GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / logfs / readwrite.c
blob1a1d4f3d3bbf294ce40fe84d276ddf29b0b24649
1 /*
2 * fs/logfs/readwrite.c
4 * As should be obvious for Linux kernel code, license is GPLv2
6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
9 * Actually contains five sets of very similar functions:
10 * read read blocks from a file
11 * seek_hole find next hole
12 * seek_data find next data block
13 * valid check whether a block still belongs to a file
14 * write write blocks to a file
15 * delete delete a block (for directories and ifile)
16 * rewrite move existing blocks of a file to a new location (gc helper)
17 * truncate truncate a file
19 #include "logfs.h"
20 #include <linux/sched.h>
21 #include <linux/slab.h>
23 static u64 adjust_bix(u64 bix, level_t level)
25 switch (level) {
26 case 0:
27 return bix;
28 case LEVEL(1):
29 return max_t(u64, bix, I0_BLOCKS);
30 case LEVEL(2):
31 return max_t(u64, bix, I1_BLOCKS);
32 case LEVEL(3):
33 return max_t(u64, bix, I2_BLOCKS);
34 case LEVEL(4):
35 return max_t(u64, bix, I3_BLOCKS);
36 case LEVEL(5):
37 return max_t(u64, bix, I4_BLOCKS);
38 default:
39 WARN_ON(1);
40 return bix;
44 static inline u64 maxbix(u8 height)
46 return 1ULL << (LOGFS_BLOCK_BITS * height);
49 /**
50 * The inode address space is cut in two halves. Lower half belongs to data
51 * pages, upper half to indirect blocks. If the high bit (INDIRECT_BIT) is
52 * set, the actual block index (bix) and level can be derived from the page
53 * index.
55 * The lowest three bits of the block index are set to 0 after packing and
56 * unpacking. Since the lowest n bits (9 for 4KiB blocksize) are ignored
57 * anyway this is harmless.
59 #define ARCH_SHIFT (BITS_PER_LONG - 32)
60 #define INDIRECT_BIT (0x80000000UL << ARCH_SHIFT)
61 #define LEVEL_SHIFT (28 + ARCH_SHIFT)
62 static inline pgoff_t first_indirect_block(void)
64 return INDIRECT_BIT | (1ULL << LEVEL_SHIFT);
67 pgoff_t logfs_pack_index(u64 bix, level_t level)
69 pgoff_t index;
71 BUG_ON(bix >= INDIRECT_BIT);
72 if (level == 0)
73 return bix;
75 index = INDIRECT_BIT;
76 index |= (__force long)level << LEVEL_SHIFT;
77 index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS);
78 return index;
81 void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level)
83 u8 __level;
85 if (!(index & INDIRECT_BIT)) {
86 *bix = index;
87 *level = 0;
88 return;
91 __level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT;
92 *level = LEVEL(__level);
93 *bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT;
94 *bix = adjust_bix(*bix, *level);
95 return;
97 #undef ARCH_SHIFT
98 #undef INDIRECT_BIT
99 #undef LEVEL_SHIFT
102 * Time is stored as nanoseconds since the epoch.
104 static struct timespec be64_to_timespec(__be64 betime)
106 return ns_to_timespec(be64_to_cpu(betime));
109 static __be64 timespec_to_be64(struct timespec tsp)
111 return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec);
114 static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode)
116 struct logfs_inode *li = logfs_inode(inode);
117 int i;
119 inode->i_mode = be16_to_cpu(di->di_mode);
120 li->li_height = di->di_height;
121 li->li_flags = be32_to_cpu(di->di_flags);
122 inode->i_uid = be32_to_cpu(di->di_uid);
123 inode->i_gid = be32_to_cpu(di->di_gid);
124 inode->i_size = be64_to_cpu(di->di_size);
125 logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes));
126 inode->i_atime = be64_to_timespec(di->di_atime);
127 inode->i_ctime = be64_to_timespec(di->di_ctime);
128 inode->i_mtime = be64_to_timespec(di->di_mtime);
129 inode->i_nlink = be32_to_cpu(di->di_refcount);
130 inode->i_generation = be32_to_cpu(di->di_generation);
132 switch (inode->i_mode & S_IFMT) {
133 case S_IFSOCK: /* fall through */
134 case S_IFBLK: /* fall through */
135 case S_IFCHR: /* fall through */
136 case S_IFIFO:
137 inode->i_rdev = be64_to_cpu(di->di_data[0]);
138 break;
139 case S_IFDIR: /* fall through */
140 case S_IFREG: /* fall through */
141 case S_IFLNK:
142 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
143 li->li_data[i] = be64_to_cpu(di->di_data[i]);
144 break;
145 default:
146 BUG();
150 static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di)
152 struct logfs_inode *li = logfs_inode(inode);
153 int i;
155 di->di_mode = cpu_to_be16(inode->i_mode);
156 di->di_height = li->li_height;
157 di->di_pad = 0;
158 di->di_flags = cpu_to_be32(li->li_flags);
159 di->di_uid = cpu_to_be32(inode->i_uid);
160 di->di_gid = cpu_to_be32(inode->i_gid);
161 di->di_size = cpu_to_be64(i_size_read(inode));
162 di->di_used_bytes = cpu_to_be64(li->li_used_bytes);
163 di->di_atime = timespec_to_be64(inode->i_atime);
164 di->di_ctime = timespec_to_be64(inode->i_ctime);
165 di->di_mtime = timespec_to_be64(inode->i_mtime);
166 di->di_refcount = cpu_to_be32(inode->i_nlink);
167 di->di_generation = cpu_to_be32(inode->i_generation);
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFSOCK: /* fall through */
171 case S_IFBLK: /* fall through */
172 case S_IFCHR: /* fall through */
173 case S_IFIFO:
174 di->di_data[0] = cpu_to_be64(inode->i_rdev);
175 break;
176 case S_IFDIR: /* fall through */
177 case S_IFREG: /* fall through */
178 case S_IFLNK:
179 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
180 di->di_data[i] = cpu_to_be64(li->li_data[i]);
181 break;
182 default:
183 BUG();
187 static void __logfs_set_blocks(struct inode *inode)
189 struct super_block *sb = inode->i_sb;
190 struct logfs_inode *li = logfs_inode(inode);
192 inode->i_blocks = ULONG_MAX;
193 if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX)
194 inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9;
197 void logfs_set_blocks(struct inode *inode, u64 bytes)
199 struct logfs_inode *li = logfs_inode(inode);
201 li->li_used_bytes = bytes;
202 __logfs_set_blocks(inode);
205 static void prelock_page(struct super_block *sb, struct page *page, int lock)
207 struct logfs_super *super = logfs_super(sb);
209 BUG_ON(!PageLocked(page));
210 if (lock) {
211 BUG_ON(PagePreLocked(page));
212 SetPagePreLocked(page);
213 } else {
214 /* We are in GC path. */
215 if (PagePreLocked(page))
216 super->s_lock_count++;
217 else
218 SetPagePreLocked(page);
222 static void preunlock_page(struct super_block *sb, struct page *page, int lock)
224 struct logfs_super *super = logfs_super(sb);
226 BUG_ON(!PageLocked(page));
227 if (lock)
228 ClearPagePreLocked(page);
229 else {
230 /* We are in GC path. */
231 BUG_ON(!PagePreLocked(page));
232 if (super->s_lock_count)
233 super->s_lock_count--;
234 else
235 ClearPagePreLocked(page);
240 * Logfs is prone to an AB-BA deadlock where one task tries to acquire
241 * s_write_mutex with a locked page and GC tries to get that page while holding
242 * s_write_mutex.
243 * To solve this issue logfs will ignore the page lock iff the page in question
244 * is waiting for s_write_mutex. We annotate this fact by setting PG_pre_locked
245 * in addition to PG_locked.
