_NORESERVE is used because the reservations will be
1091 * taken when vm_ops->mmap() is called
1092 * A dummy user value is used because we are not locking
1093 * memory so no accounting is necessary
1095 len = ALIGN(len, huge_page_size(&default_hstate));
1096 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1097 &user, HUGETLB_ANONHUGE_INODE);
1098 if (IS_ERR(file))
1099 return PTR_ERR(file);
1102 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1104 down_write(&current->mm->mmap_sem);
1105 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1106 up_write(&current->mm->mmap_sem);
1108 if (file)
1109 fput(file);
1110 out:
1111 return retval;
1114 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1115 struct mmap_arg_struct {
1116 unsigned long addr;
1117 unsigned long len;
1118 unsigned long prot;
1119 unsigned long flags;
1120 unsigned long fd;
1121 unsigned long offset;
1124 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1126 struct mmap_arg_struct a;
1128 if (copy_from_user(&a, arg, sizeof(a)))
1129 return -EFAULT;
1130 if (a.offset & ~PAGE_MASK)
1131 return -EINVAL;
1133 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1134 a.offset >> PAGE_SHIFT);
1136 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1139 * Some shared mappigns will want the pages marked read-only
1140 * to track write events. If so, we'll downgrade vm_page_prot
1141 * to the private version (using protection_map[] without the
1142 * VM_SHARED bit).
1144 int vma_wants_writenotify(struct vm_area_struct *vma)
1146 unsigned int vm_flags = vma->vm_flags;
1148 /* If it was private or non-writable, the write bit is already clear */
1149 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1150 return 0;
1152 /* The backer wishes to know when pages are first written to? */
1153 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1154 return 1;
1156 /* The open routine did something to the protections already? */
1157 if (pgprot_val(vma->vm_page_prot) !=
1158 pgprot_val(vm_get_page_prot(vm_flags)))
1159 return 0;
1161 /* Specialty mapping? */
1162 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1163 return 0;
1165 /* Can the mapping track the dirty pages? */
1166 return vma->vm_file && vma->vm_file->f_mapping &&
1167 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1171 * We account for memory if it's a private writeable mapping,
1172 * not hugepages and VM_NORESERVE wasn't set.
1174 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1177 * hugetlb has its own accounting separate from the core VM
1178 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1180 if (file && is_file_hugepages(file))
1181 return 0;
1183 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1186 unsigned long mmap_region(struct file *file, unsigned long addr,
1187 unsigned long len, unsigned long flags,
1188 unsigned int vm_flags, unsigned long pgoff)
1190 struct mm_struct *mm = current->mm;
1191 struct vm_area_struct *vma, *prev;
1192 int correct_wcount = 0;
1193 int error;
1194 struct rb_node **rb_link, *rb_parent;
1195 unsigned long charged = 0;
1196 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1198 /* Clear old maps */
1199 error = -ENOMEM;
1200 munmap_back:
1201 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1202 if (vma && vma->vm_start < addr + len) {
1203 if (do_munmap(mm, addr, len))
1204 return -ENOMEM;
1205 goto munmap_back;
1208 /* Check against address space limit. */
1209 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1210 return -ENOMEM;
1213 * Set 'VM_NORESERVE' if we should not account for the
1214 * memory use of this mapping.
1216 if ((flags & MAP_NORESERVE)) {
1217 /* We honor MAP_NORESERVE if allowed to overcommit */
1218 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1219 vm_flags |= VM_NORESERVE;
1221 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1222 if (file && is_file_hugepages(file))
1223 vm_flags |= VM_NORESERVE;
1227 * Private writable mapping: check memory availability
1229 if (accountable_mapping(file, vm_flags)) {
1230 charged = len >> PAGE_SHIFT;
1231 if (security_vm_enough_memory(charged))
1232 return -ENOMEM;
1233 vm_flags |= VM_ACCOUNT;
1237 * Can we just expand an old mapping?
1239 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1240 if (vma)
1241 goto out;
1244 * Determine the object being mapped and call the appropriate
1245 * specific mapper. the address has already been validated, but
1246 * not unmapped, but the maps are removed from the list.
1248 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1249 if (!vma) {
1250 error = -ENOMEM;
1251 goto unacct_error;
1254 vma->vm_mm = mm;
1255 vma->vm_start = addr;
1256 vma->vm_end = addr + len;
1257 vma->vm_flags = vm_flags;
1258 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1259 vma->vm_pgoff = pgoff;
1260 INIT_LIST_HEAD(&vma->anon_vma_chain);
1262 if (file) {
1263 error = -EINVAL;
1264 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1265 goto free_vma;
1266 if (vm_flags & VM_DENYWRITE) {
1267 error = deny_write_access(file);
1268 if (error)
1269 goto free_vma;
1270 correct_wcount = 1;
1272 vma->vm_file = file;
1273 get_file(file);
1274 error = file->f_op->mmap(file, vma);
1275 if (error)
1276 goto unmap_and_free_vma;
1277 if (vm_flags & VM_EXECUTABLE)
1278 added_exe_file_vma(mm);
1280 /* Can addr have changed??
1282 * Answer: Yes, several device drivers can do it in their
1283 * f_op->mmap method. -DaveM
1285 addr = vma->vm_start;
1286 pgoff = vma->vm_pgoff;
1287 vm_flags = vma->vm_flags;
1288 } else if (vm_flags & VM_SHARED) {
1289 error = shmem_zero_setup(vma);
1290 if (error)
1291 goto free_vma;
1294 if (vma_wants_writenotify(vma)) {
1295 pgprot_t pprot = vma->vm_page_prot;
1297 /* Can vma->vm_page_prot have changed??
