GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / xfs / linux-2.6 / xfs_buf.c
blob286e36e21dae587672216d7b7722488e91b45758
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
85 * Return true if the buffer is vmapped.
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
102 * Page Region interfaces.
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
108 * Each such region is "bytes per page / bits per long" bytes long.
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
130 unsigned long mask;
131 int first, final;
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
144 return mask;
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
165 unsigned long mask = page_region_mask(offset, length);
167 return (mask && (page_private(page) & mask) == mask);
171 * Internal xfs_buf_t object manipulation
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
183 * We don't want certain flags to appear in b_flags.
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
207 XFS_STATS_INC(xb_create);
209 trace_xfs_buf_init(bp, _RET_IP_);
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
236 return 0;
240 * Frees b_pages if it was allocated.
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
253 * Releases the specified buffer.
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
263 trace_xfs_buf_free(bp, _RET_IP_);
265 ASSERT(list_empty(&bp->b_hash_list));
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
287 * Finds all pages for buffer in question and builds it's page list.
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
330 * This could deadlock.
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
347 XFS_STATS_INC(xb_page_found);
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
364 bp->b_pages[i] = page;
365 offset = 0;
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
376 return error;
380 * Map buffer into kernel address-space if nessecary.
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
400 return 0;
404 * Finding and Reading Buffers
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
437 spin_lock(&hash->bh_lock);
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 atomic_inc(&bp->b_hold);
444 goto found;
448 /* No match found */
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
451 range_length, flags);
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
454 } else {
455 XFS_STATS_INC(xb_miss_locked);
458 spin_unlock(&hash->bh_lock);
459 return new_bp;
461 found:
462 spin_unlock(&hash->bh_lock);
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
470 /* wait for buffer ownership */
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
484 } else {
485 /* trylock worked */
486 XB_SET_OWNER(bp);
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
500 * Assembles a buffer covering the specified range.
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
504 xfs_buf_t *
505 xfs_buf_get(
506 xfs_buftarg_t *target,/* target for buffer */
507 xfs_off_t ioff, /* starting offset of range */
508 size_t isize, /* length of range */
509 xfs_buf_flags_t flags)
511 xfs_buf_t *bp, *new_bp;
512 int error = 0, i;
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
516 return NULL;
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
521 if (error)
522 goto no_buffer;
523 } else {
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
526 return NULL;
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
536 __func__);
537 goto no_buffer;
541 XFS_STATS_INC(xb_get);
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
550 trace_xfs_buf_get(bp, flags, _RET_IP_);
551 return bp;
553 no_buffer:
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
557 return NULL;
560 STATIC int
561 _xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
565 int status;
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
575 status = xfs_buf_iorequest(bp);
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
581 xfs_buf_t *
582 xfs_buf_read(
583 xfs_buftarg_t *target,
584 xfs_off_t ioff,
585 size_t isize,
586 xfs_buf_flags_t flags)
588 xfs_buf_t *bp;
590 flags |= XBF_READ;
592 bp = xfs_buf_get(target, ioff, isize, flags);
593 if (bp) {
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
596 if (!XFS_BUF_ISDONE(bp)) {
597 XFS_STATS_INC(xb_get_read);
598 _xfs_buf_read(bp, flags);
599 } else if (flags & XBF_ASYNC) {
601 * Read ahead call which is already satisfied,
602 * drop the buffer
604 goto no_buffer;
605 } else {
606 /* We do not want read in the flags */
607 bp->b_flags &= ~XBF_READ;
611 return bp;
613 no_buffer:
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
617 return NULL;
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
624 void
625 xfs_buf_readahead(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
631 struct backing_dev_info *bdi;
633 bdi = target->bt_mapping->backing_dev_info;
634 if (bdi_read_congested(bdi))
635 return;
637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638 xfs_buf_read(target, ioff, isize, flags);
641 xfs_buf_t *
642 xfs_buf_get_empty(
643 size_t len,
644 xfs_buftarg_t *target)
646 xfs_buf_t *bp;
648 bp = xfs_buf_allocate(0);
649 if (bp)
650 _xfs_buf_initialize(bp, target, 0, len, 0);
