GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / kernel / signal.c
blob737cc9b00e1e13b1c9258a3c314fc79ccb6bdcf3
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !tracehook_consider_ignored_signal(t, sig);
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appopriate lock must be held to stop the target task from exiting
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 task_rlimit(t, RLIMIT_SIGPENDING)) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
263 return q;
266 static void __sigqueue_free(struct sigqueue *q)
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
275 void flush_sigqueue(struct sigpending *queue)
277 struct sigqueue *q;
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
288 * Flush all pending signals for a task.
290 void __flush_signals(struct task_struct *t)
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
297 void flush_signals(struct task_struct *t)
299 unsigned long flags;
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
306 static void __flush_itimer_signals(struct sigpending *pending)
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
311 signal = pending->signal;
312 sigemptyset(&retain);
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
326 sigorsets(&pending->signal, &signal, &retain);
329 void flush_itimer_signals(void)
331 struct task_struct *tsk = current;
332 unsigned long flags;
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
340 void ignore_signals(struct task_struct *t)
342 int i;
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
347 flush_signals(t);
351 * Flush all handlers for a task.
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
368 int unhandled_signal(struct task_struct *tsk, int sig)
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
379 /* Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not. */
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
390 unsigned long flags;
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
399 /* Notify the system that blocking has ended. */
401 void
402 unblock_all_signals(void)
404 unsigned long flags;
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
415 struct sigqueue *q, *first = NULL;
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
429 sigdelset(&list->signal, sig);
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
437 /* Ok, it wasn't in the queue. This must be
438 a fast-pathed signal or we must have been
439 out of queue space. So zero out the info.
441 info->si_signo = sig;
442 info->si_errno = 0;
443 info->si_code = SI_USER;
444 info->si_pid = 0;
445 info->si_uid = 0;
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 siginfo_t *info)
452 int sig = next_signal(pending, mask);
454 if (sig) {
455 if (current->notifier) {
456 if (sigismember(current->notifier_mask, sig)) {
457 if (!(current->notifier)(current->notifier_data)) {
458 clear_thread_flag(TIF_SIGPENDING);
459 return 0;
464 collect_signal(sig, pending, info);
467 return sig;
471 * Dequeue a signal and return the element to the caller, which is
472 * expected to free it.
474 * All callers have to hold the siglock.
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
478 int signr;
480 /* We only dequeue private signals from ourselves, we don't let
481 * signalfd steal them
483 signr = __dequeue_signal(&tsk->pending, mask, info);
484 if (!signr) {
485 signr = __dequeue_signal(&tsk->signal->shared_pending,
486 mask, info);
488 * itimer signal ?
490 * itimers are process shared and we restart periodic
491 * itimers in the signal delivery path to prevent DoS
492 * attacks in the high resolution timer case. This is
493 * compliant with the old way of self restarting
494 * itimers, as the SIGALRM is a legacy signal and only
495 * queued once. Changing the restart behaviour to
496 * restart the timer in the signal dequeue path is
497 * reducing the timer noise on heavy loaded !highres
498 * systems too.
500 if (unlikely(signr == SIGALRM)) {
501 struct hrtimer *tmr = &tsk->signal->real_timer;
503 if (!hrtimer_is_queued(tmr) &&
504 tsk->signal->it_real_incr.tv64 != 0) {
505 hrtimer_forward(tmr, tmr->base->get_time(),
506 tsk->signal->it_real_incr);
507 hrtimer_restart(tmr);
512 recalc_sigpending();
513 if (!signr)
514 return 0;
516 if (unlikely(sig_kernel_stop(signr))) {
518 * Set a marker that we have dequeued a stop signal. Our
519 * caller might release the siglock and then the pending
520 * stop signal it is about to process is no longer in the
521 * pending bitmasks, but must still be cleared by a SIGCONT
522 * (and overruled by a SIGKILL). So those cases clear this
523 * shared flag after we've set it. Note that this flag may
524 * remain set after the signal we return is ignored or
525 * handled. That doesn't matter because its only purpose
526 * is to alert stop-signal processing code when another
527 * processor has come along and cleared the flag.
529 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
531 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
533 * Release the siglock to ensure proper locking order
534 * of timer locks outside of siglocks. Note, we leave
535 * irqs disabled here, since the posix-timers code is
536 * about to disable them again anyway.
538 spin_unlock(&tsk->sighand->siglock);
539 do_schedule_next_timer(info);
540 spin_lock(&tsk->sighand->siglock);
542 return signr;
546 * Tell a process that it has a new active signal..
548 * NOTE! we rely on the previous spin_lock to
549 * lock interrupts for us! We can only be called with
550 * "siglock" held, and the local interrupt must
551 * have been disabled when that got acquired!
553 * No need to set need_resched since signal event passing
554 * goes through ->blocked
556 void signal_wake_up(struct task_struct *t, int resume)
558 unsigned int mask;
560 set_tsk_thread_flag(t, TIF_SIGPENDING);
563 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 * case. We don't check t->state here because there is a race with it
565 * executing another processor and just now entering stopped state.
566 * By using wake_up_state, we ensure the process will wake up and
567 * handle its death signal.
569 mask = TASK_INTERRUPTIBLE;
570 if (resume)
571 mask |= TASK_WAKEKILL;
572 if (!wake_up_state(t, mask))
573 kick_process(t);
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
580 * All callers must be holding the siglock.
582 * This version takes a sigset mask and looks at all signals,
583 * not just those in the first mask word.
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
587 struct sigqueue *q, *n;
588 sigset_t m;
590 sigandsets(&m, mask, &s->signal);
591 if (sigisemptyset(&m))
592 return 0;
594 signandsets(&s->signal, &s->signal, mask);
595 list_for_each_entry_safe(q, n, &s->list, list) {
596 if (sigismember(mask, q->info.si_signo)) {
597 list_del_init(&q->list);
598 __sigqueue_free(q);
601 return 1;
604 * Remove signals in mask from the pending set and queue.
605 * Returns 1 if any signals were found.
607 * All callers must be holding the siglock.
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
611 struct sigqueue *q, *n;
613 if (!sigtestsetmask(&s->signal, mask))
614 return 0;
616 sigdelsetmask(&s->signal, mask);
617 list_for_each_entry_safe(q, n, &s->list, list) {
618 if (q->info.si_signo < SIGRTMIN &&
619 (mask & sigmask(q->info.si_signo))) {
620 list_del_init(&q->list);
621 __sigqueue_free(q);
624 return 1;
627 static inline int is_si_special(const struct siginfo *info)
629 return info <= SEND_SIG_FORCED;
632 static inline bool si_fromuser(const struct siginfo *info)
634 return info == SEND_SIG_NOINFO ||
635 (!is_si_special(info) && SI_FROMUSER(info));
639 * Bad permissions for sending the signal
640 * - the caller must hold the RCU read lock
642 static int check_kill_permission(int sig, struct siginfo *info,
643 struct task_struct *t)
645 const struct cred *cred, *tcred;
646 struct pid *sid;
647 int error;
649 if (!valid_signal(sig))
650 return -EINVAL;
652 if (!si_fromuser(info))
653 return 0;
655 error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 if (error)
657 return error;
659 cred = current_cred();
660 tcred = __task_cred(t);
661 if (!same_thread_group(current, t) &&
662 (cred->euid ^ tcred->suid) &&
663 (cred->euid ^ tcred->uid) &&
664 (cred->uid ^ tcred->suid) &&
665 (cred->uid ^ tcred->uid) &&
666 !capable(CAP_KILL)) {
667 switch (sig) {
668 case SIGCONT:
669 sid = task_session(t);
671 * We don't return the error if sid == NULL. The
672 * task was unhashed, the caller must notice this.
674 if (!sid || sid == task_session(current))
675 break;
676 default:
677 return -EPERM;
681 return security_task_kill(t, info, sig, 0);
685 * Handle magic process-wide effects of stop/continue signals. Unlike
686 * the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
691 * Returns true if the signal should be actually delivered, otherwise
692 * it should be dropped.
