GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / kernel / perf_event.c
blobaf582af56e0450890d72e74d59a84152d1e2a1b0
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly = 1;
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
68 static atomic64_t perf_event_id;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock);
76 * Architecture provided APIs - weak aliases:
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
80 return NULL;
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
86 void __weak perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
102 static void get_ctx(struct perf_event_context *ctx)
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 static void free_ctx(struct rcu_head *head)
109 struct perf_event_context *ctx;
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
115 static void put_ctx(struct perf_event_context *ctx)
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
126 static void unclone_ctx(struct perf_event_context *ctx)
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
135 * If we inherit events we want to return the parent event id
136 * to userspace.
138 static u64 primary_event_id(struct perf_event *event)
140 u64 id = event->id;
142 if (event->parent)
143 id = event->parent->id;
145 return id;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 struct perf_event_context *ctx;
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
183 rcu_read_unlock();
184 return ctx;
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
194 struct perf_event_context *ctx;
195 unsigned long flags;
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
202 return ctx;
205 static void perf_unpin_context(struct perf_event_context *ctx)
207 unsigned long flags;
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
215 static inline u64 perf_clock(void)
217 return local_clock();
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context *ctx)
225 u64 now = perf_clock();
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event *event)
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
248 event->total_time_enabled = run_end - event->tstamp_enabled;
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
255 event->total_time_running = run_end - event->tstamp_running;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event *leader)
263 struct perf_event *event;
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
294 if (event->group_leader == event) {
295 struct list_head *list;
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
310 static void perf_group_attach(struct perf_event *event)
312 struct perf_event *group_leader = event->group_leader;
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
317 if (group_leader == event)
318 return;
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
336 * We can have double detach due to exit/hot-unplug + close.
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
347 list_del_rcu(&event->event_entry);
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
352 update_group_times(event);
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
365 static void perf_group_detach(struct perf_event *event)
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
371 * We can have double detach due to exit/hot-unplug + close.
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
376 event->attach_state &= ~PERF_ATTACH_GROUP;
379 * If this is a sibling, remove it from its group.
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
405 static inline int
406 event_filter_match(struct perf_event *event)
408 return event->cpu == -1 || event->cpu == smp_processor_id();
411 static void
412 event_sched_out(struct perf_event *event,
413 struct perf_cpu_context *cpuctx,
414 struct perf_event_context *ctx)
416 u64 delta;
418 * An event which could not be activated because of
419 * filter mismatch still needs to have its timings
420 * maintained, otherwise bogus information is return
421 * via read() for time_enabled, time_running:
423 if (event->state == PERF_EVENT_STATE_INACTIVE
424 && !event_filter_match(event)) {
425 delta = ctx->time - event->tstamp_stopped;
426 event->tstamp_running += delta;
427 event->tstamp_stopped = ctx->time;
430 if (event->state != PERF_EVENT_STATE_ACTIVE)
431 return;
433 event->state = PERF_EVENT_STATE_INACTIVE;
434 if (event->pending_disable) {
435 event->pending_disable = 0;
436 event->state = PERF_EVENT_STATE_OFF;
438 event->tstamp_stopped = ctx->time;
439 event->pmu->disable(event);
440 event->oncpu = -1;
442 if (!is_software_event(event))
443 cpuctx->active_oncpu--;
444 ctx->nr_active--;
445 if (event->attr.exclusive || !cpuctx->active_oncpu)
446 cpuctx->exclusive = 0;
449 static void
450 group_sched_out(struct perf_event *group_event,
451 struct perf_cpu_context *cpuctx,
452 struct perf_event_context *ctx)
454 struct perf_event *event;
455 int state = group_event->state;
457 event_sched_out(group_event, cpuctx, ctx);
460 * Schedule out siblings (if any):
462 list_for_each_entry(event, &group_event->sibling_list, group_entry)
463 event_sched_out(event, cpuctx, ctx);
465 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 cpuctx->exclusive = 0;
470 * Cross CPU call to remove a performance event
472 * We disable the event on the hardware level first. After that we
473 * remove it from the context list.
475 static void __perf_event_remove_from_context(void *info)
477 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478 struct perf_event *event = info;
479 struct perf_event_context *ctx = event->ctx;
482 * If this is a task context, we need to check whether it is
483 * the current task context of this cpu. If not it has been
484 * scheduled out before the smp call arrived.
486 if (ctx->task && cpuctx->task_ctx != ctx)
487 return;
489 raw_spin_lock(&ctx->lock);
491 * Protect the list operation against NMI by disabling the
492 * events on a global level.
494 perf_disable();
496 event_sched_out(event, cpuctx, ctx);
498 list_del_event(event, ctx);
500 if (!ctx->task) {
502 * Allow more per task events with respect to the
503 * reservation:
505 cpuctx->max_pertask =
506 min(perf_max_events - ctx->nr_events,
507 perf_max_events - perf_reserved_percpu);
510 perf_enable();
511 raw_spin_unlock(&ctx->lock);
516 * Remove the event from a task's (or a CPU's) list of events.
518 * Must be called with ctx->mutex held.
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
530 static void perf_event_remove_from_context(struct perf_event *event)
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
535 if (!task) {
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
550 raw_spin_lock_irq(&ctx->lock);
552 * If the context is active we need to retry the smp call.
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
570 * Cross CPU call to disable a performance event
572 static void __perf_event_disable(void *info)
574 struct perf_event *event = info;
575 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576 struct perf_event_context *ctx = event->ctx;
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
585 raw_spin_lock(&ctx->lock);
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock(&ctx->lock);
605 * Disable a event.
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
617 void perf_event_disable(struct perf_event *event)
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
622 if (!task) {
624 * Disable the event on the cpu that it's on
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
634 raw_spin_lock_irq(&ctx->lock);
636 * If the event is still active, we need to retry the cross-call.
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
652 raw_spin_unlock_irq(&ctx->lock);
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
666 * The new state must be visible before we turn it on in the hardware:
668 smp_wmb();
670 if (event->pmu->enable(event)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
678 if (!is_software_event(event))
679 cpuctx->active_oncpu++;
680 ctx->nr_active++;
682 if (event->attr.exclusive)
683 cpuctx->exclusive = 1;
685 return 0;
688 static int
689 group_sched_in(struct perf_event *group_event,
690 struct perf_cpu_context *cpuctx,
691 struct perf_event_context *ctx)
693 struct perf_event *event, *partial_group = NULL;
694 const struct pmu *pmu = group_event->pmu;
695 bool txn = false;
697 if (group_event->state == PERF_EVENT_STATE_OFF)
698 return 0;
700 /* Check if group transaction availabe */
701 if (pmu->start_txn)
702 txn = true;
704 if (txn)
705 pmu->start_txn(pmu);
707 if (event_sched_in(group_event, cpuctx, ctx)) {
708 if (txn)
709 pmu->cancel_txn(pmu);
710 return -EAGAIN;
714 * Schedule in siblings as one group (if any):
716 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717 if (event_sched_in(event, cpuctx, ctx)) {
718 partial_group = event;
719 goto group_error;
723 if (!txn || !pmu->commit_txn(pmu))
724 return 0;
726 group_error:
728 * Groups can be scheduled in as one unit only, so undo any
729 * partial group before returning:
731 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732 if (event == partial_group)
733 break;
734 event_sched_out(event, cpuctx, ctx);
736 event_sched_out(group_event, cpuctx, ctx);
738 if (txn)
739 pmu->cancel_txn(pmu);
741 return -EAGAIN;
745 * Work out whether we can put this event group on the CPU now.
747 static int group_can_go_on(struct perf_event *event,
748 struct perf_cpu_context *cpuctx,
749 int can_add_hw)
752 * Groups consisting entirely of software events can always go on.
754 if (event->group_flags & PERF_GROUP_SOFTWARE)
755 return 1;
757 * If an exclusive group is already on, no other hardware
758 * events can go on.
760 if (cpuctx->exclusive)
761 return 0;
763 * If this group is exclusive and there are already
764 * events on the CPU, it can't go on.
766 if (event->attr.exclusive && cpuctx->active_oncpu)
767 return 0;
769 * Otherwise, try to add it if all previous groups were able
770 * to go on.
772 return can_add_hw;
775 static void add_event_to_ctx(struct perf_event *event,
776 struct perf_event_context *ctx)
778 list_add_event(event, ctx);
779 perf_group_attach(event);
780 event->tstamp_enabled = ctx->time;
781 event->tstamp_running = ctx->time;
782 event->tstamp_stopped = ctx->time;
786 * Cross CPU call to install and enable a performance event
788 * Must be called with ctx->mutex held
790 static void __perf_install_in_context(void *info)
792 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793 struct perf_event *event = info;
794 struct perf_event_context *ctx = event->ctx;
795 struct perf_event *leader = event->group_leader;
796 int err;
799 * If this is a task context, we need to check whether it is
800 * the current task context of this cpu. If not it has been
801 * scheduled out before the smp call arrived.
802 * Or possibly this is the right context but it isn't
803 * on this cpu because it had no events.
805 if (ctx->task && cpuctx->task_ctx != ctx) {
806 if (cpuctx->task_ctx || ctx->task != current)
807 return;
808 cpuctx->task_ctx = ctx;
811 raw_spin_lock(&ctx->lock);
812 ctx->is_active = 1;
813 update_context_time(ctx);
816 * Protect the list operation against NMI by disabling the
817 * events on a global level. NOP for non NMI based events.
819 perf_disable();
821 add_event_to_ctx(event, ctx);
823 if (event->cpu != -1 && event->cpu != smp_processor_id())
824 goto unlock;
827 * Don't put the event on if it is disabled or if
828 * it is in a group and the group isn't on.
830 if (event->state != PERF_EVENT_STATE_INACTIVE ||
831 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832 goto unlock;
835 * An exclusive event can't go on if there are already active
836 * hardware events, and no hardware event can go on if there
837 * is already an exclusive event on.
839 if (!group_can_go_on(event, cpuctx, 1))
840 err = -EEXIST;
841 else
842 err = event_sched_in(event, cpuctx, ctx);
844 if (err) {
846 * This event couldn't go on. If it is in a group
847 * then we have to pull the whole group off.
848 * If the event group is pinned then put it in error state.
850 if (leader != event)
851 group_sched_out(leader, cpuctx, ctx);
852 if (leader->attr.pinned) {
853 update_group_times(leader);
854 leader->state = PERF_EVENT_STATE_ERROR;
858 if (!err && !ctx->task && cpuctx->max_pertask)
859 cpuctx->max_pertask--;
861 unlock:
862 perf_enable();
864 raw_spin_unlock(&ctx->lock);
868 * Attach a performance event to a context
870 * First we add the event to the list with the hardware enable bit
871 * in event->hw_config cleared.
873 * If the event is attached to a task which is on a CPU we use a smp
874 * call to enable it in the task context. The task might have been
875 * scheduled away, but we check this in the smp call again.
877 * Must be called with ctx->mutex held.
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881 struct perf_event *event,
882 int cpu)
884 struct task_struct *task = ctx->task;
886 if (!task) {
888 * Per cpu events are installed via an smp call and
889 * the install is always successful.
891 smp_call_function_single(cpu, __perf_install_in_context,
892 event, 1);
893 return;
896 retry:
897 task_oncpu_function_call(task, __perf_install_in_context,
898 event);
900 raw_spin_lock_irq(&ctx->lock);
902 * we need to retry the smp call.
904 if (ctx->is_active && list_empty(&event->group_entry)) {
905 raw_spin_unlock_irq(&ctx->lock);
906 goto retry;
910 * The lock prevents that this context is scheduled in so we
911 * can add the event safely, if it the call above did not
912 * succeed.
914 if (list_empty(&event->group_entry))
915 add_event_to_ctx(event, ctx);
916 raw_spin_unlock_irq(&ctx->lock);
920 * Put a event into inactive state and update time fields.
921 * Enabling the leader of a group effectively enables all
922 * the group members that aren't explicitly disabled, so we
923 * have to update their ->tstamp_enabled also.
924 * Note: this works for group members as well as group leaders
925 * since the non-leader members' sibling_lists will be empty.
927 static void __perf_event_mark_enabled(struct perf_event *event,
928 struct perf_event_context *ctx)
930 struct perf_event *sub;
932 event->state = PERF_EVENT_STATE_INACTIVE;
933 event->tstamp_enabled = ctx->time - event->total_time_enabled;
934 list_for_each_entry(sub, &event->sibling_list, group_entry)
935 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936 sub->tstamp_enabled =
937 ctx->time - sub->total_time_enabled;
941 * Cross CPU call to enable a performance event
943 static void __perf_event_enable(void *info)
945 struct perf_event *event = info;
946 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947 struct perf_event_context *ctx = event->ctx;
948 struct perf_event *leader = event->group_leader;
949 int err;
952 * If this is a per-task event, need to check whether this
953 * event's task is the current task on this cpu.
955 if (ctx->task && cpuctx->task_ctx != ctx) {
956 if (cpuctx->task_ctx || ctx->task != current)
957 return;
958 cpuctx->task_ctx = ctx;
961 raw_spin_lock(&ctx->lock);
962 ctx->is_active = 1;
963 update_context_time(ctx);
965 if (event->state >= PERF_EVENT_STATE_INACTIVE)
966 goto unlock;
967 __perf_event_mark_enabled(event, ctx);
969 if (event->cpu != -1 && event->cpu != smp_processor_id())
970 goto unlock;
973 * If the event is in a group and isn't the group leader,
974 * then don't put it on unless the group is on.
976 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977 goto unlock;
979 if (!group_can_go_on(event, cpuctx, 1)) {
980 err = -EEXIST;
981 } else {
982 perf_disable();
983 if (event == leader)
984 err = group_sched_in(event, cpuctx, ctx);
985 else
986 err = event_sched_in(event, cpuctx, ctx);
987 perf_enable();
990 if (err) {
992 * If this event can't go on and it's part of a
993 * group, then the whole group has to come off.
995 if (leader != event)
996 group_sched_out(leader, cpuctx, ctx);
997 if (leader->attr.pinned) {
998 update_group_times(leader);
999 leader->state = PERF_EVENT_STATE_ERROR;
1003 unlock:
1004 raw_spin_unlock(&ctx->lock);
1008 * Enable a event.
1010 * If event->ctx is a cloned context, callers must make sure that
1011 * every task struct that event->ctx->task could possibly point to
1012 * remains valid. This condition is satisfied when called through
1013 * perf_event_for_each_child or perf_event_for_each as described
1014 * for perf_event_disable.
1016 void perf_event_enable(struct perf_event *event)
1018 struct perf_event_context *ctx = event->ctx;
1019 struct task_struct *task = ctx->task;
1021 if (!task) {
1023 * Enable the event on the cpu that it's on
1025 smp_call_function_single(event->cpu, __perf_event_enable,
1026 event, 1);
1027 return;
1030 raw_spin_lock_irq(&ctx->lock);
1031 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032 goto out;
1035 * If the event is in error state, clear that first.
1036 * That way, if we see the event in error state below, we
1037 * know that it has gone back into error state, as distinct
1038 * from the task having been scheduled away before the
1039 * cross-call arrived.
1041 if (event->state == PERF_EVENT_STATE_ERROR)
1042 event->state = PERF_EVENT_STATE_OFF;
1044 retry:
1045 raw_spin_unlock_irq(&ctx->lock);
1046 task_oncpu_function_call(task, __perf_event_enable, event);
1048 raw_spin_lock_irq(&ctx->lock);
1051 * If the context is active and the event is still off,
1052 * we need to retry the cross-call.
1054 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055 goto retry;
1058 * Since we have the lock this context can't be scheduled
1059 * in, so we can change the state safely.
1061 if (event->state == PERF_EVENT_STATE_OFF)
1062 __perf_event_mark_enabled(event, ctx);
1064 out:
1065 raw_spin_unlock_irq(&ctx->lock);
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1071 * not supported on inherited events
1073 if (event->attr.inherit)
1074 return -EINVAL;
1076 atomic_add(refresh, &event->event_limit);
1077 perf_event_enable(event);
1079 return 0;
1082 enum event_type_t {
1083 EVENT_FLEXIBLE = 0x1,
1084 EVENT_PINNED = 0x2,
1085 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089 struct perf_cpu_context *cpuctx,
1090 enum event_type_t event_type)
1092 struct perf_event *event;
1094 raw_spin_lock(&ctx->lock);
1095 ctx->is_active = 0;
1096 if (likely(!ctx->nr_events))
1097 goto out;
1098 update_context_time(ctx);
1100 perf_disable();
1101 if (!ctx->nr_active)
1102 goto out_enable;
1104 if (event_type & EVENT_PINNED)
1105 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106 group_sched_out(event, cpuctx, ctx);
1108 if (event_type & EVENT_FLEXIBLE)
1109 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110 group_sched_out(event, cpuctx, ctx);
1112 out_enable:
1113 perf_enable();
1114 out:
1115 raw_spin_unlock(&ctx->lock);
1119 * Test whether two contexts are equivalent, i.e. whether they
1120 * have both been cloned from the same version of the same context
1121 * and they both have the same number of enabled events.