247 static void logfs_get_wblocks(struct super_block *sb, struct page *page,
248 int lock)
250 struct logfs_super *super = logfs_super(sb);
252 if (page)
253 prelock_page(sb, page, lock);
255 if (lock) {
256 mutex_lock(&super->s_write_mutex);
257 logfs_gc_pass(sb);
261 static void logfs_put_wblocks(struct super_block *sb, struct page *page,
262 int lock)
264 struct logfs_super *super = logfs_super(sb);
266 if (page)
267 preunlock_page(sb, page, lock);
268 /* Order matters - we must clear PG_pre_locked before releasing
269 * s_write_mutex or we could race against another task. */
270 if (lock)
271 mutex_unlock(&super->s_write_mutex);
274 static struct page *logfs_get_read_page(struct inode *inode, u64 bix,
275 level_t level)
277 return find_or_create_page(inode->i_mapping,
278 logfs_pack_index(bix, level), GFP_NOFS);
281 static void logfs_put_read_page(struct page *page)
283 unlock_page(page);
284 page_cache_release(page);
287 static void logfs_lock_write_page(struct page *page)
289 int loop = 0;
291 while (unlikely(!trylock_page(page))) {
292 if (loop++ > 0x1000) {
293 /* Has been observed once so far... */
294 printk(KERN_ERR "stack at %p\n", &loop);
295 BUG();
297 if (PagePreLocked(page)) {
298 /* Holder of page lock is waiting for us, it
299 * is safe to use this page. */
300 break;
302 /* Some other process has this page locked and has
303 * nothing to do with us. Wait for it to finish.
305 schedule();
307 BUG_ON(!PageLocked(page));
310 static struct page *logfs_get_write_page(struct inode *inode, u64 bix,
311 level_t level)
313 struct address_space *mapping = inode->i_mapping;
314 pgoff_t index = logfs_pack_index(bix, level);
315 struct page *page;
316 int err;
318 repeat:
319 page = find_get_page(mapping, index);
320 if (!page) {
321 page = __page_cache_alloc(GFP_NOFS);
322 if (!page)
323 return NULL;
324 err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS);
325 if (unlikely(err)) {
326 page_cache_release(page);
327 if (err == -EEXIST)
328 goto repeat;
329 return NULL;
331 } else logfs_lock_write_page(page);
332 BUG_ON(!PageLocked(page));
333 return page;
336 static void logfs_unlock_write_page(struct page *page)
338 if (!PagePreLocked(page))
339 unlock_page(page);
342 static void logfs_put_write_page(struct page *page)
344 logfs_unlock_write_page(page);
345 page_cache_release(page);
348 static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level,
349 int rw)
351 if (rw == READ)
352 return logfs_get_read_page(inode, bix, level);
353 else
354 return logfs_get_write_page(inode, bix, level);
357 static void logfs_put_page(struct page *page, int rw)
359 if (rw == READ)
360 logfs_put_read_page(page);
361 else
362 logfs_put_write_page(page);
365 static unsigned long __get_bits(u64 val, int skip, int no)
367 u64 ret = val;
369 ret >>= skip * no;
370 ret <<= 64 - no;
371 ret >>= 64 - no;
372 return ret;
375 static unsigned long get_bits(u64 val, level_t skip)
377 return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS);
380 static inline void init_shadow_tree(struct super_block *sb,
381 struct shadow_tree *tree)
383 struct logfs_super *super = logfs_super(sb);
385 btree_init_mempool64(&tree->new, super->s_btree_pool);
386 btree_init_mempool64(&tree->old, super->s_btree_pool);
389 static void indirect_write_block(struct logfs_block *block)
391 struct page *page;
392 struct inode *inode;
393 int ret;
395 page = block->page;
396 inode = page->mapping->host;
397 logfs_lock_write_page(page);
398 ret = logfs_write_buf(inode, page, 0);
399 logfs_unlock_write_page(page);
401 * This needs some rework. Unless you want your filesystem to run
402 * completely synchronously (you don't), the filesystem will always
403 * report writes as 'successful' before the actual work has been
404 * done. The actual work gets done here and this is where any errors
405 * will show up. And there isn't much we can do about it, really.
407 * Some attempts to fix the errors (move from bad blocks, retry io,...)
408 * have already been done, so anything left should be either a broken
409 * device or a bug somewhere in logfs itself. Being relatively new,
410 * the odds currently favor a bug, so for now the line below isn't
411 * entirely tasteles.
413 BUG_ON(ret);
416 static void inode_write_block(struct logfs_block *block)
418 struct inode *inode;
419 int ret;
421 inode = block->inode;
422 if (inode->i_ino == LOGFS_INO_MASTER)
423 logfs_write_anchor(inode->i_sb);
424 else {
425 ret = __logfs_write_inode(inode, 0);
426 /* see indirect_write_block comment */
427 BUG_ON(ret);
432 * This silences a false, yet annoying gcc warning. I hate it when my editor
433 * jumps into bitops.h each time I recompile this file.
434 * TODO: Complain to gcc folks about this and upgrade compiler.
436 static unsigned long fnb(const unsigned long *addr,
437 unsigned long size, unsigned long offset)
439 return find_next_bit(addr, size, offset);
442 static __be64 inode_val0(struct inode *inode)
444 struct logfs_inode *li = logfs_inode(inode);
445 u64 val;
448 * Explicit shifting generates good code, but must match the format
449 * of the structure. Add some paranoia just in case.
451 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0);
452 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2);
453 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4);
455 val = (u64)inode->i_mode << 48 |
456 (u64)li->li_height << 40 |
457 (u64)li->li_flags;
458 return cpu_to_be64(val);
461 static int inode_write_alias(struct super_block *sb,
462 struct logfs_block *block, write_alias_t *write_one_alias)
464 struct inode *inode = block->inode;
465 struct logfs_inode *li = logfs_inode(inode);
466 unsigned long pos;
467 u64 ino , bix;
468 __be64 val;
469 level_t level;
470 int err;
472 for (pos = 0; ; pos++) {
473 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
474 if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS)
475 return 0;
477 switch (pos) {
478 case INODE_HEIGHT_OFS:
479 val = inode_val0(inode);
480 break;
481 case INODE_USED_OFS:
482 val = cpu_to_be64(li->li_used_bytes);;
483 break;
484 case INODE_SIZE_OFS:
485 val = cpu_to_be64(i_size_read(inode));
486 break;
487 case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1:
488 val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]);
489 break;
490 default:
491 BUG();
494 ino = LOGFS_INO_MASTER;
495 bix = inode->i_ino;
496 level = LEVEL(0);
497 err = write_one_alias(sb, ino, bix, level, pos, val);
498 if (err)
499 return err;
503 static int indirect_write_alias(struct super_block *sb,
504 struct logfs_block *block, write_alias_t *write_one_alias)
506 unsigned long pos;
507 struct page *page = block->page;
508 u64 ino , bix;
509 __be64 *child, val;
510 level_t level;
511 int err;
513 for (pos = 0; ; pos++) {
514 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
515 if (pos >= LOGFS_BLOCK_FACTOR)
516 return 0;
518 ino = page->mapping->host->i_ino;
519 logfs_unpack_index(page->index, &bix, &level);
520 child = kmap_atomic(page, KM_USER0);
521 val = child[pos];
522 kunmap_atomic(child, KM_USER0);
523 err = write_one_alias(sb, ino, bix, level, pos, val);
524 if (err)
525 return err;
529 int logfs_write_obj_aliases_pagecache(struct super_block *sb)
531 struct logfs_super *super = logfs_super(sb);
532 struct logfs_block *block;
533 int err;
535 list_for_each_entry(block, &super->s_object_alias, alias_list) {
536 err = block->ops->write_alias(sb, block, write_alias_journal);
537 if (err)
538 return err;
540 return 0;
543 void __free_block(struct super_block *sb, struct logfs_block *block)
545 BUG_ON(!list_empty(&block->item_list));
546 list_del(&block->alias_list);
547 mempool_free(block, logfs_super(sb)->s_block_pool);
550 static void inode_free_block(struct super_block *sb, struct logfs_block *block)
552 struct inode *inode = block->inode;
554 logfs_inode(inode)->li_block = NULL;
