GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / ceph / messenger.c
blobd462e71cfc33697a06d43e344f5191f3ec57429b
1 #include "ceph_debug.h"
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <net/tcp.h>
14 #include "super.h"
15 #include "messenger.h"
16 #include "decode.h"
17 #include "pagelist.h"
20 * Ceph uses the messenger to exchange ceph_msg messages with other
21 * hosts in the system. The messenger provides ordered and reliable
22 * delivery. We tolerate TCP disconnects by reconnecting (with
23 * exponential backoff) in the case of a fault (disconnection, bad
24 * crc, protocol error). Acks allow sent messages to be discarded by
25 * the sender.
28 /* static tag bytes (protocol control messages) */
29 static char tag_msg = CEPH_MSGR_TAG_MSG;
30 static char tag_ack = CEPH_MSGR_TAG_ACK;
31 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
33 #ifdef CONFIG_LOCKDEP
34 static struct lock_class_key socket_class;
35 #endif
38 static void queue_con(struct ceph_connection *con);
39 static void con_work(struct work_struct *);
40 static void ceph_fault(struct ceph_connection *con);
43 * nicely render a sockaddr as a string.
45 #define MAX_ADDR_STR 20
46 #define MAX_ADDR_STR_LEN 60
47 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
48 static DEFINE_SPINLOCK(addr_str_lock);
49 static int last_addr_str;
51 const char *pr_addr(const struct sockaddr_storage *ss)
53 int i;
54 char *s;
55 struct sockaddr_in *in4 = (void *)ss;
56 struct sockaddr_in6 *in6 = (void *)ss;
58 spin_lock(&addr_str_lock);
59 i = last_addr_str++;
60 if (last_addr_str == MAX_ADDR_STR)
61 last_addr_str = 0;
62 spin_unlock(&addr_str_lock);
63 s = addr_str[i];
65 switch (ss->ss_family) {
66 case AF_INET:
67 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
68 (unsigned int)ntohs(in4->sin_port));
69 break;
71 case AF_INET6:
72 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
73 (unsigned int)ntohs(in6->sin6_port));
74 break;
76 default:
77 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 return s;
83 static void encode_my_addr(struct ceph_messenger *msgr)
85 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
86 ceph_encode_addr(&msgr->my_enc_addr);
90 * work queue for all reading and writing to/from the socket.
92 struct workqueue_struct *ceph_msgr_wq;
94 int __init ceph_msgr_init(void)
96 ceph_msgr_wq = create_workqueue("ceph-msgr");
97 if (IS_ERR(ceph_msgr_wq)) {
98 int ret = PTR_ERR(ceph_msgr_wq);
99 pr_err("msgr_init failed to create workqueue: %d\n", ret);
100 ceph_msgr_wq = NULL;
101 return ret;
103 return 0;
106 void ceph_msgr_exit(void)
108 destroy_workqueue(ceph_msgr_wq);
111 void ceph_msgr_flush(void)
113 flush_workqueue(ceph_msgr_wq);
118 * socket callback functions
121 /* data available on socket, or listen socket received a connect */
122 static void ceph_data_ready(struct sock *sk, int count_unused)
124 struct ceph_connection *con =
125 (struct ceph_connection *)sk->sk_user_data;
126 if (sk->sk_state != TCP_CLOSE_WAIT) {
127 dout("ceph_data_ready on %p state = %lu, queueing work\n",
128 con, con->state);
129 queue_con(con);
133 /* socket has buffer space for writing */
134 static void ceph_write_space(struct sock *sk)
136 struct ceph_connection *con =
137 (struct ceph_connection *)sk->sk_user_data;
139 /* only queue to workqueue if there is data we want to write. */
140 if (test_bit(WRITE_PENDING, &con->state)) {
141 dout("ceph_write_space %p queueing write work\n", con);
142 queue_con(con);
143 } else {
144 dout("ceph_write_space %p nothing to write\n", con);
147 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
148 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
151 /* socket's state has changed */
152 static void ceph_state_change(struct sock *sk)
154 struct ceph_connection *con =
155 (struct ceph_connection *)sk->sk_user_data;
157 dout("ceph_state_change %p state = %lu sk_state = %u\n",
158 con, con->state, sk->sk_state);
160 if (test_bit(CLOSED, &con->state))
161 return;
163 switch (sk->sk_state) {
164 case TCP_CLOSE:
165 dout("ceph_state_change TCP_CLOSE\n");
166 case TCP_CLOSE_WAIT:
167 dout("ceph_state_change TCP_CLOSE_WAIT\n");
168 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
169 if (test_bit(CONNECTING, &con->state))
170 con->error_msg = "connection failed";
171 else
172 con->error_msg = "socket closed";
173 queue_con(con);
175 break;
176 case TCP_ESTABLISHED:
177 dout("ceph_state_change TCP_ESTABLISHED\n");
178 queue_con(con);
179 break;
184 * set up socket callbacks
186 static void set_sock_callbacks(struct socket *sock,
187 struct ceph_connection *con)
189 struct sock *sk = sock->sk;
190 sk->sk_user_data = (void *)con;
191 sk->sk_data_ready = ceph_data_ready;
192 sk->sk_write_space = ceph_write_space;
193 sk->sk_state_change = ceph_state_change;
198 * socket helpers
202 * initiate connection to a remote socket.