651 return bp;
654 static inline struct page *
655 mem_to_page(
656 void *addr)
658 if ((!is_vmalloc_addr(addr))) {
659 return virt_to_page(addr);
660 } else {
661 return vmalloc_to_page(addr);
666 xfs_buf_associate_memory(
667 xfs_buf_t *bp,
668 void *mem,
669 size_t len)
671 int rval;
672 int i = 0;
673 unsigned long pageaddr;
674 unsigned long offset;
675 size_t buflen;
676 int page_count;
678 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
679 offset = (unsigned long)mem - pageaddr;
680 buflen = PAGE_CACHE_ALIGN(len + offset);
681 page_count = buflen >> PAGE_CACHE_SHIFT;
683 /* Free any previous set of page pointers */
684 if (bp->b_pages)
685 _xfs_buf_free_pages(bp);
687 bp->b_pages = NULL;
688 bp->b_addr = mem;
690 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
691 if (rval)
692 return rval;
694 bp->b_offset = offset;
696 for (i = 0; i < bp->b_page_count; i++) {
697 bp->b_pages[i] = mem_to_page((void *)pageaddr);
698 pageaddr += PAGE_CACHE_SIZE;
701 bp->b_count_desired = len;
702 bp->b_buffer_length = buflen;
703 bp->b_flags |= XBF_MAPPED;
704 bp->b_flags &= ~_XBF_PAGE_LOCKED;
706 return 0;
709 xfs_buf_t *
710 xfs_buf_get_noaddr(
711 size_t len,
712 xfs_buftarg_t *target)
714 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
715 int error, i;
716 xfs_buf_t *bp;
718 bp = xfs_buf_allocate(0);
719 if (unlikely(bp == NULL))
720 goto fail;
721 _xfs_buf_initialize(bp, target, 0, len, 0);
723 error = _xfs_buf_get_pages(bp, page_count, 0);
724 if (error)
725 goto fail_free_buf;
727 for (i = 0; i < page_count; i++) {
728 bp->b_pages[i] = alloc_page(GFP_KERNEL);
729 if (!bp->b_pages[i])
730 goto fail_free_mem;
732 bp->b_flags |= _XBF_PAGES;
734 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
735 if (unlikely(error)) {
736 printk(KERN_WARNING "%s: failed to map pages\n",
737 __func__);
738 goto fail_free_mem;
741 xfs_buf_unlock(bp);
743 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
744 return bp;
746 fail_free_mem:
747 while (--i >= 0)
748 __free_page(bp->b_pages[i]);
749 _xfs_buf_free_pages(bp);
750 fail_free_buf:
751 xfs_buf_deallocate(bp);
752 fail:
753 return NULL;
757 * Increment reference count on buffer, to hold the buffer concurrently
758 * with another thread which may release (free) the buffer asynchronously.
759 * Must hold the buffer already to call this function.
761 void
762 xfs_buf_hold(
763 xfs_buf_t *bp)
765 trace_xfs_buf_hold(bp, _RET_IP_);
766 atomic_inc(&bp->b_hold);
770 * Releases a hold on the specified buffer. If the
771 * the hold count is 1, calls xfs_buf_free.
773 void
774 xfs_buf_rele(
775 xfs_buf_t *bp)
777 xfs_bufhash_t *hash = bp->b_hash;
779 trace_xfs_buf_rele(bp, _RET_IP_);
781 if (unlikely(!hash)) {
782 ASSERT(!bp->b_relse);
783 if (atomic_dec_and_test(&bp->b_hold))
784 xfs_buf_free(bp);
785 return;
788 ASSERT(atomic_read(&bp->b_hold) > 0);
789 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
790 if (bp->b_relse) {
791 atomic_inc(&bp->b_hold);
792 spin_unlock(&hash->bh_lock);
793 (*(bp->b_relse)) (bp);
794 } else if (bp->b_flags & XBF_FS_MANAGED) {
795 spin_unlock(&hash->bh_lock);
796 } else {
797 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
798 list_del_init(&bp->b_hash_list);
799 spin_unlock(&hash->bh_lock);
800 xfs_buf_free(bp);
807 * Mutual exclusion on buffers. Locking model:
809 * Buffers associated with inodes for which buffer locking
810 * is not enabled are not protected by semaphores, and are
811 * assumed to be exclusively owned by the caller. There is a
812 * spinlock in the buffer, used by the caller when concurrent
813 * access is possible.
817 * Locks a buffer object, if it is not already locked.
818 * Note that this in no way locks the underlying pages, so it is only
819 * useful for synchronizing concurrent use of buffer objects, not for
820 * synchronizing independent access to the underlying pages.
823 xfs_buf_cond_lock(
824 xfs_buf_t *bp)
826 int locked;
828 locked = down_trylock(&bp->b_sema) == 0;
829 if (locked)
830 XB_SET_OWNER(bp);
832 trace_xfs_buf_cond_lock(bp, _RET_IP_);
833 return locked ? 0 : -EBUSY;
837 xfs_buf_lock_value(
838 xfs_buf_t *bp)
840 return bp->b_sema.count;
844 * Locks a buffer object.
845 * Note that this in no way locks the underlying pages, so it is only
846 * useful for synchronizing concurrent use of buffer objects, not for
847 * synchronizing independent access to the underlying pages.
849 * If we come across a stale, pinned, locked buffer, we know that we
850 * are being asked to lock a buffer that has been reallocated. Because
851 * it is pinned, we know that the log has not been pushed to disk and
852 * hence it will still be locked. Rather than sleeping until someone
853 * else pushes the log, push it ourselves before trying to get the lock.
855 void
856 xfs_buf_lock(
857 xfs_buf_t *bp)
859 trace_xfs_buf_lock(bp, _RET_IP_);
861 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
862 xfs_log_force(bp->b_mount, 0);
863 if (atomic_read(&bp->b_io_remaining))
864 blk_run_address_space(bp->b_target->bt_mapping);
865 down(&bp->b_sema);
866 XB_SET_OWNER(bp);
868 trace_xfs_buf_lock_done(bp, _RET_IP_);
872 * Releases the lock on the buffer object.