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
696 struct signal_struct *signal = p->signal;
697 struct task_struct *t;
699 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
701 * The process is in the middle of dying, nothing to do.
703 } else if (sig_kernel_stop(sig)) {
705 * This is a stop signal. Remove SIGCONT from all queues.
707 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 t = p;
709 do {
710 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } while_each_thread(p, t);
712 } else if (sig == SIGCONT) {
713 unsigned int why;
715 * Remove all stop signals from all queues,
716 * and wake all threads.
718 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 t = p;
720 do {
721 unsigned int state;
722 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
724 * If there is a handler for SIGCONT, we must make
725 * sure that no thread returns to user mode before
726 * we post the signal, in case it was the only
727 * thread eligible to run the signal handler--then
728 * it must not do anything between resuming and
729 * running the handler. With the TIF_SIGPENDING
730 * flag set, the thread will pause and acquire the
731 * siglock that we hold now and until we've queued
732 * the pending signal.
734 * Wake up the stopped thread _after_ setting
735 * TIF_SIGPENDING
737 state = __TASK_STOPPED;
738 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
740 state |= TASK_INTERRUPTIBLE;
742 wake_up_state(t, state);
743 } while_each_thread(p, t);
746 * Notify the parent with CLD_CONTINUED if we were stopped.
748 * If we were in the middle of a group stop, we pretend it
749 * was already finished, and then continued. Since SIGCHLD
750 * doesn't queue we report only CLD_STOPPED, as if the next
751 * CLD_CONTINUED was dropped.
753 why = 0;
754 if (signal->flags & SIGNAL_STOP_STOPPED)
755 why |= SIGNAL_CLD_CONTINUED;
756 else if (signal->group_stop_count)
757 why |= SIGNAL_CLD_STOPPED;
759 if (why) {
761 * The first thread which returns from do_signal_stop()
762 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 * notify its parent. See get_signal_to_deliver().
765 signal->flags = why | SIGNAL_STOP_CONTINUED;
766 signal->group_stop_count = 0;
767 signal->group_exit_code = 0;
768 } else {
770 * We are not stopped, but there could be a stop
771 * signal in the middle of being processed after
772 * being removed from the queue. Clear that too.
774 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
778 return !sig_ignored(p, sig, from_ancestor_ns);
782 * Test if P wants to take SIG. After we've checked all threads with this,
783 * it's equivalent to finding no threads not blocking SIG. Any threads not
784 * blocking SIG were ruled out because they are not running and already
785 * have pending signals. Such threads will dequeue from the shared queue
786 * as soon as they're available, so putting the signal on the shared queue
787 * will be equivalent to sending it to one such thread.
789 static inline int wants_signal(int sig, struct task_struct *p)
791 if (sigismember(&p->blocked, sig))
792 return 0;
793 if (p->flags & PF_EXITING)
794 return 0;
795 if (sig == SIGKILL)
796 return 1;
797 if (task_is_stopped_or_traced(p))
798 return 0;
799 return task_curr(p) || !signal_pending(p);
802 static void complete_signal(int sig, struct task_struct *p, int group)
804 struct signal_struct *signal = p->signal;
805 struct task_struct *t;
808 * Now find a thread we can wake up to take the signal off the queue.
810 * If the main thread wants the signal, it gets first crack.
811 * Probably the least surprising to the average bear.
813 if (wants_signal(sig, p))
814 t = p;
815 else if (!group || thread_group_empty(p))
817 * There is just one thread and it does not need to be woken.
818 * It will dequeue unblocked signals before it runs again.
820 return;
821 else {
823 * Otherwise try to find a suitable thread.
825 t = signal->curr_target;
826 while (!wants_signal(sig, t)) {
827 t = next_thread(t);
828 if (t == signal->curr_target)
830 * No thread needs to be woken.
831 * Any eligible threads will see
832 * the signal in the queue soon.
834 return;
836 signal->curr_target = t;
840 * Found a killable thread. If the signal will be fatal,
841 * then start taking the whole group down immediately.
843 if (sig_fatal(p, sig) &&
844 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 !sigismember(&t->real_blocked, sig) &&
846 (sig == SIGKILL ||
847 !tracehook_consider_fatal_signal(t, sig))) {
849 * This signal will be fatal to the whole group.
851 if (!sig_kernel_coredump(sig)) {
853 * Start a group exit and wake everybody up.
854 * This way we don't have other threads
855 * running and doing things after a slower
856 * thread has the fatal signal pending.
858 signal->flags = SIGNAL_GROUP_EXIT;
859 signal->group_exit_code = sig;
860 signal->group_stop_count = 0;
861 t = p;
862 do {
863 sigaddset(&t->pending.signal, SIGKILL);
864 signal_wake_up(t, 1);
865 } while_each_thread(p, t);
866 return;
871 * The signal is already in the shared-pending queue.
872 * Tell the chosen thread to wake up and dequeue it.
874 signal_wake_up(t, sig == SIGKILL);
875 return;
878 static inline int legacy_queue(struct sigpending *signals, int sig)
880 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 int group, int from_ancestor_ns)
886 struct sigpending *pending;
887 struct sigqueue *q;
888 int override_rlimit;
890 trace_signal_generate(sig, info, t);
892 assert_spin_locked(&t->sighand->siglock);
894 if (!prepare_signal(sig, t, from_ancestor_ns))
895 return 0;
897 pending = group ? &t->signal->shared_pending : &t->pending;
899 * Short-circuit ignored signals and support queuing
900 * exactly one non-rt signal, so that we can get more
901 * detailed information about the cause of the signal.
903 if (legacy_queue(pending, sig))
904 return 0;
906 * fast-pathed signals for kernel-internal things like SIGSTOP
907 * or SIGKILL.
909 if (info == SEND_SIG_FORCED)
910 goto out_set;
912 /* Real-time signals must be queued if sent by sigqueue, or
913 some other real-time mechanism. It is implementation
914 defined whether kill() does so. We attempt to do so, on
915 the principle of least surprise, but since kill is not
916 allowed to fail with EAGAIN when low on memory we just
917 make sure at least one signal gets delivered and don't
918 pass on the info struct. */
920 if (sig < SIGRTMIN)
921 override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 else
923 override_rlimit = 0;
925 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 override_rlimit);
927 if (q) {
928 list_add_tail(&q->list, &pending->list);
929 switch ((unsigned long) info) {
930 case (unsigned long) SEND_SIG_NOINFO:
931 q->info.si_signo = sig;
932 q->info.si_errno = 0;
933 q->info.si_code = SI_USER;
934 q->info.si_pid = task_tgid_nr_ns(current,
935 task_active_pid_ns(t));
936 q->info.si_uid = current_uid();
937 break;
938 case (unsigned long) SEND_SIG_PRIV:
939 q->info.si_signo = sig;
940 q->info.si_errno = 0;
941 q->info.si_code = SI_KERNEL;
942 q->info.si_pid = 0;
943 q->info.si_uid = 0;
944 break;
945 default:
946 copy_siginfo(&q->info, info);
947 if (from_ancestor_ns)
948 q->info.si_pid = 0;
949 break;
951 } else if (!is_si_special(info)) {
952 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
954 * Queue overflow, abort. We may abort if the
955 * signal was rt and sent by user using something
956 * other than kill().
958 trace_signal_overflow_fail(sig, group, info);
959 return -EAGAIN;
960 } else {
962 * This is a silent loss of information. We still
963 * send the signal, but the *info bits are lost.