204 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
206 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
207 struct socket *sock;
208 int ret;
210 BUG_ON(con->sock);
211 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
212 IPPROTO_TCP, &sock);
213 if (ret)
214 return ERR_PTR(ret);
215 con->sock = sock;
216 sock->sk->sk_allocation = GFP_NOFS;
218 #ifdef CONFIG_LOCKDEP
219 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
220 #endif
222 set_sock_callbacks(sock, con);
224 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
226 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
227 O_NONBLOCK);
228 if (ret == -EINPROGRESS) {
229 dout("connect %s EINPROGRESS sk_state = %u\n",
230 pr_addr(&con->peer_addr.in_addr),
231 sock->sk->sk_state);
232 ret = 0;
234 if (ret < 0) {
235 pr_err("connect %s error %d\n",
236 pr_addr(&con->peer_addr.in_addr), ret);
237 sock_release(sock);
238 con->sock = NULL;
239 con->error_msg = "connect error";
242 if (ret < 0)
243 return ERR_PTR(ret);
244 return sock;
247 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
249 struct kvec iov = {buf, len};
250 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
252 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
256 * write something. @more is true if caller will be sending more data
257 * shortly.
259 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
260 size_t kvlen, size_t len, int more)
262 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
264 if (more)
265 msg.msg_flags |= MSG_MORE;
266 else
267 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
269 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
274 * Shutdown/close the socket for the given connection.
276 static int con_close_socket(struct ceph_connection *con)
278 int rc;
280 dout("con_close_socket on %p sock %p\n", con, con->sock);
281 if (!con->sock)
282 return 0;
283 set_bit(SOCK_CLOSED, &con->state);
284 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
285 sock_release(con->sock);
286 con->sock = NULL;
287 clear_bit(SOCK_CLOSED, &con->state);
288 return rc;
292 * Reset a connection. Discard all incoming and outgoing messages
293 * and clear *_seq state.
295 static void ceph_msg_remove(struct ceph_msg *msg)
297 list_del_init(&msg->list_head);
298 ceph_msg_put(msg);
300 static void ceph_msg_remove_list(struct list_head *head)
302 while (!list_empty(head)) {
303 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
304 list_head);
305 ceph_msg_remove(msg);
309 static void reset_connection(struct ceph_connection *con)
311 /* reset connection, out_queue, msg_ and connect_seq */
312 /* discard existing out_queue and msg_seq */
313 ceph_msg_remove_list(&con->out_queue);
314 ceph_msg_remove_list(&con->out_sent);
316 if (con->in_msg) {
317 ceph_msg_put(con->in_msg);
318 con->in_msg = NULL;
321 con->connect_seq = 0;
322 con->out_seq = 0;
323 if (con->out_msg) {
324 ceph_msg_put(con->out_msg);
325 con->out_msg = NULL;
327 con->out_keepalive_pending = false;
328 con->in_seq = 0;
329 con->in_seq_acked = 0;
333 * mark a peer down. drop any open connections.
335 void ceph_con_close(struct ceph_connection *con)
337 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
338 set_bit(CLOSED, &con->state); /* in case there's queued work */
339 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
340 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
341 clear_bit(KEEPALIVE_PENDING, &con->state);
342 clear_bit(WRITE_PENDING, &con->state);
343 mutex_lock(&con->mutex);
344 reset_connection(con);
345 con->peer_global_seq = 0;
346 cancel_delayed_work(&con->work);
347 mutex_unlock(&con->mutex);
348 queue_con(con);
352 * Reopen a closed connection, with a new peer address.
354 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
356 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
357 set_bit(OPENING, &con->state);
358 clear_bit(CLOSED, &con->state);
359 memcpy(&con->peer_addr, addr, sizeof(*addr));
360 con->delay = 0; /* reset backoff memory */
361 queue_con(con);
365 * return true if this connection ever successfully opened
367 bool ceph_con_opened(struct ceph_connection *con)
369 return con->connect_seq > 0;
373 * generic get/put
375 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
377 dout("con_get %p nref = %d -> %d\n", con,
378 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
379 if (atomic_inc_not_zero(&con->nref))
380 return con;
381 return NULL;
384 void ceph_con_put(struct ceph_connection *con)
386 dout("con_put %p nref = %d -> %d\n", con,
387 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
388 BUG_ON(atomic_read(&con->nref) == 0);
389 if (atomic_dec_and_test(&con->nref)) {
390 BUG_ON(con->sock);
391 kfree(con);
396 * initialize a new connection.
398 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
400 dout("con_init %p\n", con);
401 memset(con, 0, sizeof(*con));
402 atomic_set(&con->nref, 1);
403 con->msgr = msgr;
404 mutex_init(&con->mutex);
405 INIT_LIST_HEAD(&con->out_queue);
406 INIT_LIST_HEAD(&con->out_sent);
407 INIT_DELAYED_WORK(&con->work, con_work);
412 * We maintain a global counter to order connection attempts. Get
413 * a unique seq greater than @gt.
415 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
417 u32 ret;
419 spin_lock(&msgr->global_seq_lock);
420 if (msgr->global_seq < gt)
421 msgr->global_seq = gt;
422 ret = ++msgr->global_seq;
423 spin_unlock(&msgr->global_seq_lock);
424 return ret;
429 * Prepare footer for currently outgoing message, and finish things
430 * off. Assumes out_kvec* are already valid.. we just add on to the end.