1299 * Answer: Yes, drivers may have changed it in their
1300 * f_op->mmap method.
1302 * Ensures that vmas marked as uncached stay that way.
1304 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1305 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1306 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1309 vma_link(mm, vma, prev, rb_link, rb_parent);
1310 file = vma->vm_file;
1312 /* Once vma denies write, undo our temporary denial count */
1313 if (correct_wcount)
1314 atomic_inc(&inode->i_writecount);
1315 out:
1316 perf_event_mmap(vma);
1318 mm->total_vm += len >> PAGE_SHIFT;
1319 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1320 if (vm_flags & VM_LOCKED) {
1321 if (!mlock_vma_pages_range(vma, addr, addr + len))
1322 mm->locked_vm += (len >> PAGE_SHIFT);
1323 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1324 make_pages_present(addr, addr + len);
1325 return addr;
1327 unmap_and_free_vma:
1328 if (correct_wcount)
1329 atomic_inc(&inode->i_writecount);
1330 vma->vm_file = NULL;
1331 fput(file);
1333 /* Undo any partial mapping done by a device driver. */
1334 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1335 charged = 0;
1336 free_vma:
1337 kmem_cache_free(vm_area_cachep, vma);
1338 unacct_error:
1339 if (charged)
1340 vm_unacct_memory(charged);
1341 return error;
1344 /* Get an address range which is currently unmapped.
1345 * For shmat() with addr=0.
1347 * Ugly calling convention alert:
1348 * Return value with the low bits set means error value,
1349 * ie
1350 * if (ret & ~PAGE_MASK)
1351 * error = ret;
1353 * This function "knows" that -ENOMEM has the bits set.
1355 #ifndef HAVE_ARCH_UNMAPPED_AREA
1356 unsigned long
1357 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1358 unsigned long len, unsigned long pgoff, unsigned long flags)
1360 struct mm_struct *mm = current->mm;
1361 struct vm_area_struct *vma;
1362 unsigned long start_addr;
1364 if (len > TASK_SIZE)
1365 return -ENOMEM;
1367 if (flags & MAP_FIXED)
1368 return addr;
1370 if (addr) {
1371 addr = PAGE_ALIGN(addr);
1372 vma = find_vma(mm, addr);
1373 if (TASK_SIZE - len >= addr &&
1374 (!vma || addr + len <= vma->vm_start))
1375 return addr;
1377 if (len > mm->cached_hole_size) {
1378 start_addr = addr = mm->free_area_cache;
1379 } else {
1380 start_addr = addr = TASK_UNMAPPED_BASE;
1381 mm->cached_hole_size = 0;
1384 full_search:
1385 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1386 /* At this point: (!vma || addr < vma->vm_end). */
1387 if (TASK_SIZE - len < addr) {
1389 * Start a new search - just in case we missed
1390 * some holes.
1392 if (start_addr != TASK_UNMAPPED_BASE) {
1393 addr = TASK_UNMAPPED_BASE;
1394 start_addr = addr;
1395 mm->cached_hole_size = 0;
1396 goto full_search;
1398 return -ENOMEM;
1400 if (!vma || addr + len <= vma->vm_start) {
1402 * Remember the place where we stopped the search:
1404 mm->free_area_cache = addr + len;
1405 return addr;
1407 if (addr + mm->cached_hole_size < vma->vm_start)
1408 mm->cached_hole_size = vma->vm_start - addr;
1409 addr = vma->vm_end;
1412 #endif
1414 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1417 * Is this a new hole at the lowest possible address?
1419 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1420 mm->free_area_cache = addr;
1421 mm->cached_hole_size = ~0UL;
1426 * This mmap-allocator allocates new areas top-down from below the
1427 * stack's low limit (the base):
1429 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1430 unsigned long
1431 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1432 const unsigned long len, const unsigned long pgoff,
1433 const unsigned long flags)
1435 struct vm_area_struct *vma;
1436 struct mm_struct *mm = current->mm;
1437 unsigned long addr = addr0;
1439 /* requested length too big for entire address space */
1440 if (len > TASK_SIZE)
1441 return -ENOMEM;
1443 if (flags & MAP_FIXED)
1444 return addr;
1446 /* requesting a specific address */
1447 if (addr) {
1448 addr = PAGE_ALIGN(addr);
1449 vma = find_vma(mm, addr);
1450 if (TASK_SIZE - len >= addr &&
1451 (!vma || addr + len <= vma->vm_start))
1452 return addr;
1455 /* check if free_area_cache is useful for us */
1456 if (len <= mm->cached_hole_size) {
1457 mm->cached_hole_size = 0;
1458 mm->free_area_cache = mm->mmap_base;
1461 /* either no address requested or can't fit in requested address hole */
1462 addr = mm->free_area_cache;
1464 /* make sure it can fit in the remaining address space */
1465 if (addr > len) {
1466 vma = find_vma(mm, addr-len);
1467 if (!vma || addr <= vma->vm_start)
1468 /* remember the address as a hint for next time */
1469 return (mm->free_area_cache = addr-len);
1472 if (mm->mmap_base < len)
1473 goto bottomup;
1475 addr = mm->mmap_base-len;
1477 do {
1479 * Lookup failure means no vma is above this address,
1480 * else if new region fits below vma->vm_start,
1481 * return with success:
1483 vma = find_vma(mm, addr);
1484 if (!vma || addr+len <= vma->vm_start)
1485 /* remember the address as a hint for next time */
1486 return (mm->free_area_cache = addr);
1488 /* remember the largest hole we saw so far */
1489 if (addr + mm->cached_hole_size < vma->vm_start)
1490 mm->cached_hole_size = vma->vm_start - addr;
1492 /* try just below the current vma->vm_start */
1493 addr = vma->vm_start-len;
1494 } while (len < vma->vm_start);
1496 bottomup:
1498 * A failed mmap() very likely causes application failure,
1499 * so fall back to the bottom-up function here. This scenario
1500 * can happen with large stack limits and large mmap()
1501 * allocations.