873 * If the buffer is marked delwri but is not queued, do so before we
874 * unlock the buffer as we need to set flags correctly. We also need to
875 * take a reference for the delwri queue because the unlocker is going to
876 * drop their's and they don't know we just queued it.
878 void
879 xfs_buf_unlock(
880 xfs_buf_t *bp)
882 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
883 atomic_inc(&bp->b_hold);
884 bp->b_flags |= XBF_ASYNC;
885 xfs_buf_delwri_queue(bp, 0);
888 XB_CLEAR_OWNER(bp);
889 up(&bp->b_sema);
891 trace_xfs_buf_unlock(bp, _RET_IP_);
894 STATIC void
895 xfs_buf_wait_unpin(
896 xfs_buf_t *bp)
898 DECLARE_WAITQUEUE (wait, current);
900 if (atomic_read(&bp->b_pin_count) == 0)
901 return;
903 add_wait_queue(&bp->b_waiters, &wait);
904 for (;;) {
905 set_current_state(TASK_UNINTERRUPTIBLE);
906 if (atomic_read(&bp->b_pin_count) == 0)
907 break;
908 if (atomic_read(&bp->b_io_remaining))
909 blk_run_address_space(bp->b_target->bt_mapping);
910 schedule();
912 remove_wait_queue(&bp->b_waiters, &wait);
913 set_current_state(TASK_RUNNING);
917 * Buffer Utility Routines
920 STATIC void
921 xfs_buf_iodone_work(
922 struct work_struct *work)
924 xfs_buf_t *bp =
925 container_of(work, xfs_buf_t, b_iodone_work);
928 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
929 * ordered flag and reissue them. Because we can't tell the higher
930 * layers directly that they should not issue ordered I/O anymore, they
931 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
933 if ((bp->b_error == EOPNOTSUPP) &&
934 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
935 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
936 bp->b_flags &= ~XBF_ORDERED;
937 bp->b_flags |= _XFS_BARRIER_FAILED;
938 xfs_buf_iorequest(bp);
939 } else if (bp->b_iodone)
940 (*(bp->b_iodone))(bp);
941 else if (bp->b_flags & XBF_ASYNC)
942 xfs_buf_relse(bp);
945 void
946 xfs_buf_ioend(
947 xfs_buf_t *bp,
948 int schedule)
950 trace_xfs_buf_iodone(bp, _RET_IP_);
952 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
953 if (bp->b_error == 0)
954 bp->b_flags |= XBF_DONE;
956 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
957 if (schedule) {
958 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
959 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
960 } else {
961 xfs_buf_iodone_work(&bp->b_iodone_work);
963 } else {
964 complete(&bp->b_iowait);
968 void
969 xfs_buf_ioerror(
970 xfs_buf_t *bp,
971 int error)
973 ASSERT(error >= 0 && error <= 0xffff);
974 bp->b_error = (unsigned short)error;
975 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
979 xfs_bwrite(
980 struct xfs_mount *mp,
981 struct xfs_buf *bp)
983 int error;
985 bp->b_mount = mp;
986 bp->b_flags |= XBF_WRITE;
987 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
989 xfs_buf_delwri_dequeue(bp);
990 xfs_bdstrat_cb(bp);
992 error = xfs_buf_iowait(bp);
993 if (error)
994 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
995 xfs_buf_relse(bp);
996 return error;
999 void
1000 xfs_bdwrite(
1001 void *mp,
1002 struct xfs_buf *bp)
1004 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1006 bp->b_mount = mp;
1008 bp->b_flags &= ~XBF_READ;
1009 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1011 xfs_buf_delwri_queue(bp, 1);
1015 * Called when we want to stop a buffer from getting written or read.
1016 * We attach the EIO error, muck with its flags, and call biodone
1017 * so that the proper iodone callbacks get called.
1019 STATIC int
1020 xfs_bioerror(
1021 xfs_buf_t *bp)
1023 #ifdef XFSERRORDEBUG
1024 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1025 #endif
1028 * No need to wait until the buffer is unpinned, we aren't flushing it.
1030 XFS_BUF_ERROR(bp, EIO);
1033 * We're calling biodone, so delete XBF_DONE flag.
1035 XFS_BUF_UNREAD(bp);
1036 XFS_BUF_UNDELAYWRITE(bp);
1037 XFS_BUF_UNDONE(bp);
1038 XFS_BUF_STALE(bp);
1040 xfs_biodone(bp);
1042 return EIO;
1046 * Same as xfs_bioerror, except that we are releasing the buffer
1047 * here ourselves, and avoiding the biodone call.
1048 * This is meant for userdata errors; metadata bufs come with
1049 * iodone functions attached, so that we can track down errors.
1051 STATIC int
1052 xfs_bioerror_relse(
1053 struct xfs_buf *bp)
1055 int64_t fl = XFS_BUF_BFLAGS(bp);
1057 * No need to wait until the buffer is unpinned.
1058 * We aren't flushing it.