432 static void prepare_write_message_footer(struct ceph_connection *con, int v)
434 struct ceph_msg *m = con->out_msg;
436 dout("prepare_write_message_footer %p\n", con);
437 con->out_kvec_is_msg = true;
438 con->out_kvec[v].iov_base = &m->footer;
439 con->out_kvec[v].iov_len = sizeof(m->footer);
440 con->out_kvec_bytes += sizeof(m->footer);
441 con->out_kvec_left++;
442 con->out_more = m->more_to_follow;
443 con->out_msg_done = true;
447 * Prepare headers for the next outgoing message.
449 static void prepare_write_message(struct ceph_connection *con)
451 struct ceph_msg *m;
452 int v = 0;
454 con->out_kvec_bytes = 0;
455 con->out_kvec_is_msg = true;
456 con->out_msg_done = false;
458 /* Sneak an ack in there first? If we can get it into the same
459 * TCP packet that's a good thing. */
460 if (con->in_seq > con->in_seq_acked) {
461 con->in_seq_acked = con->in_seq;
462 con->out_kvec[v].iov_base = &tag_ack;
463 con->out_kvec[v++].iov_len = 1;
464 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
465 con->out_kvec[v].iov_base = &con->out_temp_ack;
466 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
467 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
470 m = list_first_entry(&con->out_queue,
471 struct ceph_msg, list_head);
472 con->out_msg = m;
473 if (test_bit(LOSSYTX, &con->state)) {
474 list_del_init(&m->list_head);
475 } else {
476 /* put message on sent list */
477 ceph_msg_get(m);
478 list_move_tail(&m->list_head, &con->out_sent);
482 * only assign outgoing seq # if we haven't sent this message
483 * yet. if it is requeued, resend with it's original seq.
485 if (m->needs_out_seq) {
486 m->hdr.seq = cpu_to_le64(++con->out_seq);
487 m->needs_out_seq = false;
490 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
491 m, con->out_seq, le16_to_cpu(m->hdr.type),
492 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
493 le32_to_cpu(m->hdr.data_len),
494 m->nr_pages);
495 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
497 /* tag + hdr + front + middle */
498 con->out_kvec[v].iov_base = &tag_msg;
499 con->out_kvec[v++].iov_len = 1;
500 con->out_kvec[v].iov_base = &m->hdr;
501 con->out_kvec[v++].iov_len = sizeof(m->hdr);
502 con->out_kvec[v++] = m->front;
503 if (m->middle)
504 con->out_kvec[v++] = m->middle->vec;
505 con->out_kvec_left = v;
506 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
507 (m->middle ? m->middle->vec.iov_len : 0);
508 con->out_kvec_cur = con->out_kvec;
510 /* fill in crc (except data pages), footer */
511 con->out_msg->hdr.crc =
512 cpu_to_le32(crc32c(0, (void *)&m->hdr,
513 sizeof(m->hdr) - sizeof(m->hdr.crc)));
514 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
515 con->out_msg->footer.front_crc =
516 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
517 if (m->middle)
518 con->out_msg->footer.middle_crc =
519 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
520 m->middle->vec.iov_len));
521 else
522 con->out_msg->footer.middle_crc = 0;
523 con->out_msg->footer.data_crc = 0;
524 dout("prepare_write_message front_crc %u data_crc %u\n",
525 le32_to_cpu(con->out_msg->footer.front_crc),
526 le32_to_cpu(con->out_msg->footer.middle_crc));
528 /* is there a data payload? */
529 if (le32_to_cpu(m->hdr.data_len) > 0) {
530 /* initialize page iterator */
531 con->out_msg_pos.page = 0;
532 con->out_msg_pos.page_pos =
533 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
534 con->out_msg_pos.data_pos = 0;
535 con->out_msg_pos.did_page_crc = 0;
536 con->out_more = 1; /* data + footer will follow */
537 } else {
538 /* no, queue up footer too and be done */
539 prepare_write_message_footer(con, v);
542 set_bit(WRITE_PENDING, &con->state);
546 * Prepare an ack.
548 static void prepare_write_ack(struct ceph_connection *con)
550 dout("prepare_write_ack %p %llu -> %llu\n", con,
551 con->in_seq_acked, con->in_seq);
552 con->in_seq_acked = con->in_seq;
554 con->out_kvec[0].iov_base = &tag_ack;
555 con->out_kvec[0].iov_len = 1;
556 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
557 con->out_kvec[1].iov_base = &con->out_temp_ack;
558 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
559 con->out_kvec_left = 2;
560 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
561 con->out_kvec_cur = con->out_kvec;
562 con->out_more = 1; /* more will follow.. eventually.. */
563 set_bit(WRITE_PENDING, &con->state);
567 * Prepare to write keepalive byte.
569 static void prepare_write_keepalive(struct ceph_connection *con)
571 dout("prepare_write_keepalive %p\n", con);
572 con->out_kvec[0].iov_base = &tag_keepalive;
573 con->out_kvec[0].iov_len = 1;
574 con->out_kvec_left = 1;
575 con->out_kvec_bytes = 1;
576 con->out_kvec_cur = con->out_kvec;
577 set_bit(WRITE_PENDING, &con->state);
581 * Connection negotiation.