965 trace_signal_lose_info(sig, group, info);
969 out_set:
970 signalfd_notify(t, sig);
971 sigaddset(&pending->signal, sig);
972 complete_signal(sig, t, group);
973 return 0;
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 int group)
979 int from_ancestor_ns = 0;
981 #ifdef CONFIG_PID_NS
982 from_ancestor_ns = si_fromuser(info) &&
983 !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
986 return __send_signal(sig, info, t, group, from_ancestor_ns);
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
991 printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 current->comm, task_pid_nr(current), signr);
994 #if defined(__i386__) && !defined(__arch_um__)
995 printk("code at %08lx: ", regs->ip);
997 int i;
998 for (i = 0; i < 16; i++) {
999 unsigned char insn;
1001 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 break;
1003 printk("%02x ", insn);
1006 #endif
1007 printk("\n");
1008 preempt_disable();
1009 show_regs(regs);
1010 preempt_enable();
1013 static int __init setup_print_fatal_signals(char *str)
1015 get_option (&str, &print_fatal_signals);
1017 return 1;
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1025 return send_signal(sig, info, p, 1);
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1031 return send_signal(sig, info, t, 0);
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 bool group)
1037 unsigned long flags;
1038 int ret = -ESRCH;
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = send_signal(sig, info, p, group);
1042 unlock_task_sighand(p, &flags);
1045 return ret;
1049 * Force a signal that the process can't ignore: if necessary
1050 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1052 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053 * since we do not want to have a signal handler that was blocked
1054 * be invoked when user space had explicitly blocked it.
1056 * We don't want to have recursive SIGSEGV's etc, for example,
1057 * that is why we also clear SIGNAL_UNKILLABLE.
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1062 unsigned long int flags;
1063 int ret, blocked, ignored;
1064 struct k_sigaction *action;
1066 spin_lock_irqsave(&t->sighand->siglock, flags);
1067 action = &t->sighand->action[sig-1];
1068 ignored = action->sa.sa_handler == SIG_IGN;
1069 blocked = sigismember(&t->blocked, sig);
1070 if (blocked || ignored) {
1071 action->sa.sa_handler = SIG_DFL;
1072 if (blocked) {
1073 sigdelset(&t->blocked, sig);
1074 recalc_sigpending_and_wake(t);
1077 if (action->sa.sa_handler == SIG_DFL)
1078 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 ret = specific_send_sig_info(sig, info, t);
1080 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1082 return ret;
1086 * Nuke all other threads in the group.
1088 int zap_other_threads(struct task_struct *p)
1090 struct task_struct *t = p;
1091 int count = 0;
1093 p->signal->group_stop_count = 0;
1095 while_each_thread(p, t) {
1096 count++;
1098 /* Don't bother with already dead threads */
1099 if (t->exit_state)
1100 continue;
1101 sigaddset(&t->pending.signal, SIGKILL);
1102 signal_wake_up(t, 1);
1105 return count;
1108 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1110 struct sighand_struct *sighand;
1112 rcu_read_lock();
1113 for (;;) {
1114 sighand = rcu_dereference(tsk->sighand);
1115 if (unlikely(sighand == NULL))
1116 break;
1118 spin_lock_irqsave(&sighand->siglock, *flags);
1119 if (likely(sighand == tsk->sighand))
1120 break;
1121 spin_unlock_irqrestore(&sighand->siglock, *flags);
1123 rcu_read_unlock();
1125 return sighand;
1129 * send signal info to all the members of a group
1131 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 int ret;
1135 rcu_read_lock();
1136 ret = check_kill_permission(sig, info, p);
1137 rcu_read_unlock();
1139 if (!ret && sig)
1140 ret = do_send_sig_info(sig, info, p, true);
1142 return ret;
1146 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1147 * control characters do (^C, ^Z etc)
1148 * - the caller must hold at least a readlock on tasklist_lock
1150 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1152 struct task_struct *p = NULL;
1153 int retval, success;
1155 success = 0;
1156 retval = -ESRCH;
1157 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1158 int err = group_send_sig_info(sig, info, p);
1159 success |= !err;
1160 retval = err;
1161 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1162 return success ? 0 : retval;
1165 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1167 int error = -ESRCH;
1168 struct task_struct *p;
1170 rcu_read_lock();
1171 retry:
1172 p = pid_task(pid, PIDTYPE_PID);
1173 if (p) {
1174 error = group_send_sig_info(sig, info, p);
1175 if (unlikely(error == -ESRCH))
1177 * The task was unhashed in between, try again.
1178 * If it is dead, pid_task() will return NULL,
1179 * if we race with de_thread() it will find the
1180 * new leader.
1182 goto retry;
1184 rcu_read_unlock();
1186 return error;
1190 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1192 int error;
1193 rcu_read_lock();
1194 error = kill_pid_info(sig, info, find_vpid(pid));
1195 rcu_read_unlock();
1196 return error;
1199 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1200 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1201 uid_t uid, uid_t euid, u32 secid)
1203 int ret = -EINVAL;
1204 struct task_struct *p;
1205 const struct cred *pcred;
1206 unsigned long flags;
1208 if (!valid_signal(sig))
1209 return ret;
1211 rcu_read_lock();
1212 p = pid_task(pid, PIDTYPE_PID);
1213 if (!p) {
1214 ret = -ESRCH;
1215 goto out_unlock;
1217 pcred = __task_cred(p);
1218 if (si_fromuser(info) &&
1219 euid != pcred->suid && euid != pcred->uid &&
1220 uid != pcred->suid && uid != pcred->uid) {
1221 ret = -EPERM;
1222 goto out_unlock;
1224 ret = security_task_kill(p, info, sig, secid);
1225 if (ret)
1226 goto out_unlock;
1228 if (sig) {
1229 if (lock_task_sighand(p, &flags)) {
1230 ret = __send_signal(sig, info, p, 1, 0);
1231 unlock_task_sighand(p, &flags);
1232 } else
1233 ret = -ESRCH;
1235 out_unlock:
1236 rcu_read_unlock();
1237 return ret;
1239 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1242 * kill_something_info() interprets pid in interesting ways just like kill(2).
1244 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1245 * is probably wrong. Should make it like BSD or SYSV.
1248 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1250 int ret;
1252 if (pid > 0) {
1253 rcu_read_lock();
1254 ret = kill_pid_info(sig, info, find_vpid(pid));
1255 rcu_read_unlock();
1256 return ret;
1259 read_lock(&tasklist_lock);
1260 if (pid != -1) {
1261 ret = __kill_pgrp_info(sig, info,
1262 pid ? find_vpid(-pid) : task_pgrp(current));
1263 } else {
1264 int retval = 0, count = 0;
1265 struct task_struct * p;
1267 for_each_process(p) {
1268 if (task_pid_vnr(p) > 1 &&
1269 !same_thread_group(p, current)) {
1270 int err = group_send_sig_info(sig, info, p);
1271 ++count;
1272 if (err != -EPERM)
1273 retval = err;
1276 ret = count ? retval : -ESRCH;
1278 read_unlock(&tasklist_lock);
1280 return ret;
1284 * These are for backward compatibility with the rest of the kernel source.
1288 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1291 * Make sure legacy kernel users don't send in bad values
1292 * (normal paths check this in check_kill_permission).
1294 if (!valid_signal(sig))
1295 return -EINVAL;
1297 return do_send_sig_info(sig, info, p, false);
1300 #define __si_special(priv) \
1301 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1304 send_sig(int sig, struct task_struct *p, int priv)
1306 return send_sig_info(sig, __si_special(priv), p);
1309 void
1310 force_sig(int sig, struct task_struct *p)
1312 force_sig_info(sig, SEND_SIG_PRIV, p);
1316 * When things go south during signal handling, we
1317 * will force a SIGSEGV. And if the signal that caused
1318 * the problem was already a SIGSEGV, we'll want to
1319 * make sure we don't even try to deliver the signal..
1322 force_sigsegv(int sig, struct task_struct *p)
1324 if (sig == SIGSEGV) {
1325 unsigned long flags;
1326 spin_lock_irqsave(&p->sighand->siglock, flags);
1327 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1328 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1330 force_sig(SIGSEGV, p);
1331 return 0;
1334 int kill_pgrp(struct pid *pid, int sig, int priv)
1336 int ret;
1338 read_lock(&tasklist_lock);
1339 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1340 read_unlock(&tasklist_lock);
1342 return ret;
1344 EXPORT_SYMBOL(kill_pgrp);
1346 int kill_pid(struct pid *pid, int sig, int priv)
1348 return kill_pid_info(sig, __si_special(priv), pid);
1350 EXPORT_SYMBOL(kill_pid);
1353 * These functions support sending signals using preallocated sigqueue
1354 * structures. This is needed "because realtime applications cannot
1355 * afford to lose notifications of asynchronous events, like timer
1356 * expirations or I/O completions". In the case of Posix Timers
1357 * we allocate the sigqueue structure from the timer_create. If this
1358 * allocation fails we are able to report the failure to the application
1359 * with an EAGAIN error.