1503 mm->cached_hole_size = ~0UL;
1504 mm->free_area_cache = TASK_UNMAPPED_BASE;
1505 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1507 * Restore the topdown base:
1509 mm->free_area_cache = mm->mmap_base;
1510 mm->cached_hole_size = ~0UL;
1512 return addr;
1514 #endif
1516 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1519 * Is this a new hole at the highest possible address?
1521 if (addr > mm->free_area_cache)
1522 mm->free_area_cache = addr;
1524 /* dont allow allocations above current base */
1525 if (mm->free_area_cache > mm->mmap_base)
1526 mm->free_area_cache = mm->mmap_base;
1529 unsigned long
1530 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1531 unsigned long pgoff, unsigned long flags)
1533 unsigned long (*get_area)(struct file *, unsigned long,
1534 unsigned long, unsigned long, unsigned long);
1536 unsigned long error = arch_mmap_check(addr, len, flags);
1537 if (error)
1538 return error;
1540 /* Careful about overflows.. */
1541 if (len > TASK_SIZE)
1542 return -ENOMEM;
1544 get_area = current->mm->get_unmapped_area;
1545 if (file && file->f_op && file->f_op->get_unmapped_area)
1546 get_area = file->f_op->get_unmapped_area;
1547 addr = get_area(file, addr, len, pgoff, flags);
1548 if (IS_ERR_VALUE(addr))
1549 return addr;
1551 if (addr > TASK_SIZE - len)
1552 return -ENOMEM;
1553 if (addr & ~PAGE_MASK)
1554 return -EINVAL;
1556 return arch_rebalance_pgtables(addr, len);
1559 EXPORT_SYMBOL(get_unmapped_area);
1561 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1562 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1564 struct vm_area_struct *vma = NULL;
1566 if (mm) {
1567 /* Check the cache first. */
1568 /* (Cache hit rate is typically around 35%.) */
1569 vma = mm->mmap_cache;
1570 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1571 struct rb_node * rb_node;
1573 rb_node = mm->mm_rb.rb_node;
1574 vma = NULL;
1576 while (rb_node) {
1577 struct vm_area_struct * vma_tmp;
1579 vma_tmp = rb_entry(rb_node,
1580 struct vm_area_struct, vm_rb);
1582 if (vma_tmp->vm_end > addr) {
1583 vma = vma_tmp;
1584 if (vma_tmp->vm_start <= addr)
1585 break;
1586 rb_node = rb_node->rb_left;
1587 } else
1588 rb_node = rb_node->rb_right;
1590 if (vma)
1591 mm->mmap_cache = vma;
1594 return vma;
1597 EXPORT_SYMBOL(find_vma);
1599 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1600 struct vm_area_struct *
1601 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1602 struct vm_area_struct **pprev)
1604 struct vm_area_struct *vma = NULL, *prev = NULL;
1605 struct rb_node *rb_node;
1606 if (!mm)
1607 goto out;
1609 /* Guard against addr being lower than the first VMA */
1610 vma = mm->mmap;
1612 /* Go through the RB tree quickly. */
1613 rb_node = mm->mm_rb.rb_node;
1615 while (rb_node) {
1616 struct vm_area_struct *vma_tmp;
1617 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1619 if (addr < vma_tmp->vm_end) {
1620 rb_node = rb_node->rb_left;
1621 } else {
1622 prev = vma_tmp;
1623 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1624 break;
1625 rb_node = rb_node->rb_right;
1629 out:
1630 *pprev = prev;
1631 return prev ? prev->vm_next : vma;
1635 * Verify that the stack growth is acceptable and
1636 * update accounting. This is shared with both the
1637 * grow-up and grow-down cases.
1639 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1641 struct mm_struct *mm = vma->vm_mm;
1642 struct rlimit *rlim = current->signal->rlim;
1643 unsigned long new_start;
1645 /* address space limit tests */
1646 if (!may_expand_vm(mm, grow))
1647 return -ENOMEM;
1649 /* Stack limit test */
1650 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1651 return -ENOMEM;
1653 /* mlock limit tests */
1654 if (vma->vm_flags & VM_LOCKED) {
1655 unsigned long locked;
1656 unsigned long limit;
1657 locked = mm->locked_vm + grow;
1658 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1659 limit >>= PAGE_SHIFT;
1660 if (locked > limit && !capable(CAP_IPC_LOCK))
1661 return -ENOMEM;
1664 /* Check to ensure the stack will not grow into a hugetlb-only region */
1665 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1666 vma->vm_end - size;
1667 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1668 return -EFAULT;
1671 * Overcommit.. This must be the final test, as it will
1672 * update security statistics.