1060 * chunkhold expects B_DONE to be set, whether
1061 * we actually finish the I/O or not. We don't want to
1062 * change that interface.
1064 XFS_BUF_UNREAD(bp);
1065 XFS_BUF_UNDELAYWRITE(bp);
1066 XFS_BUF_DONE(bp);
1067 XFS_BUF_STALE(bp);
1068 XFS_BUF_CLR_IODONE_FUNC(bp);
1069 if (!(fl & XBF_ASYNC)) {
1071 * Mark b_error and B_ERROR _both_.
1072 * Lot's of chunkcache code assumes that.
1073 * There's no reason to mark error for
1074 * ASYNC buffers.
1076 XFS_BUF_ERROR(bp, EIO);
1077 XFS_BUF_FINISH_IOWAIT(bp);
1078 } else {
1079 xfs_buf_relse(bp);
1082 return EIO;
1087 * All xfs metadata buffers except log state machine buffers
1088 * get this attached as their b_bdstrat callback function.
1089 * This is so that we can catch a buffer
1090 * after prematurely unpinning it to forcibly shutdown the filesystem.
1093 xfs_bdstrat_cb(
1094 struct xfs_buf *bp)
1096 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1097 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1099 * Metadata write that didn't get logged but
1100 * written delayed anyway. These aren't associated
1101 * with a transaction, and can be ignored.
1103 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1104 return xfs_bioerror_relse(bp);
1105 else
1106 return xfs_bioerror(bp);
1109 xfs_buf_iorequest(bp);
1110 return 0;
1114 * Wrapper around bdstrat so that we can stop data from going to disk in case
1115 * we are shutting down the filesystem. Typically user data goes thru this
1116 * path; one of the exceptions is the superblock.
1118 void
1119 xfsbdstrat(
1120 struct xfs_mount *mp,
1121 struct xfs_buf *bp)
1123 if (XFS_FORCED_SHUTDOWN(mp)) {
1124 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1125 xfs_bioerror_relse(bp);
1126 return;
1129 xfs_buf_iorequest(bp);
1132 STATIC void
1133 _xfs_buf_ioend(
1134 xfs_buf_t *bp,
1135 int schedule)
1137 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1138 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1139 xfs_buf_ioend(bp, schedule);
1143 STATIC void
1144 xfs_buf_bio_end_io(
1145 struct bio *bio,
1146 int error)
1148 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1149 unsigned int blocksize = bp->b_target->bt_bsize;
1150 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1152 xfs_buf_ioerror(bp, -error);
1154 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1155 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1157 do {
1158 struct page *page = bvec->bv_page;
1160 ASSERT(!PagePrivate(page));
1161 if (unlikely(bp->b_error)) {
1162 if (bp->b_flags & XBF_READ)
1163 ClearPageUptodate(page);
1164 } else if (blocksize >= PAGE_CACHE_SIZE) {
1165 SetPageUptodate(page);
1166 } else if (!PagePrivate(page) &&
1167 (bp->b_flags & _XBF_PAGE_CACHE)) {
1168 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1171 if (--bvec >= bio->bi_io_vec)
1172 prefetchw(&bvec->bv_page->flags);
1174 if (bp->b_flags & _XBF_PAGE_LOCKED)
1175 unlock_page(page);
1176 } while (bvec >= bio->bi_io_vec);
1178 _xfs_buf_ioend(bp, 1);
1179 bio_put(bio);
1182 STATIC void
1183 _xfs_buf_ioapply(
1184 xfs_buf_t *bp)
1186 int rw, map_i, total_nr_pages, nr_pages;
1187 struct bio *bio;
1188 int offset = bp->b_offset;
1189 int size = bp->b_count_desired;
1190 sector_t sector = bp->b_bn;
1191 unsigned int blocksize = bp->b_target->bt_bsize;
1193 total_nr_pages = bp->b_page_count;
1194 map_i = 0;
1196 if (bp->b_flags & XBF_ORDERED) {
1197 ASSERT(!(bp->b_flags & XBF_READ));
1198 rw = WRITE_BARRIER;
1199 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1200 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1201 bp->b_flags &= ~_XBF_RUN_QUEUES;
1202 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1203 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1204 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1205 bp->b_flags &= ~_XBF_RUN_QUEUES;
1206 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1207 } else {
1208 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1209 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1212 /* Special code path for reading a sub page size buffer in --
1213 * we populate up the whole page, and hence the other metadata
1214 * in the same page. This optimization is only valid when the
1215 * filesystem block size is not smaller than the page size.