555 __free_block(sb, block);
558 static void indirect_free_block(struct super_block *sb,
559 struct logfs_block *block)
561 ClearPagePrivate(block->page);
562 block->page->private = 0;
563 __free_block(sb, block);
567 static struct logfs_block_ops inode_block_ops = {
568 .write_block = inode_write_block,
569 .free_block = inode_free_block,
570 .write_alias = inode_write_alias,
573 struct logfs_block_ops indirect_block_ops = {
574 .write_block = indirect_write_block,
575 .free_block = indirect_free_block,
576 .write_alias = indirect_write_alias,
579 struct logfs_block *__alloc_block(struct super_block *sb,
580 u64 ino, u64 bix, level_t level)
582 struct logfs_super *super = logfs_super(sb);
583 struct logfs_block *block;
585 block = mempool_alloc(super->s_block_pool, GFP_NOFS);
586 memset(block, 0, sizeof(*block));
587 INIT_LIST_HEAD(&block->alias_list);
588 INIT_LIST_HEAD(&block->item_list);
589 block->sb = sb;
590 block->ino = ino;
591 block->bix = bix;
592 block->level = level;
593 return block;
596 static void alloc_inode_block(struct inode *inode)
598 struct logfs_inode *li = logfs_inode(inode);
599 struct logfs_block *block;
601 if (li->li_block)
602 return;
604 block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0);
605 block->inode = inode;
606 li->li_block = block;
607 block->ops = &inode_block_ops;
610 void initialize_block_counters(struct page *page, struct logfs_block *block,
611 __be64 *array, int page_is_empty)
613 u64 ptr;
614 int i, start;
616 block->partial = 0;
617 block->full = 0;
618 start = 0;
619 if (page->index < first_indirect_block()) {
620 /* Counters are pointless on level 0 */
621 return;
623 if (page->index == first_indirect_block()) {
624 /* Skip unused pointers */
625 start = I0_BLOCKS;
626 block->full = I0_BLOCKS;
628 if (!page_is_empty) {
629 for (i = start; i < LOGFS_BLOCK_FACTOR; i++) {
630 ptr = be64_to_cpu(array[i]);
631 if (ptr)
632 block->partial++;
633 if (ptr & LOGFS_FULLY_POPULATED)
634 block->full++;
639 static void alloc_data_block(struct inode *inode, struct page *page)
641 struct logfs_block *block;
642 u64 bix;
643 level_t level;
645 if (PagePrivate(page))
646 return;
648 logfs_unpack_index(page->index, &bix, &level);
649 block = __alloc_block(inode->i_sb, inode->i_ino, bix, level);
650 block->page = page;
651 SetPagePrivate(page);
652 page->private = (unsigned long)block;
653 block->ops = &indirect_block_ops;
656 static void alloc_indirect_block(struct inode *inode, struct page *page,
657 int page_is_empty)
659 struct logfs_block *block;
660 __be64 *array;
662 if (PagePrivate(page))
663 return;
665 alloc_data_block(inode, page);
667 block = logfs_block(page);
668 array = kmap_atomic(page, KM_USER0);
669 initialize_block_counters(page, block, array, page_is_empty);
670 kunmap_atomic(array, KM_USER0);
673 static void block_set_pointer(struct page *page, int index, u64 ptr)
675 struct logfs_block *block = logfs_block(page);
676 __be64 *array;
677 u64 oldptr;
679 BUG_ON(!block);
680 array = kmap_atomic(page, KM_USER0);
681 oldptr = be64_to_cpu(array[index]);
682 array[index] = cpu_to_be64(ptr);
683 kunmap_atomic(array, KM_USER0);
684 SetPageUptodate(page);
686 block->full += !!(ptr & LOGFS_FULLY_POPULATED)
687 - !!(oldptr & LOGFS_FULLY_POPULATED);
688 block->partial += !!ptr - !!oldptr;
691 static u64 block_get_pointer(struct page *page, int index)
693 __be64 *block;
694 u64 ptr;
696 block = kmap_atomic(page, KM_USER0);
697 ptr = be64_to_cpu(block[index]);
698 kunmap_atomic(block, KM_USER0);
699 return ptr;
702 static int logfs_read_empty(struct page *page)
704 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
705 return 0;
708 static int logfs_read_direct(struct inode *inode, struct page *page)
710 struct logfs_inode *li = logfs_inode(inode);
711 pgoff_t index = page->index;
712 u64 block;
714 block = li->li_data[index];
715 if (!block)
716 return logfs_read_empty(page);
718 return logfs_segment_read(inode, page, block, index, 0);
721 static int logfs_read_loop(struct inode *inode, struct page *page,
722 int rw_context)
724 struct logfs_inode *li = logfs_inode(inode);
725 u64 bix, bofs = li->li_data[INDIRECT_INDEX];
726 level_t level, target_level;
727 int ret;
728 struct page *ipage;
730 logfs_unpack_index(page->index, &bix, &target_level);
731 if (!bofs)
732 return logfs_read_empty(page);
734 if (bix >= maxbix(li->li_height))
735 return logfs_read_empty(page);
737 for (level = LEVEL(li->li_height);
738 (__force u8)level > (__force u8)target_level;
739 level = SUBLEVEL(level)){
740 ipage = logfs_get_page(inode, bix, level, rw_context);
741 if (!ipage)
742 return -ENOMEM;
744 ret = logfs_segment_read(inode, ipage, bofs, bix, level);
745 if (ret) {
746 logfs_put_read_page(ipage);
747 return ret;
750 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
751 logfs_put_page(ipage, rw_context);
752 if (!bofs)
753 return logfs_read_empty(page);
756 return logfs_segment_read(inode, page, bofs, bix, 0);
759 static int logfs_read_block(struct inode *inode, struct page *page,
760 int rw_context)
762 pgoff_t index = page->index;
764 if (index < I0_BLOCKS)
765 return logfs_read_direct(inode, page);
766 return logfs_read_loop(inode, page, rw_context);
769 static int logfs_exist_loop(struct inode *inode, u64 bix)
771 struct logfs_inode *li = logfs_inode(inode);
772 u64 bofs = li->li_data[INDIRECT_INDEX];
773 level_t level;
774 int ret;
775 struct page *ipage;
777 if (!bofs)
778 return 0;
779 if (bix >= maxbix(li->li_height))
780 return 0;
782 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
783 ipage = logfs_get_read_page(inode, bix, level);
784 if (!ipage)
785 return -ENOMEM;
787 ret = logfs_segment_read(inode, ipage, bofs, bix, level);
788 if (ret) {
789 logfs_put_read_page(ipage);
790 return ret;
793 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
794 logfs_put_read_page(ipage);
795 if (!bofs)
796 return 0;
799 return 1;
802 int logfs_exist_block(struct inode *inode, u64 bix)
804 struct logfs_inode *li = logfs_inode(inode);
806 if (bix < I0_BLOCKS)
807 return !!li->li_data[bix];
808 return logfs_exist_loop(inode, bix);
811 static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data)
813 struct logfs_inode *li = logfs_inode(inode);
815 for (; bix < I0_BLOCKS; bix++)
816 if (data ^ (li->li_data[bix] == 0))
817 return bix;
818 return I0_BLOCKS;
821 static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data)
823 struct logfs_inode *li = logfs_inode(inode);
824 __be64 *rblock;
825 u64 increment, bofs = li->li_data[INDIRECT_INDEX];
826 level_t level;
827 int ret, slot;
828 struct page *page;
830 BUG_ON(!bofs);
832 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
833 increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1));
834 page = logfs_get_read_page(inode, bix, level);
835 if (!page)
836 return bix;
838 ret = logfs_segment_read(inode, page, bofs, bix, level);
839 if (ret) {
840 logfs_put_read_page(page);
841 return bix;
844 slot = get_bits(bix, SUBLEVEL(level));
845 rblock = kmap_atomic(page, KM_USER0);
846 while (slot < LOGFS_BLOCK_FACTOR) {
847 if (data && (rblock[slot] != 0))
848 break;
849 if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED))
850 break;
851 slot++;
852 bix += increment;
853 bix &= ~(increment - 1);
855 if (slot >= LOGFS_BLOCK_FACTOR) {
856 kunmap_atomic(rblock, KM_USER0);
857 logfs_put_read_page(page);
858 return bix;
860 bofs = be64_to_cpu(rblock[slot]);
861 kunmap_atomic(rblock, KM_USER0);
862 logfs_put_read_page(page);
863 if (!bofs) {
864 BUG_ON(data);
865 return bix;
868 return bix;
872 * logfs_seek_hole - find next hole starting at a given block index
873 * @inode: inode to search in
874 * @bix: block index to start searching
876 * Returns next hole. If the file doesn't contain any further holes, the
877 * block address next to eof is returned instead.