1674 if (security_vm_enough_memory_mm(mm, grow))
1675 return -ENOMEM;
1677 /* Ok, everything looks good - let it rip */
1678 mm->total_vm += grow;
1679 if (vma->vm_flags & VM_LOCKED)
1680 mm->locked_vm += grow;
1681 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1682 return 0;
1685 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1687 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1688 * vma is the last one with address > vma->vm_end. Have to extend vma.
1690 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1692 int error;
1694 if (!(vma->vm_flags & VM_GROWSUP))
1695 return -EFAULT;
1698 * We must make sure the anon_vma is allocated
1699 * so that the anon_vma locking is not a noop.
1701 if (unlikely(anon_vma_prepare(vma)))
1702 return -ENOMEM;
1703 vma_lock_anon_vma(vma);
1706 * vma->vm_start/vm_end cannot change under us because the caller
1707 * is required to hold the mmap_sem in read mode. We need the
1708 * anon_vma lock to serialize against concurrent expand_stacks.
1709 * Also guard against wrapping around to address 0.
1711 if (address < PAGE_ALIGN(address+4))
1712 address = PAGE_ALIGN(address+4);
1713 else {
1714 vma_unlock_anon_vma(vma);
1715 return -ENOMEM;
1717 error = 0;
1719 /* Somebody else might have raced and expanded it already */
1720 if (address > vma->vm_end) {
1721 unsigned long size, grow;
1723 size = address - vma->vm_start;
1724 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1726 error = acct_stack_growth(vma, size, grow);
1727 if (!error) {
1728 vma->vm_end = address;
1729 perf_event_mmap(vma);
1732 vma_unlock_anon_vma(vma);
1733 return error;
1735 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1738 * vma is the first one with address < vma->vm_start. Have to extend vma.
1740 static int expand_downwards(struct vm_area_struct *vma,
1741 unsigned long address)
1743 int error;
1746 * We must make sure the anon_vma is allocated
1747 * so that the anon_vma locking is not a noop.
1749 if (unlikely(anon_vma_prepare(vma)))
1750 return -ENOMEM;
1752 address &= PAGE_MASK;
1753 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1754 if (error)
1755 return error;
1757 vma_lock_anon_vma(vma);
1760 * vma->vm_start/vm_end cannot change under us because the caller
1761 * is required to hold the mmap_sem in read mode. We need the
1762 * anon_vma lock to serialize against concurrent expand_stacks.
1765 /* Somebody else might have raced and expanded it already */
1766 if (address < vma->vm_start) {
1767 unsigned long size, grow;
1769 size = vma->vm_end - address;
1770 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1772 error = acct_stack_growth(vma, size, grow);
1773 if (!error) {
1774 vma->vm_start = address;
1775 vma->vm_pgoff -= grow;
1776 perf_event_mmap(vma);
1779 vma_unlock_anon_vma(vma);
1780 return error;
1783 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1785 return expand_downwards(vma, address);
1788 #ifdef CONFIG_STACK_GROWSUP
1789 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1791 return expand_upwards(vma, address);
1794 struct vm_area_struct *
1795 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1797 struct vm_area_struct *vma, *prev;
1799 addr &= PAGE_MASK;
1800 vma = find_vma_prev(mm, addr, &prev);
1801 if (vma && (vma->vm_start <= addr))
1802 return vma;
1803 if (!prev || expand_stack(prev, addr))
1804 return NULL;
1805 if (prev->vm_flags & VM_LOCKED) {
1806 mlock_vma_pages_range(prev, addr, prev->vm_end);
1808 return prev;
1810 #else
1811 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1813 return expand_downwards(vma, address);
1816 struct vm_area_struct *
1817 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1819 struct vm_area_struct * vma;
1820 unsigned long start;
1822 addr &= PAGE_MASK;
1823 vma = find_vma(mm,addr);
1824 if (!vma)
1825 return NULL;
1826 if (vma->vm_start <= addr)
1827 return vma;
1828 if (!(vma->vm_flags & VM_GROWSDOWN))
1829 return NULL;
1830 start = vma->vm_start;
1831 if (expand_stack(vma, addr))
1832 return NULL;
1833 if (vma->vm_flags & VM_LOCKED) {
1834 mlock_vma_pages_range(vma, addr, start);
1836 return vma;
1838 #endif
1841 * Ok - we have the memory areas we should free on the vma list,
1842 * so release them, and do the vma updates.
1844 * Called with the mm semaphore held.
1846 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1848 /* Update high watermark before we lower total_vm */
1849 update_hiwater_vm(mm);
1850 do {
1851 long nrpages = vma_pages(vma);
1853 mm->total_vm -= nrpages;
1854 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1855 vma = remove_vma(vma);
1856 } while (vma);
1857 validate_mm(mm);
1861 * Get rid of page table information in the indicated region.
1863 * Called with the mm semaphore held.
1865 static void unmap_region(struct mm_struct *mm,
1866 struct vm_area_struct *vma, struct vm_area_struct *prev,
1867 unsigned long start, unsigned long end)
1869 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1870 struct mmu_gather *tlb;
1871 unsigned long nr_accounted = 0;
1873 lru_add_drain();
1874 tlb = tlb_gather_mmu(mm, 0);
1875 update_hiwater_rss(mm);
1876 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1877 vm_unacct_memory(nr_accounted);
1878 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1879 next? next->vm_start: 0);
1880 tlb_finish_mmu(tlb, start, end);
1884 * Create a list of vma's touched by the unmap, removing them from the mm's
1885 * vma list as we go..