584 static void prepare_connect_authorizer(struct ceph_connection *con)
586 void *auth_buf;
587 int auth_len = 0;
588 int auth_protocol = 0;
590 mutex_unlock(&con->mutex);
591 if (con->ops->get_authorizer)
592 con->ops->get_authorizer(con, &auth_buf, &auth_len,
593 &auth_protocol, &con->auth_reply_buf,
594 &con->auth_reply_buf_len,
595 con->auth_retry);
596 mutex_lock(&con->mutex);
598 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
599 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
601 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
602 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
603 con->out_kvec_left++;
604 con->out_kvec_bytes += auth_len;
608 * We connected to a peer and are saying hello.
610 static void prepare_write_banner(struct ceph_messenger *msgr,
611 struct ceph_connection *con)
613 int len = strlen(CEPH_BANNER);
615 con->out_kvec[0].iov_base = CEPH_BANNER;
616 con->out_kvec[0].iov_len = len;
617 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
618 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
619 con->out_kvec_left = 2;
620 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
621 con->out_kvec_cur = con->out_kvec;
622 con->out_more = 0;
623 set_bit(WRITE_PENDING, &con->state);
626 static void prepare_write_connect(struct ceph_messenger *msgr,
627 struct ceph_connection *con,
628 int after_banner)
630 unsigned global_seq = get_global_seq(con->msgr, 0);
631 int proto;
633 switch (con->peer_name.type) {
634 case CEPH_ENTITY_TYPE_MON:
635 proto = CEPH_MONC_PROTOCOL;
636 break;
637 case CEPH_ENTITY_TYPE_OSD:
638 proto = CEPH_OSDC_PROTOCOL;
639 break;
640 case CEPH_ENTITY_TYPE_MDS:
641 proto = CEPH_MDSC_PROTOCOL;
642 break;
643 default:
644 BUG();
647 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
648 con->connect_seq, global_seq, proto);
650 con->out_connect.features = cpu_to_le64(CEPH_FEATURE_SUPPORTED);
651 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
652 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
653 con->out_connect.global_seq = cpu_to_le32(global_seq);
654 con->out_connect.protocol_version = cpu_to_le32(proto);
655 con->out_connect.flags = 0;
657 if (!after_banner) {
658 con->out_kvec_left = 0;
659 con->out_kvec_bytes = 0;
661 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
662 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
663 con->out_kvec_left++;
664 con->out_kvec_bytes += sizeof(con->out_connect);
665 con->out_kvec_cur = con->out_kvec;
666 con->out_more = 0;
667 set_bit(WRITE_PENDING, &con->state);
669 prepare_connect_authorizer(con);
674 * write as much of pending kvecs to the socket as we can.
675 * 1 -> done
676 * 0 -> socket full, but more to do
677 * <0 -> error
679 static int write_partial_kvec(struct ceph_connection *con)
681 int ret;
683 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
684 while (con->out_kvec_bytes > 0) {
685 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
686 con->out_kvec_left, con->out_kvec_bytes,
687 con->out_more);
688 if (ret <= 0)
689 goto out;
690 con->out_kvec_bytes -= ret;
691 if (con->out_kvec_bytes == 0)
692 break; /* done */
693 while (ret > 0) {
694 if (ret >= con->out_kvec_cur->iov_len) {
695 ret -= con->out_kvec_cur->iov_len;
696 con->out_kvec_cur++;
697 con->out_kvec_left--;
698 } else {
699 con->out_kvec_cur->iov_len -= ret;
700 con->out_kvec_cur->iov_base += ret;
701 ret = 0;
702 break;
706 con->out_kvec_left = 0;
707 con->out_kvec_is_msg = false;
708 ret = 1;
709 out:
710 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
711 con->out_kvec_bytes, con->out_kvec_left, ret);
712 return ret; /* done! */
716 * Write as much message data payload as we can. If we finish, queue
717 * up the footer.
718 * 1 -> done, footer is now queued in out_kvec[].
719 * 0 -> socket full, but more to do
720 * <0 -> error
722 static int write_partial_msg_pages(struct ceph_connection *con)
724 struct ceph_msg *msg = con->out_msg;
725 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
726 size_t len;
727 int crc = con->msgr->nocrc;
728 int ret;
730 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
731 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
732 con->out_msg_pos.page_pos);
734 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
735 struct page *page = NULL;
736 void *kaddr = NULL;
739 * if we are calculating the data crc (the default), we need
740 * to map the page. if our pages[] has been revoked, use the
741 * zero page.
