GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / jfs / jfs_logmgr.c
blobc3536f0bb5e43f664606b8d3b2d55f5d5d90a6cd
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * jfs_logmgr.c: log manager
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
26 * note: for detail, RTFS.
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include <linux/seq_file.h>
73 #include <linux/slab.h>
74 #include "jfs_incore.h"
75 #include "jfs_filsys.h"
76 #include "jfs_metapage.h"
77 #include "jfs_superblock.h"
78 #include "jfs_txnmgr.h"
79 #include "jfs_debug.h"
83 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
85 static struct lbuf *log_redrive_list;
86 static DEFINE_SPINLOCK(log_redrive_lock);
90 * log read/write serialization (per log)
92 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
93 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
94 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
98 * log group commit serialization (per log)
101 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
102 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
103 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
104 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
107 * log sync serialization (per log)
109 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
110 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
112 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
113 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
118 * log buffer cache synchronization
120 static DEFINE_SPINLOCK(jfsLCacheLock);
122 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
123 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
126 * See __SLEEP_COND in jfs_locks.h
128 #define LCACHE_SLEEP_COND(wq, cond, flags) \
129 do { \
130 if (cond) \
131 break; \
132 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
133 } while (0)
135 #define LCACHE_WAKEUP(event) wake_up(event)
139 * lbuf buffer cache (lCache) control
141 /* log buffer manager pageout control (cumulative, inclusive) */
142 #define lbmREAD 0x0001
143 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
144 * init pageout if at head of queue;
146 #define lbmRELEASE 0x0004 /* remove from write queue
147 * at completion of pageout;
148 * do not free/recycle it yet:
149 * caller will free it;
151 #define lbmSYNC 0x0008 /* do not return to freelist
152 * when removed from write queue;
154 #define lbmFREE 0x0010 /* return to freelist
155 * at completion of pageout;
156 * the buffer may be recycled;
158 #define lbmDONE 0x0020
159 #define lbmERROR 0x0040
160 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
161 * of log page
163 #define lbmDIRECT 0x0100
166 * Global list of active external journals
168 static LIST_HEAD(jfs_external_logs);
169 static struct jfs_log *dummy_log = NULL;
170 static DEFINE_MUTEX(jfs_log_mutex);
173 * forward references
175 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
176 struct lrd * lrd, struct tlock * tlck);
178 static int lmNextPage(struct jfs_log * log);
179 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
180 int activate);
182 static int open_inline_log(struct super_block *sb);
183 static int open_dummy_log(struct super_block *sb);
184 static int lbmLogInit(struct jfs_log * log);
185 static void lbmLogShutdown(struct jfs_log * log);
186 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
187 static void lbmFree(struct lbuf * bp);
188 static void lbmfree(struct lbuf * bp);
189 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
190 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
191 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
192 static int lbmIOWait(struct lbuf * bp, int flag);
193 static bio_end_io_t lbmIODone;
194 static void lbmStartIO(struct lbuf * bp);
195 static void lmGCwrite(struct jfs_log * log, int cant_block);
196 static int lmLogSync(struct jfs_log * log, int hard_sync);
201 * statistics
203 #ifdef CONFIG_JFS_STATISTICS
204 static struct lmStat {
205 uint commit; /* # of commit */
206 uint pagedone; /* # of page written */
207 uint submitted; /* # of pages submitted */
208 uint full_page; /* # of full pages submitted */
209 uint partial_page; /* # of partial pages submitted */
210 } lmStat;
211 #endif
213 static void write_special_inodes(struct jfs_log *log,
214 int (*writer)(struct address_space *))
216 struct jfs_sb_info *sbi;
218 list_for_each_entry(sbi, &log->sb_list, log_list) {
219 writer(sbi->ipbmap->i_mapping);
220 writer(sbi->ipimap->i_mapping);
221 writer(sbi->direct_inode->i_mapping);
226 * NAME: lmLog()
228 * FUNCTION: write a log record;
230 * PARAMETER:
232 * RETURN: lsn - offset to the next log record to write (end-of-log);
233 * -1 - error;
235 * note: todo: log error handler
237 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
238 struct tlock * tlck)
240 int lsn;
241 int diffp, difft;
242 struct metapage *mp = NULL;
243 unsigned long flags;
245 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
246 log, tblk, lrd, tlck);
248 LOG_LOCK(log);
250 /* log by (out-of-transaction) JFS ? */
251 if (tblk == NULL)
252 goto writeRecord;
254 /* log from page ? */
255 if (tlck == NULL ||
256 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
257 goto writeRecord;
260 * initialize/update page/transaction recovery lsn
262 lsn = log->lsn;
264 LOGSYNC_LOCK(log, flags);
267 * initialize page lsn if first log write of the page
269 if (mp->lsn == 0) {
270 mp->log = log;
271 mp->lsn = lsn;
272 log->count++;
274 /* insert page at tail of logsynclist */
275 list_add_tail(&mp->synclist, &log->synclist);
279 * initialize/update lsn of tblock of the page
281 * transaction inherits oldest lsn of pages associated
282 * with allocation/deallocation of resources (their
283 * log records are used to reconstruct allocation map
284 * at recovery time: inode for inode allocation map,
285 * B+-tree index of extent descriptors for block
286 * allocation map);
287 * allocation map pages inherit transaction lsn at
288 * commit time to allow forwarding log syncpt past log
289 * records associated with allocation/deallocation of
290 * resources only after persistent map of these map pages
291 * have been updated and propagated to home.
294 * initialize transaction lsn:
296 if (tblk->lsn == 0) {
297 /* inherit lsn of its first page logged */
298 tblk->lsn = mp->lsn;
299 log->count++;
301 /* insert tblock after the page on logsynclist */
302 list_add(&tblk->synclist, &mp->synclist);
305 * update transaction lsn:
307 else {
308 /* inherit oldest/smallest lsn of page */
309 logdiff(diffp, mp->lsn, log);
310 logdiff(difft, tblk->lsn, log);
311 if (diffp < difft) {
312 /* update tblock lsn with page lsn */
313 tblk->lsn = mp->lsn;
315 /* move tblock after page on logsynclist */
316 list_move(&tblk->synclist, &mp->synclist);
320 LOGSYNC_UNLOCK(log, flags);
323 * write the log record
325 writeRecord:
326 lsn = lmWriteRecord(log, tblk, lrd, tlck);
329 * forward log syncpt if log reached next syncpt trigger
331 logdiff(diffp, lsn, log);
332 if (diffp >= log->nextsync)
333 lsn = lmLogSync(log, 0);
335 /* update end-of-log lsn */
336 log->lsn = lsn;
338 LOG_UNLOCK(log);
340 /* return end-of-log address */
341 return lsn;
345 * NAME: lmWriteRecord()
347 * FUNCTION: move the log record to current log page
349 * PARAMETER: cd - commit descriptor
351 * RETURN: end-of-log address
353 * serialization: LOG_LOCK() held on entry/exit
355 static int
356 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
357 struct tlock * tlck)
359 int lsn = 0; /* end-of-log address */
360 struct lbuf *bp; /* dst log page buffer */
361 struct logpage *lp; /* dst log page */
362 caddr_t dst; /* destination address in log page */
363 int dstoffset; /* end-of-log offset in log page */
364 int freespace; /* free space in log page */
365 caddr_t p; /* src meta-data page */
366 caddr_t src;
367 int srclen;
368 int nbytes; /* number of bytes to move */
369 int i;
370 int len;
371 struct linelock *linelock;
372 struct lv *lv;
373 struct lvd *lvd;
374 int l2linesize;