1122 * If the number of enabled events is the same, then the set
1123 * of enabled events should be the same, because these are both
1124 * inherited contexts, therefore we can't access individual events
1125 * in them directly with an fd; we can only enable/disable all
1126 * events via prctl, or enable/disable all events in a family
1127 * via ioctl, which will have the same effect on both contexts.
1129 static int context_equiv(struct perf_event_context *ctx1,
1130 struct perf_event_context *ctx2)
1132 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133 && ctx1->parent_gen == ctx2->parent_gen
1134 && !ctx1->pin_count && !ctx2->pin_count;
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138 struct perf_event *next_event)
1140 u64 value;
1142 if (!event->attr.inherit_stat)
1143 return;
1146 * Update the event value, we cannot use perf_event_read()
1147 * because we're in the middle of a context switch and have IRQs
1148 * disabled, which upsets smp_call_function_single(), however
1149 * we know the event must be on the current CPU, therefore we
1150 * don't need to use it.
1152 switch (event->state) {
1153 case PERF_EVENT_STATE_ACTIVE:
1154 event->pmu->read(event);
1155 /* fall-through */
1157 case PERF_EVENT_STATE_INACTIVE:
1158 update_event_times(event);
1159 break;
1161 default:
1162 break;
1166 * In order to keep per-task stats reliable we need to flip the event
1167 * values when we flip the contexts.
1169 value = local64_read(&next_event->count);
1170 value = local64_xchg(&event->count, value);
1171 local64_set(&next_event->count, value);
1173 swap(event->total_time_enabled, next_event->total_time_enabled);
1174 swap(event->total_time_running, next_event->total_time_running);
1177 * Since we swizzled the values, update the user visible data too.
1179 perf_event_update_userpage(event);
1180 perf_event_update_userpage(next_event);
1183 #define list_next_entry(pos, member) \
1184 list_entry(pos->member.next, typeof(*pos), member)
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187 struct perf_event_context *next_ctx)
1189 struct perf_event *event, *next_event;
1191 if (!ctx->nr_stat)
1192 return;
1194 update_context_time(ctx);
1196 event = list_first_entry(&ctx->event_list,
1197 struct perf_event, event_entry);
1199 next_event = list_first_entry(&next_ctx->event_list,
1200 struct perf_event, event_entry);
1202 while (&event->event_entry != &ctx->event_list &&
1203 &next_event->event_entry != &next_ctx->event_list) {
1205 __perf_event_sync_stat(event, next_event);
1207 event = list_next_entry(event, event_entry);
1208 next_event = list_next_entry(next_event, event_entry);
1213 * Called from scheduler to remove the events of the current task,
1214 * with interrupts disabled.
1216 * We stop each event and update the event value in event->count.
1218 * This does not protect us against NMI, but disable()
1219 * sets the disabled bit in the control field of event _before_
1220 * accessing the event control register. If a NMI hits, then it will
1221 * not restart the event.
1223 void perf_event_task_sched_out(struct task_struct *task,
1224 struct task_struct *next)
1226 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227 struct perf_event_context *ctx = task->perf_event_ctxp;
1228 struct perf_event_context *next_ctx;
1229 struct perf_event_context *parent;
1230 int do_switch = 1;
1232 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1234 if (likely(!ctx || !cpuctx->task_ctx))
1235 return;
1237 rcu_read_lock();
1238 parent = rcu_dereference(ctx->parent_ctx);
1239 next_ctx = next->perf_event_ctxp;
1240 if (parent && next_ctx &&
1241 rcu_dereference(next_ctx->parent_ctx) == parent) {
1243 * Looks like the two contexts are clones, so we might be
1244 * able to optimize the context switch. We lock both
1245 * contexts and check that they are clones under the
1246 * lock (including re-checking that neither has been
1247 * uncloned in the meantime). It doesn't matter which
1248 * order we take the locks because no other cpu could
1249 * be trying to lock both of these tasks.
1251 raw_spin_lock(&ctx->lock);
1252 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253 if (context_equiv(ctx, next_ctx)) {
1254 task->perf_event_ctxp = next_ctx;
1255 next->perf_event_ctxp = ctx;
1256 ctx->task = next;
1257 next_ctx->task = task;
1258 do_switch = 0;
1260 perf_event_sync_stat(ctx, next_ctx);
1262 raw_spin_unlock(&next_ctx->lock);
1263 raw_spin_unlock(&ctx->lock);
1265 rcu_read_unlock();
1267 if (do_switch) {
1268 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1269 cpuctx->task_ctx = NULL;
1273 static void task_ctx_sched_out(struct perf_event_context *ctx,
1274 enum event_type_t event_type)
1276 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1278 if (!cpuctx->task_ctx)
1279 return;
1281 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1282 return;
1284 ctx_sched_out(ctx, cpuctx, event_type);
1285 cpuctx->task_ctx = NULL;
1289 * Called with IRQs disabled
1291 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1293 task_ctx_sched_out(ctx, EVENT_ALL);
1297 * Called with IRQs disabled
1299 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1300 enum event_type_t event_type)
1302 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1305 static void
1306 ctx_pinned_sched_in(struct perf_event_context *ctx,
1307 struct perf_cpu_context *cpuctx)
1309 struct perf_event *event;
1311 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1312 if (event->state <= PERF_EVENT_STATE_OFF)
1313 continue;
1314 if (event->cpu != -1 && event->cpu != smp_processor_id())
1315 continue;
1317 if (group_can_go_on(event, cpuctx, 1))
1318 group_sched_in(event, cpuctx, ctx);
1321 * If this pinned group hasn't been scheduled,
1322 * put it in error state.
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_ERROR;
1331 static void
1332 ctx_flexible_sched_in(struct perf_event_context *ctx,
1333 struct perf_cpu_context *cpuctx)
1335 struct perf_event *event;
1336 int can_add_hw = 1;
1338 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1339 /* Ignore events in OFF or ERROR state */
1340 if (event->state <= PERF_EVENT_STATE_OFF)
1341 continue;
1343 * Listen to the 'cpu' scheduling filter constraint
1344 * of events:
1346 if (event->cpu != -1 && event->cpu != smp_processor_id())
1347 continue;
1349 if (group_can_go_on(event, cpuctx, can_add_hw))
1350 if (group_sched_in(event, cpuctx, ctx))
1351 can_add_hw = 0;
1355 static void
1356 ctx_sched_in(struct perf_event_context *ctx,
1357 struct perf_cpu_context *cpuctx,
1358 enum event_type_t event_type)
1360 raw_spin_lock(&ctx->lock);
1361 ctx->is_active = 1;
1362 if (likely(!ctx->nr_events))
1363 goto out;
1365 ctx->timestamp = perf_clock();
1367 perf_disable();
1370 * First go through the list and put on any pinned groups
1371 * in order to give them the best chance of going on.
1373 if (event_type & EVENT_PINNED)
1374 ctx_pinned_sched_in(ctx, cpuctx);
1376 /* Then walk through the lower prio flexible groups */
1377 if (event_type & EVENT_FLEXIBLE)
1378 ctx_flexible_sched_in(ctx, cpuctx);
1380 perf_enable();
1381 out:
1382 raw_spin_unlock(&ctx->lock);
1385 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1386 enum event_type_t event_type)
1388 struct perf_event_context *ctx = &cpuctx->ctx;
1390 ctx_sched_in(ctx, cpuctx, event_type);
1393 static void task_ctx_sched_in(struct task_struct *task,
1394 enum event_type_t event_type)
1396 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1397 struct perf_event_context *ctx = task->perf_event_ctxp;
1399 if (likely(!ctx))
1400 return;
1401 if (cpuctx->task_ctx == ctx)
1402 return;
1403 ctx_sched_in(ctx, cpuctx, event_type);
1404 cpuctx->task_ctx = ctx;
1407 * Called from scheduler to add the events of the current task
1408 * with interrupts disabled.
1410 * We restore the event value and then enable it.
1412 * This does not protect us against NMI, but enable()
1413 * sets the enabled bit in the control field of event _before_
1414 * accessing the event control register. If a NMI hits, then it will
1415 * keep the event running.
1417 void perf_event_task_sched_in(struct task_struct *task)
1419 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1420 struct perf_event_context *ctx = task->perf_event_ctxp;
1422 if (likely(!ctx))
1423 return;
1425 if (cpuctx->task_ctx == ctx)
1426 return;
1428 perf_disable();
1431 * We want to keep the following priority order:
1432 * cpu pinned (that don't need to move), task pinned,
1433 * cpu flexible, task flexible.
1435 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1437 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1438 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1439 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1441 cpuctx->task_ctx = ctx;
1443 perf_enable();
1446 #define MAX_INTERRUPTS (~0ULL)
1448 static void perf_log_throttle(struct perf_event *event, int enable);
1450 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1452 u64 frequency = event->attr.sample_freq;
1453 u64 sec = NSEC_PER_SEC;
1454 u64 divisor, dividend;
1456 int count_fls, nsec_fls, frequency_fls, sec_fls;
1458 count_fls = fls64(count);
1459 nsec_fls = fls64(nsec);
1460 frequency_fls = fls64(frequency);
1461 sec_fls = 30;
1464 * We got @count in @nsec, with a target of sample_freq HZ
1465 * the target period becomes:
1467 * @count * 10^9
1468 * period = -------------------
1469 * @nsec * sample_freq
1474 * Reduce accuracy by one bit such that @a and @b converge
1475 * to a similar magnitude.
1477 #define REDUCE_FLS(a, b) \
1478 do { \
1479 if (a##_fls > b##_fls) { \
1480 a >>= 1; \
1481 a##_fls--; \
1482 } else { \
1483 b >>= 1; \
1484 b##_fls--; \
1486 } while (0)
1489 * Reduce accuracy until either term fits in a u64, then proceed with
1490 * the other, so that finally we can do a u64/u64 division.
1492 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1493 REDUCE_FLS(nsec, frequency);
1494 REDUCE_FLS(sec, count);
1497 if (count_fls + sec_fls > 64) {
1498 divisor = nsec * frequency;
1500 while (count_fls + sec_fls > 64) {
1501 REDUCE_FLS(count, sec);
1502 divisor >>= 1;
1505 dividend = count * sec;
1506 } else {
1507 dividend = count * sec;
1509 while (nsec_fls + frequency_fls > 64) {
1510 REDUCE_FLS(nsec, frequency);
1511 dividend >>= 1;
1514 divisor = nsec * frequency;
1517 if (!divisor)
1518 return dividend;
1520 return div64_u64(dividend, divisor);
1523 static void perf_event_stop(struct perf_event *event)
1525 if (!event->pmu->stop)
1526 return event->pmu->disable(event);
1528 return event->pmu->stop(event);
1531 static int perf_event_start(struct perf_event *event)
1533 if (!event->pmu->start)
1534 return event->pmu->enable(event);
1536 return event->pmu->start(event);
1539 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1541 struct hw_perf_event *hwc = &event->hw;
1542 s64 period, sample_period;
1543 s64 delta;
1545 period = perf_calculate_period(event, nsec, count);
1547 delta = (s64)(period - hwc->sample_period);
1548 delta = (delta + 7) / 8; /* low pass filter */
1550 sample_period = hwc->sample_period + delta;
1552 if (!sample_period)
1553 sample_period = 1;
1555 hwc->sample_period = sample_period;
1557 if (local64_read(&hwc->period_left) > 8*sample_period) {
1558 perf_disable();
1559 perf_event_stop(event);
1560 local64_set(&hwc->period_left, 0);
1561 perf_event_start(event);
1562 perf_enable();
1566 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1568 struct perf_event *event;
1569 struct hw_perf_event *hwc;
1570 u64 interrupts, now;
1571 s64 delta;
1573 raw_spin_lock(&ctx->lock);
1574 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1575 if (event->state != PERF_EVENT_STATE_ACTIVE)
1576 continue;
1578 if (event->cpu != -1 && event->cpu != smp_processor_id())
1579 continue;
1581 hwc = &event->hw;
1583 interrupts = hwc->interrupts;
1584 hwc->interrupts = 0;
1587 * unthrottle events on the tick
1589 if (interrupts == MAX_INTERRUPTS) {
1590 perf_log_throttle(event, 1);
1591 perf_disable();
1592 event->pmu->unthrottle(event);
1593 perf_enable();
1596 if (!event->attr.freq || !event->attr.sample_freq)
1597 continue;
1599 perf_disable();
1600 event->pmu->read(event);
1601 now = local64_read(&event->count);
1602 delta = now - hwc->freq_count_stamp;
1603 hwc->freq_count_stamp = now;
1605 if (delta > 0)
1606 perf_adjust_period(event, TICK_NSEC, delta);
1607 perf_enable();
1609 raw_spin_unlock(&ctx->lock);
1613 * Round-robin a context's events:
1615 static void rotate_ctx(struct perf_event_context *ctx)
1617 raw_spin_lock(&ctx->lock);
1620 * Rotate the first entry last of non-pinned groups. Rotation might be
1621 * disabled by the inheritance code.
1623 if (!ctx->rotate_disable)
1624 list_rotate_left(&ctx->flexible_groups);
1626 raw_spin_unlock(&ctx->lock);
1629 void perf_event_task_tick(struct task_struct *curr)
1631 struct perf_cpu_context *cpuctx;
1632 struct perf_event_context *ctx;
1633 int rotate = 0;
1635 if (!atomic_read(&nr_events))
1636 return;
1638 cpuctx = &__get_cpu_var(perf_cpu_context);
1639 if (cpuctx->ctx.nr_events &&
1640 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641 rotate = 1;
1643 ctx = curr->perf_event_ctxp;
1644 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645 rotate = 1;
1647 perf_ctx_adjust_freq(&cpuctx->ctx);
1648 if (ctx)
1649 perf_ctx_adjust_freq(ctx);
1651 if (!rotate)
1652 return;
1654 perf_disable();
1655 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656 if (ctx)
1657 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1659 rotate_ctx(&cpuctx->ctx);
1660 if (ctx)
1661 rotate_ctx(ctx);
1663 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664 if (ctx)
1665 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666 perf_enable();
1669 static int event_enable_on_exec(struct perf_event *event,
1670 struct perf_event_context *ctx)
1672 if (!event->attr.enable_on_exec)
1673 return 0;
1675 event->attr.enable_on_exec = 0;
1676 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677 return 0;
1679 __perf_event_mark_enabled(event, ctx);
1681 return 1;
1685 * Enable all of a task's events that have been marked enable-on-exec.
1686 * This expects task == current.
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1690 struct perf_event_context *ctx;
1691 struct perf_event *event;
1692 unsigned long flags;
1693 int enabled = 0;
1694 int ret;
1696 local_irq_save(flags);
1697 ctx = task->perf_event_ctxp;
1698 if (!ctx || !ctx->nr_events)
1699 goto out;
1701 __perf_event_task_sched_out(ctx);
1703 raw_spin_lock(&ctx->lock);
1705 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706 ret = event_enable_on_exec(event, ctx);
1707 if (ret)
1708 enabled = 1;
1711 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712 ret = event_enable_on_exec(event, ctx);
1713 if (ret)
1714 enabled = 1;
1718 * Unclone this context if we enabled any event.
1720 if (enabled)
1721 unclone_ctx(ctx);
1723 raw_spin_unlock(&ctx->lock);
1725 perf_event_task_sched_in(task);
1726 out:
1727 local_irq_restore(flags);
1731 * Cross CPU call to read the hardware event
1733 static void __perf_event_read(void *info)
1735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736 struct perf_event *event = info;
1737 struct perf_event_context *ctx = event->ctx;
1740 * If this is a task context, we need to check whether it is
1741 * the current task context of this cpu. If not it has been
1742 * scheduled out before the smp call arrived. In that case
1743 * event->count would have been updated to a recent sample
1744 * when the event was scheduled out.
1746 if (ctx->task && cpuctx->task_ctx != ctx)
1747 return;
1749 raw_spin_lock(&ctx->lock);
1750 update_context_time(ctx);
1751 update_event_times(event);
1752 raw_spin_unlock(&ctx->lock);
1754 event->pmu->read(event);
1757 static inline u64 perf_event_count(struct perf_event *event)
1759 return local64_read(&event->count) + atomic64_read(&event->child_count);
1762 static u64 perf_event_read(struct perf_event *event)
1765 * If event is enabled and currently active on a CPU, update the
1766 * value in the event structure:
1768 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769 smp_call_function_single(event->oncpu,
1770 __perf_event_read, event, 1);
1771 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772 struct perf_event_context *ctx = event->ctx;
1773 unsigned long flags;
1775 raw_spin_lock_irqsave(&ctx->lock, flags);
1777 * may read while context is not active
1778 * (e.g., thread is blocked), in that case
1779 * we cannot update context time
1781 if (ctx->is_active)
1782 update_context_time(ctx);
1783 update_event_times(event);
1784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1787 return perf_event_count(event);
1791 * Initialize the perf_event context in a task_struct:
1793 static void
1794 __perf_event_init_context(struct perf_event_context *ctx,
1795 struct task_struct *task)
1797 raw_spin_lock_init(&ctx->lock);
1798 mutex_init(&ctx->mutex);
1799 INIT_LIST_HEAD(&ctx->pinned_groups);
1800 INIT_LIST_HEAD(&ctx->flexible_groups);
1801 INIT_LIST_HEAD(&ctx->event_list);
1802 atomic_set(&ctx->refcount, 1);
1803 ctx->task = task;
1806 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1808 struct perf_event_context *ctx;
1809 struct perf_cpu_context *cpuctx;
1810 struct task_struct *task;
1811 unsigned long flags;
1812 int err;
1814 if (pid == -1 && cpu != -1) {
1815 /* Must be root to operate on a CPU event: */
1816 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1817 return ERR_PTR(-EACCES);
1819 if (cpu < 0 || cpu >= nr_cpumask_bits)
1820 return ERR_PTR(-EINVAL);
1823 * We could be clever and allow to attach a event to an
1824 * offline CPU and activate it when the CPU comes up, but
1825 * that's for later.