743 if (msg->pages) {
744 page = msg->pages[con->out_msg_pos.page];
745 if (crc)
746 kaddr = kmap(page);
747 } else if (msg->pagelist) {
748 page = list_first_entry(&msg->pagelist->head,
749 struct page, lru);
750 if (crc)
751 kaddr = kmap(page);
752 } else {
753 page = con->msgr->zero_page;
754 if (crc)
755 kaddr = page_address(con->msgr->zero_page);
757 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
758 (int)(data_len - con->out_msg_pos.data_pos));
759 if (crc && !con->out_msg_pos.did_page_crc) {
760 void *base = kaddr + con->out_msg_pos.page_pos;
761 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
763 BUG_ON(kaddr == NULL);
764 con->out_msg->footer.data_crc =
765 cpu_to_le32(crc32c(tmpcrc, base, len));
766 con->out_msg_pos.did_page_crc = 1;
769 ret = kernel_sendpage(con->sock, page,
770 con->out_msg_pos.page_pos, len,
771 MSG_DONTWAIT | MSG_NOSIGNAL |
772 MSG_MORE);
774 if (crc && (msg->pages || msg->pagelist))
775 kunmap(page);
777 if (ret <= 0)
778 goto out;
780 con->out_msg_pos.data_pos += ret;
781 con->out_msg_pos.page_pos += ret;
782 if (ret == len) {
783 con->out_msg_pos.page_pos = 0;
784 con->out_msg_pos.page++;
785 con->out_msg_pos.did_page_crc = 0;
786 if (msg->pagelist)
787 list_move_tail(&page->lru,
788 &msg->pagelist->head);
792 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
794 /* prepare and queue up footer, too */
795 if (!crc)
796 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
797 con->out_kvec_bytes = 0;
798 con->out_kvec_left = 0;
799 con->out_kvec_cur = con->out_kvec;
800 prepare_write_message_footer(con, 0);
801 ret = 1;
802 out:
803 return ret;
807 * write some zeros
809 static int write_partial_skip(struct ceph_connection *con)
811 int ret;
813 while (con->out_skip > 0) {
814 struct kvec iov = {
815 .iov_base = page_address(con->msgr->zero_page),
816 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
819 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
820 if (ret <= 0)
821 goto out;
822 con->out_skip -= ret;
824 ret = 1;
825 out:
826 return ret;
830 * Prepare to read connection handshake, or an ack.
832 static void prepare_read_banner(struct ceph_connection *con)
834 dout("prepare_read_banner %p\n", con);
835 con->in_base_pos = 0;
838 static void prepare_read_connect(struct ceph_connection *con)
840 dout("prepare_read_connect %p\n", con);
841 con->in_base_pos = 0;
844 static void prepare_read_ack(struct ceph_connection *con)
846 dout("prepare_read_ack %p\n", con);
847 con->in_base_pos = 0;
850 static void prepare_read_tag(struct ceph_connection *con)
852 dout("prepare_read_tag %p\n", con);
853 con->in_base_pos = 0;
854 con->in_tag = CEPH_MSGR_TAG_READY;
858 * Prepare to read a message.
860 static int prepare_read_message(struct ceph_connection *con)
862 dout("prepare_read_message %p\n", con);
863 BUG_ON(con->in_msg != NULL);
864 con->in_base_pos = 0;
865 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
866 return 0;
870 static int read_partial(struct ceph_connection *con,
871 int *to, int size, void *object)
873 *to += size;
874 while (con->in_base_pos < *to) {
875 int left = *to - con->in_base_pos;
876 int have = size - left;
877 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
878 if (ret <= 0)
879 return ret;
880 con->in_base_pos += ret;
882 return 1;
887 * Read all or part of the connect-side handshake on a new connection
889 static int read_partial_banner(struct ceph_connection *con)
891 int ret, to = 0;
893 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
895 /* peer's banner */
896 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
897 if (ret <= 0)
898 goto out;
899 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
900 &con->actual_peer_addr);
901 if (ret <= 0)
902 goto out;
903 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
904 &con->peer_addr_for_me);
905 if (ret <= 0)
906 goto out;
907 out:
908 return ret;
911 static int read_partial_connect(struct ceph_connection *con)
913 int ret, to = 0;
915 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
917 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
918 if (ret <= 0)
919 goto out;
920 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
921 con->auth_reply_buf);
922 if (ret <= 0)
923 goto out;
925 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
926 con, (int)con->in_reply.tag,
927 le32_to_cpu(con->in_reply.connect_seq),
928 le32_to_cpu(con->in_reply.global_seq));
929 out:
930 return ret;
935 * Verify the hello banner looks okay.
937 static int verify_hello(struct ceph_connection *con)
939 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
940 pr_err("connect to %s got bad banner\n",
941 pr_addr(&con->peer_addr.in_addr));
942 con->error_msg = "protocol error, bad banner";
943 return -1;
945 return 0;
948 static bool addr_is_blank(struct sockaddr_storage *ss)
950 switch (ss->ss_family) {
951 case AF_INET:
952 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
953 case AF_INET6:
954 return
955 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
956 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
957 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
958 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
960 return false;
963 static int addr_port(struct sockaddr_storage *ss)
965 switch (ss->ss_family) {
966 case AF_INET:
967 return ntohs(((struct sockaddr_in *)ss)->sin_port);
968 case AF_INET6:
969 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
971 return 0;
974 static void addr_set_port(struct sockaddr_storage *ss, int p)
976 switch (ss->ss_family) {
977 case AF_INET:
978 ((struct sockaddr_in *)ss)->sin_port = htons(p);
979 case AF_INET6:
980 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
985 * Parse an ip[:port] list into an addr array. Use the default
986 * monitor port if a port isn't specified.