1217 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1218 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1219 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1220 (blocksize >= PAGE_CACHE_SIZE)) {
1221 bio = bio_alloc(GFP_NOIO, 1);
1223 bio->bi_bdev = bp->b_target->bt_bdev;
1224 bio->bi_sector = sector - (offset >> BBSHIFT);
1225 bio->bi_end_io = xfs_buf_bio_end_io;
1226 bio->bi_private = bp;
1228 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1229 size = 0;
1231 atomic_inc(&bp->b_io_remaining);
1233 goto submit_io;
1236 next_chunk:
1237 atomic_inc(&bp->b_io_remaining);
1238 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1239 if (nr_pages > total_nr_pages)
1240 nr_pages = total_nr_pages;
1242 bio = bio_alloc(GFP_NOIO, nr_pages);
1243 bio->bi_bdev = bp->b_target->bt_bdev;
1244 bio->bi_sector = sector;
1245 bio->bi_end_io = xfs_buf_bio_end_io;
1246 bio->bi_private = bp;
1248 for (; size && nr_pages; nr_pages--, map_i++) {
1249 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1251 if (nbytes > size)
1252 nbytes = size;
1254 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1255 if (rbytes < nbytes)
1256 break;
1258 offset = 0;
1259 sector += nbytes >> BBSHIFT;
1260 size -= nbytes;
1261 total_nr_pages--;
1264 submit_io:
1265 if (likely(bio->bi_size)) {
1266 if (xfs_buf_is_vmapped(bp)) {
1267 flush_kernel_vmap_range(bp->b_addr,
1268 xfs_buf_vmap_len(bp));
1270 submit_bio(rw, bio);
1271 if (size)
1272 goto next_chunk;
1273 } else {
1275 * if we get here, no pages were added to the bio. However,
1276 * we can't just error out here - if the pages are locked then
1277 * we have to unlock them otherwise we can hang on a later
1278 * access to the page.
1280 xfs_buf_ioerror(bp, EIO);
1281 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1282 int i;
1283 for (i = 0; i < bp->b_page_count; i++)
1284 unlock_page(bp->b_pages[i]);
1286 bio_put(bio);
1291 xfs_buf_iorequest(
1292 xfs_buf_t *bp)
1294 trace_xfs_buf_iorequest(bp, _RET_IP_);
1296 if (bp->b_flags & XBF_DELWRI) {
1297 xfs_buf_delwri_queue(bp, 1);
1298 return 0;
1301 if (bp->b_flags & XBF_WRITE) {
1302 xfs_buf_wait_unpin(bp);
1305 xfs_buf_hold(bp);
1307 /* Set the count to 1 initially, this will stop an I/O
1308 * completion callout which happens before we have started
1309 * all the I/O from calling xfs_buf_ioend too early.
1311 atomic_set(&bp->b_io_remaining, 1);
1312 _xfs_buf_ioapply(bp);
1313 _xfs_buf_ioend(bp, 0);
1315 xfs_buf_rele(bp);
1316 return 0;
1320 * Waits for I/O to complete on the buffer supplied.
1321 * It returns immediately if no I/O is pending.
1322 * It returns the I/O error code, if any, or 0 if there was no error.
1325 xfs_buf_iowait(
1326 xfs_buf_t *bp)
1328 trace_xfs_buf_iowait(bp, _RET_IP_);
1330 if (atomic_read(&bp->b_io_remaining))
1331 blk_run_address_space(bp->b_target->bt_mapping);
1332 wait_for_completion(&bp->b_iowait);
1334 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1335 return bp->b_error;
1338 xfs_caddr_t
1339 xfs_buf_offset(
1340 xfs_buf_t *bp,
1341 size_t offset)
1343 struct page *page;
1345 if (bp->b_flags & XBF_MAPPED)
1346 return XFS_BUF_PTR(bp) + offset;
1348 offset += bp->b_offset;
1349 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1350 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1354 * Move data into or out of a buffer.
1356 void
1357 xfs_buf_iomove(
1358 xfs_buf_t *bp, /* buffer to process */
1359 size_t boff, /* starting buffer offset */
1360 size_t bsize, /* length to copy */
1361 void *data, /* data address */
1362 xfs_buf_rw_t mode) /* read/write/zero flag */
1364 size_t bend, cpoff, csize;
1365 struct page *page;
1367 bend = boff + bsize;
1368 while (boff < bend) {
1369 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1370 cpoff = xfs_buf_poff(boff + bp->b_offset);
1371 csize = min_t(size_t,
1372 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1374 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1376 switch (mode) {
1377 case XBRW_ZERO:
1378 memset(page_address(page) + cpoff, 0, csize);
1379 break;
1380 case XBRW_READ:
1381 memcpy(data, page_address(page) + cpoff, csize);
1382 break;
1383 case XBRW_WRITE:
1384 memcpy(page_address(page) + cpoff, data, csize);
1387 boff += csize;
1388 data += csize;
1393 * Handling of buffer targets (buftargs).
1397 * Wait for any bufs with callbacks that have been submitted but
1398 * have not yet returned... walk the hash list for the target.
1400 void
1401 xfs_wait_buftarg(
1402 xfs_buftarg_t *btp)
1404 xfs_buf_t *bp, *n;
1405 xfs_bufhash_t *hash;
1406 uint i;
1408 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1409 hash = &btp->bt_hash[i];
1410 again:
1411 spin_lock(&hash->bh_lock);
1412 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1413 ASSERT(btp == bp->b_target);
1414 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1415 spin_unlock(&hash->bh_lock);
1417 * Catch superblock reference count leaks
1418 * immediately
1420 BUG_ON(bp->b_bn == 0);
1421 delay(100);
1422 goto again;
1425 spin_unlock(&hash->bh_lock);
1430 * Allocate buffer hash table for a given target.