1827 if (!cpu_online(cpu))
1828 return ERR_PTR(-ENODEV);
1830 cpuctx = &per_cpu(perf_cpu_context, cpu);
1831 ctx = &cpuctx->ctx;
1832 get_ctx(ctx);
1834 return ctx;
1837 rcu_read_lock();
1838 if (!pid)
1839 task = current;
1840 else
1841 task = find_task_by_vpid(pid);
1842 if (task)
1843 get_task_struct(task);
1844 rcu_read_unlock();
1846 if (!task)
1847 return ERR_PTR(-ESRCH);
1850 * Can't attach events to a dying task.
1852 err = -ESRCH;
1853 if (task->flags & PF_EXITING)
1854 goto errout;
1856 /* Reuse ptrace permission checks for now. */
1857 err = -EACCES;
1858 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1859 goto errout;
1861 retry:
1862 ctx = perf_lock_task_context(task, &flags);
1863 if (ctx) {
1864 unclone_ctx(ctx);
1865 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1868 if (!ctx) {
1869 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1870 err = -ENOMEM;
1871 if (!ctx)
1872 goto errout;
1873 __perf_event_init_context(ctx, task);
1874 get_ctx(ctx);
1875 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1877 * We raced with some other task; use
1878 * the context they set.
1880 kfree(ctx);
1881 goto retry;
1883 get_task_struct(task);
1886 put_task_struct(task);
1887 return ctx;
1889 errout:
1890 put_task_struct(task);
1891 return ERR_PTR(err);
1894 static void perf_event_free_filter(struct perf_event *event);
1896 static void free_event_rcu(struct rcu_head *head)
1898 struct perf_event *event;
1900 event = container_of(head, struct perf_event, rcu_head);
1901 if (event->ns)
1902 put_pid_ns(event->ns);
1903 perf_event_free_filter(event);
1904 kfree(event);
1907 static void perf_pending_sync(struct perf_event *event);
1908 static void perf_buffer_put(struct perf_buffer *buffer);
1910 static void free_event(struct perf_event *event)
1912 perf_pending_sync(event);
1914 if (!event->parent) {
1915 atomic_dec(&nr_events);
1916 if (event->attr.mmap || event->attr.mmap_data)
1917 atomic_dec(&nr_mmap_events);
1918 if (event->attr.comm)
1919 atomic_dec(&nr_comm_events);
1920 if (event->attr.task)
1921 atomic_dec(&nr_task_events);
1924 if (event->buffer) {
1925 perf_buffer_put(event->buffer);
1926 event->buffer = NULL;
1929 if (event->destroy)
1930 event->destroy(event);
1932 put_ctx(event->ctx);
1933 call_rcu(&event->rcu_head, free_event_rcu);
1936 int perf_event_release_kernel(struct perf_event *event)
1938 struct perf_event_context *ctx = event->ctx;
1941 * Remove from the PMU, can't get re-enabled since we got
1942 * here because the last ref went.
1944 perf_event_disable(event);
1946 WARN_ON_ONCE(ctx->parent_ctx);
1948 * There are two ways this annotation is useful:
1950 * 1) there is a lock recursion from perf_event_exit_task
1951 * see the comment there.
1953 * 2) there is a lock-inversion with mmap_sem through
1954 * perf_event_read_group(), which takes faults while
1955 * holding ctx->mutex, however this is called after
1956 * the last filedesc died, so there is no possibility
1957 * to trigger the AB-BA case.
1959 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1960 raw_spin_lock_irq(&ctx->lock);
1961 perf_group_detach(event);
1962 list_del_event(event, ctx);
1963 raw_spin_unlock_irq(&ctx->lock);
1964 mutex_unlock(&ctx->mutex);
1966 mutex_lock(&event->owner->perf_event_mutex);
1967 list_del_init(&event->owner_entry);
1968 mutex_unlock(&event->owner->perf_event_mutex);
1969 put_task_struct(event->owner);
1971 free_event(event);
1973 return 0;
1975 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1978 * Called when the last reference to the file is gone.
1980 static int perf_release(struct inode *inode, struct file *file)
1982 struct perf_event *event = file->private_data;
1984 file->private_data = NULL;
1986 return perf_event_release_kernel(event);
1989 static int perf_event_read_size(struct perf_event *event)
1991 int entry = sizeof(u64); /* value */
1992 int size = 0;
1993 int nr = 1;
1995 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1996 size += sizeof(u64);
1998 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1999 size += sizeof(u64);
2001 if (event->attr.read_format & PERF_FORMAT_ID)
2002 entry += sizeof(u64);
2004 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2005 nr += event->group_leader->nr_siblings;
2006 size += sizeof(u64);
2009 size += entry * nr;
2011 return size;
2014 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2016 struct perf_event *child;
2017 u64 total = 0;
2019 *enabled = 0;
2020 *running = 0;
2022 mutex_lock(&event->child_mutex);
2023 total += perf_event_read(event);
2024 *enabled += event->total_time_enabled +
2025 atomic64_read(&event->child_total_time_enabled);
2026 *running += event->total_time_running +
2027 atomic64_read(&event->child_total_time_running);
2029 list_for_each_entry(child, &event->child_list, child_list) {
2030 total += perf_event_read(child);
2031 *enabled += child->total_time_enabled;
2032 *running += child->total_time_running;
2034 mutex_unlock(&event->child_mutex);
2036 return total;
2038 EXPORT_SYMBOL_GPL(perf_event_read_value);
2040 static int perf_event_read_group(struct perf_event *event,
2041 u64 read_format, char __user *buf)
2043 struct perf_event *leader = event->group_leader, *sub;
2044 int n = 0, size = 0, ret = -EFAULT;
2045 struct perf_event_context *ctx = leader->ctx;
2046 u64 values[5];
2047 u64 count, enabled, running;
2049 mutex_lock(&ctx->mutex);
2050 count = perf_event_read_value(leader, &enabled, &running);
2052 values[n++] = 1 + leader->nr_siblings;
2053 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2054 values[n++] = enabled;
2055 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2056 values[n++] = running;
2057 values[n++] = count;
2058 if (read_format & PERF_FORMAT_ID)
2059 values[n++] = primary_event_id(leader);
2061 size = n * sizeof(u64);
2063 if (copy_to_user(buf, values, size))
2064 goto unlock;
2066 ret = size;
2068 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2069 n = 0;
2071 values[n++] = perf_event_read_value(sub, &enabled, &running);
2072 if (read_format & PERF_FORMAT_ID)
2073 values[n++] = primary_event_id(sub);
2075 size = n * sizeof(u64);
2077 if (copy_to_user(buf + ret, values, size)) {
2078 ret = -EFAULT;
2079 goto unlock;
2082 ret += size;
2084 unlock:
2085 mutex_unlock(&ctx->mutex);
2087 return ret;
2090 static int perf_event_read_one(struct perf_event *event,
2091 u64 read_format, char __user *buf)
2093 u64 enabled, running;
2094 u64 values[4];
2095 int n = 0;
2097 values[n++] = perf_event_read_value(event, &enabled, &running);
2098 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2099 values[n++] = enabled;
2100 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2101 values[n++] = running;
2102 if (read_format & PERF_FORMAT_ID)
2103 values[n++] = primary_event_id(event);
2105 if (copy_to_user(buf, values, n * sizeof(u64)))
2106 return -EFAULT;
2108 return n * sizeof(u64);
2112 * Read the performance event - simple non blocking version for now
2114 static ssize_t
2115 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2117 u64 read_format = event->attr.read_format;
2118 int ret;
2121 * Return end-of-file for a read on a event that is in
2122 * error state (i.e. because it was pinned but it couldn't be
2123 * scheduled on to the CPU at some point).
2125 if (event->state == PERF_EVENT_STATE_ERROR)
2126 return 0;
2128 if (count < perf_event_read_size(event))
2129 return -ENOSPC;
2131 WARN_ON_ONCE(event->ctx->parent_ctx);
2132 if (read_format & PERF_FORMAT_GROUP)
2133 ret = perf_event_read_group(event, read_format, buf);
2134 else
2135 ret = perf_event_read_one(event, read_format, buf);
2137 return ret;
2140 static ssize_t
2141 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2143 struct perf_event *event = file->private_data;
2145 return perf_read_hw(event, buf, count);
2148 static unsigned int perf_poll(struct file *file, poll_table *wait)
2150 struct perf_event *event = file->private_data;
2151 struct perf_buffer *buffer;
2152 unsigned int events = POLL_HUP;
2154 rcu_read_lock();
2155 buffer = rcu_dereference(event->buffer);
2156 if (buffer)
2157 events = atomic_xchg(&buffer->poll, 0);
2158 rcu_read_unlock();
2160 poll_wait(file, &event->waitq, wait);
2162 return events;
2165 static void perf_event_reset(struct perf_event *event)
2167 (void)perf_event_read(event);
2168 local64_set(&event->count, 0);
2169 perf_event_update_userpage(event);
2173 * Holding the top-level event's child_mutex means that any
2174 * descendant process that has inherited this event will block
2175 * in sync_child_event if it goes to exit, thus satisfying the
2176 * task existence requirements of perf_event_enable/disable.
2178 static void perf_event_for_each_child(struct perf_event *event,
2179 void (*func)(struct perf_event *))
2181 struct perf_event *child;
2183 WARN_ON_ONCE(event->ctx->parent_ctx);
2184 mutex_lock(&event->child_mutex);
2185 func(event);
2186 list_for_each_entry(child, &event->child_list, child_list)
2187 func(child);
2188 mutex_unlock(&event->child_mutex);
2191 static void perf_event_for_each(struct perf_event *event,
2192 void (*func)(struct perf_event *))
2194 struct perf_event_context *ctx = event->ctx;
2195 struct perf_event *sibling;
2197 WARN_ON_ONCE(ctx->parent_ctx);
2198 mutex_lock(&ctx->mutex);
2199 event = event->group_leader;
2201 perf_event_for_each_child(event, func);
2202 func(event);
2203 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2204 perf_event_for_each_child(event, func);
2205 mutex_unlock(&ctx->mutex);
2208 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2210 struct perf_event_context *ctx = event->ctx;
2211 int ret = 0;
2212 u64 value;
2214 if (!event->attr.sample_period)
2215 return -EINVAL;
2217 if (copy_from_user(&value, arg, sizeof(value)))
2218 return -EFAULT;
2220 if (!value)
2221 return -EINVAL;
2223 raw_spin_lock_irq(&ctx->lock);
2224 if (event->attr.freq) {
2225 if (value > sysctl_perf_event_sample_rate) {
2226 ret = -EINVAL;
2227 goto unlock;
2230 event->attr.sample_freq = value;
2231 } else {
2232 event->attr.sample_period = value;
2233 event->hw.sample_period = value;
2235 unlock:
2236 raw_spin_unlock_irq(&ctx->lock);
2238 return ret;
2241 static const struct file_operations perf_fops;
2243 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2245 struct file *file;
2247 file = fget_light(fd, fput_needed);
2248 if (!file)
2249 return ERR_PTR(-EBADF);
2251 if (file->f_op != &perf_fops) {
2252 fput_light(file, *fput_needed);
2253 *fput_needed = 0;
2254 return ERR_PTR(-EBADF);
2257 return file->private_data;
2260 static int perf_event_set_output(struct perf_event *event,
2261 struct perf_event *output_event);
2262 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2264 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2266 struct perf_event *event = file->private_data;
2267 void (*func)(struct perf_event *);
2268 u32 flags = arg;
2270 switch (cmd) {
2271 case PERF_EVENT_IOC_ENABLE:
2272 func = perf_event_enable;
2273 break;
2274 case PERF_EVENT_IOC_DISABLE:
2275 func = perf_event_disable;
2276 break;
2277 case PERF_EVENT_IOC_RESET:
2278 func = perf_event_reset;
2279 break;
2281 case PERF_EVENT_IOC_REFRESH:
2282 return perf_event_refresh(event, arg);
2284 case PERF_EVENT_IOC_PERIOD:
2285 return perf_event_period(event, (u64 __user *)arg);
2287 case PERF_EVENT_IOC_SET_OUTPUT:
2289 struct perf_event *output_event = NULL;
2290 int fput_needed = 0;
2291 int ret;
2293 if (arg != -1) {
2294 output_event = perf_fget_light(arg, &fput_needed);
2295 if (IS_ERR(output_event))
2296 return PTR_ERR(output_event);
2299 ret = perf_event_set_output(event, output_event);
2300 if (output_event)
2301 fput_light(output_event->filp, fput_needed);
2303 return ret;
2306 case PERF_EVENT_IOC_SET_FILTER:
2307 return perf_event_set_filter(event, (void __user *)arg);
2309 default:
2310 return -ENOTTY;
2313 if (flags & PERF_IOC_FLAG_GROUP)
2314 perf_event_for_each(event, func);
2315 else
2316 perf_event_for_each_child(event, func);
2318 return 0;
2321 int perf_event_task_enable(void)
2323 struct perf_event *event;
2325 mutex_lock(&current->perf_event_mutex);
2326 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2327 perf_event_for_each_child(event, perf_event_enable);
2328 mutex_unlock(&current->perf_event_mutex);
2330 return 0;
2333 int perf_event_task_disable(void)
2335 struct perf_event *event;
2337 mutex_lock(&current->perf_event_mutex);
2338 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2339 perf_event_for_each_child(event, perf_event_disable);
2340 mutex_unlock(&current->perf_event_mutex);
2342 return 0;
2345 #ifndef PERF_EVENT_INDEX_OFFSET
2346 # define PERF_EVENT_INDEX_OFFSET 0
2347 #endif
2349 static int perf_event_index(struct perf_event *event)
2351 if (event->state != PERF_EVENT_STATE_ACTIVE)
2352 return 0;
2354 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2358 * Callers need to ensure there can be no nesting of this function, otherwise
2359 * the seqlock logic goes bad. We can not serialize this because the arch
2360 * code calls this from NMI context.
2362 void perf_event_update_userpage(struct perf_event *event)
2364 struct perf_event_mmap_page *userpg;
2365 struct perf_buffer *buffer;
2367 rcu_read_lock();
2368 buffer = rcu_dereference(event->buffer);
2369 if (!buffer)
2370 goto unlock;
2372 userpg = buffer->user_page;
2375 * Disable preemption so as to not let the corresponding user-space
2376 * spin too long if we get preempted.
2378 preempt_disable();
2379 ++userpg->lock;
2380 barrier();
2381 userpg->index = perf_event_index(event);
2382 userpg->offset = perf_event_count(event);
2383 if (event->state == PERF_EVENT_STATE_ACTIVE)
2384 userpg->offset -= local64_read(&event->hw.prev_count);
2386 userpg->time_enabled = event->total_time_enabled +
2387 atomic64_read(&event->child_total_time_enabled);
2389 userpg->time_running = event->total_time_running +
2390 atomic64_read(&event->child_total_time_running);
2392 barrier();
2393 ++userpg->lock;
2394 preempt_enable();
2395 unlock:
2396 rcu_read_unlock();
2399 static unsigned long perf_data_size(struct perf_buffer *buffer);
2401 static void
2402 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2404 long max_size = perf_data_size(buffer);
2406 if (watermark)
2407 buffer->watermark = min(max_size, watermark);
2409 if (!buffer->watermark)
2410 buffer->watermark = max_size / 2;
2412 if (flags & PERF_BUFFER_WRITABLE)
2413 buffer->writable = 1;
2415 atomic_set(&buffer->refcount, 1);
2418 #ifndef CONFIG_PERF_USE_VMALLOC
2421 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2424 static struct page *
2425 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2427 if (pgoff > buffer->nr_pages)
2428 return NULL;
2430 if (pgoff == 0)
2431 return virt_to_page(buffer->user_page);
2433 return virt_to_page(buffer->data_pages[pgoff - 1]);
2436 static void *perf_mmap_alloc_page(int cpu)
2438 struct page *page;
2439 int node;
2441 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2442 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2443 if (!page)
2444 return NULL;
2446 return page_address(page);
2449 static struct perf_buffer *
2450 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2452 struct perf_buffer *buffer;
2453 unsigned long size;
2454 int i;
2456 size = sizeof(struct perf_buffer);
2457 size += nr_pages * sizeof(void *);
2459 buffer = kzalloc(size, GFP_KERNEL);
2460 if (!buffer)
2461 goto fail;
2463 buffer->user_page = perf_mmap_alloc_page(cpu);
2464 if (!buffer->user_page)
2465 goto fail_user_page;
2467 for (i = 0; i < nr_pages; i++) {
2468 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2469 if (!buffer->data_pages[i])
2470 goto fail_data_pages;
2473 buffer->nr_pages = nr_pages;
2475 perf_buffer_init(buffer, watermark, flags);
2477 return buffer;
2479 fail_data_pages:
2480 for (i--; i >= 0; i--)
2481 free_page((unsigned long)buffer->data_pages[i]);
2483 free_page((unsigned long)buffer->user_page);
2485 fail_user_page:
2486 kfree(buffer);
2488 fail:
2489 return NULL;
2492 static void perf_mmap_free_page(unsigned long addr)
2494 struct page *page = virt_to_page((void *)addr);
2496 page->mapping = NULL;
2497 __free_page(page);
2500 static void perf_buffer_free(struct perf_buffer *buffer)
2502 int i;
2504 perf_mmap_free_page((unsigned long)buffer->user_page);
2505 for (i = 0; i < buffer->nr_pages; i++)
2506 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2507 kfree(buffer);
2510 static inline int page_order(struct perf_buffer *buffer)
2512 return 0;
2515 #else
2518 * Back perf_mmap() with vmalloc memory.