1361 struct sigqueue *sigqueue_alloc(void)
1363 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1365 if (q)
1366 q->flags |= SIGQUEUE_PREALLOC;
1368 return q;
1371 void sigqueue_free(struct sigqueue *q)
1373 unsigned long flags;
1374 spinlock_t *lock = &current->sighand->siglock;
1376 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378 * We must hold ->siglock while testing q->list
1379 * to serialize with collect_signal() or with
1380 * __exit_signal()->flush_sigqueue().
1382 spin_lock_irqsave(lock, flags);
1383 q->flags &= ~SIGQUEUE_PREALLOC;
1385 * If it is queued it will be freed when dequeued,
1386 * like the "regular" sigqueue.
1388 if (!list_empty(&q->list))
1389 q = NULL;
1390 spin_unlock_irqrestore(lock, flags);
1392 if (q)
1393 __sigqueue_free(q);
1396 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1398 int sig = q->info.si_signo;
1399 struct sigpending *pending;
1400 unsigned long flags;
1401 int ret;
1403 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1405 ret = -1;
1406 if (!likely(lock_task_sighand(t, &flags)))
1407 goto ret;
1409 ret = 1; /* the signal is ignored */
1410 if (!prepare_signal(sig, t, 0))
1411 goto out;
1413 ret = 0;
1414 if (unlikely(!list_empty(&q->list))) {
1416 * If an SI_TIMER entry is already queue just increment
1417 * the overrun count.
1419 BUG_ON(q->info.si_code != SI_TIMER);
1420 q->info.si_overrun++;
1421 goto out;
1423 q->info.si_overrun = 0;
1425 signalfd_notify(t, sig);
1426 pending = group ? &t->signal->shared_pending : &t->pending;
1427 list_add_tail(&q->list, &pending->list);
1428 sigaddset(&pending->signal, sig);
1429 complete_signal(sig, t, group);
1430 out:
1431 unlock_task_sighand(t, &flags);
1432 ret:
1433 return ret;
1437 * Let a parent know about the death of a child.
1438 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1440 * Returns -1 if our parent ignored us and so we've switched to
1441 * self-reaping, or else @sig.
1443 int do_notify_parent(struct task_struct *tsk, int sig)
1445 struct siginfo info;
1446 unsigned long flags;
1447 struct sighand_struct *psig;
1448 int ret = sig;
1450 BUG_ON(sig == -1);
1452 /* do_notify_parent_cldstop should have been called instead. */
1453 BUG_ON(task_is_stopped_or_traced(tsk));
1455 BUG_ON(!task_ptrace(tsk) &&
1456 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1458 info.si_signo = sig;
1459 info.si_errno = 0;
1461 * we are under tasklist_lock here so our parent is tied to
1462 * us and cannot exit and release its namespace.
1464 * the only it can is to switch its nsproxy with sys_unshare,
1465 * bu uncharing pid namespaces is not allowed, so we'll always
1466 * see relevant namespace
1468 * write_lock() currently calls preempt_disable() which is the
1469 * same as rcu_read_lock(), but according to Oleg, this is not
1470 * correct to rely on this
1472 rcu_read_lock();
1473 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1474 info.si_uid = __task_cred(tsk)->uid;
1475 rcu_read_unlock();
1477 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1478 tsk->signal->utime));
1479 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1480 tsk->signal->stime));
1482 info.si_status = tsk->exit_code & 0x7f;
1483 if (tsk->exit_code & 0x80)
1484 info.si_code = CLD_DUMPED;
1485 else if (tsk->exit_code & 0x7f)
1486 info.si_code = CLD_KILLED;
1487 else {
1488 info.si_code = CLD_EXITED;
1489 info.si_status = tsk->exit_code >> 8;
1492 psig = tsk->parent->sighand;
1493 spin_lock_irqsave(&psig->siglock, flags);
1494 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1495 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1496 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1498 * We are exiting and our parent doesn't care. POSIX.1
1499 * defines special semantics for setting SIGCHLD to SIG_IGN
1500 * or setting the SA_NOCLDWAIT flag: we should be reaped
1501 * automatically and not left for our parent's wait4 call.
1502 * Rather than having the parent do it as a magic kind of
1503 * signal handler, we just set this to tell do_exit that we
1504 * can be cleaned up without becoming a zombie. Note that
1505 * we still call __wake_up_parent in this case, because a
1506 * blocked sys_wait4 might now return -ECHILD.
1508 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1509 * is implementation-defined: we do (if you don't want
1510 * it, just use SIG_IGN instead).
1512 ret = tsk->exit_signal = -1;
1513 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1514 sig = -1;
1516 if (valid_signal(sig) && sig > 0)
1517 __group_send_sig_info(sig, &info, tsk->parent);
1518 __wake_up_parent(tsk, tsk->parent);
1519 spin_unlock_irqrestore(&psig->siglock, flags);
1521 return ret;
1524 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1526 struct siginfo info;
1527 unsigned long flags;
1528 struct task_struct *parent;
1529 struct sighand_struct *sighand;
1531 if (task_ptrace(tsk))
1532 parent = tsk->parent;
1533 else {
1534 tsk = tsk->group_leader;
1535 parent = tsk->real_parent;
1538 info.si_signo = SIGCHLD;
1539 info.si_errno = 0;
1541 * see comment in do_notify_parent() abot the following 3 lines
1543 rcu_read_lock();
1544 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1545 info.si_uid = __task_cred(tsk)->uid;
1546 rcu_read_unlock();
1548 info.si_utime = cputime_to_clock_t(tsk->utime);
1549 info.si_stime = cputime_to_clock_t(tsk->stime);
1551 info.si_code = why;
1552 switch (why) {
1553 case CLD_CONTINUED:
1554 info.si_status = SIGCONT;
1555 break;
1556 case CLD_STOPPED:
1557 info.si_status = tsk->signal->group_exit_code & 0x7f;
1558 break;
1559 case CLD_TRAPPED:
1560 info.si_status = tsk->exit_code & 0x7f;
1561 break;
1562 default:
1563 BUG();
1566 sighand = parent->sighand;
1567 spin_lock_irqsave(&sighand->siglock, flags);
1568 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1569 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1570 __group_send_sig_info(SIGCHLD, &info, parent);
1572 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1574 __wake_up_parent(tsk, parent);
1575 spin_unlock_irqrestore(&sighand->siglock, flags);
1578 static inline int may_ptrace_stop(void)
1580 if (!likely(task_ptrace(current)))
1581 return 0;
1583 * Are we in the middle of do_coredump?
1584 * If so and our tracer is also part of the coredump stopping
1585 * is a deadlock situation, and pointless because our tracer
1586 * is dead so don't allow us to stop.
1587 * If SIGKILL was already sent before the caller unlocked
1588 * ->siglock we must see ->core_state != NULL. Otherwise it
1589 * is safe to enter schedule().
1591 if (unlikely(current->mm->core_state) &&
1592 unlikely(current->mm == current->parent->mm))
1593 return 0;
1595 return 1;
1599 * Return nonzero if there is a SIGKILL that should be waking us up.
1600 * Called with the siglock held.
1602 static int sigkill_pending(struct task_struct *tsk)
1604 return sigismember(&tsk->pending.signal, SIGKILL) ||
1605 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1609 * This must be called with current->sighand->siglock held.
1611 * This should be the path for all ptrace stops.
1612 * We always set current->last_siginfo while stopped here.
1613 * That makes it a way to test a stopped process for
1614 * being ptrace-stopped vs being job-control-stopped.
1616 * If we actually decide not to stop at all because the tracer
1617 * is gone, we keep current->exit_code unless clear_code.