1431 * For devices containing metadata (i.e. not the log/realtime devices)
1432 * we need to allocate a much larger hash table.
1434 STATIC void
1435 xfs_alloc_bufhash(
1436 xfs_buftarg_t *btp,
1437 int external)
1439 unsigned int i;
1441 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
1442 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1443 sizeof(xfs_bufhash_t));
1444 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1445 spin_lock_init(&btp->bt_hash[i].bh_lock);
1446 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1450 STATIC void
1451 xfs_free_bufhash(
1452 xfs_buftarg_t *btp)
1454 kmem_free_large(btp->bt_hash);
1455 btp->bt_hash = NULL;
1459 * buftarg list for delwrite queue processing
1461 static LIST_HEAD(xfs_buftarg_list);
1462 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1464 STATIC void
1465 xfs_register_buftarg(
1466 xfs_buftarg_t *btp)
1468 spin_lock(&xfs_buftarg_lock);
1469 list_add(&btp->bt_list, &xfs_buftarg_list);
1470 spin_unlock(&xfs_buftarg_lock);
1473 STATIC void
1474 xfs_unregister_buftarg(
1475 xfs_buftarg_t *btp)
1477 spin_lock(&xfs_buftarg_lock);
1478 list_del(&btp->bt_list);
1479 spin_unlock(&xfs_buftarg_lock);
1482 void
1483 xfs_free_buftarg(
1484 struct xfs_mount *mp,
1485 struct xfs_buftarg *btp)
1487 xfs_flush_buftarg(btp, 1);
1488 if (mp->m_flags & XFS_MOUNT_BARRIER)
1489 xfs_blkdev_issue_flush(btp);
1490 xfs_free_bufhash(btp);
1491 iput(btp->bt_mapping->host);
1493 /* Unregister the buftarg first so that we don't get a
1494 * wakeup finding a non-existent task
1496 xfs_unregister_buftarg(btp);
1497 kthread_stop(btp->bt_task);
1499 kmem_free(btp);
1502 STATIC int
1503 xfs_setsize_buftarg_flags(
1504 xfs_buftarg_t *btp,
1505 unsigned int blocksize,
1506 unsigned int sectorsize,
1507 int verbose)
1509 btp->bt_bsize = blocksize;
1510 btp->bt_sshift = ffs(sectorsize) - 1;
1511 btp->bt_smask = sectorsize - 1;
1513 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1514 printk(KERN_WARNING
1515 "XFS: Cannot set_blocksize to %u on device %s\n",
1516 sectorsize, XFS_BUFTARG_NAME(btp));
1517 return EINVAL;
1520 if (verbose &&
1521 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1522 printk(KERN_WARNING
1523 "XFS: %u byte sectors in use on device %s. "
1524 "This is suboptimal; %u or greater is ideal.\n",
1525 sectorsize, XFS_BUFTARG_NAME(btp),
1526 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1529 return 0;
1533 * When allocating the initial buffer target we have not yet
1534 * read in the superblock, so don't know what sized sectors
1535 * are being used is at this early stage. Play safe.
1537 STATIC int
1538 xfs_setsize_buftarg_early(
1539 xfs_buftarg_t *btp,
1540 struct block_device *bdev)
1542 return xfs_setsize_buftarg_flags(btp,
1543 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1547 xfs_setsize_buftarg(
1548 xfs_buftarg_t *btp,
1549 unsigned int blocksize,
1550 unsigned int sectorsize)
1552 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1555 STATIC int
1556 xfs_mapping_buftarg(
1557 xfs_buftarg_t *btp,
1558 struct block_device *bdev)
1560 struct backing_dev_info *bdi;
1561 struct inode *inode;
1562 struct address_space *mapping;
1563 static const struct address_space_operations mapping_aops = {
1564 .sync_page = block_sync_page,
1565 .migratepage = fail_migrate_page,
1568 inode = new_inode(bdev->bd_inode->i_sb);
1569 if (!inode) {
1570 printk(KERN_WARNING
1571 "XFS: Cannot allocate mapping inode for device %s\n",
1572 XFS_BUFTARG_NAME(btp));
1573 return ENOMEM;
1575 inode->i_mode = S_IFBLK;
1576 inode->i_bdev = bdev;
1577 inode->i_rdev = bdev->bd_dev;
1578 bdi = blk_get_backing_dev_info(bdev);
1579 if (!bdi)
1580 bdi = &default_backing_dev_info;
1581 mapping = &inode->i_data;
1582 mapping->a_ops = &mapping_aops;
1583 mapping->backing_dev_info = bdi;
1584 mapping_set_gfp_mask(mapping, GFP_NOFS);
1585 btp->bt_mapping = mapping;
1586 return 0;
1589 STATIC int
1590 xfs_alloc_delwrite_queue(
1591 xfs_buftarg_t *btp,
1592 const char *fsname)
1594 int error = 0;
1596 INIT_LIST_HEAD(&btp->bt_list);