376 len = 0;
378 /* retrieve destination log page to write */
379 bp = (struct lbuf *) log->bp;
380 lp = (struct logpage *) bp->l_ldata;
381 dstoffset = log->eor;
383 /* any log data to write ? */
384 if (tlck == NULL)
385 goto moveLrd;
388 * move log record data
390 /* retrieve source meta-data page to log */
391 if (tlck->flag & tlckPAGELOCK) {
392 p = (caddr_t) (tlck->mp->data);
393 linelock = (struct linelock *) & tlck->lock;
395 /* retrieve source in-memory inode to log */
396 else if (tlck->flag & tlckINODELOCK) {
397 if (tlck->type & tlckDTREE)
398 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
399 else
400 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
401 linelock = (struct linelock *) & tlck->lock;
403 #ifdef _JFS_WIP
404 else if (tlck->flag & tlckINLINELOCK) {
406 inlinelock = (struct inlinelock *) & tlck;
407 p = (caddr_t) & inlinelock->pxd;
408 linelock = (struct linelock *) & tlck;
410 #endif /* _JFS_WIP */
411 else {
412 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
413 return 0; /* Probably should trap */
415 l2linesize = linelock->l2linesize;
417 moveData:
418 ASSERT(linelock->index <= linelock->maxcnt);
420 lv = linelock->lv;
421 for (i = 0; i < linelock->index; i++, lv++) {
422 if (lv->length == 0)
423 continue;
425 /* is page full ? */
426 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
427 /* page become full: move on to next page */
428 lmNextPage(log);
430 bp = log->bp;
431 lp = (struct logpage *) bp->l_ldata;
432 dstoffset = LOGPHDRSIZE;
436 * move log vector data
438 src = (u8 *) p + (lv->offset << l2linesize);
439 srclen = lv->length << l2linesize;
440 len += srclen;
441 while (srclen > 0) {
442 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
443 nbytes = min(freespace, srclen);
444 dst = (caddr_t) lp + dstoffset;
445 memcpy(dst, src, nbytes);
446 dstoffset += nbytes;
448 /* is page not full ? */
449 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
450 break;
452 /* page become full: move on to next page */
453 lmNextPage(log);
455 bp = (struct lbuf *) log->bp;
456 lp = (struct logpage *) bp->l_ldata;
457 dstoffset = LOGPHDRSIZE;
459 srclen -= nbytes;
460 src += nbytes;
464 * move log vector descriptor
466 len += 4;
467 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
468 lvd->offset = cpu_to_le16(lv->offset);
469 lvd->length = cpu_to_le16(lv->length);
470 dstoffset += 4;
471 jfs_info("lmWriteRecord: lv offset:%d length:%d",
472 lv->offset, lv->length);
475 if ((i = linelock->next)) {
476 linelock = (struct linelock *) lid_to_tlock(i);
477 goto moveData;
481 * move log record descriptor
483 moveLrd:
484 lrd->length = cpu_to_le16(len);
486 src = (caddr_t) lrd;
487 srclen = LOGRDSIZE;
489 while (srclen > 0) {
490 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
491 nbytes = min(freespace, srclen);
492 dst = (caddr_t) lp + dstoffset;
493 memcpy(dst, src, nbytes);
495 dstoffset += nbytes;
496 srclen -= nbytes;
498 /* are there more to move than freespace of page ? */
499 if (srclen)
500 goto pageFull;
503 * end of log record descriptor
506 /* update last log record eor */
507 log->eor = dstoffset;
508 bp->l_eor = dstoffset;
509 lsn = (log->page << L2LOGPSIZE) + dstoffset;
511 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
512 tblk->clsn = lsn;
513 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
514 bp->l_eor);
516 INCREMENT(lmStat.commit); /* # of commit */
519 * enqueue tblock for group commit:
521 * enqueue tblock of non-trivial/synchronous COMMIT
522 * at tail of group commit queue
523 * (trivial/asynchronous COMMITs are ignored by
524 * group commit.)
526 LOGGC_LOCK(log);
528 /* init tblock gc state */
529 tblk->flag = tblkGC_QUEUE;
530 tblk->bp = log->bp;
531 tblk->pn = log->page;
532 tblk->eor = log->eor;
534 /* enqueue transaction to commit queue */
535 list_add_tail(&tblk->cqueue, &log->cqueue);
537 LOGGC_UNLOCK(log);
540 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
541 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
543 /* page not full ? */
544 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
545 return lsn;
547 pageFull:
548 /* page become full: move on to next page */
549 lmNextPage(log);
551 bp = (struct lbuf *) log->bp;
552 lp = (struct logpage *) bp->l_ldata;
553 dstoffset = LOGPHDRSIZE;
554 src += nbytes;
557 return lsn;
562 * NAME: lmNextPage()
564 * FUNCTION: write current page and allocate next page.
566 * PARAMETER: log
568 * RETURN: 0
570 * serialization: LOG_LOCK() held on entry/exit
572 static int lmNextPage(struct jfs_log * log)
574 struct logpage *lp;
575 int lspn; /* log sequence page number */
576 int pn; /* current page number */
577 struct lbuf *bp;
578 struct lbuf *nextbp;
579 struct tblock *tblk;
581 /* get current log page number and log sequence page number */
582 pn = log->page;
583 bp = log->bp;
584 lp = (struct logpage *) bp->l_ldata;
585 lspn = le32_to_cpu(lp->h.page);
587 LOGGC_LOCK(log);
590 * write or queue the full page at the tail of write queue
592 /* get the tail tblk on commit queue */
593 if (list_empty(&log->cqueue))
594 tblk = NULL;
595 else
596 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
598 /* every tblk who has COMMIT record on the current page,
599 * and has not been committed, must be on commit queue
600 * since tblk is queued at commit queueu at the time
601 * of writing its COMMIT record on the page before
602 * page becomes full (even though the tblk thread
603 * who wrote COMMIT record may have been suspended
604 * currently);
607 /* is page bound with outstanding tail tblk ? */
608 if (tblk && tblk->pn == pn) {
609 /* mark tblk for end-of-page */
610 tblk->flag |= tblkGC_EOP;
612 if (log->cflag & logGC_PAGEOUT) {
613 /* if page is not already on write queue,
614 * just enqueue (no lbmWRITE to prevent redrive)
615 * buffer to wqueue to ensure correct serial order
616 * of the pages since log pages will be added
617 * continuously
619 if (bp->l_wqnext == NULL)
620 lbmWrite(log, bp, 0, 0);
621 } else {
623 * No current GC leader, initiate group commit
625 log->cflag |= logGC_PAGEOUT;
626 lmGCwrite(log, 0);
629 /* page is not bound with outstanding tblk:
630 * init write or mark it to be redriven (lbmWRITE)
632 else {
633 /* finalize the page */
634 bp->l_ceor = bp->l_eor;
635 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
636 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
638 LOGGC_UNLOCK(log);
641 * allocate/initialize next page
643 /* if log wraps, the first data page of log is 2
644 * (0 never used, 1 is superblock).
646 log->page = (pn == log->size - 1) ? 2 : pn + 1;
647 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
649 /* allocate/initialize next log page buffer */
650 nextbp = lbmAllocate(log, log->page);
651 nextbp->l_eor = log->eor;
652 log->bp = nextbp;
654 /* initialize next log page */
655 lp = (struct logpage *) nextbp->l_ldata;
656 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
657 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
659 return 0;
664 * NAME: lmGroupCommit()
666 * FUNCTION: group commit
667 * initiate pageout of the pages with COMMIT in the order of
668 * page number - redrive pageout of the page at the head of
669 * pageout queue until full page has been written.
671 * RETURN:
673 * NOTE:
674 * LOGGC_LOCK serializes log group commit queue, and
675 * transaction blocks on the commit queue.
676 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
678 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
680 int rc = 0;
682 LOGGC_LOCK(log);
684 /* group committed already ? */
685 if (tblk->flag & tblkGC_COMMITTED) {
686 if (tblk->flag & tblkGC_ERROR)
687 rc = -EIO;
689 LOGGC_UNLOCK(log);
690 return rc;
692 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
694 if (tblk->xflag & COMMIT_LAZY)
695 tblk->flag |= tblkGC_LAZY;
697 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
698 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
699 || jfs_tlocks_low)) {
701 * No pageout in progress
703 * start group commit as its group leader.