1619 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1621 if (arch_ptrace_stop_needed(exit_code, info)) {
1623 * The arch code has something special to do before a
1624 * ptrace stop. This is allowed to block, e.g. for faults
1625 * on user stack pages. We can't keep the siglock while
1626 * calling arch_ptrace_stop, so we must release it now.
1627 * To preserve proper semantics, we must do this before
1628 * any signal bookkeeping like checking group_stop_count.
1629 * Meanwhile, a SIGKILL could come in before we retake the
1630 * siglock. That must prevent us from sleeping in TASK_TRACED.
1631 * So after regaining the lock, we must check for SIGKILL.
1633 spin_unlock_irq(&current->sighand->siglock);
1634 arch_ptrace_stop(exit_code, info);
1635 spin_lock_irq(&current->sighand->siglock);
1636 if (sigkill_pending(current))
1637 return;
1641 * If there is a group stop in progress,
1642 * we must participate in the bookkeeping.
1644 if (current->signal->group_stop_count > 0)
1645 --current->signal->group_stop_count;
1647 current->last_siginfo = info;
1648 current->exit_code = exit_code;
1650 /* Let the debugger run. */
1651 __set_current_state(TASK_TRACED);
1652 spin_unlock_irq(&current->sighand->siglock);
1653 read_lock(&tasklist_lock);
1654 if (may_ptrace_stop()) {
1655 do_notify_parent_cldstop(current, CLD_TRAPPED);
1656 preempt_disable();
1657 read_unlock(&tasklist_lock);
1658 preempt_enable_no_resched();
1659 schedule();
1660 } else {
1662 * By the time we got the lock, our tracer went away.
1663 * Don't drop the lock yet, another tracer may come.
1665 __set_current_state(TASK_RUNNING);
1666 if (clear_code)
1667 current->exit_code = 0;
1668 read_unlock(&tasklist_lock);
1672 * While in TASK_TRACED, we were considered "frozen enough".
1673 * Now that we woke up, it's crucial if we're supposed to be
1674 * frozen that we freeze now before running anything substantial.
1676 try_to_freeze();
1679 * We are back. Now reacquire the siglock before touching
1680 * last_siginfo, so that we are sure to have synchronized with
1681 * any signal-sending on another CPU that wants to examine it.
1683 spin_lock_irq(&current->sighand->siglock);
1684 current->last_siginfo = NULL;
1687 * Queued signals ignored us while we were stopped for tracing.
1688 * So check for any that we should take before resuming user mode.
1689 * This sets TIF_SIGPENDING, but never clears it.
1691 recalc_sigpending_tsk(current);
1694 void ptrace_notify(int exit_code)
1696 siginfo_t info;
1698 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1700 memset(&info, 0, sizeof info);
1701 info.si_signo = SIGTRAP;
1702 info.si_code = exit_code;
1703 info.si_pid = task_pid_vnr(current);
1704 info.si_uid = current_uid();
1706 /* Let the debugger run. */
1707 spin_lock_irq(&current->sighand->siglock);
1708 ptrace_stop(exit_code, 1, &info);
1709 spin_unlock_irq(&current->sighand->siglock);
1713 * This performs the stopping for SIGSTOP and other stop signals.
1714 * We have to stop all threads in the thread group.
1715 * Returns nonzero if we've actually stopped and released the siglock.
1716 * Returns zero if we didn't stop and still hold the siglock.
1718 static int do_signal_stop(int signr)
1720 struct signal_struct *sig = current->signal;
1721 int notify;
1723 if (!sig->group_stop_count) {
1724 struct task_struct *t;
1726 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1727 unlikely(signal_group_exit(sig)))
1728 return 0;
1730 * There is no group stop already in progress.
1731 * We must initiate one now.
1733 sig->group_exit_code = signr;
1735 sig->group_stop_count = 1;
1736 for (t = next_thread(current); t != current; t = next_thread(t))
1738 * Setting state to TASK_STOPPED for a group
1739 * stop is always done with the siglock held,
1740 * so this check has no races.
1742 if (!(t->flags & PF_EXITING) &&
1743 !task_is_stopped_or_traced(t)) {
1744 sig->group_stop_count++;
1745 signal_wake_up(t, 0);
1749 * If there are no other threads in the group, or if there is
1750 * a group stop in progress and we are the last to stop, report
1751 * to the parent. When ptraced, every thread reports itself.
1753 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1754 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1756 * tracehook_notify_jctl() can drop and reacquire siglock, so
1757 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1758 * or SIGKILL comes in between ->group_stop_count == 0.
1760 if (sig->group_stop_count) {
1761 if (!--sig->group_stop_count)
1762 sig->flags = SIGNAL_STOP_STOPPED;
1763 current->exit_code = sig->group_exit_code;
1764 __set_current_state(TASK_STOPPED);
1766 spin_unlock_irq(&current->sighand->siglock);
1768 if (notify) {
1769 read_lock(&tasklist_lock);
1770 do_notify_parent_cldstop(current, notify);
1771 read_unlock(&tasklist_lock);
1774 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1775 do {
1776 schedule();
1777 } while (try_to_freeze());
1779 tracehook_finish_jctl();
1780 current->exit_code = 0;
1782 return 1;
1785 static int ptrace_signal(int signr, siginfo_t *info,
1786 struct pt_regs *regs, void *cookie)
1788 if (!task_ptrace(current))
1789 return signr;
1791 ptrace_signal_deliver(regs, cookie);
1793 /* Let the debugger run. */
1794 ptrace_stop(signr, 0, info);
1796 /* We're back. Did the debugger cancel the sig? */
1797 signr = current->exit_code;
1798 if (signr == 0)
1799 return signr;
1801 current->exit_code = 0;
1803 /* Update the siginfo structure if the signal has
1804 changed. If the debugger wanted something
1805 specific in the siginfo structure then it should
1806 have updated *info via PTRACE_SETSIGINFO. */
1807 if (signr != info->si_signo) {
1808 info->si_signo = signr;
1809 info->si_errno = 0;
1810 info->si_code = SI_USER;
1811 info->si_pid = task_pid_vnr(current->parent);
1812 info->si_uid = task_uid(current->parent);
1815 /* If the (new) signal is now blocked, requeue it. */
1816 if (sigismember(&current->blocked, signr)) {
1817 specific_send_sig_info(signr, info, current);
1818 signr = 0;
1821 return signr;
1824 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1825 struct pt_regs *regs, void *cookie)
1827 struct sighand_struct *sighand = current->sighand;
1828 struct signal_struct *signal = current->signal;
1829 int signr;
1831 relock:
1833 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1834 * While in TASK_STOPPED, we were considered "frozen enough".
1835 * Now that we woke up, it's crucial if we're supposed to be
1836 * frozen that we freeze now before running anything substantial.
1838 try_to_freeze();
1840 spin_lock_irq(&sighand->siglock);
1842 * Every stopped thread goes here after wakeup. Check to see if
1843 * we should notify the parent, prepare_signal(SIGCONT) encodes
1844 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1846 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1847 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1848 ? CLD_CONTINUED : CLD_STOPPED;
1849 signal->flags &= ~SIGNAL_CLD_MASK;
1851 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1852 spin_unlock_irq(&sighand->siglock);
1854 if (why) {
1855 read_lock(&tasklist_lock);
1856 do_notify_parent_cldstop(current->group_leader, why);
1857 read_unlock(&tasklist_lock);
1859 goto relock;
1862 for (;;) {
1863 struct k_sigaction *ka;
1865 * Tracing can induce an artifical signal and choose sigaction.
1866 * The return value in @signr determines the default action,
1867 * but @info->si_signo is the signal number we will report.