2520 * Required for architectures that have d-cache aliasing issues.
2523 static inline int page_order(struct perf_buffer *buffer)
2525 return buffer->page_order;
2528 static struct page *
2529 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2531 if (pgoff > (1UL << page_order(buffer)))
2532 return NULL;
2534 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2537 static void perf_mmap_unmark_page(void *addr)
2539 struct page *page = vmalloc_to_page(addr);
2541 page->mapping = NULL;
2544 static void perf_buffer_free_work(struct work_struct *work)
2546 struct perf_buffer *buffer;
2547 void *base;
2548 int i, nr;
2550 buffer = container_of(work, struct perf_buffer, work);
2551 nr = 1 << page_order(buffer);
2553 base = buffer->user_page;
2554 for (i = 0; i < nr + 1; i++)
2555 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2557 vfree(base);
2558 kfree(buffer);
2561 static void perf_buffer_free(struct perf_buffer *buffer)
2563 schedule_work(&buffer->work);
2566 static struct perf_buffer *
2567 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2569 struct perf_buffer *buffer;
2570 unsigned long size;
2571 void *all_buf;
2573 size = sizeof(struct perf_buffer);
2574 size += sizeof(void *);
2576 buffer = kzalloc(size, GFP_KERNEL);
2577 if (!buffer)
2578 goto fail;
2580 INIT_WORK(&buffer->work, perf_buffer_free_work);
2582 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2583 if (!all_buf)
2584 goto fail_all_buf;
2586 buffer->user_page = all_buf;
2587 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2588 buffer->page_order = ilog2(nr_pages);
2589 buffer->nr_pages = 1;
2591 perf_buffer_init(buffer, watermark, flags);
2593 return buffer;
2595 fail_all_buf:
2596 kfree(buffer);
2598 fail:
2599 return NULL;
2602 #endif
2604 static unsigned long perf_data_size(struct perf_buffer *buffer)
2606 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2609 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2611 struct perf_event *event = vma->vm_file->private_data;
2612 struct perf_buffer *buffer;
2613 int ret = VM_FAULT_SIGBUS;
2615 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2616 if (vmf->pgoff == 0)
2617 ret = 0;
2618 return ret;
2621 rcu_read_lock();
2622 buffer = rcu_dereference(event->buffer);
2623 if (!buffer)
2624 goto unlock;
2626 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2627 goto unlock;
2629 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2630 if (!vmf->page)
2631 goto unlock;
2633 get_page(vmf->page);
2634 vmf->page->mapping = vma->vm_file->f_mapping;
2635 vmf->page->index = vmf->pgoff;
2637 ret = 0;
2638 unlock:
2639 rcu_read_unlock();
2641 return ret;
2644 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2646 struct perf_buffer *buffer;
2648 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2649 perf_buffer_free(buffer);
2652 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2654 struct perf_buffer *buffer;
2656 rcu_read_lock();
2657 buffer = rcu_dereference(event->buffer);
2658 if (buffer) {
2659 if (!atomic_inc_not_zero(&buffer->refcount))
2660 buffer = NULL;
2662 rcu_read_unlock();
2664 return buffer;
2667 static void perf_buffer_put(struct perf_buffer *buffer)
2669 if (!atomic_dec_and_test(&buffer->refcount))
2670 return;
2672 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2675 static void perf_mmap_open(struct vm_area_struct *vma)
2677 struct perf_event *event = vma->vm_file->private_data;
2679 atomic_inc(&event->mmap_count);
2682 static void perf_mmap_close(struct vm_area_struct *vma)
2684 struct perf_event *event = vma->vm_file->private_data;
2686 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2687 unsigned long size = perf_data_size(event->buffer);
2688 struct user_struct *user = event->mmap_user;
2689 struct perf_buffer *buffer = event->buffer;
2691 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2692 vma->vm_mm->locked_vm -= event->mmap_locked;
2693 rcu_assign_pointer(event->buffer, NULL);
2694 mutex_unlock(&event->mmap_mutex);
2696 perf_buffer_put(buffer);
2697 free_uid(user);
2701 static const struct vm_operations_struct perf_mmap_vmops = {
2702 .open = perf_mmap_open,
2703 .close = perf_mmap_close,
2704 .fault = perf_mmap_fault,
2705 .page_mkwrite = perf_mmap_fault,
2708 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2710 struct perf_event *event = file->private_data;
2711 unsigned long user_locked, user_lock_limit;
2712 struct user_struct *user = current_user();
2713 unsigned long locked, lock_limit;
2714 struct perf_buffer *buffer;
2715 unsigned long vma_size;
2716 unsigned long nr_pages;
2717 long user_extra, extra;
2718 int ret = 0, flags = 0;
2721 * Don't allow mmap() of inherited per-task counters. This would
2722 * create a performance issue due to all children writing to the
2723 * same buffer.
2725 if (event->cpu == -1 && event->attr.inherit)
2726 return -EINVAL;
2728 if (!(vma->vm_flags & VM_SHARED))
2729 return -EINVAL;
2731 vma_size = vma->vm_end - vma->vm_start;
2732 nr_pages = (vma_size / PAGE_SIZE) - 1;
2735 * If we have buffer pages ensure they're a power-of-two number, so we
2736 * can do bitmasks instead of modulo.
2738 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2739 return -EINVAL;
2741 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2742 return -EINVAL;
2744 if (vma->vm_pgoff != 0)
2745 return -EINVAL;
2747 WARN_ON_ONCE(event->ctx->parent_ctx);
2748 mutex_lock(&event->mmap_mutex);
2749 if (event->buffer) {
2750 if (event->buffer->nr_pages == nr_pages)
2751 atomic_inc(&event->buffer->refcount);
2752 else
2753 ret = -EINVAL;
2754 goto unlock;
2757 user_extra = nr_pages + 1;
2758 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2761 * Increase the limit linearly with more CPUs:
2763 user_lock_limit *= num_online_cpus();
2765 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2767 extra = 0;
2768 if (user_locked > user_lock_limit)
2769 extra = user_locked - user_lock_limit;
2771 lock_limit = rlimit(RLIMIT_MEMLOCK);
2772 lock_limit >>= PAGE_SHIFT;
2773 locked = vma->vm_mm->locked_vm + extra;
2775 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2776 !capable(CAP_IPC_LOCK)) {
2777 ret = -EPERM;
2778 goto unlock;
2781 WARN_ON(event->buffer);
2783 if (vma->vm_flags & VM_WRITE)
2784 flags |= PERF_BUFFER_WRITABLE;
2786 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2787 event->cpu, flags);
2788 if (!buffer) {
2789 ret = -ENOMEM;
2790 goto unlock;
2792 rcu_assign_pointer(event->buffer, buffer);
2794 atomic_long_add(user_extra, &user->locked_vm);
2795 event->mmap_locked = extra;
2796 event->mmap_user = get_current_user();
2797 vma->vm_mm->locked_vm += event->mmap_locked;
2799 unlock:
2800 if (!ret)
2801 atomic_inc(&event->mmap_count);
2802 mutex_unlock(&event->mmap_mutex);
2804 vma->vm_flags |= VM_RESERVED;
2805 vma->vm_ops = &perf_mmap_vmops;
2807 return ret;
2810 static int perf_fasync(int fd, struct file *filp, int on)
2812 struct inode *inode = filp->f_path.dentry->d_inode;
2813 struct perf_event *event = filp->private_data;
2814 int retval;
2816 mutex_lock(&inode->i_mutex);
2817 retval = fasync_helper(fd, filp, on, &event->fasync);
2818 mutex_unlock(&inode->i_mutex);
2820 if (retval < 0)
2821 return retval;
2823 return 0;
2826 static const struct file_operations perf_fops = {
2827 .llseek = no_llseek,
2828 .release = perf_release,
2829 .read = perf_read,
2830 .poll = perf_poll,
2831 .unlocked_ioctl = perf_ioctl,
2832 .compat_ioctl = perf_ioctl,
2833 .mmap = perf_mmap,
2834 .fasync = perf_fasync,
2838 * Perf event wakeup
2840 * If there's data, ensure we set the poll() state and publish everything
2841 * to user-space before waking everybody up.
2844 void perf_event_wakeup(struct perf_event *event)
2846 wake_up_all(&event->waitq);
2848 if (event->pending_kill) {
2849 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2850 event->pending_kill = 0;
2855 * Pending wakeups
2857 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2859 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2860 * single linked list and use cmpxchg() to add entries lockless.
2863 static void perf_pending_event(struct perf_pending_entry *entry)
2865 struct perf_event *event = container_of(entry,
2866 struct perf_event, pending);
2868 if (event->pending_disable) {
2869 event->pending_disable = 0;
2870 __perf_event_disable(event);
2873 if (event->pending_wakeup) {
2874 event->pending_wakeup = 0;
2875 perf_event_wakeup(event);
2879 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2881 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2882 PENDING_TAIL,
2885 static void perf_pending_queue(struct perf_pending_entry *entry,
2886 void (*func)(struct perf_pending_entry *))
2888 struct perf_pending_entry **head;
2890 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2891 return;
2893 entry->func = func;
2895 head = &get_cpu_var(perf_pending_head);
2897 do {
2898 entry->next = *head;
2899 } while (cmpxchg(head, entry->next, entry) != entry->next);
2901 set_perf_event_pending();
2903 put_cpu_var(perf_pending_head);
2906 static int __perf_pending_run(void)
2908 struct perf_pending_entry *list;
2909 int nr = 0;
2911 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2912 while (list != PENDING_TAIL) {
2913 void (*func)(struct perf_pending_entry *);
2914 struct perf_pending_entry *entry = list;
2916 list = list->next;
2918 func = entry->func;
2919 entry->next = NULL;
2921 * Ensure we observe the unqueue before we issue the wakeup,
2922 * so that we won't be waiting forever.
2923 * -- see perf_not_pending().
2925 smp_wmb();
2927 func(entry);
2928 nr++;
2931 return nr;
2934 static inline int perf_not_pending(struct perf_event *event)
2937 * If we flush on whatever cpu we run, there is a chance we don't
2938 * need to wait.
2940 get_cpu();
2941 __perf_pending_run();
2942 put_cpu();
2945 * Ensure we see the proper queue state before going to sleep
2946 * so that we do not miss the wakeup. -- see perf_pending_handle()
2948 smp_rmb();
2949 return event->pending.next == NULL;
2952 static void perf_pending_sync(struct perf_event *event)
2954 wait_event(event->waitq, perf_not_pending(event));
2957 void perf_event_do_pending(void)
2959 __perf_pending_run();
2963 * Callchain support -- arch specific
2966 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2968 return NULL;
2973 * We assume there is only KVM supporting the callbacks.
2974 * Later on, we might change it to a list if there is
2975 * another virtualization implementation supporting the callbacks.
2977 struct perf_guest_info_callbacks *perf_guest_cbs;
2979 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2981 perf_guest_cbs = cbs;
2982 return 0;
2984 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2986 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2988 perf_guest_cbs = NULL;
2989 return 0;
2991 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2994 * Output
2996 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2997 unsigned long offset, unsigned long head)
2999 unsigned long mask;
3001 if (!buffer->writable)
3002 return true;
3004 mask = perf_data_size(buffer) - 1;
3006 offset = (offset - tail) & mask;
3007 head = (head - tail) & mask;
3009 if ((int)(head - offset) < 0)
3010 return false;
3012 return true;
3015 static void perf_output_wakeup(struct perf_output_handle *handle)
3017 atomic_set(&handle->buffer->poll, POLL_IN);
3019 if (handle->nmi) {
3020 handle->event->pending_wakeup = 1;
3021 perf_pending_queue(&handle->event->pending,
3022 perf_pending_event);
3023 } else
3024 perf_event_wakeup(handle->event);
3028 * We need to ensure a later event_id doesn't publish a head when a former
3029 * event isn't done writing. However since we need to deal with NMIs we
3030 * cannot fully serialize things.
3032 * We only publish the head (and generate a wakeup) when the outer-most
3033 * event completes.
3035 static void perf_output_get_handle(struct perf_output_handle *handle)
3037 struct perf_buffer *buffer = handle->buffer;
3039 preempt_disable();
3040 local_inc(&buffer->nest);
3041 handle->wakeup = local_read(&buffer->wakeup);
3044 static void perf_output_put_handle(struct perf_output_handle *handle)
3046 struct perf_buffer *buffer = handle->buffer;
3047 unsigned long head;
3049 again:
3050 head = local_read(&buffer->head);
3053 * IRQ/NMI can happen here, which means we can miss a head update.
3056 if (!local_dec_and_test(&buffer->nest))
3057 goto out;
3060 * Publish the known good head. Rely on the full barrier implied
3061 * by atomic_dec_and_test() order the buffer->head read and this
3062 * write.
3064 buffer->user_page->data_head = head;
3067 * Now check if we missed an update, rely on the (compiler)
3068 * barrier in atomic_dec_and_test() to re-read buffer->head.
3070 if (unlikely(head != local_read(&buffer->head))) {
3071 local_inc(&buffer->nest);
3072 goto again;
3075 if (handle->wakeup != local_read(&buffer->wakeup))
3076 perf_output_wakeup(handle);
3078 out:
3079 preempt_enable();
3082 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3083 const void *buf, unsigned int len)
3085 do {
3086 unsigned long size = min_t(unsigned long, handle->size, len);
3088 memcpy(handle->addr, buf, size);
3090 len -= size;
3091 handle->addr += size;
3092 buf += size;
3093 handle->size -= size;
3094 if (!handle->size) {
3095 struct perf_buffer *buffer = handle->buffer;
3097 handle->page++;
3098 handle->page &= buffer->nr_pages - 1;
3099 handle->addr = buffer->data_pages[handle->page];
3100 handle->size = PAGE_SIZE << page_order(buffer);
3102 } while (len);
3105 int perf_output_begin(struct perf_output_handle *handle,
3106 struct perf_event *event, unsigned int size,
3107 int nmi, int sample)
3109 struct perf_buffer *buffer;
3110 unsigned long tail, offset, head;
3111 int have_lost;
3112 struct {
3113 struct perf_event_header header;
3114 u64 id;
3115 u64 lost;
3116 } lost_event;
3118 rcu_read_lock();
3120 * For inherited events we send all the output towards the parent.
3122 if (event->parent)
3123 event = event->parent;
3125 buffer = rcu_dereference(event->buffer);
3126 if (!buffer)
3127 goto out;
3129 handle->buffer = buffer;
3130 handle->event = event;
3131 handle->nmi = nmi;
3132 handle->sample = sample;
3134 if (!buffer->nr_pages)
3135 goto out;
3137 have_lost = local_read(&buffer->lost);
3138 if (have_lost)
3139 size += sizeof(lost_event);
3141 perf_output_get_handle(handle);
3143 do {
3145 * Userspace could choose to issue a mb() before updating the
3146 * tail pointer. So that all reads will be completed before the
3147 * write is issued.