879 u64 logfs_seek_hole(struct inode *inode, u64 bix)
881 struct logfs_inode *li = logfs_inode(inode);
883 if (bix < I0_BLOCKS) {
884 bix = seek_holedata_direct(inode, bix, 0);
885 if (bix < I0_BLOCKS)
886 return bix;
889 if (!li->li_data[INDIRECT_INDEX])
890 return bix;
891 else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED)
892 bix = maxbix(li->li_height);
893 else if (bix >= maxbix(li->li_height))
894 return bix;
895 else {
896 bix = seek_holedata_loop(inode, bix, 0);
897 if (bix < maxbix(li->li_height))
898 return bix;
899 /* Should not happen anymore. But if some port writes semi-
900 * corrupt images (as this one used to) we might run into it.
902 WARN_ON_ONCE(bix == maxbix(li->li_height));
905 return bix;
908 static u64 __logfs_seek_data(struct inode *inode, u64 bix)
910 struct logfs_inode *li = logfs_inode(inode);
912 if (bix < I0_BLOCKS) {
913 bix = seek_holedata_direct(inode, bix, 1);
914 if (bix < I0_BLOCKS)
915 return bix;
918 if (bix < maxbix(li->li_height)) {
919 if (!li->li_data[INDIRECT_INDEX])
920 bix = maxbix(li->li_height);
921 else
922 return seek_holedata_loop(inode, bix, 1);
925 return bix;
929 * logfs_seek_data - find next data block after a given block index
930 * @inode: inode to search in
931 * @bix: block index to start searching
933 * Returns next data block. If the file doesn't contain any further data
934 * blocks, the last block in the file is returned instead.
936 u64 logfs_seek_data(struct inode *inode, u64 bix)
938 struct super_block *sb = inode->i_sb;
939 u64 ret, end;
941 ret = __logfs_seek_data(inode, bix);
942 end = i_size_read(inode) >> sb->s_blocksize_bits;
943 if (ret >= end)
944 ret = max(bix, end);
945 return ret;
948 static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs)
950 return pure_ofs(li->li_data[bix]) == ofs;
953 static int __logfs_is_valid_loop(struct inode *inode, u64 bix,
954 u64 ofs, u64 bofs)
956 struct logfs_inode *li = logfs_inode(inode);
957 level_t level;
958 int ret;
959 struct page *page;
961 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){
962 page = logfs_get_write_page(inode, bix, level);
963 BUG_ON(!page);
965 ret = logfs_segment_read(inode, page, bofs, bix, level);
966 if (ret) {
967 logfs_put_write_page(page);
968 return 0;
971 bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level)));
972 logfs_put_write_page(page);
973 if (!bofs)
974 return 0;
976 if (pure_ofs(bofs) == ofs)
977 return 1;
979 return 0;
982 static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs)
984 struct logfs_inode *li = logfs_inode(inode);
985 u64 bofs = li->li_data[INDIRECT_INDEX];
987 if (!bofs)
988 return 0;
990 if (bix >= maxbix(li->li_height))
991 return 0;
993 if (pure_ofs(bofs) == ofs)
994 return 1;
996 return __logfs_is_valid_loop(inode, bix, ofs, bofs);
999 static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs)
1001 struct logfs_inode *li = logfs_inode(inode);
1003 if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1)
1004 return 0;
1006 if (bix < I0_BLOCKS)
1007 return logfs_is_valid_direct(li, bix, ofs);
1008 return logfs_is_valid_loop(inode, bix, ofs);
1012 * logfs_is_valid_block - check whether this block is still valid
1014 * @sb - superblock
1015 * @ofs - block physical offset
1016 * @ino - block inode number
1017 * @bix - block index
1018 * @level - block level
1020 * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will
1021 * become invalid once the journal is written.
1023 int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
1024 gc_level_t gc_level)
1026 struct logfs_super *super = logfs_super(sb);
1027 struct inode *inode;
1028 int ret, cookie;
1030 /* Umount closes a segment with free blocks remaining. Those
1031 * blocks are by definition invalid. */
1032 if (ino == -1)
1033 return 0;
1035 LOGFS_BUG_ON((u64)(u_long)ino != ino, sb);
1037 inode = logfs_safe_iget(sb, ino, &cookie);
1038 if (IS_ERR(inode))
1039 goto invalid;
1041 ret = __logfs_is_valid_block(inode, bix, ofs);
1042 logfs_safe_iput(inode, cookie);
1043 if (ret)
1044 return ret;
1046 invalid:
1047 /* Block is nominally invalid, but may still sit in the shadow tree,
1048 * waiting for a journal commit.
1050 if (btree_lookup64(&super->s_shadow_tree.old, ofs))
1051 return 2;
1052 return 0;
1055 int logfs_readpage_nolock(struct page *page)
1057 struct inode *inode = page->mapping->host;
1058 int ret = -EIO;
1060 ret = logfs_read_block(inode, page, READ);
1062 if (ret) {
1063 ClearPageUptodate(page);
1064 SetPageError(page);
1065 } else {
1066 SetPageUptodate(page);
1067 ClearPageError(page);
1069 flush_dcache_page(page);
1071 return ret;
1074 static int logfs_reserve_bytes(struct inode *inode, int bytes)
1076 struct logfs_super *super = logfs_super(inode->i_sb);
1077 u64 available = super->s_free_bytes + super->s_dirty_free_bytes
1078 - super->s_dirty_used_bytes - super->s_dirty_pages;
1080 if (!bytes)
1081 return 0;
1083 if (available < bytes)
1084 return -ENOSPC;
1086 if (available < bytes + super->s_root_reserve &&
1087 !capable(CAP_SYS_RESOURCE))
1088 return -ENOSPC;
1090 return 0;
1093 int get_page_reserve(struct inode *inode, struct page *page)
1095 struct logfs_super *super = logfs_super(inode->i_sb);
1096 struct logfs_block *block = logfs_block(page);
1097 int ret;
1099 if (block && block->reserved_bytes)
1100 return 0;
1102 logfs_get_wblocks(inode->i_sb, page, WF_LOCK);
1103 while ((ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE)) &&
1104 !list_empty(&super->s_writeback_list)) {
1105 block = list_entry(super->s_writeback_list.next,
1106 struct logfs_block, alias_list);
1107 block->ops->write_block(block);
1109 if (!ret) {
1110 alloc_data_block(inode, page);
1111 block = logfs_block(page);
1112 block->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE;
1113 super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE;
1114 list_move_tail(&block->alias_list, &super->s_writeback_list);
1116 logfs_put_wblocks(inode->i_sb, page, WF_LOCK);
1117 return ret;
1121 * We are protected by write lock. Push victims up to superblock level
1122 * and release transaction when appropriate.
1124 static void logfs_handle_transaction(struct inode *inode,
1125 struct logfs_transaction *ta)
1127 struct logfs_super *super = logfs_super(inode->i_sb);
1129 if (!ta)
1130 return;
1131 logfs_inode(inode)->li_block->ta = NULL;
1133 if (inode->i_ino != LOGFS_INO_MASTER) {
1134 BUG();
1135 /* just remember the transaction until inode is written */
1136 //BUG_ON(logfs_inode(inode)->li_transaction);
1137 //logfs_inode(inode)->li_transaction = ta;
1138 return;
1141 switch (ta->state) {
1142 case CREATE_1: /* fall through */
1143 case UNLINK_1:
1144 BUG_ON(super->s_victim_ino);
1145 super->s_victim_ino = ta->ino;
1146 break;
1147 case CREATE_2: /* fall through */
1148 case UNLINK_2:
1149 BUG_ON(super->s_victim_ino != ta->ino);
1150 super->s_victim_ino = 0;
1151 /* transaction ends here - free it */
1152 kfree(ta);
1153 break;
1154 case CROSS_RENAME_1:
1155 BUG_ON(super->s_rename_dir);
1156 BUG_ON(super->s_rename_pos);
1157 super->s_rename_dir = ta->dir;
1158 super->s_rename_pos = ta->pos;
1159 break;
1160 case CROSS_RENAME_2:
1161 BUG_ON(super->s_rename_dir != ta->dir);
1162 BUG_ON(super->s_rename_pos != ta->pos);
1163 super->s_rename_dir = 0;
1164 super->s_rename_pos = 0;
1165 kfree(ta);
1166 break;
1167 case TARGET_RENAME_1:
1168 BUG_ON(super->s_rename_dir);
1169 BUG_ON(super->s_rename_pos);
1170 BUG_ON(super->s_victim_ino);
1171 super->s_rename_dir = ta->dir;
1172 super->s_rename_pos = ta->pos;
1173 super->s_victim_ino = ta->ino;
1174 break;
1175 case TARGET_RENAME_2:
1176 BUG_ON(super->s_rename_dir != ta->dir);
1177 BUG_ON(super->s_rename_pos != ta->pos);
1178 BUG_ON(super->s_victim_ino != ta->ino);
1179 super->s_rename_dir = 0;
1180 super->s_rename_pos = 0;
1181 break;
1182 case TARGET_RENAME_3:
1183 BUG_ON(super->s_rename_dir);
1184 BUG_ON(super->s_rename_pos);
1185 BUG_ON(super->s_victim_ino != ta->ino);
1186 super->s_victim_ino = 0;
1187 kfree(ta);
1188 break;
1189 default:
1190 BUG();
1195 * Not strictly a reservation, but rather a check that we still have enough
1196 * space to satisfy the write.