1887 static void
1888 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1889 struct vm_area_struct *prev, unsigned long end)
1891 struct vm_area_struct **insertion_point;
1892 struct vm_area_struct *tail_vma = NULL;
1893 unsigned long addr;
1895 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1896 vma->vm_prev = NULL;
1897 do {
1898 rb_erase(&vma->vm_rb, &mm->mm_rb);
1899 mm->map_count--;
1900 tail_vma = vma;
1901 vma = vma->vm_next;
1902 } while (vma && vma->vm_start < end);
1903 *insertion_point = vma;
1904 if (vma)
1905 vma->vm_prev = prev;
1906 tail_vma->vm_next = NULL;
1907 if (mm->unmap_area == arch_unmap_area)
1908 addr = prev ? prev->vm_end : mm->mmap_base;
1909 else
1910 addr = vma ? vma->vm_start : mm->mmap_base;
1911 mm->unmap_area(mm, addr);
1912 mm->mmap_cache = NULL; /* Kill the cache. */
1916 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1917 * munmap path where it doesn't make sense to fail.
1919 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1920 unsigned long addr, int new_below)
1922 struct mempolicy *pol;
1923 struct vm_area_struct *new;
1924 int err = -ENOMEM;
1926 if (is_vm_hugetlb_page(vma) && (addr &
1927 ~(huge_page_mask(hstate_vma(vma)))))
1928 return -EINVAL;
1930 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1931 if (!new)
1932 goto out_err;
1934 /* most fields are the same, copy all, and then fixup */
1935 *new = *vma;
1937 INIT_LIST_HEAD(&new->anon_vma_chain);
1939 if (new_below)
1940 new->vm_end = addr;
1941 else {
1942 new->vm_start = addr;
1943 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1946 pol = mpol_dup(vma_policy(vma));
1947 if (IS_ERR(pol)) {
1948 err = PTR_ERR(pol);
1949 goto out_free_vma;
1951 vma_set_policy(new, pol);
1953 if (anon_vma_clone(new, vma))
1954 goto out_free_mpol;
1956 if (new->vm_file) {
1957 get_file(new->vm_file);
1958 if (vma->vm_flags & VM_EXECUTABLE)
1959 added_exe_file_vma(mm);
1962 if (new->vm_ops && new->vm_ops->open)
1963 new->vm_ops->open(new);
1965 if (new_below)
1966 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1967 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1968 else
1969 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1971 /* Success. */
1972 if (!err)
1973 return 0;
1975 /* Clean everything up if vma_adjust failed. */
1976 if (new->vm_ops && new->vm_ops->close)
1977 new->vm_ops->close(new);
1978 if (new->vm_file) {
1979 if (vma->vm_flags & VM_EXECUTABLE)
1980 removed_exe_file_vma(mm);
1981 fput(new->vm_file);
1983 unlink_anon_vmas(new);
1984 out_free_mpol:
1985 mpol_put(pol);
1986 out_free_vma:
1987 kmem_cache_free(vm_area_cachep, new);
1988 out_err:
1989 return err;
1993 * Split a vma into two pieces at address 'addr', a new vma is allocated
1994 * either for the first part or the tail.
1996 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1997 unsigned long addr, int new_below)
1999 if (mm->map_count >= sysctl_max_map_count)
2000 return -ENOMEM;
2002 return __split_vma(mm, vma, addr, new_below);
2005 /* Munmap is split into 2 main parts -- this part which finds
2006 * what needs doing, and the areas themselves, which do the
2007 * work. This now handles partial unmappings.
2008 * Jeremy Fitzhardinge <jeremy@goop.org>
2010 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2012 unsigned long end;
2013 struct vm_area_struct *vma, *prev, *last;
2015 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2016 return -EINVAL;
2018 if ((len = PAGE_ALIGN(len)) == 0)
2019 return -EINVAL;
2021 /* Find the first overlapping VMA */
2022 vma = find_vma_prev(mm, start, &prev);
2023 if (!vma)
2024 return 0;
2025 /* we have start < vma->vm_end */
2027 /* if it doesn't overlap, we have nothing.. */
2028 end = start + len;
2029 if (vma->vm_start >= end)
2030 return 0;
2033 * If we need to split any vma, do it now to save pain later.
2035 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2036 * unmapped vm_area_struct will remain in use: so lower split_vma
2037 * places tmp vma above, and higher split_vma places tmp vma below.
2039 if (start > vma->vm_start) {
2040 int error;
2043 * Make sure that map_count on return from munmap() will
2044 * not exceed its limit; but let map_count go just above
2045 * its limit temporarily, to help free resources as expected.