705 log->cflag |= logGC_PAGEOUT;
707 lmGCwrite(log, 0);
710 if (tblk->xflag & COMMIT_LAZY) {
712 * Lazy transactions can leave now
714 LOGGC_UNLOCK(log);
715 return 0;
718 /* lmGCwrite gives up LOGGC_LOCK, check again */
720 if (tblk->flag & tblkGC_COMMITTED) {
721 if (tblk->flag & tblkGC_ERROR)
722 rc = -EIO;
724 LOGGC_UNLOCK(log);
725 return rc;
728 /* upcount transaction waiting for completion
730 log->gcrtc++;
731 tblk->flag |= tblkGC_READY;
733 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
734 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
736 /* removed from commit queue */
737 if (tblk->flag & tblkGC_ERROR)
738 rc = -EIO;
740 LOGGC_UNLOCK(log);
741 return rc;
745 * NAME: lmGCwrite()
747 * FUNCTION: group commit write
748 * initiate write of log page, building a group of all transactions
749 * with commit records on that page.
751 * RETURN: None
753 * NOTE:
754 * LOGGC_LOCK must be held by caller.
755 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
757 static void lmGCwrite(struct jfs_log * log, int cant_write)
759 struct lbuf *bp;
760 struct logpage *lp;
761 int gcpn; /* group commit page number */
762 struct tblock *tblk;
763 struct tblock *xtblk = NULL;
766 * build the commit group of a log page
768 * scan commit queue and make a commit group of all
769 * transactions with COMMIT records on the same log page.
771 /* get the head tblk on the commit queue */
772 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
774 list_for_each_entry(tblk, &log->cqueue, cqueue) {
775 if (tblk->pn != gcpn)
776 break;
778 xtblk = tblk;
780 /* state transition: (QUEUE, READY) -> COMMIT */
781 tblk->flag |= tblkGC_COMMIT;
783 tblk = xtblk; /* last tblk of the page */
786 * pageout to commit transactions on the log page.
788 bp = (struct lbuf *) tblk->bp;
789 lp = (struct logpage *) bp->l_ldata;
790 /* is page already full ? */
791 if (tblk->flag & tblkGC_EOP) {
792 /* mark page to free at end of group commit of the page */
793 tblk->flag &= ~tblkGC_EOP;
794 tblk->flag |= tblkGC_FREE;
795 bp->l_ceor = bp->l_eor;
796 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
797 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
798 cant_write);
799 INCREMENT(lmStat.full_page);
801 /* page is not yet full */
802 else {
803 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
804 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
805 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
806 INCREMENT(lmStat.partial_page);
811 * NAME: lmPostGC()
813 * FUNCTION: group commit post-processing
814 * Processes transactions after their commit records have been written
815 * to disk, redriving log I/O if necessary.
817 * RETURN: None
819 * NOTE:
820 * This routine is called a interrupt time by lbmIODone
822 static void lmPostGC(struct lbuf * bp)
824 unsigned long flags;
825 struct jfs_log *log = bp->l_log;
826 struct logpage *lp;
827 struct tblock *tblk, *temp;
829 //LOGGC_LOCK(log);
830 spin_lock_irqsave(&log->gclock, flags);
832 * current pageout of group commit completed.
834 * remove/wakeup transactions from commit queue who were
835 * group committed with the current log page
837 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
838 if (!(tblk->flag & tblkGC_COMMIT))
839 break;
840 /* if transaction was marked GC_COMMIT then
841 * it has been shipped in the current pageout
842 * and made it to disk - it is committed.
845 if (bp->l_flag & lbmERROR)
846 tblk->flag |= tblkGC_ERROR;
848 /* remove it from the commit queue */
849 list_del(&tblk->cqueue);
850 tblk->flag &= ~tblkGC_QUEUE;
852 if (tblk == log->flush_tblk) {
853 /* we can stop flushing the log now */
854 clear_bit(log_FLUSH, &log->flag);
855 log->flush_tblk = NULL;
858 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
859 tblk->flag);
861 if (!(tblk->xflag & COMMIT_FORCE))
863 * Hand tblk over to lazy commit thread
865 txLazyUnlock(tblk);
866 else {
867 /* state transition: COMMIT -> COMMITTED */
868 tblk->flag |= tblkGC_COMMITTED;
870 if (tblk->flag & tblkGC_READY)
871 log->gcrtc--;
873 LOGGC_WAKEUP(tblk);
876 /* was page full before pageout ?
877 * (and this is the last tblk bound with the page)
879 if (tblk->flag & tblkGC_FREE)
880 lbmFree(bp);
881 /* did page become full after pageout ?
882 * (and this is the last tblk bound with the page)
884 else if (tblk->flag & tblkGC_EOP) {
885 /* finalize the page */
886 lp = (struct logpage *) bp->l_ldata;
887 bp->l_ceor = bp->l_eor;
888 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
889 jfs_info("lmPostGC: calling lbmWrite");
890 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
896 /* are there any transactions who have entered lnGroupCommit()
897 * (whose COMMITs are after that of the last log page written.
898 * They are waiting for new group commit (above at (SLEEP 1))
899 * or lazy transactions are on a full (queued) log page,
900 * select the latest ready transaction as new group leader and
901 * wake her up to lead her group.
903 if ((!list_empty(&log->cqueue)) &&
904 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
905 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
907 * Call lmGCwrite with new group leader
909 lmGCwrite(log, 1);
911 /* no transaction are ready yet (transactions are only just
912 * queued (GC_QUEUE) and not entered for group commit yet).
913 * the first transaction entering group commit
914 * will elect herself as new group leader.
916 else
917 log->cflag &= ~logGC_PAGEOUT;
919 //LOGGC_UNLOCK(log);
920 spin_unlock_irqrestore(&log->gclock, flags);
921 return;
925 * NAME: lmLogSync()
927 * FUNCTION: write log SYNCPT record for specified log
928 * if new sync address is available
929 * (normally the case if sync() is executed by back-ground
930 * process).
931 * calculate new value of i_nextsync which determines when
932 * this code is called again.
934 * PARAMETERS: log - log structure
935 * hard_sync - 1 to force all metadata to be written
937 * RETURN: 0
939 * serialization: LOG_LOCK() held on entry/exit
941 static int lmLogSync(struct jfs_log * log, int hard_sync)
943 int logsize;
944 int written; /* written since last syncpt */
945 int free; /* free space left available */
946 int delta; /* additional delta to write normally */
947 int more; /* additional write granted */
948 struct lrd lrd;
949 int lsn;
950 struct logsyncblk *lp;
951 unsigned long flags;
953 /* push dirty metapages out to disk */
954 if (hard_sync)
955 write_special_inodes(log, filemap_fdatawrite);
956 else
957 write_special_inodes(log, filemap_flush);
960 * forward syncpt
962 /* if last sync is same as last syncpt,
963 * invoke sync point forward processing to update sync.
966 if (log->sync == log->syncpt) {
967 LOGSYNC_LOCK(log, flags);
968 if (list_empty(&log->synclist))
969 log->sync = log->lsn;
970 else {
971 lp = list_entry(log->synclist.next,
972 struct logsyncblk, synclist);
973 log->sync = lp->lsn;
975 LOGSYNC_UNLOCK(log, flags);
979 /* if sync is different from last syncpt,
980 * write a SYNCPT record with syncpt = sync.
981 * reset syncpt = sync
983 if (log->sync != log->syncpt) {
984 lrd.logtid = 0;
985 lrd.backchain = 0;
986 lrd.type = cpu_to_le16(LOG_SYNCPT);
987 lrd.length = 0;
988 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
989 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
991 log->syncpt = log->sync;
992 } else
993 lsn = log->lsn;
996 * setup next syncpt trigger (SWAG)
998 logsize = log->logsize;
1000 logdiff(written, lsn, log);
1001 free = logsize - written;
1002 delta = LOGSYNC_DELTA(logsize);
1003 more = min(free / 2, delta);
1004 if (more < 2 * LOGPSIZE) {
1005 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1007 * log wrapping
1009 * option 1 - panic ? No.!