1198 static int logfs_reserve_blocks(struct inode *inode, int blocks)
1200 return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE);
1203 struct write_control {
1204 u64 ofs;
1205 long flags;
1208 static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix,
1209 level_t level, u64 old_ofs)
1211 struct logfs_super *super = logfs_super(inode->i_sb);
1212 struct logfs_shadow *shadow;
1214 shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS);
1215 memset(shadow, 0, sizeof(*shadow));
1216 shadow->ino = inode->i_ino;
1217 shadow->bix = bix;
1218 shadow->gc_level = expand_level(inode->i_ino, level);
1219 shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED;
1220 return shadow;
1223 static void free_shadow(struct inode *inode, struct logfs_shadow *shadow)
1225 struct logfs_super *super = logfs_super(inode->i_sb);
1227 mempool_free(shadow, super->s_shadow_pool);
1230 static void mark_segment(struct shadow_tree *tree, u32 segno)
1232 int err;
1234 if (!btree_lookup32(&tree->segment_map, segno)) {
1235 err = btree_insert32(&tree->segment_map, segno, (void *)1,
1236 GFP_NOFS);
1237 BUG_ON(err);
1238 tree->no_shadowed_segments++;
1243 * fill_shadow_tree - Propagate shadow tree changes due to a write
1244 * @inode: Inode owning the page
1245 * @page: Struct page that was written
1246 * @shadow: Shadow for the current write
1248 * Writes in logfs can result in two semi-valid objects. The old object
1249 * is still valid as long as it can be reached by following pointers on
1250 * the medium. Only when writes propagate all the way up to the journal
1251 * has the new object safely replaced the old one.
1253 * To handle this problem, a struct logfs_shadow is used to represent
1254 * every single write. It is attached to the indirect block, which is
1255 * marked dirty. When the indirect block is written, its shadows are
1256 * handed up to the next indirect block (or inode). Untimately they
1257 * will reach the master inode and be freed upon journal commit.
1259 * This function handles a single step in the propagation. It adds the
1260 * shadow for the current write to the tree, along with any shadows in
1261 * the page's tree, in case it was an indirect block. If a page is
1262 * written, the inode parameter is left NULL, if an inode is written,
1263 * the page parameter is left NULL.
1265 static void fill_shadow_tree(struct inode *inode, struct page *page,
1266 struct logfs_shadow *shadow)
1268 struct logfs_super *super = logfs_super(inode->i_sb);
1269 struct logfs_block *block = logfs_block(page);
1270 struct shadow_tree *tree = &super->s_shadow_tree;
1272 if (PagePrivate(page)) {
1273 if (block->alias_map)
1274 super->s_no_object_aliases -= bitmap_weight(
1275 block->alias_map, LOGFS_BLOCK_FACTOR);
1276 logfs_handle_transaction(inode, block->ta);
1277 block->ops->free_block(inode->i_sb, block);
1279 if (shadow) {
1280 if (shadow->old_ofs)
1281 btree_insert64(&tree->old, shadow->old_ofs, shadow,
1282 GFP_NOFS);
1283 else
1284 btree_insert64(&tree->new, shadow->new_ofs, shadow,
1285 GFP_NOFS);
1287 super->s_dirty_used_bytes += shadow->new_len;
1288 super->s_dirty_free_bytes += shadow->old_len;
1289 mark_segment(tree, shadow->old_ofs >> super->s_segshift);
1290 mark_segment(tree, shadow->new_ofs >> super->s_segshift);
1294 static void logfs_set_alias(struct super_block *sb, struct logfs_block *block,
1295 long child_no)
1297 struct logfs_super *super = logfs_super(sb);
1299 if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) {
1300 /* Aliases in the master inode are pointless. */
1301 return;
1304 if (!test_bit(child_no, block->alias_map)) {
1305 set_bit(child_no, block->alias_map);
1306 super->s_no_object_aliases++;
1308 list_move_tail(&block->alias_list, &super->s_object_alias);
1312 * Object aliases can and often do change the size and occupied space of a
1313 * file. So not only do we have to change the pointers, we also have to
1314 * change inode->i_size and li->li_used_bytes. Which is done by setting
1315 * another two object aliases for the inode itself.
1317 static void set_iused(struct inode *inode, struct logfs_shadow *shadow)
1319 struct logfs_inode *li = logfs_inode(inode);
1321 if (shadow->new_len == shadow->old_len)
1322 return;
1324 alloc_inode_block(inode);
1325 li->li_used_bytes += shadow->new_len - shadow->old_len;
1326 __logfs_set_blocks(inode);
1327 logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS);
1328 logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS);
1331 static int logfs_write_i0(struct inode *inode, struct page *page,
1332 struct write_control *wc)
1334 struct logfs_shadow *shadow;
1335 u64 bix;
1336 level_t level;
1337 int full, err = 0;
1339 logfs_unpack_index(page->index, &bix, &level);
1340 if (wc->ofs == 0)
1341 if (logfs_reserve_blocks(inode, 1))
1342 return -ENOSPC;
1344 shadow = alloc_shadow(inode, bix, level, wc->ofs);
1345 if (wc->flags & WF_WRITE)
1346 err = logfs_segment_write(inode, page, shadow);
1347 if (wc->flags & WF_DELETE)
1348 logfs_segment_delete(inode, shadow);
1349 if (err) {
1350 free_shadow(inode, shadow);
1351 return err;
1354 set_iused(inode, shadow);
1355 full = 1;
1356 if (level != 0) {
1357 alloc_indirect_block(inode, page, 0);
1358 full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR;
1360 fill_shadow_tree(inode, page, shadow);
1361 wc->ofs = shadow->new_ofs;
1362 if (wc->ofs && full)
1363 wc->ofs |= LOGFS_FULLY_POPULATED;
1364 return 0;
1367 static int logfs_write_direct(struct inode *inode, struct page *page,
1368 long flags)
1370 struct logfs_inode *li = logfs_inode(inode);
1371 struct write_control wc = {
1372 .ofs = li->li_data[page->index],
1373 .flags = flags,
1375 int err;
1377 alloc_inode_block(inode);
1379 err = logfs_write_i0(inode, page, &wc);
1380 if (err)
1381 return err;
1383 li->li_data[page->index] = wc.ofs;
1384 logfs_set_alias(inode->i_sb, li->li_block,
1385 page->index + INODE_POINTER_OFS);
1386 return 0;
1389 static int ptr_change(u64 ofs, struct page *page)
1391 struct logfs_block *block = logfs_block(page);
1392 int empty0, empty1, full0, full1;
1394 empty0 = ofs == 0;
1395 empty1 = block->partial == 0;
1396 if (empty0 != empty1)
1397 return 1;