3149 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3150 smp_rmb();
3151 offset = head = local_read(&buffer->head);
3152 head += size;
3153 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3154 goto fail;
3155 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3157 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3158 local_add(buffer->watermark, &buffer->wakeup);
3160 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3161 handle->page &= buffer->nr_pages - 1;
3162 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3163 handle->addr = buffer->data_pages[handle->page];
3164 handle->addr += handle->size;
3165 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3167 if (have_lost) {
3168 lost_event.header.type = PERF_RECORD_LOST;
3169 lost_event.header.misc = 0;
3170 lost_event.header.size = sizeof(lost_event);
3171 lost_event.id = event->id;
3172 lost_event.lost = local_xchg(&buffer->lost, 0);
3174 perf_output_put(handle, lost_event);
3177 return 0;
3179 fail:
3180 local_inc(&buffer->lost);
3181 perf_output_put_handle(handle);
3182 out:
3183 rcu_read_unlock();
3185 return -ENOSPC;
3188 void perf_output_end(struct perf_output_handle *handle)
3190 struct perf_event *event = handle->event;
3191 struct perf_buffer *buffer = handle->buffer;
3193 int wakeup_events = event->attr.wakeup_events;
3195 if (handle->sample && wakeup_events) {
3196 int events = local_inc_return(&buffer->events);
3197 if (events >= wakeup_events) {
3198 local_sub(wakeup_events, &buffer->events);
3199 local_inc(&buffer->wakeup);
3203 perf_output_put_handle(handle);
3204 rcu_read_unlock();
3207 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3210 * only top level events have the pid namespace they were created in
3212 if (event->parent)
3213 event = event->parent;
3215 return task_tgid_nr_ns(p, event->ns);
3218 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3221 * only top level events have the pid namespace they were created in
3223 if (event->parent)
3224 event = event->parent;
3226 return task_pid_nr_ns(p, event->ns);
3229 static void perf_output_read_one(struct perf_output_handle *handle,
3230 struct perf_event *event)
3232 u64 read_format = event->attr.read_format;
3233 u64 values[4];
3234 int n = 0;
3236 values[n++] = perf_event_count(event);
3237 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3238 values[n++] = event->total_time_enabled +
3239 atomic64_read(&event->child_total_time_enabled);
3241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3242 values[n++] = event->total_time_running +
3243 atomic64_read(&event->child_total_time_running);
3245 if (read_format & PERF_FORMAT_ID)
3246 values[n++] = primary_event_id(event);
3248 perf_output_copy(handle, values, n * sizeof(u64));
3251 static void perf_output_read_group(struct perf_output_handle *handle,
3252 struct perf_event *event)
3254 struct perf_event *leader = event->group_leader, *sub;
3255 u64 read_format = event->attr.read_format;
3256 u64 values[5];
3257 int n = 0;
3259 values[n++] = 1 + leader->nr_siblings;
3261 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3262 values[n++] = leader->total_time_enabled;
3264 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3265 values[n++] = leader->total_time_running;
3267 if (leader != event)
3268 leader->pmu->read(leader);
3270 values[n++] = perf_event_count(leader);
3271 if (read_format & PERF_FORMAT_ID)
3272 values[n++] = primary_event_id(leader);
3274 perf_output_copy(handle, values, n * sizeof(u64));
3276 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3277 n = 0;
3279 if (sub != event)
3280 sub->pmu->read(sub);
3282 values[n++] = perf_event_count(sub);
3283 if (read_format & PERF_FORMAT_ID)
3284 values[n++] = primary_event_id(sub);
3286 perf_output_copy(handle, values, n * sizeof(u64));
3290 static void perf_output_read(struct perf_output_handle *handle,
3291 struct perf_event *event)
3293 if (event->attr.read_format & PERF_FORMAT_GROUP)
3294 perf_output_read_group(handle, event);
3295 else
3296 perf_output_read_one(handle, event);
3299 void perf_output_sample(struct perf_output_handle *handle,
3300 struct perf_event_header *header,
3301 struct perf_sample_data *data,
3302 struct perf_event *event)
3304 u64 sample_type = data->type;
3306 perf_output_put(handle, *header);
3308 if (sample_type & PERF_SAMPLE_IP)
3309 perf_output_put(handle, data->ip);
3311 if (sample_type & PERF_SAMPLE_TID)
3312 perf_output_put(handle, data->tid_entry);
3314 if (sample_type & PERF_SAMPLE_TIME)
3315 perf_output_put(handle, data->time);
3317 if (sample_type & PERF_SAMPLE_ADDR)
3318 perf_output_put(handle, data->addr);
3320 if (sample_type & PERF_SAMPLE_ID)
3321 perf_output_put(handle, data->id);
3323 if (sample_type & PERF_SAMPLE_STREAM_ID)
3324 perf_output_put(handle, data->stream_id);
3326 if (sample_type & PERF_SAMPLE_CPU)
3327 perf_output_put(handle, data->cpu_entry);
3329 if (sample_type & PERF_SAMPLE_PERIOD)
3330 perf_output_put(handle, data->period);
3332 if (sample_type & PERF_SAMPLE_READ)
3333 perf_output_read(handle, event);
3335 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3336 if (data->callchain) {
3337 int size = 1;
3339 if (data->callchain)
3340 size += data->callchain->nr;
3342 size *= sizeof(u64);
3344 perf_output_copy(handle, data->callchain, size);
3345 } else {
3346 u64 nr = 0;
3347 perf_output_put(handle, nr);
3351 if (sample_type & PERF_SAMPLE_RAW) {
3352 if (data->raw) {
3353 perf_output_put(handle, data->raw->size);
3354 perf_output_copy(handle, data->raw->data,
3355 data->raw->size);
3356 } else {
3357 struct {
3358 u32 size;
3359 u32 data;
3360 } raw = {
3361 .size = sizeof(u32),
3362 .data = 0,
3364 perf_output_put(handle, raw);
3369 void perf_prepare_sample(struct perf_event_header *header,
3370 struct perf_sample_data *data,
3371 struct perf_event *event,
3372 struct pt_regs *regs)
3374 u64 sample_type = event->attr.sample_type;
3376 data->type = sample_type;
3378 header->type = PERF_RECORD_SAMPLE;
3379 header->size = sizeof(*header);
3381 header->misc = 0;
3382 header->misc |= perf_misc_flags(regs);
3384 if (sample_type & PERF_SAMPLE_IP) {
3385 data->ip = perf_instruction_pointer(regs);
3387 header->size += sizeof(data->ip);
3390 if (sample_type & PERF_SAMPLE_TID) {
3391 /* namespace issues */
3392 data->tid_entry.pid = perf_event_pid(event, current);
3393 data->tid_entry.tid = perf_event_tid(event, current);
3395 header->size += sizeof(data->tid_entry);
3398 if (sample_type & PERF_SAMPLE_TIME) {
3399 data->time = perf_clock();
3401 header->size += sizeof(data->time);
3404 if (sample_type & PERF_SAMPLE_ADDR)
3405 header->size += sizeof(data->addr);
3407 if (sample_type & PERF_SAMPLE_ID) {
3408 data->id = primary_event_id(event);
3410 header->size += sizeof(data->id);
3413 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3414 data->stream_id = event->id;
3416 header->size += sizeof(data->stream_id);
3419 if (sample_type & PERF_SAMPLE_CPU) {
3420 data->cpu_entry.cpu = raw_smp_processor_id();
3421 data->cpu_entry.reserved = 0;
3423 header->size += sizeof(data->cpu_entry);
3426 if (sample_type & PERF_SAMPLE_PERIOD)
3427 header->size += sizeof(data->period);
3429 if (sample_type & PERF_SAMPLE_READ)
3430 header->size += perf_event_read_size(event);
3432 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3433 int size = 1;
3435 data->callchain = perf_callchain(regs);
3437 if (data->callchain)
3438 size += data->callchain->nr;
3440 header->size += size * sizeof(u64);
3443 if (sample_type & PERF_SAMPLE_RAW) {
3444 int size = sizeof(u32);
3446 if (data->raw)
3447 size += data->raw->size;
3448 else
3449 size += sizeof(u32);
3451 WARN_ON_ONCE(size & (sizeof(u64)-1));
3452 header->size += size;
3456 static void perf_event_output(struct perf_event *event, int nmi,
3457 struct perf_sample_data *data,
3458 struct pt_regs *regs)
3460 struct perf_output_handle handle;
3461 struct perf_event_header header;
3463 perf_prepare_sample(&header, data, event, regs);
3465 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3466 return;
3468 perf_output_sample(&handle, &header, data, event);
3470 perf_output_end(&handle);
3474 * read event_id
3477 struct perf_read_event {
3478 struct perf_event_header header;
3480 u32 pid;
3481 u32 tid;
3484 static void
3485 perf_event_read_event(struct perf_event *event,
3486 struct task_struct *task)
3488 struct perf_output_handle handle;
3489 struct perf_read_event read_event = {
3490 .header = {
3491 .type = PERF_RECORD_READ,
3492 .misc = 0,
3493 .size = sizeof(read_event) + perf_event_read_size(event),
3495 .pid = perf_event_pid(event, task),
3496 .tid = perf_event_tid(event, task),
3498 int ret;
3500 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3501 if (ret)
3502 return;
3504 perf_output_put(&handle, read_event);
3505 perf_output_read(&handle, event);
3507 perf_output_end(&handle);
3511 * task tracking -- fork/exit
3513 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3516 struct perf_task_event {
3517 struct task_struct *task;
3518 struct perf_event_context *task_ctx;
3520 struct {
3521 struct perf_event_header header;
3523 u32 pid;
3524 u32 ppid;
3525 u32 tid;
3526 u32 ptid;
3527 u64 time;
3528 } event_id;
3531 static void perf_event_task_output(struct perf_event *event,
3532 struct perf_task_event *task_event)
3534 struct perf_output_handle handle;
3535 struct task_struct *task = task_event->task;
3536 int size, ret;
3538 size = task_event->event_id.header.size;
3539 ret = perf_output_begin(&handle, event, size, 0, 0);
3541 if (ret)
3542 return;
3544 task_event->event_id.pid = perf_event_pid(event, task);
3545 task_event->event_id.ppid = perf_event_pid(event, current);
3547 task_event->event_id.tid = perf_event_tid(event, task);
3548 task_event->event_id.ptid = perf_event_tid(event, current);
3550 perf_output_put(&handle, task_event->event_id);
3552 perf_output_end(&handle);
3555 static int perf_event_task_match(struct perf_event *event)
3557 if (event->state < PERF_EVENT_STATE_INACTIVE)
3558 return 0;
3560 if (event->cpu != -1 && event->cpu != smp_processor_id())
3561 return 0;
3563 if (event->attr.comm || event->attr.mmap ||
3564 event->attr.mmap_data || event->attr.task)
3565 return 1;
3567 return 0;
3570 static void perf_event_task_ctx(struct perf_event_context *ctx,
3571 struct perf_task_event *task_event)
3573 struct perf_event *event;
3575 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3576 if (perf_event_task_match(event))
3577 perf_event_task_output(event, task_event);
3581 static void perf_event_task_event(struct perf_task_event *task_event)
3583 struct perf_cpu_context *cpuctx;
3584 struct perf_event_context *ctx = task_event->task_ctx;
3586 rcu_read_lock();
3587 cpuctx = &get_cpu_var(perf_cpu_context);
3588 perf_event_task_ctx(&cpuctx->ctx, task_event);
3589 if (!ctx)
3590 ctx = rcu_dereference(current->perf_event_ctxp);
3591 if (ctx)
3592 perf_event_task_ctx(ctx, task_event);
3593 put_cpu_var(perf_cpu_context);
3594 rcu_read_unlock();
3597 static void perf_event_task(struct task_struct *task,
3598 struct perf_event_context *task_ctx,
3599 int new)
3601 struct perf_task_event task_event;
3603 if (!atomic_read(&nr_comm_events) &&
3604 !atomic_read(&nr_mmap_events) &&
3605 !atomic_read(&nr_task_events))
3606 return;
3608 task_event = (struct perf_task_event){
3609 .task = task,
3610 .task_ctx = task_ctx,
3611 .event_id = {
3612 .header = {
3613 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3614 .misc = 0,
3615 .size = sizeof(task_event.event_id),
3617 /* .pid */
3618 /* .ppid */
3619 /* .tid */
3620 /* .ptid */
3621 .time = perf_clock(),
3625 perf_event_task_event(&task_event);
3628 void perf_event_fork(struct task_struct *task)
3630 perf_event_task(task, NULL, 1);
3634 * comm tracking
3637 struct perf_comm_event {
3638 struct task_struct *task;
3639 char *comm;
3640 int comm_size;
3642 struct {
3643 struct perf_event_header header;
3645 u32 pid;
3646 u32 tid;
3647 } event_id;
3650 static void perf_event_comm_output(struct perf_event *event,
3651 struct perf_comm_event *comm_event)
3653 struct perf_output_handle handle;
3654 int size = comm_event->event_id.header.size;
3655 int ret = perf_output_begin(&handle, event, size, 0, 0);
3657 if (ret)
3658 return;
3660 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3661 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3663 perf_output_put(&handle, comm_event->event_id);
3664 perf_output_copy(&handle, comm_event->comm,
3665 comm_event->comm_size);
3666 perf_output_end(&handle);
3669 static int perf_event_comm_match(struct perf_event *event)
3671 if (event->state < PERF_EVENT_STATE_INACTIVE)
3672 return 0;
3674 if (event->cpu != -1 && event->cpu != smp_processor_id())
3675 return 0;
3677 if (event->attr.comm)
3678 return 1;
3680 return 0;
3683 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3684 struct perf_comm_event *comm_event)
3686 struct perf_event *event;
3688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3689 if (perf_event_comm_match(event))
3690 perf_event_comm_output(event, comm_event);
3694 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3696 struct perf_cpu_context *cpuctx;
3697 struct perf_event_context *ctx;
3698 unsigned int size;
3699 char comm[TASK_COMM_LEN];
3701 memset(comm, 0, sizeof(comm));
3702 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3703 size = ALIGN(strlen(comm)+1, sizeof(u64));
3705 comm_event->comm = comm;
3706 comm_event->comm_size = size;
3708 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3710 rcu_read_lock();
3711 cpuctx = &get_cpu_var(perf_cpu_context);
3712 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3713 ctx = rcu_dereference(current->perf_event_ctxp);
3714 if (ctx)
3715 perf_event_comm_ctx(ctx, comm_event);
3716 put_cpu_var(perf_cpu_context);
3717 rcu_read_unlock();
3720 void perf_event_comm(struct task_struct *task)
3722 struct perf_comm_event comm_event;
3724 if (task->perf_event_ctxp)
3725 perf_event_enable_on_exec(task);
3727 if (!atomic_read(&nr_comm_events))
3728 return;
3730 comm_event = (struct perf_comm_event){
3731 .task = task,
3732 /* .comm */
3733 /* .comm_size */
3734 .event_id = {
3735 .header = {
3736 .type = PERF_RECORD_COMM,
3737 .misc = 0,
3738 /* .size */
3740 /* .pid */
3741 /* .tid */
3745 perf_event_comm_event(&comm_event);
3749 * mmap tracking
3752 struct perf_mmap_event {
3753 struct vm_area_struct *vma;
3755 const char *file_name;
3756 int file_size;
3758 struct {
3759 struct perf_event_header header;
3761 u32 pid;
3762 u32 tid;
3763 u64 start;
3764 u64 len;
3765 u64 pgoff;
3766 } event_id;
3769 static void perf_event_mmap_output(struct perf_event *event,
3770 struct perf_mmap_event *mmap_event)
3772 struct perf_output_handle handle;
3773 int size = mmap_event->event_id.header.size;
3774 int ret = perf_output_begin(&handle, event, size, 0, 0);
3776 if (ret)
3777 return;
3779 mmap_event->event_id.pid = perf_event_pid(event, current);
3780 mmap_event->event_id.tid = perf_event_tid(event, current);
3782 perf_output_put(&handle, mmap_event->event_id);
3783 perf_output_copy(&handle, mmap_event->file_name,
3784 mmap_event->file_size);
3785 perf_output_end(&handle);
3788 static int perf_event_mmap_match(struct perf_event *event,
3789 struct perf_mmap_event *mmap_event,
3790 int executable)
3792 if (event->state < PERF_EVENT_STATE_INACTIVE)
3793 return 0;
3795 if (event->cpu != -1 && event->cpu != smp_processor_id())
3796 return 0;
3798 if ((!executable && event->attr.mmap_data) ||
3799 (executable && event->attr.mmap))
3800 return 1;
3802 return 0;
3805 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3806 struct perf_mmap_event *mmap_event,
3807 int executable)
3809 struct perf_event *event;
3811 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3812 if (perf_event_mmap_match(event, mmap_event, executable))
3813 perf_event_mmap_output(event, mmap_event);
3817 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3819 struct perf_cpu_context *cpuctx;
3820 struct perf_event_context *ctx;
3821 struct vm_area_struct *vma = mmap_event->vma;
3822 struct file *file = vma->vm_file;
3823 unsigned int size;
3824 char tmp[16];
3825 char *buf = NULL;
3826 const char *name;
3828 memset(tmp, 0, sizeof(tmp));
3830 if (file) {
3832 * d_path works from the end of the buffer backwards, so we
3833 * need to add enough zero bytes after the string to handle
3834 * the 64bit alignment we do later.