1010 * option 2 - shutdown file systems
1011 * associated with log ?
1012 * option 3 - extend log ?
1015 * option 4 - second chance
1017 * mark log wrapped, and continue.
1018 * when all active transactions are completed,
1019 * mark log vaild for recovery.
1020 * if crashed during invalid state, log state
1021 * implies invald log, forcing fsck().
1023 /* mark log state log wrap in log superblock */
1024 /* log->state = LOGWRAP; */
1026 /* reset sync point computation */
1027 log->syncpt = log->sync = lsn;
1028 log->nextsync = delta;
1029 } else
1030 /* next syncpt trigger = written + more */
1031 log->nextsync = written + more;
1033 /* if number of bytes written from last sync point is more
1034 * than 1/4 of the log size, stop new transactions from
1035 * starting until all current transactions are completed
1036 * by setting syncbarrier flag.
1038 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1039 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1040 set_bit(log_SYNCBARRIER, &log->flag);
1041 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1042 log->syncpt);
1044 * We may have to initiate group commit
1046 jfs_flush_journal(log, 0);
1049 return lsn;
1053 * NAME: jfs_syncpt
1055 * FUNCTION: write log SYNCPT record for specified log
1057 * PARAMETERS: log - log structure
1058 * hard_sync - set to 1 to force metadata to be written
1060 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1061 { LOG_LOCK(log);
1062 lmLogSync(log, hard_sync);
1063 LOG_UNLOCK(log);
1067 * NAME: lmLogOpen()
1069 * FUNCTION: open the log on first open;
1070 * insert filesystem in the active list of the log.
1072 * PARAMETER: ipmnt - file system mount inode
1073 * iplog - log inode (out)
1075 * RETURN:
1077 * serialization:
1079 int lmLogOpen(struct super_block *sb)
1081 int rc;
1082 struct block_device *bdev;
1083 struct jfs_log *log;
1084 struct jfs_sb_info *sbi = JFS_SBI(sb);
1086 if (sbi->flag & JFS_NOINTEGRITY)
1087 return open_dummy_log(sb);
1089 if (sbi->mntflag & JFS_INLINELOG)
1090 return open_inline_log(sb);
1092 mutex_lock(&jfs_log_mutex);
1093 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1094 if (log->bdev->bd_dev == sbi->logdev) {
1095 if (memcmp(log->uuid, sbi->loguuid,
1096 sizeof(log->uuid))) {
1097 jfs_warn("wrong uuid on JFS journal\n");
1098 mutex_unlock(&jfs_log_mutex);
1099 return -EINVAL;
1102 * add file system to log active file system list
1104 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1105 mutex_unlock(&jfs_log_mutex);
1106 return rc;
1108 goto journal_found;
1112 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1113 mutex_unlock(&jfs_log_mutex);
1114 return -ENOMEM;
1116 INIT_LIST_HEAD(&log->sb_list);
1117 init_waitqueue_head(&log->syncwait);
1120 * external log as separate logical volume
1122 * file systems to log may have n-to-1 relationship;
1125 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1126 if (IS_ERR(bdev)) {
1127 rc = -PTR_ERR(bdev);
1128 goto free;
1131 if ((rc = bd_claim(bdev, log))) {
1132 goto close;
1135 log->bdev = bdev;
1136 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1139 * initialize log:
1141 if ((rc = lmLogInit(log)))
1142 goto unclaim;
1144 list_add(&log->journal_list, &jfs_external_logs);
1147 * add file system to log active file system list
1149 if ((rc = lmLogFileSystem(log, sbi, 1)))
1150 goto shutdown;
1152 journal_found:
1153 LOG_LOCK(log);
1154 list_add(&sbi->log_list, &log->sb_list);
1155 sbi->log = log;
1156 LOG_UNLOCK(log);
1158 mutex_unlock(&jfs_log_mutex);
1159 return 0;
1162 * unwind on error
1164 shutdown: /* unwind lbmLogInit() */
1165 list_del(&log->journal_list);
1166 lbmLogShutdown(log);
1168 unclaim:
1169 bd_release(bdev);
1171 close: /* close external log device */
1172 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1174 free: /* free log descriptor */
1175 mutex_unlock(&jfs_log_mutex);
1176 kfree(log);
1178 jfs_warn("lmLogOpen: exit(%d)", rc);
1179 return rc;
1182 static int open_inline_log(struct super_block *sb)
1184 struct jfs_log *log;
1185 int rc;
1187 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1188 return -ENOMEM;
1189 INIT_LIST_HEAD(&log->sb_list);
1190 init_waitqueue_head(&log->syncwait);
1192 set_bit(log_INLINELOG, &log->flag);
1193 log->bdev = sb->s_bdev;
1194 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1195 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1196 (L2LOGPSIZE - sb->s_blocksize_bits);
1197 log->l2bsize = sb->s_blocksize_bits;
1198 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1201 * initialize log.
1203 if ((rc = lmLogInit(log))) {
1204 kfree(log);
1205 jfs_warn("lmLogOpen: exit(%d)", rc);
1206 return rc;
1209 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1210 JFS_SBI(sb)->log = log;
1212 return rc;
1215 static int open_dummy_log(struct super_block *sb)
1217 int rc;
1219 mutex_lock(&jfs_log_mutex);
1220 if (!dummy_log) {
1221 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1222 if (!dummy_log) {
1223 mutex_unlock(&jfs_log_mutex);
1224 return -ENOMEM;
1226 INIT_LIST_HEAD(&dummy_log->sb_list);
1227 init_waitqueue_head(&dummy_log->syncwait);
1228 dummy_log->no_integrity = 1;
1229 /* Make up some stuff */
1230 dummy_log->base = 0;
1231 dummy_log->size = 1024;
1232 rc = lmLogInit(dummy_log);
1233 if (rc) {
1234 kfree(dummy_log);
1235 dummy_log = NULL;
1236 mutex_unlock(&jfs_log_mutex);
1237 return rc;
1241 LOG_LOCK(dummy_log);
1242 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1243 JFS_SBI(sb)->log = dummy_log;
1244 LOG_UNLOCK(dummy_log);
1245 mutex_unlock(&jfs_log_mutex);
1247 return 0;
1251 * NAME: lmLogInit()
1253 * FUNCTION: log initialization at first log open.
1255 * logredo() (or logformat()) should have been run previously.
1256 * initialize the log from log superblock.
1257 * set the log state in the superblock to LOGMOUNT and
1258 * write SYNCPT log record.
1260 * PARAMETER: log - log structure
1262 * RETURN: 0 - if ok
1263 * -EINVAL - bad log magic number or superblock dirty
1264 * error returned from logwait()
1266 * serialization: single first open thread
1268 int lmLogInit(struct jfs_log * log)
1270 int rc = 0;
1271 struct lrd lrd;
1272 struct logsuper *logsuper;
1273 struct lbuf *bpsuper;
1274 struct lbuf *bp;
1275 struct logpage *lp;
1276 int lsn = 0;
1278 jfs_info("lmLogInit: log:0x%p", log);
1280 /* initialize the group commit serialization lock */
1281 LOGGC_LOCK_INIT(log);
1283 /* allocate/initialize the log write serialization lock */
1284 LOG_LOCK_INIT(log);
1286 LOGSYNC_LOCK_INIT(log);
1288 INIT_LIST_HEAD(&log->synclist);
1290 INIT_LIST_HEAD(&log->cqueue);
1291 log->flush_tblk = NULL;
1293 log->count = 0;
1296 * initialize log i/o
1298 if ((rc = lbmLogInit(log)))
1299 return rc;
1301 if (!test_bit(log_INLINELOG, &log->flag))
1302 log->l2bsize = L2LOGPSIZE;
1304 /* check for disabled journaling to disk */
1305 if (log->no_integrity) {
1307 * Journal pages will still be filled. When the time comes
1308 * to actually do the I/O, the write is not done, and the
1309 * endio routine is called directly.