1869 signr = tracehook_get_signal(current, regs, info, return_ka);
1870 if (unlikely(signr < 0))
1871 goto relock;
1872 if (unlikely(signr != 0))
1873 ka = return_ka;
1874 else {
1875 if (unlikely(signal->group_stop_count > 0) &&
1876 do_signal_stop(0))
1877 goto relock;
1879 signr = dequeue_signal(current, &current->blocked,
1880 info);
1882 if (!signr)
1883 break; /* will return 0 */
1885 if (signr != SIGKILL) {
1886 signr = ptrace_signal(signr, info,
1887 regs, cookie);
1888 if (!signr)
1889 continue;
1892 ka = &sighand->action[signr-1];
1895 /* Trace actually delivered signals. */
1896 trace_signal_deliver(signr, info, ka);
1898 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1899 continue;
1900 if (ka->sa.sa_handler != SIG_DFL) {
1901 /* Run the handler. */
1902 *return_ka = *ka;
1904 if (ka->sa.sa_flags & SA_ONESHOT)
1905 ka->sa.sa_handler = SIG_DFL;
1907 break; /* will return non-zero "signr" value */
1911 * Now we are doing the default action for this signal.
1913 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1914 continue;
1917 * Global init gets no signals it doesn't want.
1918 * Container-init gets no signals it doesn't want from same
1919 * container.
1921 * Note that if global/container-init sees a sig_kernel_only()
1922 * signal here, the signal must have been generated internally
1923 * or must have come from an ancestor namespace. In either
1924 * case, the signal cannot be dropped.
1926 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1927 !sig_kernel_only(signr))
1928 continue;
1930 if (sig_kernel_stop(signr)) {
1932 * The default action is to stop all threads in
1933 * the thread group. The job control signals
1934 * do nothing in an orphaned pgrp, but SIGSTOP
1935 * always works. Note that siglock needs to be
1936 * dropped during the call to is_orphaned_pgrp()
1937 * because of lock ordering with tasklist_lock.
1938 * This allows an intervening SIGCONT to be posted.
1939 * We need to check for that and bail out if necessary.
1941 if (signr != SIGSTOP) {
1942 spin_unlock_irq(&sighand->siglock);
1944 /* signals can be posted during this window */
1946 if (is_current_pgrp_orphaned())
1947 goto relock;
1949 spin_lock_irq(&sighand->siglock);
1952 if (likely(do_signal_stop(info->si_signo))) {
1953 /* It released the siglock. */
1954 goto relock;
1958 * We didn't actually stop, due to a race
1959 * with SIGCONT or something like that.
1961 continue;
1964 spin_unlock_irq(&sighand->siglock);
1967 * Anything else is fatal, maybe with a core dump.
1969 current->flags |= PF_SIGNALED;
1971 if (sig_kernel_coredump(signr)) {
1972 if (print_fatal_signals)
1973 print_fatal_signal(regs, info->si_signo);
1975 * If it was able to dump core, this kills all
1976 * other threads in the group and synchronizes with
1977 * their demise. If we lost the race with another
1978 * thread getting here, it set group_exit_code
1979 * first and our do_group_exit call below will use
1980 * that value and ignore the one we pass it.
1982 do_coredump(info->si_signo, info->si_signo, regs);
1986 * Death signals, no core dump.
1988 do_group_exit(info->si_signo);
1989 /* NOTREACHED */
1991 spin_unlock_irq(&sighand->siglock);
1992 return signr;
1995 void exit_signals(struct task_struct *tsk)
1997 int group_stop = 0;
1998 struct task_struct *t;
2000 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2001 tsk->flags |= PF_EXITING;
2002 return;
2005 spin_lock_irq(&tsk->sighand->siglock);
2007 * From now this task is not visible for group-wide signals,
2008 * see wants_signal(), do_signal_stop().
2010 tsk->flags |= PF_EXITING;
2011 if (!signal_pending(tsk))
2012 goto out;
2014 /* It could be that __group_complete_signal() choose us to
2015 * notify about group-wide signal. Another thread should be
2016 * woken now to take the signal since we will not.
2018 for (t = tsk; (t = next_thread(t)) != tsk; )
2019 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2020 recalc_sigpending_and_wake(t);
2022 if (unlikely(tsk->signal->group_stop_count) &&
2023 !--tsk->signal->group_stop_count) {
2024 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2025 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2027 out:
2028 spin_unlock_irq(&tsk->sighand->siglock);
2030 if (unlikely(group_stop)) {
2031 read_lock(&tasklist_lock);
2032 do_notify_parent_cldstop(tsk, group_stop);
2033 read_unlock(&tasklist_lock);
2037 EXPORT_SYMBOL(recalc_sigpending);
2038 EXPORT_SYMBOL_GPL(dequeue_signal);
2039 EXPORT_SYMBOL(flush_signals);
2040 EXPORT_SYMBOL(force_sig);
2041 EXPORT_SYMBOL(send_sig);
2042 EXPORT_SYMBOL(send_sig_info);
2043 EXPORT_SYMBOL(sigprocmask);
2044 EXPORT_SYMBOL(block_all_signals);
2045 EXPORT_SYMBOL(unblock_all_signals);
2049 * System call entry points.
2052 SYSCALL_DEFINE0(restart_syscall)
2054 struct restart_block *restart = &current_thread_info()->restart_block;
2055 return restart->fn(restart);
2058 long do_no_restart_syscall(struct restart_block *param)
2060 return -EINTR;
2064 * We don't need to get the kernel lock - this is all local to this
2065 * particular thread.. (and that's good, because this is _heavily_
2066 * used by various programs)
2070 * This is also useful for kernel threads that want to temporarily
2071 * (or permanently) block certain signals.
2073 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2074 * interface happily blocks "unblockable" signals like SIGKILL
2075 * and friends.
2077 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2079 int error;
2081 spin_lock_irq(&current->sighand->siglock);
2082 if (oldset)
2083 *oldset = current->blocked;
2085 error = 0;
2086 switch (how) {
2087 case SIG_BLOCK:
2088 sigorsets(&current->blocked, &current->blocked, set);
2089 break;
2090 case SIG_UNBLOCK:
2091 signandsets(&current->blocked, &current->blocked, set);
2092 break;
2093 case SIG_SETMASK:
2094 current->blocked = *set;
2095 break;
2096 default:
2097 error = -EINVAL;
2099 recalc_sigpending();
2100 spin_unlock_irq(&current->sighand->siglock);
2102 return error;
2105 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2106 sigset_t __user *, oset, size_t, sigsetsize)
2108 int error = -EINVAL;
2109 sigset_t old_set, new_set;
2111 if (sigsetsize != sizeof(sigset_t))
2112 goto out;
2114 if (set) {
2115 error = -EFAULT;
2116 if (copy_from_user(&new_set, set, sizeof(*set)))
2117 goto out;
2118 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2120 error = sigprocmask(how, &new_set, &old_set);
2121 if (error)
2122 goto out;
2123 if (oset)
2124 goto set_old;
2125 } else if (oset) {
2126 spin_lock_irq(&current->sighand->siglock);
2127 old_set = current->blocked;
2128 spin_unlock_irq(&current->sighand->siglock);
2130 set_old:
2131 error = -EFAULT;
2132 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2133 goto out;
2135 error = 0;
2136 out:
2137 return error;
2140 long do_sigpending(void __user *set, unsigned long sigsetsize)
2142 long error = -EINVAL;
2143 sigset_t pending;
2145 if (sigsetsize > sizeof(sigset_t))
2146 goto out;
2148 spin_lock_irq(&current->sighand->siglock);
2149 sigorsets(&pending, &current->pending.signal,
2150 &current->signal->shared_pending.signal);
2151 spin_unlock_irq(&current->sighand->siglock);
2153 /* Outside the lock because only this thread touches it. */
2154 sigandsets(&pending, &current->blocked, &pending);
2156 error = -EFAULT;
2157 if (!copy_to_user(set, &pending, sigsetsize))
2158 error = 0;
2160 out:
2161 return error;
2164 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2166 return do_sigpending(set, sigsetsize);
2169 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2171 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2173 int err;
2175 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2176 return -EFAULT;
2177 if (from->si_code < 0)
2178 return __copy_to_user(to, from, sizeof(siginfo_t))
2179 ? -EFAULT : 0;
2181 * If you change siginfo_t structure, please be sure
2182 * this code is fixed accordingly.
2183 * Please remember to update the signalfd_copyinfo() function
2184 * inside fs/signalfd.c too, in case siginfo_t changes.
2185 * It should never copy any pad contained in the structure
2186 * to avoid security leaks, but must copy the generic
2187 * 3 ints plus the relevant union member.