3836 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3837 if (!buf) {
3838 name = strncpy(tmp, "//enomem", sizeof(tmp));
3839 goto got_name;
3841 name = d_path(&file->f_path, buf, PATH_MAX);
3842 if (IS_ERR(name)) {
3843 name = strncpy(tmp, "//toolong", sizeof(tmp));
3844 goto got_name;
3846 } else {
3847 if (arch_vma_name(mmap_event->vma)) {
3848 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3849 sizeof(tmp));
3850 goto got_name;
3853 if (!vma->vm_mm) {
3854 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3855 goto got_name;
3856 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3857 vma->vm_end >= vma->vm_mm->brk) {
3858 name = strncpy(tmp, "[heap]", sizeof(tmp));
3859 goto got_name;
3860 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3861 vma->vm_end >= vma->vm_mm->start_stack) {
3862 name = strncpy(tmp, "[stack]", sizeof(tmp));
3863 goto got_name;
3866 name = strncpy(tmp, "//anon", sizeof(tmp));
3867 goto got_name;
3870 got_name:
3871 size = ALIGN(strlen(name)+1, sizeof(u64));
3873 mmap_event->file_name = name;
3874 mmap_event->file_size = size;
3876 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3878 rcu_read_lock();
3879 cpuctx = &get_cpu_var(perf_cpu_context);
3880 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3881 ctx = rcu_dereference(current->perf_event_ctxp);
3882 if (ctx)
3883 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3884 put_cpu_var(perf_cpu_context);
3885 rcu_read_unlock();
3887 kfree(buf);
3890 void perf_event_mmap(struct vm_area_struct *vma)
3892 struct perf_mmap_event mmap_event;
3894 if (!atomic_read(&nr_mmap_events))
3895 return;
3897 mmap_event = (struct perf_mmap_event){
3898 .vma = vma,
3899 /* .file_name */
3900 /* .file_size */
3901 .event_id = {
3902 .header = {
3903 .type = PERF_RECORD_MMAP,
3904 .misc = PERF_RECORD_MISC_USER,
3905 /* .size */
3907 /* .pid */
3908 /* .tid */
3909 .start = vma->vm_start,
3910 .len = vma->vm_end - vma->vm_start,
3911 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3915 perf_event_mmap_event(&mmap_event);
3919 * IRQ throttle logging
3922 static void perf_log_throttle(struct perf_event *event, int enable)
3924 struct perf_output_handle handle;
3925 int ret;
3927 struct {
3928 struct perf_event_header header;
3929 u64 time;
3930 u64 id;
3931 u64 stream_id;
3932 } throttle_event = {
3933 .header = {
3934 .type = PERF_RECORD_THROTTLE,
3935 .misc = 0,
3936 .size = sizeof(throttle_event),
3938 .time = perf_clock(),
3939 .id = primary_event_id(event),
3940 .stream_id = event->id,
3943 if (enable)
3944 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3946 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3947 if (ret)
3948 return;
3950 perf_output_put(&handle, throttle_event);
3951 perf_output_end(&handle);
3955 * Generic event overflow handling, sampling.
3958 static int __perf_event_overflow(struct perf_event *event, int nmi,
3959 int throttle, struct perf_sample_data *data,
3960 struct pt_regs *regs)
3962 int events = atomic_read(&event->event_limit);
3963 struct hw_perf_event *hwc = &event->hw;
3964 int ret = 0;
3966 throttle = (throttle && event->pmu->unthrottle != NULL);
3968 if (!throttle) {
3969 hwc->interrupts++;
3970 } else {
3971 if (hwc->interrupts != MAX_INTERRUPTS) {
3972 hwc->interrupts++;
3973 if (HZ * hwc->interrupts >
3974 (u64)sysctl_perf_event_sample_rate) {
3975 hwc->interrupts = MAX_INTERRUPTS;
3976 perf_log_throttle(event, 0);
3977 ret = 1;
3979 } else {
3981 * Keep re-disabling events even though on the previous
3982 * pass we disabled it - just in case we raced with a
3983 * sched-in and the event got enabled again:
3985 ret = 1;
3989 if (event->attr.freq) {
3990 u64 now = perf_clock();
3991 s64 delta = now - hwc->freq_time_stamp;
3993 hwc->freq_time_stamp = now;
3995 if (delta > 0 && delta < 2*TICK_NSEC)
3996 perf_adjust_period(event, delta, hwc->last_period);
4000 event->pending_kill = POLL_IN;
4001 if (events && atomic_dec_and_test(&event->event_limit)) {
4002 ret = 1;
4003 event->pending_kill = POLL_HUP;
4004 if (nmi) {
4005 event->pending_disable = 1;
4006 perf_pending_queue(&event->pending,
4007 perf_pending_event);
4008 } else
4009 perf_event_disable(event);
4012 if (event->overflow_handler)
4013 event->overflow_handler(event, nmi, data, regs);
4014 else
4015 perf_event_output(event, nmi, data, regs);
4017 return ret;
4020 int perf_event_overflow(struct perf_event *event, int nmi,
4021 struct perf_sample_data *data,
4022 struct pt_regs *regs)
4024 return __perf_event_overflow(event, nmi, 1, data, regs);
4028 * Generic software event infrastructure
4032 * We directly increment event->count and keep a second value in
4033 * event->hw.period_left to count intervals. This period event
4034 * is kept in the range [-sample_period, 0] so that we can use the
4035 * sign as trigger.
4038 static u64 perf_swevent_set_period(struct perf_event *event)
4040 struct hw_perf_event *hwc = &event->hw;
4041 u64 period = hwc->last_period;
4042 u64 nr, offset;
4043 s64 old, val;
4045 hwc->last_period = hwc->sample_period;
4047 again:
4048 old = val = local64_read(&hwc->period_left);
4049 if (val < 0)
4050 return 0;
4052 nr = div64_u64(period + val, period);
4053 offset = nr * period;
4054 val -= offset;
4055 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4056 goto again;
4058 return nr;
4061 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4062 int nmi, struct perf_sample_data *data,
4063 struct pt_regs *regs)
4065 struct hw_perf_event *hwc = &event->hw;
4066 int throttle = 0;
4068 data->period = event->hw.last_period;
4069 if (!overflow)
4070 overflow = perf_swevent_set_period(event);
4072 if (hwc->interrupts == MAX_INTERRUPTS)
4073 return;
4075 for (; overflow; overflow--) {
4076 if (__perf_event_overflow(event, nmi, throttle,
4077 data, regs)) {
4079 * We inhibit the overflow from happening when
4080 * hwc->interrupts == MAX_INTERRUPTS.
4082 break;
4084 throttle = 1;
4088 static void perf_swevent_add(struct perf_event *event, u64 nr,
4089 int nmi, struct perf_sample_data *data,
4090 struct pt_regs *regs)
4092 struct hw_perf_event *hwc = &event->hw;
4094 local64_add(nr, &event->count);
4096 if (!regs)
4097 return;
4099 if (!hwc->sample_period)
4100 return;
4102 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4103 return perf_swevent_overflow(event, 1, nmi, data, regs);
4105 if (local64_add_negative(nr, &hwc->period_left))
4106 return;
4108 perf_swevent_overflow(event, 0, nmi, data, regs);
4111 static int perf_exclude_event(struct perf_event *event,
4112 struct pt_regs *regs)
4114 if (regs) {
4115 if (event->attr.exclude_user && user_mode(regs))
4116 return 1;
4118 if (event->attr.exclude_kernel && !user_mode(regs))
4119 return 1;
4122 return 0;
4125 static int perf_swevent_match(struct perf_event *event,
4126 enum perf_type_id type,
4127 u32 event_id,
4128 struct perf_sample_data *data,
4129 struct pt_regs *regs)
4131 if (event->attr.type != type)
4132 return 0;
4134 if (event->attr.config != event_id)
4135 return 0;
4137 if (perf_exclude_event(event, regs))
4138 return 0;
4140 return 1;
4143 static inline u64 swevent_hash(u64 type, u32 event_id)
4145 u64 val = event_id | (type << 32);
4147 return hash_64(val, SWEVENT_HLIST_BITS);
4150 static inline struct hlist_head *
4151 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4153 u64 hash = swevent_hash(type, event_id);
4155 return &hlist->heads[hash];
4158 /* For the read side: events when they trigger */
4159 static inline struct hlist_head *
4160 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4162 struct swevent_hlist *hlist;
4164 hlist = rcu_dereference(ctx->swevent_hlist);
4165 if (!hlist)
4166 return NULL;
4168 return __find_swevent_head(hlist, type, event_id);
4171 /* For the event head insertion and removal in the hlist */
4172 static inline struct hlist_head *
4173 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4175 struct swevent_hlist *hlist;
4176 u32 event_id = event->attr.config;
4177 u64 type = event->attr.type;
4180 * Event scheduling is always serialized against hlist allocation
4181 * and release. Which makes the protected version suitable here.
4182 * The context lock guarantees that.
4184 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4185 lockdep_is_held(&event->ctx->lock));
4186 if (!hlist)
4187 return NULL;
4189 return __find_swevent_head(hlist, type, event_id);
4192 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4193 u64 nr, int nmi,
4194 struct perf_sample_data *data,
4195 struct pt_regs *regs)
4197 struct perf_cpu_context *cpuctx;
4198 struct perf_event *event;
4199 struct hlist_node *node;
4200 struct hlist_head *head;
4202 cpuctx = &__get_cpu_var(perf_cpu_context);
4204 rcu_read_lock();
4206 head = find_swevent_head_rcu(cpuctx, type, event_id);
4208 if (!head)
4209 goto end;
4211 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4212 if (perf_swevent_match(event, type, event_id, data, regs))
4213 perf_swevent_add(event, nr, nmi, data, regs);
4215 end:
4216 rcu_read_unlock();
4219 int perf_swevent_get_recursion_context(void)
4221 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4222 int rctx;
4224 if (in_nmi())
4225 rctx = 3;
4226 else if (in_irq())
4227 rctx = 2;
4228 else if (in_softirq())
4229 rctx = 1;
4230 else
4231 rctx = 0;
4233 if (cpuctx->recursion[rctx])
4234 return -1;
4236 cpuctx->recursion[rctx]++;
4237 barrier();
4239 return rctx;
4241 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4243 void inline perf_swevent_put_recursion_context(int rctx)
4245 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4246 barrier();
4247 cpuctx->recursion[rctx]--;
4250 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4251 struct pt_regs *regs, u64 addr)
4253 struct perf_sample_data data;
4254 int rctx;
4256 preempt_disable_notrace();
4257 rctx = perf_swevent_get_recursion_context();
4258 if (rctx < 0)
4259 return;
4261 perf_sample_data_init(&data, addr);
4263 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4265 perf_swevent_put_recursion_context(rctx);
4266 preempt_enable_notrace();
4269 static void perf_swevent_read(struct perf_event *event)
4273 static int perf_swevent_enable(struct perf_event *event)
4275 struct hw_perf_event *hwc = &event->hw;
4276 struct perf_cpu_context *cpuctx;
4277 struct hlist_head *head;
4279 cpuctx = &__get_cpu_var(perf_cpu_context);
4281 if (hwc->sample_period) {
4282 hwc->last_period = hwc->sample_period;
4283 perf_swevent_set_period(event);
4286 head = find_swevent_head(cpuctx, event);
4287 if (WARN_ON_ONCE(!head))
4288 return -EINVAL;
4290 hlist_add_head_rcu(&event->hlist_entry, head);
4292 return 0;
4295 static void perf_swevent_disable(struct perf_event *event)
4297 hlist_del_rcu(&event->hlist_entry);
4300 static void perf_swevent_void(struct perf_event *event)
4304 static int perf_swevent_int(struct perf_event *event)
4306 return 0;
4309 static const struct pmu perf_ops_generic = {
4310 .enable = perf_swevent_enable,
4311 .disable = perf_swevent_disable,
4312 .start = perf_swevent_int,
4313 .stop = perf_swevent_void,
4314 .read = perf_swevent_read,
4315 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4319 * hrtimer based swevent callback
4322 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4324 enum hrtimer_restart ret = HRTIMER_RESTART;
4325 struct perf_sample_data data;
4326 struct pt_regs *regs;
4327 struct perf_event *event;
4328 u64 period;
4330 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4331 event->pmu->read(event);
4333 perf_sample_data_init(&data, 0);
4334 data.period = event->hw.last_period;
4335 regs = get_irq_regs();
4337 if (regs && !perf_exclude_event(event, regs)) {
4338 if (!(event->attr.exclude_idle && current->pid == 0))
4339 if (perf_event_overflow(event, 0, &data, regs))
4340 ret = HRTIMER_NORESTART;
4343 period = max_t(u64, 10000, event->hw.sample_period);
4344 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4346 return ret;
4349 static void perf_swevent_start_hrtimer(struct perf_event *event)
4351 struct hw_perf_event *hwc = &event->hw;
4353 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4354 hwc->hrtimer.function = perf_swevent_hrtimer;
4355 if (hwc->sample_period) {
4356 u64 period;
4358 if (hwc->remaining) {
4359 if (hwc->remaining < 0)
4360 period = 10000;
4361 else
4362 period = hwc->remaining;
4363 hwc->remaining = 0;
4364 } else {
4365 period = max_t(u64, 10000, hwc->sample_period);
4367 __hrtimer_start_range_ns(&hwc->hrtimer,
4368 ns_to_ktime(period), 0,
4369 HRTIMER_MODE_REL, 0);
4373 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4375 struct hw_perf_event *hwc = &event->hw;
4377 if (hwc->sample_period) {
4378 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4379 hwc->remaining = ktime_to_ns(remaining);
4381 hrtimer_cancel(&hwc->hrtimer);
4386 * Software event: cpu wall time clock
4389 static void cpu_clock_perf_event_update(struct perf_event *event)
4391 int cpu = raw_smp_processor_id();
4392 s64 prev;
4393 u64 now;
4395 now = cpu_clock(cpu);
4396 prev = local64_xchg(&event->hw.prev_count, now);
4397 local64_add(now - prev, &event->count);
4400 static int cpu_clock_perf_event_enable(struct perf_event *event)
4402 struct hw_perf_event *hwc = &event->hw;
4403 int cpu = raw_smp_processor_id();
4405 local64_set(&hwc->prev_count, cpu_clock(cpu));
4406 perf_swevent_start_hrtimer(event);
4408 return 0;
4411 static void cpu_clock_perf_event_disable(struct perf_event *event)
4413 perf_swevent_cancel_hrtimer(event);
4414 cpu_clock_perf_event_update(event);
4417 static void cpu_clock_perf_event_read(struct perf_event *event)
4419 cpu_clock_perf_event_update(event);
4422 static const struct pmu perf_ops_cpu_clock = {
4423 .enable = cpu_clock_perf_event_enable,
4424 .disable = cpu_clock_perf_event_disable,
4425 .read = cpu_clock_perf_event_read,
4429 * Software event: task time clock
4432 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4434 u64 prev;
4435 s64 delta;
4437 prev = local64_xchg(&event->hw.prev_count, now);
4438 delta = now - prev;
4439 local64_add(delta, &event->count);
4442 static int task_clock_perf_event_enable(struct perf_event *event)
4444 struct hw_perf_event *hwc = &event->hw;
4445 u64 now;
4447 now = event->ctx->time;
4449 local64_set(&hwc->prev_count, now);
4451 perf_swevent_start_hrtimer(event);
4453 return 0;
4456 static void task_clock_perf_event_disable(struct perf_event *event)
4458 perf_swevent_cancel_hrtimer(event);
4459 task_clock_perf_event_update(event, event->ctx->time);
4463 static void task_clock_perf_event_read(struct perf_event *event)
4465 u64 time;
4467 if (!in_nmi()) {
4468 update_context_time(event->ctx);
4469 time = event->ctx->time;
4470 } else {
4471 u64 now = perf_clock();
4472 u64 delta = now - event->ctx->timestamp;
4473 time = event->ctx->time + delta;
4476 task_clock_perf_event_update(event, time);
4479 static const struct pmu perf_ops_task_clock = {
4480 .enable = task_clock_perf_event_enable,
4481 .disable = task_clock_perf_event_disable,
4482 .read = task_clock_perf_event_read,
4485 /* Deref the hlist from the update side */
4486 static inline struct swevent_hlist *
4487 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4489 return rcu_dereference_protected(cpuctx->swevent_hlist,
4490 lockdep_is_held(&cpuctx->hlist_mutex));
4493 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4495 struct swevent_hlist *hlist;
4497 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4498 kfree(hlist);
4501 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4503 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4505 if (!hlist)
4506 return;
4508 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4509 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4512 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4514 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4516 mutex_lock(&cpuctx->hlist_mutex);
4518 if (!--cpuctx->hlist_refcount)
4519 swevent_hlist_release(cpuctx);
4521 mutex_unlock(&cpuctx->hlist_mutex);
4524 static void swevent_hlist_put(struct perf_event *event)
4526 int cpu;
4528 if (event->cpu != -1) {
4529 swevent_hlist_put_cpu(event, event->cpu);
4530 return;
4533 for_each_possible_cpu(cpu)
4534 swevent_hlist_put_cpu(event, cpu);
4537 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4539 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4540 int err = 0;
4542 mutex_lock(&cpuctx->hlist_mutex);
4544 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4545 struct swevent_hlist *hlist;
4547 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4548 if (!hlist) {
4549 err = -ENOMEM;
4550 goto exit;
4552 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4554 cpuctx->hlist_refcount++;
4555 exit:
4556 mutex_unlock(&cpuctx->hlist_mutex);
4558 return err;
4561 static int swevent_hlist_get(struct perf_event *event)
4563 int err;
4564 int cpu, failed_cpu;
4566 if (event->cpu != -1)
4567 return swevent_hlist_get_cpu(event, event->cpu);
4569 get_online_cpus();
4570 for_each_possible_cpu(cpu) {
4571 err = swevent_hlist_get_cpu(event, cpu);
4572 if (err) {
4573 failed_cpu = cpu;
4574 goto fail;
4577 put_online_cpus();
4579 return 0;
4580 fail:
4581 for_each_possible_cpu(cpu) {
4582 if (cpu == failed_cpu)
4583 break;
4584 swevent_hlist_put_cpu(event, cpu);
4587 put_online_cpus();
4588 return err;
4591 #ifdef CONFIG_EVENT_TRACING
4593 static const struct pmu perf_ops_tracepoint = {
4594 .enable = perf_trace_enable,
4595 .disable = perf_trace_disable,
4596 .start = perf_swevent_int,
4597 .stop = perf_swevent_void,
4598 .read = perf_swevent_read,
4599 .unthrottle = perf_swevent_void,
4602 static int perf_tp_filter_match(struct perf_event *event,
4603 struct perf_sample_data *data)
4605 void *record = data->raw->data;
4607 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4608 return 1;
4609 return 0;
4612 static int perf_tp_event_match(struct perf_event *event,
4613 struct perf_sample_data *data,
4614 struct pt_regs *regs)
4617 * All tracepoints are from kernel-space.