1311 bp = lbmAllocate(log , 0);
1312 log->bp = bp;
1313 bp->l_pn = bp->l_eor = 0;
1314 } else {
1316 * validate log superblock
1318 if ((rc = lbmRead(log, 1, &bpsuper)))
1319 goto errout10;
1321 logsuper = (struct logsuper *) bpsuper->l_ldata;
1323 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1324 jfs_warn("*** Log Format Error ! ***");
1325 rc = -EINVAL;
1326 goto errout20;
1329 /* logredo() should have been run successfully. */
1330 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1331 jfs_warn("*** Log Is Dirty ! ***");
1332 rc = -EINVAL;
1333 goto errout20;
1336 /* initialize log from log superblock */
1337 if (test_bit(log_INLINELOG,&log->flag)) {
1338 if (log->size != le32_to_cpu(logsuper->size)) {
1339 rc = -EINVAL;
1340 goto errout20;
1342 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1343 "size:0x%x", log,
1344 (unsigned long long) log->base, log->size);
1345 } else {
1346 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1347 jfs_warn("wrong uuid on JFS log device");
1348 goto errout20;
1350 log->size = le32_to_cpu(logsuper->size);
1351 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1352 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1353 "size:0x%x", log,
1354 (unsigned long long) log->base, log->size);
1357 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1358 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1361 * initialize for log append write mode
1363 /* establish current/end-of-log page/buffer */
1364 if ((rc = lbmRead(log, log->page, &bp)))
1365 goto errout20;
1367 lp = (struct logpage *) bp->l_ldata;
1369 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1370 le32_to_cpu(logsuper->end), log->page, log->eor,
1371 le16_to_cpu(lp->h.eor));
1373 log->bp = bp;
1374 bp->l_pn = log->page;
1375 bp->l_eor = log->eor;
1377 /* if current page is full, move on to next page */
1378 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1379 lmNextPage(log);
1382 * initialize log syncpoint
1385 * write the first SYNCPT record with syncpoint = 0
1386 * (i.e., log redo up to HERE !);
1387 * remove current page from lbm write queue at end of pageout
1388 * (to write log superblock update), but do not release to
1389 * freelist;
1391 lrd.logtid = 0;
1392 lrd.backchain = 0;
1393 lrd.type = cpu_to_le16(LOG_SYNCPT);
1394 lrd.length = 0;
1395 lrd.log.syncpt.sync = 0;
1396 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1397 bp = log->bp;
1398 bp->l_ceor = bp->l_eor;
1399 lp = (struct logpage *) bp->l_ldata;
1400 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1401 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1402 if ((rc = lbmIOWait(bp, 0)))
1403 goto errout30;
1406 * update/write superblock
1408 logsuper->state = cpu_to_le32(LOGMOUNT);
1409 log->serial = le32_to_cpu(logsuper->serial) + 1;
1410 logsuper->serial = cpu_to_le32(log->serial);
1411 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1412 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1413 goto errout30;
1416 /* initialize logsync parameters */
1417 log->logsize = (log->size - 2) << L2LOGPSIZE;
1418 log->lsn = lsn;
1419 log->syncpt = lsn;
1420 log->sync = log->syncpt;
1421 log->nextsync = LOGSYNC_DELTA(log->logsize);
1423 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1424 log->lsn, log->syncpt, log->sync);
1427 * initialize for lazy/group commit
1429 log->clsn = lsn;
1431 return 0;
1434 * unwind on error
1436 errout30: /* release log page */
1437 log->wqueue = NULL;
1438 bp->l_wqnext = NULL;
1439 lbmFree(bp);
1441 errout20: /* release log superblock */
1442 lbmFree(bpsuper);
1444 errout10: /* unwind lbmLogInit() */
1445 lbmLogShutdown(log);
1447 jfs_warn("lmLogInit: exit(%d)", rc);
1448 return rc;
1453 * NAME: lmLogClose()
1455 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1456 * and close it on last close.
1458 * PARAMETER: sb - superblock
1460 * RETURN: errors from subroutines
1462 * serialization:
1464 int lmLogClose(struct super_block *sb)
1466 struct jfs_sb_info *sbi = JFS_SBI(sb);
1467 struct jfs_log *log = sbi->log;
1468 struct block_device *bdev;
1469 int rc = 0;
1471 jfs_info("lmLogClose: log:0x%p", log);
1473 mutex_lock(&jfs_log_mutex);
1474 LOG_LOCK(log);
1475 list_del(&sbi->log_list);
1476 LOG_UNLOCK(log);
1477 sbi->log = NULL;
1480 * We need to make sure all of the "written" metapages
1481 * actually make it to disk
1483 sync_blockdev(sb->s_bdev);
1485 if (test_bit(log_INLINELOG, &log->flag)) {
1487 * in-line log in host file system
1489 rc = lmLogShutdown(log);
1490 kfree(log);
1491 goto out;
1494 if (!log->no_integrity)
1495 lmLogFileSystem(log, sbi, 0);
1497 if (!list_empty(&log->sb_list))
1498 goto out;
1501 * TODO: ensure that the dummy_log is in a state to allow
1502 * lbmLogShutdown to deallocate all the buffers and call
1503 * kfree against dummy_log. For now, leave dummy_log & its
1504 * buffers in memory, and resuse if another no-integrity mount
1505 * is requested.
1507 if (log->no_integrity)
1508 goto out;
1511 * external log as separate logical volume
1513 list_del(&log->journal_list);
1514 bdev = log->bdev;
1515 rc = lmLogShutdown(log);
1517 bd_release(bdev);
1518 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1520 kfree(log);
1522 out:
1523 mutex_unlock(&jfs_log_mutex);
1524 jfs_info("lmLogClose: exit(%d)", rc);
1525 return rc;
1530 * NAME: jfs_flush_journal()
1532 * FUNCTION: initiate write of any outstanding transactions to the journal
1533 * and optionally wait until they are all written to disk
1535 * wait == 0 flush until latest txn is committed, don't wait
1536 * wait == 1 flush until latest txn is committed, wait
1537 * wait > 1 flush until all txn's are complete, wait
1539 void jfs_flush_journal(struct jfs_log *log, int wait)
1541 int i;
1542 struct tblock *target = NULL;
1544 /* jfs_write_inode may call us during read-only mount */
1545 if (!log)
1546 return;
1548 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1550 LOGGC_LOCK(log);
1552 if (!list_empty(&log->cqueue)) {
1554 * This ensures that we will keep writing to the journal as long
1555 * as there are unwritten commit records
1557 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1559 if (test_bit(log_FLUSH, &log->flag)) {
1561 * We're already flushing.