1399 /* The !! is necessary to shrink result to int */
1400 full0 = !!(ofs & LOGFS_FULLY_POPULATED);
1401 full1 = block->full == LOGFS_BLOCK_FACTOR;
1402 if (full0 != full1)
1403 return 1;
1404 return 0;
1407 static int __logfs_write_rec(struct inode *inode, struct page *page,
1408 struct write_control *this_wc,
1409 pgoff_t bix, level_t target_level, level_t level)
1411 int ret, page_empty = 0;
1412 int child_no = get_bits(bix, SUBLEVEL(level));
1413 struct page *ipage;
1414 struct write_control child_wc = {
1415 .flags = this_wc->flags,
1418 ipage = logfs_get_write_page(inode, bix, level);
1419 if (!ipage)
1420 return -ENOMEM;
1422 if (this_wc->ofs) {
1423 ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1424 if (ret)
1425 goto out;
1426 } else if (!PageUptodate(ipage)) {
1427 page_empty = 1;
1428 logfs_read_empty(ipage);
1431 child_wc.ofs = block_get_pointer(ipage, child_no);
1433 if ((__force u8)level-1 > (__force u8)target_level)
1434 ret = __logfs_write_rec(inode, page, &child_wc, bix,
1435 target_level, SUBLEVEL(level));
1436 else
1437 ret = logfs_write_i0(inode, page, &child_wc);
1439 if (ret)
1440 goto out;
1442 alloc_indirect_block(inode, ipage, page_empty);
1443 block_set_pointer(ipage, child_no, child_wc.ofs);
1444 if (child_wc.ofs || logfs_block(ipage)->partial)
1445 this_wc->flags |= WF_WRITE;
1446 /* the condition on this_wc->ofs ensures that we won't consume extra
1447 * space for indirect blocks in the future, which we cannot reserve */
1448 if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage))
1449 ret = logfs_write_i0(inode, ipage, this_wc);
1450 else
1451 logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no);
1452 out:
1453 logfs_put_write_page(ipage);
1454 return ret;
1457 static int logfs_write_rec(struct inode *inode, struct page *page,
1458 pgoff_t bix, level_t target_level, long flags)
1460 struct logfs_inode *li = logfs_inode(inode);
1461 struct write_control wc = {
1462 .ofs = li->li_data[INDIRECT_INDEX],
1463 .flags = flags,
1465 int ret;
1467 alloc_inode_block(inode);
1469 if (li->li_height > (__force u8)target_level)
1470 ret = __logfs_write_rec(inode, page, &wc, bix, target_level,
1471 LEVEL(li->li_height));
1472 else
1473 ret = logfs_write_i0(inode, page, &wc);
1474 if (ret)
1475 return ret;
1477 if (li->li_data[INDIRECT_INDEX] != wc.ofs) {
1478 li->li_data[INDIRECT_INDEX] = wc.ofs;
1479 logfs_set_alias(inode->i_sb, li->li_block,
1480 INDIRECT_INDEX + INODE_POINTER_OFS);
1482 return ret;
1485 void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta)
1487 alloc_inode_block(inode);
1488 logfs_inode(inode)->li_block->ta = ta;
1491 void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta)
1493 struct logfs_block *block = logfs_inode(inode)->li_block;
1495 if (block && block->ta)
1496 block->ta = NULL;
1499 static int grow_inode(struct inode *inode, u64 bix, level_t level)
1501 struct logfs_inode *li = logfs_inode(inode);
1502 u8 height = (__force u8)level;
1503 struct page *page;
1504 struct write_control wc = {
1505 .flags = WF_WRITE,
1507 int err;
1509 BUG_ON(height > 5 || li->li_height > 5);
1510 while (height > li->li_height || bix >= maxbix(li->li_height)) {
1511 page = logfs_get_write_page(inode, I0_BLOCKS + 1,
1512 LEVEL(li->li_height + 1));
1513 if (!page)
1514 return -ENOMEM;
1515 logfs_read_empty(page);
1516 alloc_indirect_block(inode, page, 1);
1517 block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]);
1518 err = logfs_write_i0(inode, page, &wc);
1519 logfs_put_write_page(page);
1520 if (err)
1521 return err;
1522 li->li_data[INDIRECT_INDEX] = wc.ofs;
1523 wc.ofs = 0;
1524 li->li_height++;
1525 logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS);
1527 return 0;
1530 static int __logfs_write_buf(struct inode *inode, struct page *page, long flags)
1532 struct logfs_super *super = logfs_super(inode->i_sb);
1533 pgoff_t index = page->index;
1534 u64 bix;
1535 level_t level;
1536 int err;
1538 flags |= WF_WRITE | WF_DELETE;
1539 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1541 logfs_unpack_index(index, &bix, &level);
1542 if (logfs_block(page) && logfs_block(page)->reserved_bytes)
1543 super->s_dirty_pages -= logfs_block(page)->reserved_bytes;
1545 if (index < I0_BLOCKS)
1546 return logfs_write_direct(inode, page, flags);
1548 bix = adjust_bix(bix, level);
1549 err = grow_inode(inode, bix, level);
1550 if (err)
1551 return err;
1552 return logfs_write_rec(inode, page, bix, level, flags);
1555 int logfs_write_buf(struct inode *inode, struct page *page, long flags)
1557 struct super_block *sb = inode->i_sb;
1558 int ret;
1560 logfs_get_wblocks(sb, page, flags & WF_LOCK);
1561 ret = __logfs_write_buf(inode, page, flags);
1562 logfs_put_wblocks(sb, page, flags & WF_LOCK);
1563 return ret;
1566 static int __logfs_delete(struct inode *inode, struct page *page)
1568 long flags = WF_DELETE;
1570 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1572 if (page->index < I0_BLOCKS)
1573 return logfs_write_direct(inode, page, flags);
1574 return logfs_write_rec(inode, page, page->index, 0, flags);
1577 int logfs_delete(struct inode *inode, pgoff_t index,
1578 struct shadow_tree *shadow_tree)
1580 struct super_block *sb = inode->i_sb;
1581 struct page *page;
1582 int ret;
1584 page = logfs_get_read_page(inode, index, 0);
1585 if (!page)
1586 return -ENOMEM;
1588 logfs_get_wblocks(sb, page, 1);
1589 ret = __logfs_delete(inode, page);
1590 logfs_put_wblocks(sb, page, 1);
1592 logfs_put_read_page(page);
1594 return ret;
1597 int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
1598 gc_level_t gc_level, long flags)
1600 level_t level = shrink_level(gc_level);
1601 struct page *page;
1602 int err;
1604 page = logfs_get_write_page(inode, bix, level);
1605 if (!page)
1606 return -ENOMEM;
1608 err = logfs_segment_read(inode, page, ofs, bix, level);
1609 if (!err) {
1610 if (level != 0)
1611 alloc_indirect_block(inode, page, 0);
1612 err = logfs_write_buf(inode, page, flags);
1613 if (!err && shrink_level(gc_level) == 0) {
1614 /* Rewrite cannot mark the inode dirty but has to
1615 * write it immediatly.
1616 * Q: Can't we just create an alias for the inode
1617 * instead? And if not, why not?