988 int ceph_parse_ips(const char *c, const char *end,
989 struct ceph_entity_addr *addr,
990 int max_count, int *count)
992 int i;
993 const char *p = c;
995 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
996 for (i = 0; i < max_count; i++) {
997 const char *ipend;
998 struct sockaddr_storage *ss = &addr[i].in_addr;
999 struct sockaddr_in *in4 = (void *)ss;
1000 struct sockaddr_in6 *in6 = (void *)ss;
1001 int port;
1002 char delim = ',';
1004 if (*p == '[') {
1005 delim = ']';
1006 p++;
1009 memset(ss, 0, sizeof(*ss));
1010 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1011 delim, &ipend))
1012 ss->ss_family = AF_INET;
1013 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1014 delim, &ipend))
1015 ss->ss_family = AF_INET6;
1016 else
1017 goto bad;
1018 p = ipend;
1020 if (delim == ']') {
1021 if (*p != ']') {
1022 dout("missing matching ']'\n");
1023 goto bad;
1025 p++;
1028 /* port? */
1029 if (p < end && *p == ':') {
1030 port = 0;
1031 p++;
1032 while (p < end && *p >= '0' && *p <= '9') {
1033 port = (port * 10) + (*p - '0');
1034 p++;
1036 if (port > 65535 || port == 0)
1037 goto bad;
1038 } else {
1039 port = CEPH_MON_PORT;
1042 addr_set_port(ss, port);
1044 dout("parse_ips got %s\n", pr_addr(ss));
1046 if (p == end)
1047 break;
1048 if (*p != ',')
1049 goto bad;
1050 p++;
1053 if (p != end)
1054 goto bad;
1056 if (count)
1057 *count = i + 1;
1058 return 0;
1060 bad:
1061 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1062 return -EINVAL;
1065 static int process_banner(struct ceph_connection *con)
1067 dout("process_banner on %p\n", con);
1069 if (verify_hello(con) < 0)
1070 return -1;
1072 ceph_decode_addr(&con->actual_peer_addr);
1073 ceph_decode_addr(&con->peer_addr_for_me);
1076 * Make sure the other end is who we wanted. note that the other
1077 * end may not yet know their ip address, so if it's 0.0.0.0, give
1078 * them the benefit of the doubt.
1080 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1081 sizeof(con->peer_addr)) != 0 &&
1082 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1083 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1084 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1085 pr_addr(&con->peer_addr.in_addr),
1086 (int)le32_to_cpu(con->peer_addr.nonce),
1087 pr_addr(&con->actual_peer_addr.in_addr),
1088 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1089 con->error_msg = "wrong peer at address";
1090 return -1;
1094 * did we learn our address?
1096 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1097 int port = addr_port(&con->msgr->inst.addr.in_addr);
1099 memcpy(&con->msgr->inst.addr.in_addr,
1100 &con->peer_addr_for_me.in_addr,
1101 sizeof(con->peer_addr_for_me.in_addr));
1102 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1103 encode_my_addr(con->msgr);
1104 dout("process_banner learned my addr is %s\n",
1105 pr_addr(&con->msgr->inst.addr.in_addr));
1108 set_bit(NEGOTIATING, &con->state);
1109 prepare_read_connect(con);
1110 return 0;
1113 static void fail_protocol(struct ceph_connection *con)
1115 reset_connection(con);
1116 set_bit(CLOSED, &con->state); /* in case there's queued work */
1118 mutex_unlock(&con->mutex);
1119 if (con->ops->bad_proto)
1120 con->ops->bad_proto(con);
1121 mutex_lock(&con->mutex);
1124 static int process_connect(struct ceph_connection *con)
1126 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1127 u64 req_feat = CEPH_FEATURE_REQUIRED;
1128 u64 server_feat = le64_to_cpu(con->in_reply.features);
1130 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1132 switch (con->in_reply.tag) {
1133 case CEPH_MSGR_TAG_FEATURES:
1134 pr_err("%s%lld %s feature set mismatch,"
1135 " my %llx < server's %llx, missing %llx\n",
1136 ENTITY_NAME(con->peer_name),
1137 pr_addr(&con->peer_addr.in_addr),
1138 sup_feat, server_feat, server_feat & ~sup_feat);
1139 con->error_msg = "missing required protocol features";
1140 fail_protocol(con);
1141 return -1;
1143 case CEPH_MSGR_TAG_BADPROTOVER:
1144 pr_err("%s%lld %s protocol version mismatch,"
1145 " my %d != server's %d\n",
1146 ENTITY_NAME(con->peer_name),
1147 pr_addr(&con->peer_addr.in_addr),
1148 le32_to_cpu(con->out_connect.protocol_version),
1149 le32_to_cpu(con->in_reply.protocol_version));
1150 con->error_msg = "protocol version mismatch";
1151 fail_protocol(con);
1152 return -1;
1154 case CEPH_MSGR_TAG_BADAUTHORIZER:
1155 con->auth_retry++;
1156 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1157 con->auth_retry);
1158 if (con->auth_retry == 2) {
1159 con->error_msg = "connect authorization failure";
1160 reset_connection(con);
1161 set_bit(CLOSED, &con->state);
1162 return -1;
1164 con->auth_retry = 1;
1165 prepare_write_connect(con->msgr, con, 0);
1166 prepare_read_connect(con);
1167 break;
1169 case CEPH_MSGR_TAG_RESETSESSION:
1171 * If we connected with a large connect_seq but the peer
1172 * has no record of a session with us (no connection, or
1173 * connect_seq == 0), they will send RESETSESION to indicate
1174 * that they must have reset their session, and may have
1175 * dropped messages.