4619 if (event->attr.exclude_kernel)
4620 return 0;
4622 if (!perf_tp_filter_match(event, data))
4623 return 0;
4625 return 1;
4628 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4629 struct pt_regs *regs, struct hlist_head *head, int rctx)
4631 struct perf_sample_data data;
4632 struct perf_event *event;
4633 struct hlist_node *node;
4635 struct perf_raw_record raw = {
4636 .size = entry_size,
4637 .data = record,
4640 perf_sample_data_init(&data, addr);
4641 data.raw = &raw;
4643 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4644 if (perf_tp_event_match(event, &data, regs))
4645 perf_swevent_add(event, count, 1, &data, regs);
4648 perf_swevent_put_recursion_context(rctx);
4650 EXPORT_SYMBOL_GPL(perf_tp_event);
4652 static void tp_perf_event_destroy(struct perf_event *event)
4654 perf_trace_destroy(event);
4657 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4659 int err;
4662 * Raw tracepoint data is a severe data leak, only allow root to
4663 * have these.
4665 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4666 perf_paranoid_tracepoint_raw() &&
4667 !capable(CAP_SYS_ADMIN))
4668 return ERR_PTR(-EPERM);
4670 err = perf_trace_init(event);
4671 if (err)
4672 return NULL;
4674 event->destroy = tp_perf_event_destroy;
4676 return &perf_ops_tracepoint;
4679 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4681 char *filter_str;
4682 int ret;
4684 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4685 return -EINVAL;
4687 filter_str = strndup_user(arg, PAGE_SIZE);
4688 if (IS_ERR(filter_str))
4689 return PTR_ERR(filter_str);
4691 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4693 kfree(filter_str);
4694 return ret;
4697 static void perf_event_free_filter(struct perf_event *event)
4699 ftrace_profile_free_filter(event);
4702 #else
4704 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4706 return NULL;
4709 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4711 return -ENOENT;
4714 static void perf_event_free_filter(struct perf_event *event)
4718 #endif /* CONFIG_EVENT_TRACING */
4720 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4721 static void bp_perf_event_destroy(struct perf_event *event)
4723 release_bp_slot(event);
4726 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4728 int err;
4730 err = register_perf_hw_breakpoint(bp);
4731 if (err)
4732 return ERR_PTR(err);
4734 bp->destroy = bp_perf_event_destroy;
4736 return &perf_ops_bp;
4739 void perf_bp_event(struct perf_event *bp, void *data)
4741 struct perf_sample_data sample;
4742 struct pt_regs *regs = data;
4744 perf_sample_data_init(&sample, bp->attr.bp_addr);
4746 if (!perf_exclude_event(bp, regs))
4747 perf_swevent_add(bp, 1, 1, &sample, regs);
4749 #else
4750 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4752 return NULL;
4755 void perf_bp_event(struct perf_event *bp, void *regs)
4758 #endif
4760 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4762 static void sw_perf_event_destroy(struct perf_event *event)
4764 u64 event_id = event->attr.config;
4766 WARN_ON(event->parent);
4768 atomic_dec(&perf_swevent_enabled[event_id]);
4769 swevent_hlist_put(event);
4772 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4774 const struct pmu *pmu = NULL;
4775 u64 event_id = event->attr.config;
4778 * Software events (currently) can't in general distinguish
4779 * between user, kernel and hypervisor events.
4780 * However, context switches and cpu migrations are considered
4781 * to be kernel events, and page faults are never hypervisor
4782 * events.
4784 switch (event_id) {
4785 case PERF_COUNT_SW_CPU_CLOCK:
4786 pmu = &perf_ops_cpu_clock;
4788 break;
4789 case PERF_COUNT_SW_TASK_CLOCK:
4791 * If the user instantiates this as a per-cpu event,
4792 * use the cpu_clock event instead.
4794 if (event->ctx->task)
4795 pmu = &perf_ops_task_clock;
4796 else
4797 pmu = &perf_ops_cpu_clock;
4799 break;
4800 case PERF_COUNT_SW_PAGE_FAULTS:
4801 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4802 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4803 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4804 case PERF_COUNT_SW_CPU_MIGRATIONS:
4805 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4806 case PERF_COUNT_SW_EMULATION_FAULTS:
4807 if (!event->parent) {
4808 int err;
4810 err = swevent_hlist_get(event);
4811 if (err)
4812 return ERR_PTR(err);
4814 atomic_inc(&perf_swevent_enabled[event_id]);
4815 event->destroy = sw_perf_event_destroy;
4817 pmu = &perf_ops_generic;
4818 break;
4821 return pmu;
4825 * Allocate and initialize a event structure
4827 static struct perf_event *
4828 perf_event_alloc(struct perf_event_attr *attr,
4829 int cpu,
4830 struct perf_event_context *ctx,
4831 struct perf_event *group_leader,
4832 struct perf_event *parent_event,
4833 perf_overflow_handler_t overflow_handler,
4834 gfp_t gfpflags)
4836 const struct pmu *pmu;
4837 struct perf_event *event;
4838 struct hw_perf_event *hwc;
4839 long err;
4841 event = kzalloc(sizeof(*event), gfpflags);
4842 if (!event)
4843 return ERR_PTR(-ENOMEM);
4846 * Single events are their own group leaders, with an
4847 * empty sibling list:
4849 if (!group_leader)
4850 group_leader = event;
4852 mutex_init(&event->child_mutex);
4853 INIT_LIST_HEAD(&event->child_list);
4855 INIT_LIST_HEAD(&event->group_entry);
4856 INIT_LIST_HEAD(&event->event_entry);
4857 INIT_LIST_HEAD(&event->sibling_list);
4858 init_waitqueue_head(&event->waitq);
4860 mutex_init(&event->mmap_mutex);
4862 event->cpu = cpu;
4863 event->attr = *attr;
4864 event->group_leader = group_leader;
4865 event->pmu = NULL;
4866 event->ctx = ctx;
4867 event->oncpu = -1;
4869 event->parent = parent_event;
4871 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4872 event->id = atomic64_inc_return(&perf_event_id);
4874 event->state = PERF_EVENT_STATE_INACTIVE;
4876 if (!overflow_handler && parent_event)
4877 overflow_handler = parent_event->overflow_handler;
4879 event->overflow_handler = overflow_handler;
4881 if (attr->disabled)
4882 event->state = PERF_EVENT_STATE_OFF;
4884 pmu = NULL;
4886 hwc = &event->hw;
4887 hwc->sample_period = attr->sample_period;
4888 if (attr->freq && attr->sample_freq)
4889 hwc->sample_period = 1;
4890 hwc->last_period = hwc->sample_period;
4892 local64_set(&hwc->period_left, hwc->sample_period);
4895 * we currently do not support PERF_FORMAT_GROUP on inherited events
4897 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4898 goto done;
4900 switch (attr->type) {
4901 case PERF_TYPE_RAW:
4902 case PERF_TYPE_HARDWARE:
4903 case PERF_TYPE_HW_CACHE:
4904 pmu = hw_perf_event_init(event);
4905 break;
4907 case PERF_TYPE_SOFTWARE:
4908 pmu = sw_perf_event_init(event);
4909 break;
4911 case PERF_TYPE_TRACEPOINT:
4912 pmu = tp_perf_event_init(event);
4913 break;
4915 case PERF_TYPE_BREAKPOINT:
4916 pmu = bp_perf_event_init(event);
4917 break;
4920 default:
4921 break;
4923 done:
4924 err = 0;
4925 if (!pmu)
4926 err = -EINVAL;
4927 else if (IS_ERR(pmu))
4928 err = PTR_ERR(pmu);
4930 if (err) {
4931 if (event->ns)
4932 put_pid_ns(event->ns);
4933 kfree(event);
4934 return ERR_PTR(err);
4937 event->pmu = pmu;
4939 if (!event->parent) {
4940 atomic_inc(&nr_events);
4941 if (event->attr.mmap || event->attr.mmap_data)
4942 atomic_inc(&nr_mmap_events);
4943 if (event->attr.comm)
4944 atomic_inc(&nr_comm_events);
4945 if (event->attr.task)
4946 atomic_inc(&nr_task_events);
4949 return event;
4952 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4953 struct perf_event_attr *attr)
4955 u32 size;
4956 int ret;
4958 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4959 return -EFAULT;
4962 * zero the full structure, so that a short copy will be nice.
4964 memset(attr, 0, sizeof(*attr));
4966 ret = get_user(size, &uattr->size);
4967 if (ret)
4968 return ret;
4970 if (size > PAGE_SIZE) /* silly large */
4971 goto err_size;
4973 if (!size) /* abi compat */
4974 size = PERF_ATTR_SIZE_VER0;
4976 if (size < PERF_ATTR_SIZE_VER0)
4977 goto err_size;
4980 * If we're handed a bigger struct than we know of,
4981 * ensure all the unknown bits are 0 - i.e. new
4982 * user-space does not rely on any kernel feature
4983 * extensions we dont know about yet.
4985 if (size > sizeof(*attr)) {
4986 unsigned char __user *addr;
4987 unsigned char __user *end;
4988 unsigned char val;
4990 addr = (void __user *)uattr + sizeof(*attr);
4991 end = (void __user *)uattr + size;
4993 for (; addr < end; addr++) {
4994 ret = get_user(val, addr);
4995 if (ret)
4996 return ret;
4997 if (val)
4998 goto err_size;
5000 size = sizeof(*attr);
5003 ret = copy_from_user(attr, uattr, size);
5004 if (ret)
5005 return -EFAULT;
5008 * If the type exists, the corresponding creation will verify
5009 * the attr->config.
5011 if (attr->type >= PERF_TYPE_MAX)
5012 return -EINVAL;
5014 if (attr->__reserved_1)
5015 return -EINVAL;
5017 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5018 return -EINVAL;
5020 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5021 return -EINVAL;
5023 out:
5024 return ret;
5026 err_size:
5027 put_user(sizeof(*attr), &uattr->size);
5028 ret = -E2BIG;
5029 goto out;
5032 static int
5033 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5035 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5036 int ret = -EINVAL;
5038 if (!output_event)
5039 goto set;
5041 /* don't allow circular references */
5042 if (event == output_event)
5043 goto out;
5046 * Don't allow cross-cpu buffers
5048 if (output_event->cpu != event->cpu)
5049 goto out;
5052 * If its not a per-cpu buffer, it must be the same task.
5054 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5055 goto out;
5057 set:
5058 mutex_lock(&event->mmap_mutex);
5059 /* Can't redirect output if we've got an active mmap() */
5060 if (atomic_read(&event->mmap_count))
5061 goto unlock;
5063 if (output_event) {
5064 /* get the buffer we want to redirect to */
5065 buffer = perf_buffer_get(output_event);
5066 if (!buffer)
5067 goto unlock;
5070 old_buffer = event->buffer;
5071 rcu_assign_pointer(event->buffer, buffer);
5072 ret = 0;
5073 unlock:
5074 mutex_unlock(&event->mmap_mutex);
5076 if (old_buffer)
5077 perf_buffer_put(old_buffer);
5078 out:
5079 return ret;
5083 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5085 * @attr_uptr: event_id type attributes for monitoring/sampling
5086 * @pid: target pid
5087 * @cpu: target cpu
5088 * @group_fd: group leader event fd
5090 SYSCALL_DEFINE5(perf_event_open,
5091 struct perf_event_attr __user *, attr_uptr,
5092 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5094 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5095 struct perf_event_attr attr;
5096 struct perf_event_context *ctx;
5097 struct file *event_file = NULL;
5098 struct file *group_file = NULL;
5099 int event_fd;
5100 int fput_needed = 0;
5101 int err;
5103 /* for future expandability... */
5104 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5105 return -EINVAL;
5107 err = perf_copy_attr(attr_uptr, &attr);
5108 if (err)
5109 return err;
5111 if (!attr.exclude_kernel) {
5112 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5113 return -EACCES;
5116 if (attr.freq) {
5117 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5118 return -EINVAL;
5121 event_fd = get_unused_fd_flags(O_RDWR);
5122 if (event_fd < 0)
5123 return event_fd;
5126 * Get the target context (task or percpu):
5128 ctx = find_get_context(pid, cpu);
5129 if (IS_ERR(ctx)) {
5130 err = PTR_ERR(ctx);
5131 goto err_fd;
5134 if (group_fd != -1) {
5135 group_leader = perf_fget_light(group_fd, &fput_needed);
5136 if (IS_ERR(group_leader)) {
5137 err = PTR_ERR(group_leader);
5138 goto err_put_context;
5140 group_file = group_leader->filp;
5141 if (flags & PERF_FLAG_FD_OUTPUT)
5142 output_event = group_leader;
5143 if (flags & PERF_FLAG_FD_NO_GROUP)
5144 group_leader = NULL;
5148 * Look up the group leader (we will attach this event to it):
5150 if (group_leader) {
5151 err = -EINVAL;
5154 * Do not allow a recursive hierarchy (this new sibling
5155 * becoming part of another group-sibling):
5157 if (group_leader->group_leader != group_leader)
5158 goto err_put_context;
5160 * Do not allow to attach to a group in a different
5161 * task or CPU context:
5163 if (group_leader->ctx != ctx)
5164 goto err_put_context;
5166 * Only a group leader can be exclusive or pinned
5168 if (attr.exclusive || attr.pinned)
5169 goto err_put_context;
5172 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5173 NULL, NULL, GFP_KERNEL);
5174 if (IS_ERR(event)) {
5175 err = PTR_ERR(event);
5176 goto err_put_context;
5179 if (output_event) {
5180 err = perf_event_set_output(event, output_event);
5181 if (err)
5182 goto err_free_put_context;
5185 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5186 if (IS_ERR(event_file)) {
5187 err = PTR_ERR(event_file);
5188 goto err_free_put_context;
5191 event->filp = event_file;
5192 WARN_ON_ONCE(ctx->parent_ctx);
5193 mutex_lock(&ctx->mutex);
5194 perf_install_in_context(ctx, event, cpu);
5195 ++ctx->generation;
5196 mutex_unlock(&ctx->mutex);
5198 event->owner = current;
5199 get_task_struct(current);
5200 mutex_lock(&current->perf_event_mutex);
5201 list_add_tail(&event->owner_entry, &current->perf_event_list);
5202 mutex_unlock(&current->perf_event_mutex);
5205 * Drop the reference on the group_event after placing the
5206 * new event on the sibling_list. This ensures destruction
5207 * of the group leader will find the pointer to itself in
5208 * perf_group_detach().
5210 fput_light(group_file, fput_needed);
5211 fd_install(event_fd, event_file);
5212 return event_fd;
5214 err_free_put_context:
5215 free_event(event);
5216 err_put_context:
5217 fput_light(group_file, fput_needed);
5218 put_ctx(ctx);
5219 err_fd:
5220 put_unused_fd(event_fd);
5221 return err;
5225 * perf_event_create_kernel_counter
5227 * @attr: attributes of the counter to create
5228 * @cpu: cpu in which the counter is bound
5229 * @pid: task to profile
5231 struct perf_event *
5232 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5233 pid_t pid,
5234 perf_overflow_handler_t overflow_handler)
5236 struct perf_event *event;
5237 struct perf_event_context *ctx;
5238 int err;
5241 * Get the target context (task or percpu):
5244 ctx = find_get_context(pid, cpu);
5245 if (IS_ERR(ctx)) {
5246 err = PTR_ERR(ctx);
5247 goto err_exit;
5250 event = perf_event_alloc(attr, cpu, ctx, NULL,
5251 NULL, overflow_handler, GFP_KERNEL);
5252 if (IS_ERR(event)) {
5253 err = PTR_ERR(event);
5254 goto err_put_context;
5257 event->filp = NULL;
5258 WARN_ON_ONCE(ctx->parent_ctx);
5259 mutex_lock(&ctx->mutex);
5260 perf_install_in_context(ctx, event, cpu);
5261 ++ctx->generation;
5262 mutex_unlock(&ctx->mutex);
5264 event->owner = current;
5265 get_task_struct(current);
5266 mutex_lock(&current->perf_event_mutex);
5267 list_add_tail(&event->owner_entry, &current->perf_event_list);
5268 mutex_unlock(&current->perf_event_mutex);
5270 return event;
5272 err_put_context:
5273 put_ctx(ctx);
5274 err_exit:
5275 return ERR_PTR(err);
5277 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5280 * inherit a event from parent task to child task:
5282 static struct perf_event *
5283 inherit_event(struct perf_event *parent_event,
5284 struct task_struct *parent,
5285 struct perf_event_context *parent_ctx,
5286 struct task_struct *child,
5287 struct perf_event *group_leader,
5288 struct perf_event_context *child_ctx)
5290 struct perf_event *child_event;
5293 * Instead of creating recursive hierarchies of events,
5294 * we link inherited events back to the original parent,
5295 * which has a filp for sure, which we use as the reference
5296 * count:
5298 if (parent_event->parent)
5299 parent_event = parent_event->parent;
5301 child_event = perf_event_alloc(&parent_event->attr,
5302 parent_event->cpu, child_ctx,
5303 group_leader, parent_event,
5304 NULL, GFP_KERNEL);
5305 if (IS_ERR(child_event))
5306 return child_event;
5307 get_ctx(child_ctx);
5310 * Make the child state follow the state of the parent event,
5311 * not its attr.disabled bit. We hold the parent's mutex,
5312 * so we won't race with perf_event_{en, dis}able_family.