1619 if (inode->i_ino == LOGFS_INO_MASTER)
1620 logfs_write_anchor(inode->i_sb);
1621 else {
1622 err = __logfs_write_inode(inode, flags);
1626 logfs_put_write_page(page);
1627 return err;
1630 static int truncate_data_block(struct inode *inode, struct page *page,
1631 u64 ofs, struct logfs_shadow *shadow, u64 size)
1633 loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits;
1634 u64 bix;
1635 level_t level;
1636 int err;
1638 /* Does truncation happen within this page? */
1639 if (size <= pageofs || size - pageofs >= PAGE_SIZE)
1640 return 0;
1642 logfs_unpack_index(page->index, &bix, &level);
1643 BUG_ON(level != 0);
1645 err = logfs_segment_read(inode, page, ofs, bix, level);
1646 if (err)
1647 return err;
1649 zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE);
1650 return logfs_segment_write(inode, page, shadow);
1653 static int logfs_truncate_i0(struct inode *inode, struct page *page,
1654 struct write_control *wc, u64 size)
1656 struct logfs_shadow *shadow;
1657 u64 bix;
1658 level_t level;
1659 int err = 0;
1661 logfs_unpack_index(page->index, &bix, &level);
1662 BUG_ON(level != 0);
1663 shadow = alloc_shadow(inode, bix, level, wc->ofs);
1665 err = truncate_data_block(inode, page, wc->ofs, shadow, size);
1666 if (err) {
1667 free_shadow(inode, shadow);
1668 return err;
1671 logfs_segment_delete(inode, shadow);
1672 set_iused(inode, shadow);
1673 fill_shadow_tree(inode, page, shadow);
1674 wc->ofs = shadow->new_ofs;
1675 return 0;
1678 static int logfs_truncate_direct(struct inode *inode, u64 size)
1680 struct logfs_inode *li = logfs_inode(inode);
1681 struct write_control wc;
1682 struct page *page;
1683 int e;
1684 int err;
1686 alloc_inode_block(inode);
1688 for (e = I0_BLOCKS - 1; e >= 0; e--) {
1689 if (size > (e+1) * LOGFS_BLOCKSIZE)
1690 break;
1692 wc.ofs = li->li_data[e];
1693 if (!wc.ofs)
1694 continue;
1696 page = logfs_get_write_page(inode, e, 0);
1697 if (!page)
1698 return -ENOMEM;
1699 err = logfs_segment_read(inode, page, wc.ofs, e, 0);
1700 if (err) {
1701 logfs_put_write_page(page);
1702 return err;
1704 err = logfs_truncate_i0(inode, page, &wc, size);
1705 logfs_put_write_page(page);
1706 if (err)
1707 return err;
1709 li->li_data[e] = wc.ofs;
1711 return 0;
1714 static u64 __logfs_step[] = {
1716 I1_BLOCKS,
1717 I2_BLOCKS,
1718 I3_BLOCKS,
1721 static u64 __logfs_start_index[] = {
1722 I0_BLOCKS,
1723 I1_BLOCKS,
1724 I2_BLOCKS,
1725 I3_BLOCKS
1728 static inline u64 logfs_step(level_t level)
1730 return __logfs_step[(__force u8)level];
1733 static inline u64 logfs_factor(u8 level)
1735 return __logfs_step[level] * LOGFS_BLOCKSIZE;
1738 static inline u64 logfs_start_index(level_t level)
1740 return __logfs_start_index[(__force u8)level];
1743 static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level)
1745 logfs_unpack_index(index, bix, level);
1746 if (*bix <= logfs_start_index(SUBLEVEL(*level)))
1747 *bix = 0;
1750 static int __logfs_truncate_rec(struct inode *inode, struct page *ipage,
1751 struct write_control *this_wc, u64 size)
1753 int truncate_happened = 0;
1754 int e, err = 0;
1755 u64 bix, child_bix, next_bix;
1756 level_t level;
1757 struct page *page;
1758 struct write_control child_wc = { };
1760 logfs_unpack_raw_index(ipage->index, &bix, &level);
1761 err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1762 if (err)
1763 return err;
1765 for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) {
1766 child_bix = bix + e * logfs_step(SUBLEVEL(level));
1767 next_bix = child_bix + logfs_step(SUBLEVEL(level));
1768 if (size > next_bix * LOGFS_BLOCKSIZE)
1769 break;
1771 child_wc.ofs = pure_ofs(block_get_pointer(ipage, e));
1772 if (!child_wc.ofs)
1773 continue;
1775 page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level));
1776 if (!page)
1777 return -ENOMEM;
1779 if ((__force u8)level > 1)
1780 err = __logfs_truncate_rec(inode, page, &child_wc, size);
1781 else
1782 err = logfs_truncate_i0(inode, page, &child_wc, size);
1783 logfs_put_write_page(page);
1784 if (err)
1785 return err;
1787 truncate_happened = 1;
1788 alloc_indirect_block(inode, ipage, 0);
1789 block_set_pointer(ipage, e, child_wc.ofs);
1792 if (!truncate_happened) {
1793 printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size);
1794 return 0;
1797 this_wc->flags = WF_DELETE;
1798 if (logfs_block(ipage)->partial)
1799 this_wc->flags |= WF_WRITE;
1801 return logfs_write_i0(inode, ipage, this_wc);
1804 static int logfs_truncate_rec(struct inode *inode, u64 size)
1806 struct logfs_inode *li = logfs_inode(inode);
1807 struct write_control wc = {
1808 .ofs = li->li_data[INDIRECT_INDEX],
1810 struct page *page;
1811 int err;
1813 alloc_inode_block(inode);
1815 if (!wc.ofs)
1816 return 0;
1818 page = logfs_get_write_page(inode, 0, LEVEL(li->li_height));
1819 if (!page)
1820 return -ENOMEM;
1822 err = __logfs_truncate_rec(inode, page, &wc, size);
1823 logfs_put_write_page(page);
1824 if (err)
1825 return err;
1827 if (li->li_data[INDIRECT_INDEX] != wc.ofs)
1828 li->li_data[INDIRECT_INDEX] = wc.ofs;
1829 return 0;
1832 static int __logfs_truncate(struct inode *inode, u64 size)
1834 int ret;
1836 if (size >= logfs_factor(logfs_inode(inode)->li_height))
1837 return 0;
1839 ret = logfs_truncate_rec(inode, size);
1840 if (ret)
1841 return ret;
1843 return logfs_truncate_direct(inode, size);
1847 * Truncate, by changing the segment file, can consume a fair amount
1848 * of resources. So back off from time to time and do some GC.
1849 * 8 or 2048 blocks should be well within safety limits even if
1850 * every single block resided in a different segment.
1852 #define TRUNCATE_STEP (8 * 1024 * 1024)
1853 int logfs_truncate(struct inode *inode, u64 target)
1855 struct super_block *sb = inode->i_sb;
1856 u64 size = i_size_read(inode);
1857 int err = 0;
1859 size = ALIGN(size, TRUNCATE_STEP);
1860 while (size > target) {
1861 if (size > TRUNCATE_STEP)
1862 size -= TRUNCATE_STEP;
1863 else
1864 size = 0;
1865 if (size < target)
1866 size = target;
1868 logfs_get_wblocks(sb, NULL, 1);
1869 err = __logfs_truncate(inode, size);
1870 if (!err)
1871 err = __logfs_write_inode(inode, 0);
1872 logfs_put_wblocks(sb, NULL, 1);
1875 if (!err)
1876 err = vmtruncate(inode, target);
1878 /* I don't trust error recovery yet. */
1879 WARN_ON(err);
1880 return err;
1883 static void move_page_to_inode(struct inode *inode, struct page *page)
1885 struct logfs_inode *li = logfs_inode(inode);
1886 struct logfs_block *block = logfs_block(page);
1888 if (!block)
1889 return;
1891 log_blockmove("move_page_to_inode(%llx, %llx, %x)\n",
1892 block->ino, block->bix, block->level);
1893 BUG_ON(li->li_block);
1894 block->ops = &inode_block_ops;
1895 block->inode = inode;
1896 li->li_block = block;
1898 block->page = NULL;
1899 page->private = 0;
1900 ClearPagePrivate(page);
1903 static void move_inode_to_page(struct page *page, struct inode *inode)
1905 struct logfs_inode *li = logfs_inode(inode);
1906 struct logfs_block *block = li->li_block;
1908 if (!block)
1909 return;
1911 log_blockmove("move_inode_to_page(%llx, %llx, %x)\n",
1912 block->ino, block->bix, block->level);
1913 BUG_ON(PagePrivate(page));
1914 block->ops = &indirect_block_ops;
1915 block->page = page;
1916 page->private = (unsigned long)block;
1917 SetPagePrivate(page);
1919 block->inode = NULL;
1920 li->li_block = NULL;
1923 int logfs_read_inode(struct inode *inode)
1925 struct super_block *sb = inode->i_sb;
1926 struct logfs_super *super = logfs_super(sb);
1927 struct inode *master_inode = super->s_master_inode;
1928 struct page *page;
1929 struct logfs_disk_inode *di;
1930 u64 ino = inode->i_ino;
1932 if (ino << sb->s_blocksize_bits > i_size_read(master_inode))
1933 return -ENODATA;
1934 if (!logfs_exist_block(master_inode, ino))
1935 return -ENODATA;
1937 page = read_cache_page(master_inode->i_mapping, ino,
1938 (filler_t *)logfs_readpage, NULL);
1939 if (IS_ERR(page))
1940 return PTR_ERR(page);
1942 di = kmap_atomic(page, KM_USER0);
1943 logfs_disk_to_inode(di, inode);
1944 kunmap_atomic(di, KM_USER0);
1945 move_page_to_inode(inode, page);
1946 page_cache_release(page);
1947 return 0;
1950 /* Caller must logfs_put_write_page(page); */