1597 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1598 spin_lock_init(&btp->bt_delwrite_lock);
1599 btp->bt_flags = 0;
1600 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1601 if (IS_ERR(btp->bt_task)) {
1602 error = PTR_ERR(btp->bt_task);
1603 goto out_error;
1605 xfs_register_buftarg(btp);
1606 out_error:
1607 return error;
1610 xfs_buftarg_t *
1611 xfs_alloc_buftarg(
1612 struct block_device *bdev,
1613 int external,
1614 const char *fsname)
1616 xfs_buftarg_t *btp;
1618 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1620 btp->bt_dev = bdev->bd_dev;
1621 btp->bt_bdev = bdev;
1622 if (xfs_setsize_buftarg_early(btp, bdev))
1623 goto error;
1624 if (xfs_mapping_buftarg(btp, bdev))
1625 goto error;
1626 if (xfs_alloc_delwrite_queue(btp, fsname))
1627 goto error;
1628 xfs_alloc_bufhash(btp, external);
1629 return btp;
1631 error:
1632 kmem_free(btp);
1633 return NULL;
1638 * Delayed write buffer handling
1640 STATIC void
1641 xfs_buf_delwri_queue(
1642 xfs_buf_t *bp,
1643 int unlock)
1645 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1646 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1648 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1650 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1652 spin_lock(dwlk);
1653 /* If already in the queue, dequeue and place at tail */
1654 if (!list_empty(&bp->b_list)) {
1655 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1656 if (unlock)
1657 atomic_dec(&bp->b_hold);
1658 list_del(&bp->b_list);
1661 if (list_empty(dwq)) {
1662 /* start xfsbufd as it is about to have something to do */
1663 wake_up_process(bp->b_target->bt_task);
1666 bp->b_flags |= _XBF_DELWRI_Q;
1667 list_add_tail(&bp->b_list, dwq);
1668 bp->b_queuetime = jiffies;
1669 spin_unlock(dwlk);
1671 if (unlock)
1672 xfs_buf_unlock(bp);
1675 void
1676 xfs_buf_delwri_dequeue(
1677 xfs_buf_t *bp)
1679 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1680 int dequeued = 0;
1682 spin_lock(dwlk);
1683 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1684 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1685 list_del_init(&bp->b_list);
1686 dequeued = 1;
1688 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1689 spin_unlock(dwlk);
1691 if (dequeued)
1692 xfs_buf_rele(bp);
1694 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1698 * If a delwri buffer needs to be pushed before it has aged out, then promote
1699 * it to the head of the delwri queue so that it will be flushed on the next
1700 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1701 * than the age currently needed to flush the buffer. Hence the next time the
1702 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1704 void
1705 xfs_buf_delwri_promote(
1706 struct xfs_buf *bp)
1708 struct xfs_buftarg *btp = bp->b_target;
1709 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1711 ASSERT(bp->b_flags & XBF_DELWRI);
1712 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1715 * Check the buffer age before locking the delayed write queue as we
1716 * don't need to promote buffers that are already past the flush age.
1718 if (bp->b_queuetime < jiffies - age)
1719 return;
1720 bp->b_queuetime = jiffies - age;
1721 spin_lock(&btp->bt_delwrite_lock);
1722 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1723 spin_unlock(&btp->bt_delwrite_lock);
1726 STATIC void
1727 xfs_buf_runall_queues(
1728 struct workqueue_struct *queue)
1730 flush_workqueue(queue);
1733 STATIC int
1734 xfsbufd_wakeup(
1735 struct shrinker *shrink,
1736 int priority,
1737 gfp_t mask)
1739 xfs_buftarg_t *btp;
1741 spin_lock(&xfs_buftarg_lock);
1742 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1743 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1744 continue;
1745 if (list_empty(&btp->bt_delwrite_queue))
1746 continue;
1747 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1748 wake_up_process(btp->bt_task);
1750 spin_unlock(&xfs_buftarg_lock);
1751 return 0;
1755 * Move as many buffers as specified to the supplied list
1756 * idicating if we skipped any buffers to prevent deadlocks.