2047 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2048 return -ENOMEM;
2050 error = __split_vma(mm, vma, start, 0);
2051 if (error)
2052 return error;
2053 prev = vma;
2056 /* Does it split the last one? */
2057 last = find_vma(mm, end);
2058 if (last && end > last->vm_start) {
2059 int error = __split_vma(mm, last, end, 1);
2060 if (error)
2061 return error;
2063 vma = prev? prev->vm_next: mm->mmap;
2066 * unlock any mlock()ed ranges before detaching vmas
2068 if (mm->locked_vm) {
2069 struct vm_area_struct *tmp = vma;
2070 while (tmp && tmp->vm_start < end) {
2071 if (tmp->vm_flags & VM_LOCKED) {
2072 mm->locked_vm -= vma_pages(tmp);
2073 munlock_vma_pages_all(tmp);
2075 tmp = tmp->vm_next;
2080 * Remove the vma's, and unmap the actual pages
2082 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2083 unmap_region(mm, vma, prev, start, end);
2085 /* Fix up all other VM information */
2086 remove_vma_list(mm, vma);
2088 return 0;
2091 EXPORT_SYMBOL(do_munmap);
2093 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2095 int ret;
2096 struct mm_struct *mm = current->mm;
2098 profile_munmap(addr);
2100 down_write(&mm->mmap_sem);
2101 ret = do_munmap(mm, addr, len);
2102 up_write(&mm->mmap_sem);
2103 return ret;
2106 static inline void verify_mm_writelocked(struct mm_struct *mm)
2108 #ifdef CONFIG_DEBUG_VM
2109 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2110 WARN_ON(1);
2111 up_read(&mm->mmap_sem);
2113 #endif
2117 * this is really a simplified "do_mmap". it only handles
2118 * anonymous maps. eventually we may be able to do some
2119 * brk-specific accounting here.
2121 unsigned long do_brk(unsigned long addr, unsigned long len)
2123 struct mm_struct * mm = current->mm;
2124 struct vm_area_struct * vma, * prev;
2125 unsigned long flags;
2126 struct rb_node ** rb_link, * rb_parent;
2127 pgoff_t pgoff = addr >> PAGE_SHIFT;
2128 int error;
2130 len = PAGE_ALIGN(len);
2131 if (!len)
2132 return addr;
2134 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2135 if (error)
2136 return error;
2138 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2140 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2141 if (error & ~PAGE_MASK)
2142 return error;
2145 * mlock MCL_FUTURE?
2147 if (mm->def_flags & VM_LOCKED) {
2148 unsigned long locked, lock_limit;
2149 locked = len >> PAGE_SHIFT;
2150 locked += mm->locked_vm;
2151 lock_limit = rlimit(RLIMIT_MEMLOCK);
2152 lock_limit >>= PAGE_SHIFT;
2153 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2154 return -EAGAIN;
2158 * mm->mmap_sem is required to protect against another thread
2159 * changing the mappings in case we sleep.
2161 verify_mm_writelocked(mm);
2164 * Clear old maps. this also does some error checking for us
2166 munmap_back:
2167 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2168 if (vma && vma->vm_start < addr + len) {
2169 if (do_munmap(mm, addr, len))
2170 return -ENOMEM;
2171 goto munmap_back;
2174 /* Check against address space limits *after* clearing old maps... */
2175 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2176 return -ENOMEM;
2178 if (mm->map_count > sysctl_max_map_count)
2179 return -ENOMEM;
2181 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2182 return -ENOMEM;
2184 /* Can we just expand an old private anonymous mapping? */
2185 vma = vma_merge(mm, prev, addr, addr + len, flags,
2186 NULL, NULL, pgoff, NULL);
2187 if (vma)
2188 goto out;
2191 * create a vma struct for an anonymous mapping
2193 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2194 if (!vma) {
2195 vm_unacct_memory(len >> PAGE_SHIFT);
2196 return -ENOMEM;
2199 INIT_LIST_HEAD(&vma->anon_vma_chain);
2200 vma->vm_mm = mm;
2201 vma->vm_start = addr;
2202 vma->vm_end = addr + len;
2203 vma->vm_pgoff = pgoff;
2204 vma->vm_flags = flags;
2205 vma->vm_page_prot = vm_get_page_prot(flags);
2206 vma_link(mm, vma, prev, rb_link, rb_parent);
2207 out:
2208 perf_event_mmap(vma);
2209 mm->total_vm += len >> PAGE_SHIFT;
2210 if (flags & VM_LOCKED) {
2211 if (!mlock_vma_pages_range(vma, addr, addr + len))
2212 mm->locked_vm += (len >> PAGE_SHIFT);
2214 return addr;
2217 EXPORT_SYMBOL(do_brk);
2219 /* Release all mmaps. */
2220 void exit_mmap(struct mm_struct *mm)
2222 struct mmu_gather *tlb;
2223 struct vm_area_struct *vma;
2224 unsigned long nr_accounted = 0;
2225 unsigned long end;
2227 /* mm's last user has gone, and its about to be pulled down */
2228 mmu_notifier_release(mm);
2230 if (mm->locked_vm) {
2231 vma = mm->mmap;
2232 while (vma) {
2233 if (vma->vm_flags & VM_LOCKED)
2234 munlock_vma_pages_all(vma);
2235 vma = vma->vm_next;
2239 arch_exit_mmap(mm);
2241 vma = mm->mmap;
2242 if (!vma) /* Can happen if dup_mmap() received an OOM */
2243 return;
2245 lru_add_drain();
2246 flush_cache_mm(mm);
2247 tlb = tlb_gather_mmu(mm, 1);
2248 /* update_hiwater_rss(mm) here? but nobody should be looking */
2249 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2250 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2251 vm_unacct_memory(nr_accounted);
2253 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2254 tlb_finish_mmu(tlb, 0, end);
2257 * Walk the list again, actually closing and freeing it,
2258 * with preemption enabled, without holding any MM locks.