1562 * if flush_tblk is NULL, we are flushing everything,
1563 * so leave it that way. Otherwise, update it to the
1564 * latest transaction
1566 if (log->flush_tblk)
1567 log->flush_tblk = target;
1568 } else {
1569 /* Only flush until latest transaction is committed */
1570 log->flush_tblk = target;
1571 set_bit(log_FLUSH, &log->flag);
1574 * Initiate I/O on outstanding transactions
1576 if (!(log->cflag & logGC_PAGEOUT)) {
1577 log->cflag |= logGC_PAGEOUT;
1578 lmGCwrite(log, 0);
1582 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1583 /* Flush until all activity complete */
1584 set_bit(log_FLUSH, &log->flag);
1585 log->flush_tblk = NULL;
1588 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1589 DECLARE_WAITQUEUE(__wait, current);
1591 add_wait_queue(&target->gcwait, &__wait);
1592 set_current_state(TASK_UNINTERRUPTIBLE);
1593 LOGGC_UNLOCK(log);
1594 schedule();
1595 __set_current_state(TASK_RUNNING);
1596 LOGGC_LOCK(log);
1597 remove_wait_queue(&target->gcwait, &__wait);
1599 LOGGC_UNLOCK(log);
1601 if (wait < 2)
1602 return;
1604 write_special_inodes(log, filemap_fdatawrite);
1607 * If there was recent activity, we may need to wait
1608 * for the lazycommit thread to catch up
1610 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1611 for (i = 0; i < 200; i++) { /* Too much? */
1612 msleep(250);
1613 write_special_inodes(log, filemap_fdatawrite);
1614 if (list_empty(&log->cqueue) &&
1615 list_empty(&log->synclist))
1616 break;
1619 assert(list_empty(&log->cqueue));
1621 #ifdef CONFIG_JFS_DEBUG
1622 if (!list_empty(&log->synclist)) {
1623 struct logsyncblk *lp;
1625 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1626 list_for_each_entry(lp, &log->synclist, synclist) {
1627 if (lp->xflag & COMMIT_PAGE) {
1628 struct metapage *mp = (struct metapage *)lp;
1629 print_hex_dump(KERN_ERR, "metapage: ",
1630 DUMP_PREFIX_ADDRESS, 16, 4,
1631 mp, sizeof(struct metapage), 0);
1632 print_hex_dump(KERN_ERR, "page: ",
1633 DUMP_PREFIX_ADDRESS, 16,
1634 sizeof(long), mp->page,
1635 sizeof(struct page), 0);
1636 } else
1637 print_hex_dump(KERN_ERR, "tblock:",
1638 DUMP_PREFIX_ADDRESS, 16, 4,
1639 lp, sizeof(struct tblock), 0);
1642 #else
1643 WARN_ON(!list_empty(&log->synclist));
1644 #endif
1645 clear_bit(log_FLUSH, &log->flag);
1649 * NAME: lmLogShutdown()
1651 * FUNCTION: log shutdown at last LogClose().
1653 * write log syncpt record.
1654 * update super block to set redone flag to 0.
1656 * PARAMETER: log - log inode
1658 * RETURN: 0 - success
1660 * serialization: single last close thread
1662 int lmLogShutdown(struct jfs_log * log)
1664 int rc;
1665 struct lrd lrd;
1666 int lsn;
1667 struct logsuper *logsuper;
1668 struct lbuf *bpsuper;
1669 struct lbuf *bp;
1670 struct logpage *lp;
1672 jfs_info("lmLogShutdown: log:0x%p", log);
1674 jfs_flush_journal(log, 2);
1677 * write the last SYNCPT record with syncpoint = 0
1678 * (i.e., log redo up to HERE !)
1680 lrd.logtid = 0;
1681 lrd.backchain = 0;
1682 lrd.type = cpu_to_le16(LOG_SYNCPT);
1683 lrd.length = 0;
1684 lrd.log.syncpt.sync = 0;
1686 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1687 bp = log->bp;
1688 lp = (struct logpage *) bp->l_ldata;
1689 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1690 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1691 lbmIOWait(log->bp, lbmFREE);
1692 log->bp = NULL;
1695 * synchronous update log superblock
1696 * mark log state as shutdown cleanly
1697 * (i.e., Log does not need to be replayed).
1699 if ((rc = lbmRead(log, 1, &bpsuper)))
1700 goto out;
1702 logsuper = (struct logsuper *) bpsuper->l_ldata;
1703 logsuper->state = cpu_to_le32(LOGREDONE);
1704 logsuper->end = cpu_to_le32(lsn);
1705 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1706 rc = lbmIOWait(bpsuper, lbmFREE);
1708 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1709 lsn, log->page, log->eor);
1711 out:
1713 * shutdown per log i/o
1715 lbmLogShutdown(log);
1717 if (rc) {
1718 jfs_warn("lmLogShutdown: exit(%d)", rc);
1720 return rc;
1725 * NAME: lmLogFileSystem()
1727 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1728 * file system into/from log active file system list.
1730 * PARAMETE: log - pointer to logs inode.
1731 * fsdev - kdev_t of filesystem.
1732 * serial - pointer to returned log serial number
1733 * activate - insert/remove device from active list.
1735 * RETURN: 0 - success
1736 * errors returned by vms_iowait().
1738 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1739 int activate)
1741 int rc = 0;
1742 int i;
1743 struct logsuper *logsuper;
1744 struct lbuf *bpsuper;
1745 char *uuid = sbi->uuid;
1748 * insert/remove file system device to log active file system list.
1750 if ((rc = lbmRead(log, 1, &bpsuper)))
1751 return rc;
1753 logsuper = (struct logsuper *) bpsuper->l_ldata;
1754 if (activate) {
1755 for (i = 0; i < MAX_ACTIVE; i++)
1756 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1757 memcpy(logsuper->active[i].uuid, uuid, 16);
1758 sbi->aggregate = i;
1759 break;
1761 if (i == MAX_ACTIVE) {
1762 jfs_warn("Too many file systems sharing journal!");
1763 lbmFree(bpsuper);
1764 return -EMFILE; /* Is there a better rc? */
1766 } else {
1767 for (i = 0; i < MAX_ACTIVE; i++)
1768 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1769 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1770 break;
1772 if (i == MAX_ACTIVE) {
1773 jfs_warn("Somebody stomped on the journal!");
1774 lbmFree(bpsuper);
1775 return -EIO;
1781 * synchronous write log superblock:
1783 * write sidestream bypassing write queue:
1784 * at file system mount, log super block is updated for
1785 * activation of the file system before any log record
1786 * (MOUNT record) of the file system, and at file system
1787 * unmount, all meta data for the file system has been
1788 * flushed before log super block is updated for deactivation
1789 * of the file system.
1791 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1792 rc = lbmIOWait(bpsuper, lbmFREE);
1794 return rc;
1798 * log buffer manager (lbm)
1799 * ------------------------
1801 * special purpose buffer manager supporting log i/o requirements.
1803 * per log write queue:
1804 * log pageout occurs in serial order by fifo write queue and
1805 * restricting to a single i/o in pregress at any one time.
1806 * a circular singly-linked list
1807 * (log->wrqueue points to the tail, and buffers are linked via
1808 * bp->wrqueue field), and
1809 * maintains log page in pageout ot waiting for pageout in serial pageout.
1813 * lbmLogInit()
1815 * initialize per log I/O setup at lmLogInit()
1817 static int lbmLogInit(struct jfs_log * log)
1818 { /* log inode */
1819 int i;
1820 struct lbuf *lbuf;
1822 jfs_info("lbmLogInit: log:0x%p", log);
1824 /* initialize current buffer cursor */
1825 log->bp = NULL;
1827 /* initialize log device write queue */
1828 log->wqueue = NULL;
1831 * Each log has its own buffer pages allocated to it. These are
1832 * not managed by the page cache. This ensures that a transaction
1833 * writing to the log does not block trying to allocate a page from
1834 * the page cache (for the log). This would be bad, since page
1835 * allocation waits on the kswapd thread that may be committing inodes
1836 * which would cause log activity. Was that clear? I'm trying to
1837 * avoid deadlock here.