2189 err = __put_user(from->si_signo, &to->si_signo);
2190 err |= __put_user(from->si_errno, &to->si_errno);
2191 err |= __put_user((short)from->si_code, &to->si_code);
2192 switch (from->si_code & __SI_MASK) {
2193 case __SI_KILL:
2194 err |= __put_user(from->si_pid, &to->si_pid);
2195 err |= __put_user(from->si_uid, &to->si_uid);
2196 break;
2197 case __SI_TIMER:
2198 err |= __put_user(from->si_tid, &to->si_tid);
2199 err |= __put_user(from->si_overrun, &to->si_overrun);
2200 err |= __put_user(from->si_ptr, &to->si_ptr);
2201 break;
2202 case __SI_POLL:
2203 err |= __put_user(from->si_band, &to->si_band);
2204 err |= __put_user(from->si_fd, &to->si_fd);
2205 break;
2206 case __SI_FAULT:
2207 err |= __put_user(from->si_addr, &to->si_addr);
2208 #ifdef __ARCH_SI_TRAPNO
2209 err |= __put_user(from->si_trapno, &to->si_trapno);
2210 #endif
2211 #ifdef BUS_MCEERR_AO
2213 * Other callers might not initialize the si_lsb field,
2214 * so check explicitely for the right codes here.
2216 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2217 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2218 #endif
2219 break;
2220 case __SI_CHLD:
2221 err |= __put_user(from->si_pid, &to->si_pid);
2222 err |= __put_user(from->si_uid, &to->si_uid);
2223 err |= __put_user(from->si_status, &to->si_status);
2224 err |= __put_user(from->si_utime, &to->si_utime);
2225 err |= __put_user(from->si_stime, &to->si_stime);
2226 break;
2227 case __SI_RT: /* This is not generated by the kernel as of now. */
2228 case __SI_MESGQ: /* But this is */
2229 err |= __put_user(from->si_pid, &to->si_pid);
2230 err |= __put_user(from->si_uid, &to->si_uid);
2231 err |= __put_user(from->si_ptr, &to->si_ptr);
2232 break;
2233 default: /* this is just in case for now ... */
2234 err |= __put_user(from->si_pid, &to->si_pid);
2235 err |= __put_user(from->si_uid, &to->si_uid);
2236 break;
2238 return err;
2241 #endif
2243 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2244 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2245 size_t, sigsetsize)
2247 int ret, sig;
2248 sigset_t these;
2249 struct timespec ts;
2250 siginfo_t info;
2251 long timeout = 0;
2253 if (sigsetsize != sizeof(sigset_t))
2254 return -EINVAL;
2256 if (copy_from_user(&these, uthese, sizeof(these)))
2257 return -EFAULT;
2260 * Invert the set of allowed signals to get those we
2261 * want to block.
2263 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2264 signotset(&these);
2266 if (uts) {
2267 if (copy_from_user(&ts, uts, sizeof(ts)))
2268 return -EFAULT;
2269 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2270 || ts.tv_sec < 0)
2271 return -EINVAL;
2274 spin_lock_irq(&current->sighand->siglock);
2275 sig = dequeue_signal(current, &these, &info);
2276 if (!sig) {
2277 timeout = MAX_SCHEDULE_TIMEOUT;
2278 if (uts)
2279 timeout = (timespec_to_jiffies(&ts)
2280 + (ts.tv_sec || ts.tv_nsec));
2282 if (timeout) {
2283 /* None ready -- temporarily unblock those we're
2284 * interested while we are sleeping in so that we'll
2285 * be awakened when they arrive. */
2286 current->real_blocked = current->blocked;
2287 sigandsets(&current->blocked, &current->blocked, &these);
2288 recalc_sigpending();
2289 spin_unlock_irq(&current->sighand->siglock);
2291 timeout = schedule_timeout_interruptible(timeout);
2293 spin_lock_irq(&current->sighand->siglock);
2294 sig = dequeue_signal(current, &these, &info);
2295 current->blocked = current->real_blocked;
2296 siginitset(&current->real_blocked, 0);
2297 recalc_sigpending();
2300 spin_unlock_irq(&current->sighand->siglock);
2302 if (sig) {
2303 ret = sig;
2304 if (uinfo) {
2305 if (copy_siginfo_to_user(uinfo, &info))
2306 ret = -EFAULT;
2308 } else {
2309 ret = -EAGAIN;
2310 if (timeout)
2311 ret = -EINTR;
2314 return ret;
2317 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2319 struct siginfo info;
2321 info.si_signo = sig;
2322 info.si_errno = 0;
2323 info.si_code = SI_USER;
2324 info.si_pid = task_tgid_vnr(current);
2325 info.si_uid = current_uid();
2327 return kill_something_info(sig, &info, pid);
2330 static int
2331 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2333 struct task_struct *p;
2334 int error = -ESRCH;
2336 rcu_read_lock();
2337 p = find_task_by_vpid(pid);
2338 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2339 error = check_kill_permission(sig, info, p);
2341 * The null signal is a permissions and process existence
2342 * probe. No signal is actually delivered.
2344 if (!error && sig) {
2345 error = do_send_sig_info(sig, info, p, false);
2347 * If lock_task_sighand() failed we pretend the task
2348 * dies after receiving the signal. The window is tiny,
2349 * and the signal is private anyway.
2351 if (unlikely(error == -ESRCH))
2352 error = 0;
2355 rcu_read_unlock();
2357 return error;
2360 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2362 struct siginfo info;
2364 info.si_signo = sig;
2365 info.si_errno = 0;
2366 info.si_code = SI_TKILL;
2367 info.si_pid = task_tgid_vnr(current);
2368 info.si_uid = current_uid();
2370 return do_send_specific(tgid, pid, sig, &info);
2374 * sys_tgkill - send signal to one specific thread
2375 * @tgid: the thread group ID of the thread
2376 * @pid: the PID of the thread
2377 * @sig: signal to be sent
2379 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2380 * exists but it's not belonging to the target process anymore. This
2381 * method solves the problem of threads exiting and PIDs getting reused.
2383 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2385 /* This is only valid for single tasks */
2386 if (pid <= 0 || tgid <= 0)
2387 return -EINVAL;
2389 return do_tkill(tgid, pid, sig);
2393 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2395 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2397 /* This is only valid for single tasks */
2398 if (pid <= 0)
2399 return -EINVAL;
2401 return do_tkill(0, pid, sig);
2404 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2405 siginfo_t __user *, uinfo)
2407 siginfo_t info;
2409 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2410 return -EFAULT;
2412 /* Not even root can pretend to send signals from the kernel.
2413 Nor can they impersonate a kill(), which adds source info. */
2414 if (info.si_code >= 0)
2415 return -EPERM;
2416 info.si_signo = sig;
2418 /* POSIX.1b doesn't mention process groups. */
2419 return kill_proc_info(sig, &info, pid);
2422 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2424 /* This is only valid for single tasks */
2425 if (pid <= 0 || tgid <= 0)
2426 return -EINVAL;
2428 /* Not even root can pretend to send signals from the kernel.
2429 Nor can they impersonate a kill(), which adds source info. */
2430 if (info->si_code >= 0)
2431 return -EPERM;
2432 info->si_signo = sig;
2434 return do_send_specific(tgid, pid, sig, info);
2437 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2438 siginfo_t __user *, uinfo)
2440 siginfo_t info;
2442 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2443 return -EFAULT;
2445 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2448 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2450 struct task_struct *t = current;
2451 struct k_sigaction *k;
2452 sigset_t mask;
2454 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2455 return -EINVAL;
2457 k = &t->sighand->action[sig-1];
2459 spin_lock_irq(&current->sighand->siglock);
2460 if (oact)
2461 *oact = *k;
2463 if (act) {
2464 sigdelsetmask(&act->sa.sa_mask,
2465 sigmask(SIGKILL) | sigmask(SIGSTOP));
2466 *k = *act;
2468 * POSIX 3.3.1.3:
2469 * "Setting a signal action to SIG_IGN for a signal that is
2470 * pending shall cause the pending signal to be discarded,
2471 * whether or not it is blocked."