1177 dout("process_connect got RESET peer seq %u\n",
1178 le32_to_cpu(con->in_connect.connect_seq));
1179 pr_err("%s%lld %s connection reset\n",
1180 ENTITY_NAME(con->peer_name),
1181 pr_addr(&con->peer_addr.in_addr));
1182 reset_connection(con);
1183 prepare_write_connect(con->msgr, con, 0);
1184 prepare_read_connect(con);
1186 /* Tell ceph about it. */
1187 mutex_unlock(&con->mutex);
1188 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1189 if (con->ops->peer_reset)
1190 con->ops->peer_reset(con);
1191 mutex_lock(&con->mutex);
1192 break;
1194 case CEPH_MSGR_TAG_RETRY_SESSION:
1196 * If we sent a smaller connect_seq than the peer has, try
1197 * again with a larger value.
1199 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1200 le32_to_cpu(con->out_connect.connect_seq),
1201 le32_to_cpu(con->in_connect.connect_seq));
1202 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1203 prepare_write_connect(con->msgr, con, 0);
1204 prepare_read_connect(con);
1205 break;
1207 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1209 * If we sent a smaller global_seq than the peer has, try
1210 * again with a larger value.
1212 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1213 con->peer_global_seq,
1214 le32_to_cpu(con->in_connect.global_seq));
1215 get_global_seq(con->msgr,
1216 le32_to_cpu(con->in_connect.global_seq));
1217 prepare_write_connect(con->msgr, con, 0);
1218 prepare_read_connect(con);
1219 break;
1221 case CEPH_MSGR_TAG_READY:
1222 if (req_feat & ~server_feat) {
1223 pr_err("%s%lld %s protocol feature mismatch,"
1224 " my required %llx > server's %llx, need %llx\n",
1225 ENTITY_NAME(con->peer_name),
1226 pr_addr(&con->peer_addr.in_addr),
1227 req_feat, server_feat, req_feat & ~server_feat);
1228 con->error_msg = "missing required protocol features";
1229 fail_protocol(con);
1230 return -1;
1232 clear_bit(CONNECTING, &con->state);
1233 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1234 con->connect_seq++;
1235 con->peer_features = server_feat;
1236 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1237 con->peer_global_seq,
1238 le32_to_cpu(con->in_reply.connect_seq),
1239 con->connect_seq);
1240 WARN_ON(con->connect_seq !=
1241 le32_to_cpu(con->in_reply.connect_seq));
1243 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1244 set_bit(LOSSYTX, &con->state);
1246 prepare_read_tag(con);
1247 break;
1249 case CEPH_MSGR_TAG_WAIT:
1251 * If there is a connection race (we are opening
1252 * connections to each other), one of us may just have
1253 * to WAIT. This shouldn't happen if we are the
1254 * client.
1256 pr_err("process_connect peer connecting WAIT\n");
1258 default:
1259 pr_err("connect protocol error, will retry\n");
1260 con->error_msg = "protocol error, garbage tag during connect";
1261 return -1;
1263 return 0;
1268 * read (part of) an ack
1270 static int read_partial_ack(struct ceph_connection *con)
1272 int to = 0;
1274 return read_partial(con, &to, sizeof(con->in_temp_ack),
1275 &con->in_temp_ack);
1280 * We can finally discard anything that's been acked.
1282 static void process_ack(struct ceph_connection *con)
1284 struct ceph_msg *m;
1285 u64 ack = le64_to_cpu(con->in_temp_ack);
1286 u64 seq;
1288 while (!list_empty(&con->out_sent)) {
1289 m = list_first_entry(&con->out_sent, struct ceph_msg,
1290 list_head);
1291 seq = le64_to_cpu(m->hdr.seq);
1292 if (seq > ack)
1293 break;
1294 dout("got ack for seq %llu type %d at %p\n", seq,
1295 le16_to_cpu(m->hdr.type), m);
1296 ceph_msg_remove(m);
1298 prepare_read_tag(con);
1304 static int read_partial_message_section(struct ceph_connection *con,
1305 struct kvec *section,
1306 unsigned int sec_len, u32 *crc)
1308 int left;
1309 int ret;
1311 BUG_ON(!section);
1313 while (section->iov_len < sec_len) {
1314 BUG_ON(section->iov_base == NULL);
1315 left = sec_len - section->iov_len;
1316 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1317 section->iov_len, left);
1318 if (ret <= 0)
1319 return ret;
1320 section->iov_len += ret;
1321 if (section->iov_len == sec_len)
1322 *crc = crc32c(0, section->iov_base,
1323 section->iov_len);
1326 return 1;
1329 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1330 struct ceph_msg_header *hdr,
1331 int *skip);
1333 * read (part of) a message.