1951 static struct page *inode_to_page(struct inode *inode)
1953 struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode;
1954 struct logfs_disk_inode *di;
1955 struct page *page;
1957 BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
1959 page = logfs_get_write_page(master_inode, inode->i_ino, 0);
1960 if (!page)
1961 return NULL;
1963 di = kmap_atomic(page, KM_USER0);
1964 logfs_inode_to_disk(inode, di);
1965 kunmap_atomic(di, KM_USER0);
1966 move_inode_to_page(page, inode);
1967 return page;
1970 static int do_write_inode(struct inode *inode)
1972 struct super_block *sb = inode->i_sb;
1973 struct inode *master_inode = logfs_super(sb)->s_master_inode;
1974 loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits;
1975 struct page *page;
1976 int err;
1978 BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
1980 if (i_size_read(master_inode) < size)
1981 i_size_write(master_inode, size);
1983 /* TODO: Tell vfs this inode is clean now */
1985 page = inode_to_page(inode);
1986 if (!page)
1987 return -ENOMEM;
1989 err = logfs_write_buf(master_inode, page, 0);
1990 logfs_put_write_page(page);
1991 return err;
1994 static void logfs_mod_segment_entry(struct super_block *sb, u32 segno,
1995 int write,
1996 void (*change_se)(struct logfs_segment_entry *, long),
1997 long arg)
1999 struct logfs_super *super = logfs_super(sb);
2000 struct inode *inode;
2001 struct page *page;
2002 struct logfs_segment_entry *se;
2003 pgoff_t page_no;
2004 int child_no;
2006 page_no = segno >> (sb->s_blocksize_bits - 3);
2007 child_no = segno & ((sb->s_blocksize >> 3) - 1);
2009 inode = super->s_segfile_inode;
2010 page = logfs_get_write_page(inode, page_no, 0);
2011 BUG_ON(!page);
2012 if (!PageUptodate(page))
2013 logfs_read_block(inode, page, WRITE);
2015 if (write)
2016 alloc_indirect_block(inode, page, 0);
2017 se = kmap_atomic(page, KM_USER0);
2018 change_se(se + child_no, arg);
2019 if (write) {
2020 logfs_set_alias(sb, logfs_block(page), child_no);
2021 BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize);
2023 kunmap_atomic(se, KM_USER0);
2025 logfs_put_write_page(page);
2028 static void __get_segment_entry(struct logfs_segment_entry *se, long _target)
2030 struct logfs_segment_entry *target = (void *)_target;
2032 *target = *se;
2035 void logfs_get_segment_entry(struct super_block *sb, u32 segno,
2036 struct logfs_segment_entry *se)
2038 logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se);
2041 static void __set_segment_used(struct logfs_segment_entry *se, long increment)
2043 u32 valid;
2045 valid = be32_to_cpu(se->valid);
2046 valid += increment;
2047 se->valid = cpu_to_be32(valid);
2050 void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment)
2052 struct logfs_super *super = logfs_super(sb);
2053 u32 segno = ofs >> super->s_segshift;
2055 if (!increment)
2056 return;
2058 logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment);
2061 static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level)
2063 se->ec_level = cpu_to_be32(ec_level);
2066 void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
2067 gc_level_t gc_level)
2069 u32 ec_level = ec << 4 | (__force u8)gc_level;
2071 logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level);
2074 static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore)
2076 se->valid = cpu_to_be32(RESERVED);
2079 void logfs_set_segment_reserved(struct super_block *sb, u32 segno)
2081 logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0);
2084 static void __set_segment_unreserved(struct logfs_segment_entry *se,
2085 long ec_level)
2087 se->valid = 0;
2088 se->ec_level = cpu_to_be32(ec_level);
2091 void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec)
2093 u32 ec_level = ec << 4;
2095 logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved,
2096 ec_level);
2099 int __logfs_write_inode(struct inode *inode, long flags)
2101 struct super_block *sb = inode->i_sb;
2102 int ret;
2104 logfs_get_wblocks(sb, NULL, flags & WF_LOCK);
2105 ret = do_write_inode(inode);
2106 logfs_put_wblocks(sb, NULL, flags & WF_LOCK);
2107 return ret;
2110 static int do_delete_inode(struct inode *inode)
2112 struct super_block *sb = inode->i_sb;
2113 struct inode *master_inode = logfs_super(sb)->s_master_inode;
2114 struct page *page;
2115 int ret;
2117 page = logfs_get_write_page(master_inode, inode->i_ino, 0);
2118 if (!page)
2119 return -ENOMEM;
2121 move_inode_to_page(page, inode);
2123 logfs_get_wblocks(sb, page, 1);
2124 ret = __logfs_delete(master_inode, page);
2125 logfs_put_wblocks(sb, page, 1);
2127 logfs_put_write_page(page);
2128 return ret;
2132 * ZOMBIE inodes have already been deleted before and should remain dead,
2133 * if it weren't for valid checking. No need to kill them again here.
2135 void logfs_evict_inode(struct inode *inode)
2137 struct super_block *sb = inode->i_sb;
2138 struct logfs_inode *li = logfs_inode(inode);
2139 struct logfs_block *block = li->li_block;
2140 struct page *page;
2142 if (!inode->i_nlink) {
2143 if (!(li->li_flags & LOGFS_IF_ZOMBIE)) {
2144 li->li_flags |= LOGFS_IF_ZOMBIE;
2145 if (i_size_read(inode) > 0)
2146 logfs_truncate(inode, 0);
2147 do_delete_inode(inode);
2150 truncate_inode_pages(&inode->i_data, 0);
2151 end_writeback(inode);
2153 /* Cheaper version of write_inode. All changes are concealed in
2154 * aliases, which are moved back. No write to the medium happens.
2156 /* Only deleted files may be dirty at this point */
2157 BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink);
2158 if (!block)
2159 return;
2160 if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) {
2161 block->ops->free_block(inode->i_sb, block);
2162 return;
2165 BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS);
2166 page = inode_to_page(inode);
2167 BUG_ON(!page);
2168 logfs_put_write_page(page);
2171 void btree_write_block(struct logfs_block *block)
2173 struct inode *inode;
2174 struct page *page;
2175 int err, cookie;
2177 inode = logfs_safe_iget(block->sb, block->ino, &cookie);
2178 page = logfs_get_write_page(inode, block->bix, block->level);
2180 err = logfs_readpage_nolock(page);
2181 BUG_ON(err);
2182 BUG_ON(!PagePrivate(page));
2183 BUG_ON(logfs_block(page) != block);
2184 err = __logfs_write_buf(inode, page, 0);
2185 BUG_ON(err);
2186 BUG_ON(PagePrivate(page) || page->private);
2188 logfs_put_write_page(page);
2189 logfs_safe_iput(inode, cookie);
2192 int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
2193 loff_t bix, long flags, struct shadow_tree *shadow_tree)
2195 loff_t pos = bix << inode->i_sb->s_blocksize_bits;
2196 int err;
2197 struct page *page;
2198 void *pagebuf;
2200 BUG_ON(pos & (LOGFS_BLOCKSIZE-1));
2201 BUG_ON(count > LOGFS_BLOCKSIZE);
2202 page = logfs_get_write_page(inode, bix, 0);
2203 if (!page)
2204 return -ENOMEM;
2206 pagebuf = kmap_atomic(page, KM_USER0);
2207 memcpy(pagebuf, buf, count);
2208 flush_dcache_page(page);
2209 kunmap_atomic(pagebuf, KM_USER0);
2211 if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE)
2212 i_size_write(inode, pos + LOGFS_BLOCKSIZE);
2214 err = logfs_write_buf(inode, page, flags);
2215 logfs_put_write_page(page);
2216 return err;
2219 int logfs_open_segfile(struct super_block *sb)
2221 struct logfs_super *super = logfs_super(sb);
2222 struct inode *inode;
2224 inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE);
2225 if (IS_ERR(inode))
2226 return PTR_ERR(inode);
2227 super->s_segfile_inode = inode;
2228 return 0;
2231 int logfs_init_rw(struct super_block *sb)
2233 struct logfs_super *super = logfs_super(sb);
2234 int min_fill = 3 * super->s_no_blocks;
2236 INIT_LIST_HEAD(&super->s_object_alias);
2237 INIT_LIST_HEAD(&super->s_writeback_list);
2238 mutex_init(&super->s_write_mutex);
2239 super->s_block_pool = mempool_create_kmalloc_pool(min_fill,
2240 sizeof(struct logfs_block));
2241 super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill,
2242 sizeof(struct logfs_shadow));
2243 return 0;
2246 void logfs_cleanup_rw(struct super_block *sb)
2248 struct logfs_super *super = logfs_super(sb);
2250 logfs_mempool_destroy(super->s_block_pool);
2251 logfs_mempool_destroy(super->s_shadow_pool);