1839 init_waitqueue_head(&log->free_wait);
1841 log->lbuf_free = NULL;
1843 for (i = 0; i < LOGPAGES;) {
1844 char *buffer;
1845 uint offset;
1846 struct page *page;
1848 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1849 if (buffer == NULL)
1850 goto error;
1851 page = virt_to_page(buffer);
1852 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1853 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1854 if (lbuf == NULL) {
1855 if (offset == 0)
1856 free_page((unsigned long) buffer);
1857 goto error;
1859 if (offset) /* we already have one reference */
1860 get_page(page);
1861 lbuf->l_offset = offset;
1862 lbuf->l_ldata = buffer + offset;
1863 lbuf->l_page = page;
1864 lbuf->l_log = log;
1865 init_waitqueue_head(&lbuf->l_ioevent);
1867 lbuf->l_freelist = log->lbuf_free;
1868 log->lbuf_free = lbuf;
1869 i++;
1873 return (0);
1875 error:
1876 lbmLogShutdown(log);
1877 return -ENOMEM;
1882 * lbmLogShutdown()
1884 * finalize per log I/O setup at lmLogShutdown()
1886 static void lbmLogShutdown(struct jfs_log * log)
1888 struct lbuf *lbuf;
1890 jfs_info("lbmLogShutdown: log:0x%p", log);
1892 lbuf = log->lbuf_free;
1893 while (lbuf) {
1894 struct lbuf *next = lbuf->l_freelist;
1895 __free_page(lbuf->l_page);
1896 kfree(lbuf);
1897 lbuf = next;
1903 * lbmAllocate()
1905 * allocate an empty log buffer
1907 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1909 struct lbuf *bp;
1910 unsigned long flags;
1913 * recycle from log buffer freelist if any
1915 LCACHE_LOCK(flags);
1916 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1917 log->lbuf_free = bp->l_freelist;
1918 LCACHE_UNLOCK(flags);
1920 bp->l_flag = 0;
1922 bp->l_wqnext = NULL;
1923 bp->l_freelist = NULL;
1925 bp->l_pn = pn;
1926 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1927 bp->l_ceor = 0;
1929 return bp;
1934 * lbmFree()
1936 * release a log buffer to freelist
1938 static void lbmFree(struct lbuf * bp)
1940 unsigned long flags;
1942 LCACHE_LOCK(flags);
1944 lbmfree(bp);
1946 LCACHE_UNLOCK(flags);
1949 static void lbmfree(struct lbuf * bp)
1951 struct jfs_log *log = bp->l_log;
1953 assert(bp->l_wqnext == NULL);
1956 * return the buffer to head of freelist
1958 bp->l_freelist = log->lbuf_free;
1959 log->lbuf_free = bp;
1961 wake_up(&log->free_wait);
1962 return;
1967 * NAME: lbmRedrive
1969 * FUNCTION: add a log buffer to the log redrive list
1971 * PARAMETER:
1972 * bp - log buffer
1974 * NOTES:
1975 * Takes log_redrive_lock.
1977 static inline void lbmRedrive(struct lbuf *bp)
1979 unsigned long flags;
1981 spin_lock_irqsave(&log_redrive_lock, flags);
1982 bp->l_redrive_next = log_redrive_list;
1983 log_redrive_list = bp;
1984 spin_unlock_irqrestore(&log_redrive_lock, flags);
1986 wake_up_process(jfsIOthread);
1991 * lbmRead()
1993 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1995 struct bio *bio;
1996 struct lbuf *bp;
1999 * allocate a log buffer
2001 *bpp = bp = lbmAllocate(log, pn);
2002 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2004 bp->l_flag |= lbmREAD;
2006 bio = bio_alloc(GFP_NOFS, 1);
2008 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2009 bio->bi_bdev = log->bdev;
2010 bio->bi_io_vec[0].bv_page = bp->l_page;
2011 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2012 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2014 bio->bi_vcnt = 1;
2015 bio->bi_idx = 0;
2016 bio->bi_size = LOGPSIZE;
2018 bio->bi_end_io = lbmIODone;
2019 bio->bi_private = bp;
2020 submit_bio(READ_SYNC, bio);
2022 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2024 return 0;
2029 * lbmWrite()
2031 * buffer at head of pageout queue stays after completion of
2032 * partial-page pageout and redriven by explicit initiation of
2033 * pageout by caller until full-page pageout is completed and
2034 * released.
2036 * device driver i/o done redrives pageout of new buffer at
2037 * head of pageout queue when current buffer at head of pageout
2038 * queue is released at the completion of its full-page pageout.
2040 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2041 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2043 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2044 int cant_block)
2046 struct lbuf *tail;
2047 unsigned long flags;
2049 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2051 /* map the logical block address to physical block address */
2052 bp->l_blkno =
2053 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2055 LCACHE_LOCK(flags); /* disable+lock */
2058 * initialize buffer for device driver
2060 bp->l_flag = flag;
2063 * insert bp at tail of write queue associated with log
2065 * (request is either for bp already/currently at head of queue
2066 * or new bp to be inserted at tail)
2068 tail = log->wqueue;
2070 /* is buffer not already on write queue ? */
2071 if (bp->l_wqnext == NULL) {
2072 /* insert at tail of wqueue */
2073 if (tail == NULL) {
2074 log->wqueue = bp;
2075 bp->l_wqnext = bp;
2076 } else {
2077 log->wqueue = bp;
2078 bp->l_wqnext = tail->l_wqnext;
2079 tail->l_wqnext = bp;
2082 tail = bp;
2085 /* is buffer at head of wqueue and for write ? */
2086 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2087 LCACHE_UNLOCK(flags); /* unlock+enable */
2088 return;
2091 LCACHE_UNLOCK(flags); /* unlock+enable */
2093 if (cant_block)
2094 lbmRedrive(bp);
2095 else if (flag & lbmSYNC)
2096 lbmStartIO(bp);
2097 else {
2098 LOGGC_UNLOCK(log);
2099 lbmStartIO(bp);
2100 LOGGC_LOCK(log);
2106 * lbmDirectWrite()
2108 * initiate pageout bypassing write queue for sidestream
2109 * (e.g., log superblock) write;
2111 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2113 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2114 bp, flag, bp->l_pn);
2117 * initialize buffer for device driver
2119 bp->l_flag = flag | lbmDIRECT;
2121 /* map the logical block address to physical block address */
2122 bp->l_blkno =
2123 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2126 * initiate pageout of the page
2128 lbmStartIO(bp);
2133 * NAME: lbmStartIO()
2135 * FUNCTION: Interface to DD strategy routine
2137 * RETURN: none
2139 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2141 static void lbmStartIO(struct lbuf * bp)
2143 struct bio *bio;
2144 struct jfs_log *log = bp->l_log;
2146 jfs_info("lbmStartIO\n");
2148 bio = bio_alloc(GFP_NOFS, 1);
2149 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2150 bio->bi_bdev = log->bdev;
2151 bio->bi_io_vec[0].bv_page = bp->l_page;
2152 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2153 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2155 bio->bi_vcnt = 1;
2156 bio->bi_idx = 0;
2157 bio->bi_size = LOGPSIZE;
2159 bio->bi_end_io = lbmIODone;
2160 bio->bi_private = bp;
2162 /* check if journaling to disk has been disabled */
2163 if (log->no_integrity) {
2164 bio->bi_size = 0;
2165 lbmIODone(bio, 0);
2166 } else {
2167 submit_bio(WRITE_SYNC, bio);
2168 INCREMENT(lmStat.submitted);
2174 * lbmIOWait()
2176 static int lbmIOWait(struct lbuf * bp, int flag)
2178 unsigned long flags;
2179 int rc = 0;
2181 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2183 LCACHE_LOCK(flags); /* disable+lock */
2185 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2187 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2189 if (flag & lbmFREE)
2190 lbmfree(bp);
2192 LCACHE_UNLOCK(flags); /* unlock+enable */
2194 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2195 return rc;
2199 * lbmIODone()
2201 * executed at INTIODONE level
2203 static void lbmIODone(struct bio *bio, int error)
2205 struct lbuf *bp = bio->bi_private;
2206 struct lbuf *nextbp, *tail;
2207 struct jfs_log *log;
2208 unsigned long flags;
2211 * get back jfs buffer bound to the i/o buffer
2213 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2215 LCACHE_LOCK(flags); /* disable+lock */
2217 bp->l_flag |= lbmDONE;
2219 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2220 bp->l_flag |= lbmERROR;
2222 jfs_err("lbmIODone: I/O error in JFS log");
2225 bio_put(bio);
2228 * pagein completion
2230 if (bp->l_flag & lbmREAD) {
2231 bp->l_flag &= ~lbmREAD;
2233 LCACHE_UNLOCK(flags); /* unlock+enable */
2235 /* wakeup I/O initiator */
2236 LCACHE_WAKEUP(&bp->l_ioevent);
2238 return;
2242 * pageout completion
2244 * the bp at the head of write queue has completed pageout.
2246 * if single-commit/full-page pageout, remove the current buffer
2247 * from head of pageout queue, and redrive pageout with
2248 * the new buffer at head of pageout queue;
2249 * otherwise, the partial-page pageout buffer stays at
2250 * the head of pageout queue to be redriven for pageout
2251 * by lmGroupCommit() until full-page pageout is completed.