2260 while (vma)
2261 vma = remove_vma(vma);
2263 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2266 /* Insert vm structure into process list sorted by address
2267 * and into the inode's i_mmap tree. If vm_file is non-NULL
2268 * then i_mmap_lock is taken here.
2270 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2272 struct vm_area_struct * __vma, * prev;
2273 struct rb_node ** rb_link, * rb_parent;
2276 * The vm_pgoff of a purely anonymous vma should be irrelevant
2277 * until its first write fault, when page's anon_vma and index
2278 * are set. But now set the vm_pgoff it will almost certainly
2279 * end up with (unless mremap moves it elsewhere before that
2280 * first wfault), so /proc/pid/maps tells a consistent story.
2282 * By setting it to reflect the virtual start address of the
2283 * vma, merges and splits can happen in a seamless way, just
2284 * using the existing file pgoff checks and manipulations.
2285 * Similarly in do_mmap_pgoff and in do_brk.
2287 if (!vma->vm_file) {
2288 BUG_ON(vma->anon_vma);
2289 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2291 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2292 if (__vma && __vma->vm_start < vma->vm_end)
2293 return -ENOMEM;
2294 if ((vma->vm_flags & VM_ACCOUNT) &&
2295 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2296 return -ENOMEM;
2297 vma_link(mm, vma, prev, rb_link, rb_parent);
2298 return 0;
2302 * Copy the vma structure to a new location in the same mm,
2303 * prior to moving page table entries, to effect an mremap move.
2305 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2306 unsigned long addr, unsigned long len, pgoff_t pgoff)
2308 struct vm_area_struct *vma = *vmap;
2309 unsigned long vma_start = vma->vm_start;
2310 struct mm_struct *mm = vma->vm_mm;
2311 struct vm_area_struct *new_vma, *prev;
2312 struct rb_node **rb_link, *rb_parent;
2313 struct mempolicy *pol;
2316 * If anonymous vma has not yet been faulted, update new pgoff
2317 * to match new location, to increase its chance of merging.
2319 if (!vma->vm_file && !vma->anon_vma)
2320 pgoff = addr >> PAGE_SHIFT;
2322 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2323 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2324 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2325 if (new_vma) {
2327 * Source vma may have been merged into new_vma
2329 if (vma_start >= new_vma->vm_start &&
2330 vma_start < new_vma->vm_end)
2331 *vmap = new_vma;
2332 } else {
2333 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2334 if (new_vma) {
2335 *new_vma = *vma;
2336 pol = mpol_dup(vma_policy(vma));
2337 if (IS_ERR(pol))
2338 goto out_free_vma;
2339 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2340 if (anon_vma_clone(new_vma, vma))
2341 goto out_free_mempol;
2342 vma_set_policy(new_vma, pol);
2343 new_vma->vm_start = addr;
2344 new_vma->vm_end = addr + len;
2345 new_vma->vm_pgoff = pgoff;
2346 if (new_vma->vm_file) {
2347 get_file(new_vma->vm_file);
2348 if (vma->vm_flags & VM_EXECUTABLE)
2349 added_exe_file_vma(mm);
2351 if (new_vma->vm_ops && new_vma->vm_ops->open)
2352 new_vma->vm_ops->open(new_vma);
2353 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2356 return new_vma;
2358 out_free_mempol:
2359 mpol_put(pol);
2360 out_free_vma:
2361 kmem_cache_free(vm_area_cachep, new_vma);
2362 return NULL;
2366 * Return true if the calling process may expand its vm space by the passed
2367 * number of pages
2369 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2371 unsigned long cur = mm->total_vm; /* pages */
2372 unsigned long lim;
2374 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2376 if (cur + npages > lim)
2377 return 0;
2378 return 1;
2382 static int special_mapping_fault(struct vm_area_struct *vma,
2383 struct vm_fault *vmf)
2385 pgoff_t pgoff;
2386 struct page **pages;
2389 * special mappings have no vm_file, and in that case, the mm
2390 * uses vm_pgoff internally. So we have to subtract it from here.
2391 * We are allowed to do this because we are the mm; do not copy
2392 * this code into drivers!
2394 pgoff = vmf->pgoff - vma->vm_pgoff;
2396 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2397 pgoff--;
2399 if (*pages) {
2400 struct page *page = *pages;
2401 get_page(page);
2402 vmf->page = page;
2403 return 0;
2406 return VM_FAULT_SIGBUS;
2410 * Having a close hook prevents vma merging regardless of flags.
2412 static void special_mapping_close(struct vm_area_struct *vma)
2416 static const struct vm_operations_struct special_mapping_vmops = {
2417 .close = special_mapping_close,
2418 .fault = special_mapping_fault,
2422 * Called with mm->mmap_sem held for writing.
2423 * Insert a new vma covering the given region, with the given flags.
2424 * Its pages are supplied by the given array of struct page *.
2425 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2426 * The region past the last page supplied will always produce SIGBUS.
2427 * The array pointer and the pages it points to are assumed to stay alive
2428 * for as long as this mapping might exist.