1758 STATIC int
1759 xfs_buf_delwri_split(
1760 xfs_buftarg_t *target,
1761 struct list_head *list,
1762 unsigned long age)
1764 xfs_buf_t *bp, *n;
1765 struct list_head *dwq = &target->bt_delwrite_queue;
1766 spinlock_t *dwlk = &target->bt_delwrite_lock;
1767 int skipped = 0;
1768 int force;
1770 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1771 INIT_LIST_HEAD(list);
1772 spin_lock(dwlk);
1773 list_for_each_entry_safe(bp, n, dwq, b_list) {
1774 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1775 ASSERT(bp->b_flags & XBF_DELWRI);
1777 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1778 if (!force &&
1779 time_before(jiffies, bp->b_queuetime + age)) {
1780 xfs_buf_unlock(bp);
1781 break;
1784 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1785 _XBF_RUN_QUEUES);
1786 bp->b_flags |= XBF_WRITE;
1787 list_move_tail(&bp->b_list, list);
1788 } else
1789 skipped++;
1791 spin_unlock(dwlk);
1793 return skipped;
1798 * Compare function is more complex than it needs to be because
1799 * the return value is only 32 bits and we are doing comparisons
1800 * on 64 bit values
1802 static int
1803 xfs_buf_cmp(
1804 void *priv,
1805 struct list_head *a,
1806 struct list_head *b)
1808 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1809 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1810 xfs_daddr_t diff;
1812 diff = ap->b_bn - bp->b_bn;
1813 if (diff < 0)
1814 return -1;
1815 if (diff > 0)
1816 return 1;
1817 return 0;
1820 void
1821 xfs_buf_delwri_sort(
1822 xfs_buftarg_t *target,
1823 struct list_head *list)
1825 list_sort(NULL, list, xfs_buf_cmp);
1828 STATIC int
1829 xfsbufd(
1830 void *data)
1832 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1834 current->flags |= PF_MEMALLOC;
1836 set_freezable();
1838 do {
1839 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1840 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1841 int count = 0;
1842 struct list_head tmp;
1844 if (unlikely(freezing(current))) {
1845 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1846 refrigerator();
1847 } else {
1848 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1851 /* sleep for a long time if there is nothing to do. */
1852 if (list_empty(&target->bt_delwrite_queue))
1853 tout = MAX_SCHEDULE_TIMEOUT;
1854 schedule_timeout_interruptible(tout);
1856 xfs_buf_delwri_split(target, &tmp, age);
1857 list_sort(NULL, &tmp, xfs_buf_cmp);
1858 while (!list_empty(&tmp)) {
1859 struct xfs_buf *bp;
1860 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1861 list_del_init(&bp->b_list);
1862 xfs_bdstrat_cb(bp);
1863 count++;
1865 if (count)
1866 blk_run_address_space(target->bt_mapping);
1868 } while (!kthread_should_stop());
1870 return 0;
1874 * Go through all incore buffers, and release buffers if they belong to
1875 * the given device. This is used in filesystem error handling to
1876 * preserve the consistency of its metadata.
1879 xfs_flush_buftarg(
1880 xfs_buftarg_t *target,
1881 int wait)
1883 xfs_buf_t *bp;
1884 int pincount = 0;
1885 LIST_HEAD(tmp_list);
1886 LIST_HEAD(wait_list);
1888 xfs_buf_runall_queues(xfsconvertd_workqueue);
1889 xfs_buf_runall_queues(xfsdatad_workqueue);
1890 xfs_buf_runall_queues(xfslogd_workqueue);
1892 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1893 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1896 * Dropped the delayed write list lock, now walk the temporary list.
1897 * All I/O is issued async and then if we need to wait for completion
1898 * we do that after issuing all the IO.
1900 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1901 while (!list_empty(&tmp_list)) {
1902 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1903 ASSERT(target == bp->b_target);
1904 list_del_init(&bp->b_list);
1905 if (wait) {
1906 bp->b_flags &= ~XBF_ASYNC;
1907 list_add(&bp->b_list, &wait_list);
1909 xfs_bdstrat_cb(bp);
1912 if (wait) {
1913 /* Expedite and wait for IO to complete. */
1914 blk_run_address_space(target->bt_mapping);
1915 while (!list_empty(&wait_list)) {
1916 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1918 list_del_init(&bp->b_list);
1919 xfs_iowait(bp);
1920 xfs_buf_relse(bp);
1924 return pincount;
1927 int __init
1928 xfs_buf_init(void)
1930 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1931 KM_ZONE_HWALIGN, NULL);
1932 if (!xfs_buf_zone)
1933 goto out;
1935 xfslogd_workqueue = alloc_workqueue("xfslogd",
1936 WQ_RESCUER | WQ_HIGHPRI, 1);
1937 if (!xfslogd_workqueue)
1938 goto out_free_buf_zone;
1940 xfsdatad_workqueue = create_workqueue("xfsdatad");
1941 if (!xfsdatad_workqueue)
1942 goto out_destroy_xfslogd_workqueue;
1944 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1945 if (!xfsconvertd_workqueue)
1946 goto out_destroy_xfsdatad_workqueue;
1948 register_shrinker(&xfs_buf_shake);
1949 return 0;
1951 out_destroy_xfsdatad_workqueue:
1952 destroy_workqueue(xfsdatad_workqueue);
1953 out_destroy_xfslogd_workqueue:
1954 destroy_workqueue(xfslogd_workqueue);
1955 out_free_buf_zone:
1956 kmem_zone_destroy(xfs_buf_zone);
1957 out:
1958 return -ENOMEM;
1961 void
1962 xfs_buf_terminate(void)
1964 unregister_shrinker(&xfs_buf_shake);
1965 destroy_workqueue(xfsconvertd_workqueue);
1966 destroy_workqueue(xfsdatad_workqueue);
1967 destroy_workqueue(xfslogd_workqueue);
1968 kmem_zone_destroy(xfs_buf_zone);
1971 #ifdef CONFIG_KDB_MODULES
1972 struct list_head *
1973 xfs_get_buftarg_list(void)
1975 return &xfs_buftarg_list;
1977 #endif