2473 * "Setting a signal action to SIG_DFL for a signal that is
2474 * pending and whose default action is to ignore the signal
2475 * (for example, SIGCHLD), shall cause the pending signal to
2476 * be discarded, whether or not it is blocked"
2478 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2479 sigemptyset(&mask);
2480 sigaddset(&mask, sig);
2481 rm_from_queue_full(&mask, &t->signal->shared_pending);
2482 do {
2483 rm_from_queue_full(&mask, &t->pending);
2484 t = next_thread(t);
2485 } while (t != current);
2489 spin_unlock_irq(&current->sighand->siglock);
2490 return 0;
2493 int
2494 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2496 stack_t oss;
2497 int error;
2499 oss.ss_sp = (void __user *) current->sas_ss_sp;
2500 oss.ss_size = current->sas_ss_size;
2501 oss.ss_flags = sas_ss_flags(sp);
2503 if (uss) {
2504 void __user *ss_sp;
2505 size_t ss_size;
2506 int ss_flags;
2508 error = -EFAULT;
2509 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2510 goto out;
2511 error = __get_user(ss_sp, &uss->ss_sp) |
2512 __get_user(ss_flags, &uss->ss_flags) |
2513 __get_user(ss_size, &uss->ss_size);
2514 if (error)
2515 goto out;
2517 error = -EPERM;
2518 if (on_sig_stack(sp))
2519 goto out;
2521 error = -EINVAL;
2524 * Note - this code used to test ss_flags incorrectly
2525 * old code may have been written using ss_flags==0
2526 * to mean ss_flags==SS_ONSTACK (as this was the only
2527 * way that worked) - this fix preserves that older
2528 * mechanism
2530 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2531 goto out;
2533 if (ss_flags == SS_DISABLE) {
2534 ss_size = 0;
2535 ss_sp = NULL;
2536 } else {
2537 error = -ENOMEM;
2538 if (ss_size < MINSIGSTKSZ)
2539 goto out;
2542 current->sas_ss_sp = (unsigned long) ss_sp;
2543 current->sas_ss_size = ss_size;
2546 error = 0;
2547 if (uoss) {
2548 error = -EFAULT;
2549 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2550 goto out;
2551 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2552 __put_user(oss.ss_size, &uoss->ss_size) |
2553 __put_user(oss.ss_flags, &uoss->ss_flags);
2556 out:
2557 return error;
2560 #ifdef __ARCH_WANT_SYS_SIGPENDING
2562 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2564 return do_sigpending(set, sizeof(*set));
2567 #endif
2569 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2570 /* Some platforms have their own version with special arguments others
2571 support only sys_rt_sigprocmask. */
2573 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2574 old_sigset_t __user *, oset)
2576 int error;
2577 old_sigset_t old_set, new_set;
2579 if (set) {
2580 error = -EFAULT;
2581 if (copy_from_user(&new_set, set, sizeof(*set)))
2582 goto out;
2583 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2585 spin_lock_irq(&current->sighand->siglock);
2586 old_set = current->blocked.sig[0];
2588 error = 0;
2589 switch (how) {
2590 default:
2591 error = -EINVAL;
2592 break;
2593 case SIG_BLOCK:
2594 sigaddsetmask(&current->blocked, new_set);
2595 break;
2596 case SIG_UNBLOCK:
2597 sigdelsetmask(&current->blocked, new_set);
2598 break;
2599 case SIG_SETMASK:
2600 current->blocked.sig[0] = new_set;
2601 break;
2604 recalc_sigpending();
2605 spin_unlock_irq(&current->sighand->siglock);
2606 if (error)
2607 goto out;
2608 if (oset)
2609 goto set_old;
2610 } else if (oset) {
2611 old_set = current->blocked.sig[0];
2612 set_old:
2613 error = -EFAULT;
2614 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2615 goto out;
2617 error = 0;
2618 out:
2619 return error;
2621 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2623 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2624 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2625 const struct sigaction __user *, act,
2626 struct sigaction __user *, oact,
2627 size_t, sigsetsize)
2629 struct k_sigaction new_sa, old_sa;
2630 int ret = -EINVAL;
2632 if (sigsetsize != sizeof(sigset_t))
2633 goto out;
2635 if (act) {
2636 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2637 return -EFAULT;
2640 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2642 if (!ret && oact) {
2643 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2644 return -EFAULT;
2646 out:
2647 return ret;
2649 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2651 #ifdef __ARCH_WANT_SYS_SGETMASK
2654 * For backwards compatibility. Functionality superseded by sigprocmask.
2656 SYSCALL_DEFINE0(sgetmask)
2658 /* SMP safe */
2659 return current->blocked.sig[0];
2662 SYSCALL_DEFINE1(ssetmask, int, newmask)
2664 int old;
2666 spin_lock_irq(&current->sighand->siglock);
2667 old = current->blocked.sig[0];
2669 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2670 sigmask(SIGSTOP)));
2671 recalc_sigpending();
2672 spin_unlock_irq(&current->sighand->siglock);
2674 return old;
2676 #endif /* __ARCH_WANT_SGETMASK */
2678 #ifdef __ARCH_WANT_SYS_SIGNAL
2680 * For backwards compatibility. Functionality superseded by sigaction.
2682 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2684 struct k_sigaction new_sa, old_sa;
2685 int ret;
2687 new_sa.sa.sa_handler = handler;
2688 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2689 sigemptyset(&new_sa.sa.sa_mask);
2691 ret = do_sigaction(sig, &new_sa, &old_sa);
2693 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2695 #endif /* __ARCH_WANT_SYS_SIGNAL */
2697 #ifdef __ARCH_WANT_SYS_PAUSE
2699 SYSCALL_DEFINE0(pause)
2701 current->state = TASK_INTERRUPTIBLE;
2702 schedule();
2703 return -ERESTARTNOHAND;
2706 #endif
2708 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2709 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2711 sigset_t newset;
2713 if (sigsetsize != sizeof(sigset_t))
2714 return -EINVAL;
2716 if (copy_from_user(&newset, unewset, sizeof(newset)))
2717 return -EFAULT;
2718 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2720 spin_lock_irq(&current->sighand->siglock);
2721 current->saved_sigmask = current->blocked;
2722 current->blocked = newset;
2723 recalc_sigpending();
2724 spin_unlock_irq(&current->sighand->siglock);
2726 current->state = TASK_INTERRUPTIBLE;
2727 schedule();
2728 set_restore_sigmask();
2729 return -ERESTARTNOHAND;
2731 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2733 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2735 return NULL;
2738 void __init signals_init(void)
2740 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2743 #ifdef CONFIG_KGDB_KDB
2744 #include <linux/kdb.h>
2746 * kdb_send_sig_info - Allows kdb to send signals without exposing
2747 * signal internals. This function checks if the required locks are
2748 * available before calling the main signal code, to avoid kdb
2749 * deadlocks.
2751 void
2752 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2754 static struct task_struct *kdb_prev_t;
2755 int sig, new_t;
2756 if (!spin_trylock(&t->sighand->siglock)) {
2757 kdb_printf("Can't do kill command now.\n"
2758 "The sigmask lock is held somewhere else in "
2759 "kernel, try again later\n");
2760 return;
2762 spin_unlock(&t->sighand->siglock);
2763 new_t = kdb_prev_t != t;
2764 kdb_prev_t = t;
2765 if (t->state != TASK_RUNNING && new_t) {
2766 kdb_printf("Process is not RUNNING, sending a signal from "
2767 "kdb risks deadlock\n"
2768 "on the run queue locks. "
2769 "The signal has _not_ been sent.\n"
2770 "Reissue the kill command if you want to risk "
2771 "the deadlock.\n");
2772 return;
2774 sig = info->si_signo;
2775 if (send_sig_info(sig, info, t))
2776 kdb_printf("Fail to deliver Signal %d to process %d.\n",
2777 sig, t->pid);
2778 else
2779 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2781 #endif /* CONFIG_KGDB_KDB */