2430 int install_special_mapping(struct mm_struct *mm,
2431 unsigned long addr, unsigned long len,
2432 unsigned long vm_flags, struct page **pages)
2434 int ret;
2435 struct vm_area_struct *vma;
2437 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2438 if (unlikely(vma == NULL))
2439 return -ENOMEM;
2441 INIT_LIST_HEAD(&vma->anon_vma_chain);
2442 vma->vm_mm = mm;
2443 vma->vm_start = addr;
2444 vma->vm_end = addr + len;
2446 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2447 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2449 vma->vm_ops = &special_mapping_vmops;
2450 vma->vm_private_data = pages;
2452 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2453 if (ret)
2454 goto out;
2456 ret = insert_vm_struct(mm, vma);
2457 if (ret)
2458 goto out;
2460 mm->total_vm += len >> PAGE_SHIFT;
2462 perf_event_mmap(vma);
2464 return 0;
2466 out:
2467 kmem_cache_free(vm_area_cachep, vma);
2468 return ret;
2471 static DEFINE_MUTEX(mm_all_locks_mutex);
2473 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2475 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2477 * The LSB of head.next can't change from under us
2478 * because we hold the mm_all_locks_mutex.
2480 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2482 * We can safely modify head.next after taking the
2483 * anon_vma->root->lock. If some other vma in this mm shares
2484 * the same anon_vma we won't take it again.
2486 * No need of atomic instructions here, head.next
2487 * can't change from under us thanks to the
2488 * anon_vma->root->lock.
2490 if (__test_and_set_bit(0, (unsigned long *)
2491 &anon_vma->root->head.next))
2492 BUG();
2496 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2498 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2500 * AS_MM_ALL_LOCKS can't change from under us because
2501 * we hold the mm_all_locks_mutex.
2503 * Operations on ->flags have to be atomic because
2504 * even if AS_MM_ALL_LOCKS is stable thanks to the
2505 * mm_all_locks_mutex, there may be other cpus
2506 * changing other bitflags in parallel to us.
2508 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2509 BUG();
2510 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2515 * This operation locks against the VM for all pte/vma/mm related
2516 * operations that could ever happen on a certain mm. This includes
2517 * vmtruncate, try_to_unmap, and all page faults.
2519 * The caller must take the mmap_sem in write mode before calling
2520 * mm_take_all_locks(). The caller isn't allowed to release the
2521 * mmap_sem until mm_drop_all_locks() returns.
2523 * mmap_sem in write mode is required in order to block all operations
2524 * that could modify pagetables and free pages without need of
2525 * altering the vma layout (for example populate_range() with
2526 * nonlinear vmas). It's also needed in write mode to avoid new
2527 * anon_vmas to be associated with existing vmas.
2529 * A single task can't take more than one mm_take_all_locks() in a row
2530 * or it would deadlock.
2532 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2533 * mapping->flags avoid to take the same lock twice, if more than one
2534 * vma in this mm is backed by the same anon_vma or address_space.
2536 * We can take all the locks in random order because the VM code
2537 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2538 * takes more than one of them in a row. Secondly we're protected
2539 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2541 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2542 * that may have to take thousand of locks.
2544 * mm_take_all_locks() can fail if it's interrupted by signals.
2546 int mm_take_all_locks(struct mm_struct *mm)
2548 struct vm_area_struct *vma;
2549 struct anon_vma_chain *avc;
2550 int ret = -EINTR;
2552 BUG_ON(down_read_trylock(&mm->mmap_sem));
2554 mutex_lock(&mm_all_locks_mutex);
2556 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2557 if (signal_pending(current))
2558 goto out_unlock;
2559 if (vma->vm_file && vma->vm_file->f_mapping)
2560 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2563 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2564 if (signal_pending(current))
2565 goto out_unlock;
2566 if (vma->anon_vma)
2567 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2568 vm_lock_anon_vma(mm, avc->anon_vma);
2571 ret = 0;
2573 out_unlock:
2574 if (ret)
2575 mm_drop_all_locks(mm);
2577 return ret;
2580 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2582 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2584 * The LSB of head.next can't change to 0 from under
2585 * us because we hold the mm_all_locks_mutex.
2587 * We must however clear the bitflag before unlocking
2588 * the vma so the users using the anon_vma->head will
2589 * never see our bitflag.
2591 * No need of atomic instructions here, head.next
2592 * can't change from under us until we release the
2593 * anon_vma->root->lock.
2595 if (!__test_and_clear_bit(0, (unsigned long *)
2596 &anon_vma->root->head.next))
2597 BUG();
2598 anon_vma_unlock(anon_vma);
2602 static void vm_unlock_mapping(struct address_space *mapping)
2604 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2606 * AS_MM_ALL_LOCKS can't change to 0 from under us
2607 * because we hold the mm_all_locks_mutex.
2609 spin_unlock(&mapping->i_mmap_lock);
2610 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2611 &mapping->flags))
2612 BUG();
2617 * The mmap_sem cannot be released by the caller until
2618 * mm_drop_all_locks() returns.
2620 void mm_drop_all_locks(struct mm_struct *mm)
2622 struct vm_area_struct *vma;
2623 struct anon_vma_chain *avc;
2625 BUG_ON(down_read_trylock(&mm->mmap_sem));
2626 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2628 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2629 if (vma->anon_vma)
2630 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2631 vm_unlock_anon_vma(avc->anon_vma);
2632 if (vma->vm_file && vma->vm_file->f_mapping)
2633 vm_unlock_mapping(vma->vm_file->f_mapping);
2636 mutex_unlock(&mm_all_locks_mutex);
2640 * initialise the VMA slab
2642 void __init mmap_init(void)
2644 int ret;
2646 ret = percpu_counter_init(&vm_committed_as, 0);
2647 VM_BUG_ON(ret);