5314 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5315 child_event->state = PERF_EVENT_STATE_INACTIVE;
5316 else
5317 child_event->state = PERF_EVENT_STATE_OFF;
5319 if (parent_event->attr.freq) {
5320 u64 sample_period = parent_event->hw.sample_period;
5321 struct hw_perf_event *hwc = &child_event->hw;
5323 hwc->sample_period = sample_period;
5324 hwc->last_period = sample_period;
5326 local64_set(&hwc->period_left, sample_period);
5329 child_event->overflow_handler = parent_event->overflow_handler;
5332 * Link it up in the child's context:
5334 add_event_to_ctx(child_event, child_ctx);
5337 * Get a reference to the parent filp - we will fput it
5338 * when the child event exits. This is safe to do because
5339 * we are in the parent and we know that the filp still
5340 * exists and has a nonzero count:
5342 atomic_long_inc(&parent_event->filp->f_count);
5345 * Link this into the parent event's child list
5347 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5348 mutex_lock(&parent_event->child_mutex);
5349 list_add_tail(&child_event->child_list, &parent_event->child_list);
5350 mutex_unlock(&parent_event->child_mutex);
5352 return child_event;
5355 static int inherit_group(struct perf_event *parent_event,
5356 struct task_struct *parent,
5357 struct perf_event_context *parent_ctx,
5358 struct task_struct *child,
5359 struct perf_event_context *child_ctx)
5361 struct perf_event *leader;
5362 struct perf_event *sub;
5363 struct perf_event *child_ctr;
5365 leader = inherit_event(parent_event, parent, parent_ctx,
5366 child, NULL, child_ctx);
5367 if (IS_ERR(leader))
5368 return PTR_ERR(leader);
5369 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5370 child_ctr = inherit_event(sub, parent, parent_ctx,
5371 child, leader, child_ctx);
5372 if (IS_ERR(child_ctr))
5373 return PTR_ERR(child_ctr);
5375 return 0;
5378 static void sync_child_event(struct perf_event *child_event,
5379 struct task_struct *child)
5381 struct perf_event *parent_event = child_event->parent;
5382 u64 child_val;
5384 if (child_event->attr.inherit_stat)
5385 perf_event_read_event(child_event, child);
5387 child_val = perf_event_count(child_event);
5390 * Add back the child's count to the parent's count:
5392 atomic64_add(child_val, &parent_event->child_count);
5393 atomic64_add(child_event->total_time_enabled,
5394 &parent_event->child_total_time_enabled);
5395 atomic64_add(child_event->total_time_running,
5396 &parent_event->child_total_time_running);
5399 * Remove this event from the parent's list
5401 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5402 mutex_lock(&parent_event->child_mutex);
5403 list_del_init(&child_event->child_list);
5404 mutex_unlock(&parent_event->child_mutex);
5407 * Release the parent event, if this was the last
5408 * reference to it.
5410 fput(parent_event->filp);
5413 static void
5414 __perf_event_exit_task(struct perf_event *child_event,
5415 struct perf_event_context *child_ctx,
5416 struct task_struct *child)
5418 struct perf_event *parent_event;
5420 perf_event_remove_from_context(child_event);
5422 parent_event = child_event->parent;
5424 * It can happen that parent exits first, and has events
5425 * that are still around due to the child reference. These
5426 * events need to be zapped - but otherwise linger.
5428 if (parent_event) {
5429 sync_child_event(child_event, child);
5430 free_event(child_event);
5435 * When a child task exits, feed back event values to parent events.
5437 void perf_event_exit_task(struct task_struct *child)
5439 struct perf_event *child_event, *tmp;
5440 struct perf_event_context *child_ctx;
5441 unsigned long flags;
5443 if (likely(!child->perf_event_ctxp)) {
5444 perf_event_task(child, NULL, 0);
5445 return;
5448 local_irq_save(flags);
5450 * We can't reschedule here because interrupts are disabled,
5451 * and either child is current or it is a task that can't be
5452 * scheduled, so we are now safe from rescheduling changing
5453 * our context.
5455 child_ctx = child->perf_event_ctxp;
5456 __perf_event_task_sched_out(child_ctx);
5459 * Take the context lock here so that if find_get_context is
5460 * reading child->perf_event_ctxp, we wait until it has
5461 * incremented the context's refcount before we do put_ctx below.
5463 raw_spin_lock(&child_ctx->lock);
5464 child->perf_event_ctxp = NULL;
5466 * If this context is a clone; unclone it so it can't get
5467 * swapped to another process while we're removing all
5468 * the events from it.
5470 unclone_ctx(child_ctx);
5471 update_context_time(child_ctx);
5472 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5475 * Report the task dead after unscheduling the events so that we
5476 * won't get any samples after PERF_RECORD_EXIT. We can however still
5477 * get a few PERF_RECORD_READ events.
5479 perf_event_task(child, child_ctx, 0);
5482 * We can recurse on the same lock type through:
5484 * __perf_event_exit_task()
5485 * sync_child_event()
5486 * fput(parent_event->filp)
5487 * perf_release()
5488 * mutex_lock(&ctx->mutex)
5490 * But since its the parent context it won't be the same instance.
5492 mutex_lock(&child_ctx->mutex);
5494 again:
5495 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5496 group_entry)
5497 __perf_event_exit_task(child_event, child_ctx, child);
5499 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5500 group_entry)
5501 __perf_event_exit_task(child_event, child_ctx, child);
5504 * If the last event was a group event, it will have appended all
5505 * its siblings to the list, but we obtained 'tmp' before that which
5506 * will still point to the list head terminating the iteration.
5508 if (!list_empty(&child_ctx->pinned_groups) ||
5509 !list_empty(&child_ctx->flexible_groups))
5510 goto again;
5512 mutex_unlock(&child_ctx->mutex);
5514 put_ctx(child_ctx);
5517 static void perf_free_event(struct perf_event *event,
5518 struct perf_event_context *ctx)
5520 struct perf_event *parent = event->parent;
5522 if (WARN_ON_ONCE(!parent))
5523 return;
5525 mutex_lock(&parent->child_mutex);
5526 list_del_init(&event->child_list);
5527 mutex_unlock(&parent->child_mutex);
5529 fput(parent->filp);
5531 perf_group_detach(event);
5532 list_del_event(event, ctx);
5533 free_event(event);
5537 * free an unexposed, unused context as created by inheritance by
5538 * init_task below, used by fork() in case of fail.
5540 void perf_event_free_task(struct task_struct *task)
5542 struct perf_event_context *ctx = task->perf_event_ctxp;
5543 struct perf_event *event, *tmp;
5545 if (!ctx)
5546 return;
5548 mutex_lock(&ctx->mutex);
5549 again:
5550 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5551 perf_free_event(event, ctx);
5553 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5554 group_entry)
5555 perf_free_event(event, ctx);
5557 if (!list_empty(&ctx->pinned_groups) ||
5558 !list_empty(&ctx->flexible_groups))
5559 goto again;
5561 mutex_unlock(&ctx->mutex);
5563 put_ctx(ctx);
5566 static int
5567 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5568 struct perf_event_context *parent_ctx,
5569 struct task_struct *child,
5570 int *inherited_all)
5572 int ret;
5573 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5575 if (!event->attr.inherit) {
5576 *inherited_all = 0;
5577 return 0;
5580 if (!child_ctx) {
5582 * This is executed from the parent task context, so
5583 * inherit events that have been marked for cloning.
5584 * First allocate and initialize a context for the
5585 * child.
5588 child_ctx = kzalloc(sizeof(struct perf_event_context),
5589 GFP_KERNEL);
5590 if (!child_ctx)
5591 return -ENOMEM;
5593 __perf_event_init_context(child_ctx, child);
5594 child->perf_event_ctxp = child_ctx;
5595 get_task_struct(child);
5598 ret = inherit_group(event, parent, parent_ctx,
5599 child, child_ctx);
5601 if (ret)
5602 *inherited_all = 0;
5604 return ret;
5609 * Initialize the perf_event context in task_struct
5611 int perf_event_init_task(struct task_struct *child)
5613 struct perf_event_context *child_ctx, *parent_ctx;
5614 struct perf_event_context *cloned_ctx;
5615 struct perf_event *event;
5616 struct task_struct *parent = current;
5617 int inherited_all = 1;
5618 unsigned long flags;
5619 int ret = 0;
5621 child->perf_event_ctxp = NULL;
5623 mutex_init(&child->perf_event_mutex);
5624 INIT_LIST_HEAD(&child->perf_event_list);
5626 if (likely(!parent->perf_event_ctxp))
5627 return 0;
5630 * If the parent's context is a clone, pin it so it won't get
5631 * swapped under us.
5633 parent_ctx = perf_pin_task_context(parent);
5636 * No need to check if parent_ctx != NULL here; since we saw
5637 * it non-NULL earlier, the only reason for it to become NULL
5638 * is if we exit, and since we're currently in the middle of
5639 * a fork we can't be exiting at the same time.
5643 * Lock the parent list. No need to lock the child - not PID
5644 * hashed yet and not running, so nobody can access it.
5646 mutex_lock(&parent_ctx->mutex);
5649 * We dont have to disable NMIs - we are only looking at
5650 * the list, not manipulating it:
5652 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5653 ret = inherit_task_group(event, parent, parent_ctx, child,
5654 &inherited_all);
5655 if (ret)
5656 break;
5660 * We can't hold ctx->lock when iterating the ->flexible_group list due
5661 * to allocations, but we need to prevent rotation because
5662 * rotate_ctx() will change the list from interrupt context.
5664 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
5665 parent_ctx->rotate_disable = 1;
5666 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
5668 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5669 ret = inherit_task_group(event, parent, parent_ctx, child,
5670 &inherited_all);
5671 if (ret)
5672 break;
5675 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
5676 parent_ctx->rotate_disable = 0;
5677 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
5679 child_ctx = child->perf_event_ctxp;
5681 if (child_ctx && inherited_all) {
5683 * Mark the child context as a clone of the parent
5684 * context, or of whatever the parent is a clone of.
5685 * Note that if the parent is a clone, it could get
5686 * uncloned at any point, but that doesn't matter
5687 * because the list of events and the generation
5688 * count can't have changed since we took the mutex.
5690 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5691 if (cloned_ctx) {
5692 child_ctx->parent_ctx = cloned_ctx;
5693 child_ctx->parent_gen = parent_ctx->parent_gen;
5694 } else {
5695 child_ctx->parent_ctx = parent_ctx;
5696 child_ctx->parent_gen = parent_ctx->generation;
5698 get_ctx(child_ctx->parent_ctx);
5701 mutex_unlock(&parent_ctx->mutex);
5703 perf_unpin_context(parent_ctx);
5705 return ret;
5708 static void __init perf_event_init_all_cpus(void)
5710 int cpu;
5711 struct perf_cpu_context *cpuctx;
5713 for_each_possible_cpu(cpu) {
5714 cpuctx = &per_cpu(perf_cpu_context, cpu);
5715 mutex_init(&cpuctx->hlist_mutex);
5716 __perf_event_init_context(&cpuctx->ctx, NULL);
5720 static void __cpuinit perf_event_init_cpu(int cpu)
5722 struct perf_cpu_context *cpuctx;
5724 cpuctx = &per_cpu(perf_cpu_context, cpu);
5726 spin_lock(&perf_resource_lock);
5727 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5728 spin_unlock(&perf_resource_lock);
5730 mutex_lock(&cpuctx->hlist_mutex);
5731 if (cpuctx->hlist_refcount > 0) {
5732 struct swevent_hlist *hlist;
5734 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5735 WARN_ON_ONCE(!hlist);
5736 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5738 mutex_unlock(&cpuctx->hlist_mutex);
5741 #ifdef CONFIG_HOTPLUG_CPU
5742 static void __perf_event_exit_cpu(void *info)
5744 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5745 struct perf_event_context *ctx = &cpuctx->ctx;
5746 struct perf_event *event, *tmp;
5748 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5749 __perf_event_remove_from_context(event);
5750 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5751 __perf_event_remove_from_context(event);
5753 static void perf_event_exit_cpu(int cpu)
5755 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5756 struct perf_event_context *ctx = &cpuctx->ctx;
5758 mutex_lock(&cpuctx->hlist_mutex);
5759 swevent_hlist_release(cpuctx);
5760 mutex_unlock(&cpuctx->hlist_mutex);
5762 mutex_lock(&ctx->mutex);
5763 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5764 mutex_unlock(&ctx->mutex);
5766 #else
5767 static inline void perf_event_exit_cpu(int cpu) { }
5768 #endif
5770 static int __cpuinit
5771 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5773 unsigned int cpu = (long)hcpu;
5775 switch (action & ~CPU_TASKS_FROZEN) {
5777 case CPU_UP_PREPARE:
5778 case CPU_DOWN_FAILED:
5779 perf_event_init_cpu(cpu);
5780 break;
5782 case CPU_UP_CANCELED:
5783 case CPU_DOWN_PREPARE:
5784 perf_event_exit_cpu(cpu);
5785 break;
5787 default:
5788 break;
5791 return NOTIFY_OK;
5795 * This has to have a higher priority than migration_notifier in sched.c.
5797 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5798 .notifier_call = perf_cpu_notify,
5799 .priority = 20,
5802 void __init perf_event_init(void)
5804 perf_event_init_all_cpus();
5805 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5806 (void *)(long)smp_processor_id());
5807 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5808 (void *)(long)smp_processor_id());
5809 register_cpu_notifier(&perf_cpu_nb);
5812 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5813 struct sysdev_class_attribute *attr,
5814 char *buf)
5816 return sprintf(buf, "%d\n", perf_reserved_percpu);
5819 static ssize_t
5820 perf_set_reserve_percpu(struct sysdev_class *class,
5821 struct sysdev_class_attribute *attr,
5822 const char *buf,
5823 size_t count)
5825 struct perf_cpu_context *cpuctx;
5826 unsigned long val;
5827 int err, cpu, mpt;
5829 err = strict_strtoul(buf, 10, &val);
5830 if (err)
5831 return err;
5832 if (val > perf_max_events)
5833 return -EINVAL;
5835 spin_lock(&perf_resource_lock);
5836 perf_reserved_percpu = val;
5837 for_each_online_cpu(cpu) {
5838 cpuctx = &per_cpu(perf_cpu_context, cpu);
5839 raw_spin_lock_irq(&cpuctx->ctx.lock);
5840 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5841 perf_max_events - perf_reserved_percpu);
5842 cpuctx->max_pertask = mpt;
5843 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5845 spin_unlock(&perf_resource_lock);
5847 return count;
5850 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5851 struct sysdev_class_attribute *attr,
5852 char *buf)
5854 return sprintf(buf, "%d\n", perf_overcommit);
5857 static ssize_t
5858 perf_set_overcommit(struct sysdev_class *class,
5859 struct sysdev_class_attribute *attr,
5860 const char *buf, size_t count)
5862 unsigned long val;
5863 int err;
5865 err = strict_strtoul(buf, 10, &val);
5866 if (err)
5867 return err;
5868 if (val > 1)
5869 return -EINVAL;
5871 spin_lock(&perf_resource_lock);
5872 perf_overcommit = val;
5873 spin_unlock(&perf_resource_lock);
5875 return count;
5878 static SYSDEV_CLASS_ATTR(
5879 reserve_percpu,
5880 0644,
5881 perf_show_reserve_percpu,
5882 perf_set_reserve_percpu
5885 static SYSDEV_CLASS_ATTR(
5886 overcommit,
5887 0644,
5888 perf_show_overcommit,
5889 perf_set_overcommit
5892 static struct attribute *perfclass_attrs[] = {
5893 &attr_reserve_percpu.attr,
5894 &attr_overcommit.attr,
5895 NULL
5898 static struct attribute_group perfclass_attr_group = {
5899 .attrs = perfclass_attrs,
5900 .name = "perf_events",
5903 static int __init perf_event_sysfs_init(void)
5905 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5906 &perfclass_attr_group);
5908 device_initcall(perf_event_sysfs_init);