2253 bp->l_flag &= ~lbmWRITE;
2254 INCREMENT(lmStat.pagedone);
2256 /* update committed lsn */
2257 log = bp->l_log;
2258 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2260 if (bp->l_flag & lbmDIRECT) {
2261 LCACHE_WAKEUP(&bp->l_ioevent);
2262 LCACHE_UNLOCK(flags);
2263 return;
2266 tail = log->wqueue;
2268 /* single element queue */
2269 if (bp == tail) {
2270 /* remove head buffer of full-page pageout
2271 * from log device write queue
2273 if (bp->l_flag & lbmRELEASE) {
2274 log->wqueue = NULL;
2275 bp->l_wqnext = NULL;
2278 /* multi element queue */
2279 else {
2280 /* remove head buffer of full-page pageout
2281 * from log device write queue
2283 if (bp->l_flag & lbmRELEASE) {
2284 nextbp = tail->l_wqnext = bp->l_wqnext;
2285 bp->l_wqnext = NULL;
2288 * redrive pageout of next page at head of write queue:
2289 * redrive next page without any bound tblk
2290 * (i.e., page w/o any COMMIT records), or
2291 * first page of new group commit which has been
2292 * queued after current page (subsequent pageout
2293 * is performed synchronously, except page without
2294 * any COMMITs) by lmGroupCommit() as indicated
2295 * by lbmWRITE flag;
2297 if (nextbp->l_flag & lbmWRITE) {
2299 * We can't do the I/O at interrupt time.
2300 * The jfsIO thread can do it
2302 lbmRedrive(nextbp);
2308 * synchronous pageout:
2310 * buffer has not necessarily been removed from write queue
2311 * (e.g., synchronous write of partial-page with COMMIT):
2312 * leave buffer for i/o initiator to dispose
2314 if (bp->l_flag & lbmSYNC) {
2315 LCACHE_UNLOCK(flags); /* unlock+enable */
2317 /* wakeup I/O initiator */
2318 LCACHE_WAKEUP(&bp->l_ioevent);
2322 * Group Commit pageout:
2324 else if (bp->l_flag & lbmGC) {
2325 LCACHE_UNLOCK(flags);
2326 lmPostGC(bp);
2330 * asynchronous pageout:
2332 * buffer must have been removed from write queue:
2333 * insert buffer at head of freelist where it can be recycled
2335 else {
2336 assert(bp->l_flag & lbmRELEASE);
2337 assert(bp->l_flag & lbmFREE);
2338 lbmfree(bp);
2340 LCACHE_UNLOCK(flags); /* unlock+enable */
2344 int jfsIOWait(void *arg)
2346 struct lbuf *bp;
2348 do {
2349 spin_lock_irq(&log_redrive_lock);
2350 while ((bp = log_redrive_list)) {
2351 log_redrive_list = bp->l_redrive_next;
2352 bp->l_redrive_next = NULL;
2353 spin_unlock_irq(&log_redrive_lock);
2354 lbmStartIO(bp);
2355 spin_lock_irq(&log_redrive_lock);
2358 if (freezing(current)) {
2359 spin_unlock_irq(&log_redrive_lock);
2360 refrigerator();
2361 } else {
2362 set_current_state(TASK_INTERRUPTIBLE);
2363 spin_unlock_irq(&log_redrive_lock);
2364 schedule();
2365 __set_current_state(TASK_RUNNING);
2367 } while (!kthread_should_stop());
2369 jfs_info("jfsIOWait being killed!");
2370 return 0;
2373 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2375 int rc = -EIO;
2376 struct jfs_sb_info *sbi;
2377 struct logsuper *logsuper;
2378 struct logpage *lp;
2379 int lspn; /* log sequence page number */
2380 struct lrd *lrd_ptr;
2381 int npages = 0;
2382 struct lbuf *bp;
2384 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2385 (long long)logAddress, logSize);
2387 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2389 /* allocate a log buffer */
2390 bp = lbmAllocate(log, 1);
2392 npages = logSize >> sbi->l2nbperpage;
2395 * log space:
2397 * page 0 - reserved;
2398 * page 1 - log superblock;
2399 * page 2 - log data page: A SYNC log record is written
2400 * into this page at logform time;
2401 * pages 3-N - log data page: set to empty log data pages;
2404 * init log superblock: log page 1
2406 logsuper = (struct logsuper *) bp->l_ldata;
2408 logsuper->magic = cpu_to_le32(LOGMAGIC);
2409 logsuper->version = cpu_to_le32(LOGVERSION);
2410 logsuper->state = cpu_to_le32(LOGREDONE);
2411 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2412 logsuper->size = cpu_to_le32(npages);
2413 logsuper->bsize = cpu_to_le32(sbi->bsize);
2414 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2415 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2417 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2418 bp->l_blkno = logAddress + sbi->nbperpage;
2419 lbmStartIO(bp);
2420 if ((rc = lbmIOWait(bp, 0)))
2421 goto exit;
2424 * init pages 2 to npages-1 as log data pages:
2426 * log page sequence number (lpsn) initialization:
2428 * pn: 0 1 2 3 n-1
2429 * +-----+-----+=====+=====+===.....===+=====+
2430 * lspn: N-1 0 1 N-2
2431 * <--- N page circular file ---->
2433 * the N (= npages-2) data pages of the log is maintained as
2434 * a circular file for the log records;
2435 * lpsn grows by 1 monotonically as each log page is written
2436 * to the circular file of the log;
2437 * and setLogpage() will not reset the page number even if
2438 * the eor is equal to LOGPHDRSIZE. In order for binary search
2439 * still work in find log end process, we have to simulate the
2440 * log wrap situation at the log format time.
2441 * The 1st log page written will have the highest lpsn. Then
2442 * the succeeding log pages will have ascending order of
2443 * the lspn starting from 0, ... (N-2)
2445 lp = (struct logpage *) bp->l_ldata;
2447 * initialize 1st log page to be written: lpsn = N - 1,
2448 * write a SYNCPT log record is written to this page
2450 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2451 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2453 lrd_ptr = (struct lrd *) &lp->data;
2454 lrd_ptr->logtid = 0;
2455 lrd_ptr->backchain = 0;
2456 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2457 lrd_ptr->length = 0;
2458 lrd_ptr->log.syncpt.sync = 0;
2460 bp->l_blkno += sbi->nbperpage;
2461 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2462 lbmStartIO(bp);
2463 if ((rc = lbmIOWait(bp, 0)))
2464 goto exit;
2467 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2469 for (lspn = 0; lspn < npages - 3; lspn++) {
2470 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2471 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2473 bp->l_blkno += sbi->nbperpage;
2474 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2475 lbmStartIO(bp);
2476 if ((rc = lbmIOWait(bp, 0)))
2477 goto exit;
2480 rc = 0;
2481 exit:
2483 * finalize log
2485 /* release the buffer */
2486 lbmFree(bp);
2488 return rc;
2491 #ifdef CONFIG_JFS_STATISTICS
2492 static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2494 seq_printf(m,
2495 "JFS Logmgr stats\n"
2496 "================\n"
2497 "commits = %d\n"
2498 "writes submitted = %d\n"
2499 "writes completed = %d\n"
2500 "full pages submitted = %d\n"
2501 "partial pages submitted = %d\n",
2502 lmStat.commit,
2503 lmStat.submitted,
2504 lmStat.pagedone,
2505 lmStat.full_page,
2506 lmStat.partial_page);
2507 return 0;
2510 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2512 return single_open(file, jfs_lmstats_proc_show, NULL);
2515 const struct file_operations jfs_lmstats_proc_fops = {
2516 .owner = THIS_MODULE,
2517 .open = jfs_lmstats_proc_open,
2518 .read = seq_read,
2519 .llseek = seq_lseek,
2520 .release = single_release,
2522 #endif /* CONFIG_JFS_STATISTICS */