1335 static int read_partial_message(struct ceph_connection *con)
1337 struct ceph_msg *m = con->in_msg;
1338 void *p;
1339 int ret;
1340 int to, left;
1341 unsigned front_len, middle_len, data_len, data_off;
1342 int datacrc = con->msgr->nocrc;
1343 int skip;
1344 u64 seq;
1346 dout("read_partial_message con %p msg %p\n", con, m);
1348 /* header */
1349 while (con->in_base_pos < sizeof(con->in_hdr)) {
1350 left = sizeof(con->in_hdr) - con->in_base_pos;
1351 ret = ceph_tcp_recvmsg(con->sock,
1352 (char *)&con->in_hdr + con->in_base_pos,
1353 left);
1354 if (ret <= 0)
1355 return ret;
1356 con->in_base_pos += ret;
1357 if (con->in_base_pos == sizeof(con->in_hdr)) {
1358 u32 crc = crc32c(0, (void *)&con->in_hdr,
1359 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1360 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1361 pr_err("read_partial_message bad hdr "
1362 " crc %u != expected %u\n",
1363 crc, con->in_hdr.crc);
1364 return -EBADMSG;
1368 front_len = le32_to_cpu(con->in_hdr.front_len);
1369 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1370 return -EIO;
1371 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1372 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1373 return -EIO;
1374 data_len = le32_to_cpu(con->in_hdr.data_len);
1375 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1376 return -EIO;
1377 data_off = le16_to_cpu(con->in_hdr.data_off);
1379 /* verify seq# */
1380 seq = le64_to_cpu(con->in_hdr.seq);
1381 if ((s64)seq - (s64)con->in_seq < 1) {
1382 pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1383 ENTITY_NAME(con->peer_name),
1384 pr_addr(&con->peer_addr.in_addr),
1385 seq, con->in_seq + 1);
1386 con->in_base_pos = -front_len - middle_len - data_len -
1387 sizeof(m->footer);
1388 con->in_tag = CEPH_MSGR_TAG_READY;
1389 con->in_seq++;
1390 return 0;
1391 } else if ((s64)seq - (s64)con->in_seq > 1) {
1392 pr_err("read_partial_message bad seq %lld expected %lld\n",
1393 seq, con->in_seq + 1);
1394 con->error_msg = "bad message sequence # for incoming message";
1395 return -EBADMSG;
1398 /* allocate message? */
1399 if (!con->in_msg) {
1400 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1401 con->in_hdr.front_len, con->in_hdr.data_len);
1402 skip = 0;
1403 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1404 if (skip) {
1405 /* skip this message */
1406 dout("alloc_msg said skip message\n");
1407 BUG_ON(con->in_msg);
1408 con->in_base_pos = -front_len - middle_len - data_len -
1409 sizeof(m->footer);
1410 con->in_tag = CEPH_MSGR_TAG_READY;
1411 con->in_seq++;
1412 return 0;
1414 if (!con->in_msg) {
1415 con->error_msg =
1416 "error allocating memory for incoming message";
1417 return -ENOMEM;
1419 m = con->in_msg;
1420 m->front.iov_len = 0; /* haven't read it yet */
1421 if (m->middle)
1422 m->middle->vec.iov_len = 0;
1424 con->in_msg_pos.page = 0;
1425 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1426 con->in_msg_pos.data_pos = 0;
1429 /* front */
1430 ret = read_partial_message_section(con, &m->front, front_len,
1431 &con->in_front_crc);
1432 if (ret <= 0)
1433 return ret;
1435 /* middle */
1436 if (m->middle) {
1437 ret = read_partial_message_section(con, &m->middle->vec,
1438 middle_len,
1439 &con->in_middle_crc);
1440 if (ret <= 0)
1441 return ret;
1444 /* (page) data */
1445 while (con->in_msg_pos.data_pos < data_len) {
1446 left = min((int)(data_len - con->in_msg_pos.data_pos),
1447 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1448 BUG_ON(m->pages == NULL);
1449 p = kmap(m->pages[con->in_msg_pos.page]);
1450 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1451 left);
1452 if (ret > 0 && datacrc)
1453 con->in_data_crc =
1454 crc32c(con->in_data_crc,
1455 p + con->in_msg_pos.page_pos, ret);
1456 kunmap(m->pages[con->in_msg_pos.page]);
1457 if (ret <= 0)
1458 return ret;
1459 con->in_msg_pos.data_pos += ret;
1460 con->in_msg_pos.page_pos += ret;
1461 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1462 con->in_msg_pos.page_pos = 0;
1463 con->in_msg_pos.page++;
1467 /* footer */
1468 to = sizeof(m->hdr) + sizeof(m->footer);
1469 while (con->in_base_pos < to) {
1470 left = to - con->in_base_pos;
1471 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1472 (con->in_base_pos - sizeof(m->hdr)),
1473 left);
1474 if (ret <= 0)
1475 return ret;
1476 con->in_base_pos += ret;
1478 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1479 m, front_len, m->footer.front_crc, middle_len,
1480 m->footer.middle_crc, data_len, m->footer.data_crc);
1482 /* crc ok? */
1483 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1484 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1485 m, con->in_front_crc, m->footer.front_crc);
1486 return -EBADMSG;
1488 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1489 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1490 m, con->in_middle_crc, m->footer.middle_crc);
1491 return -EBADMSG;
1493 if (datacrc &&
1494 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1495 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1496 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1497 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1498 return -EBADMSG;
1501 return 1; /* done! */
1505 * Process message. This happens in the worker thread. The callback should
1506 * be careful not to do anything that waits on other incoming messages or it
1507 * may deadlock.
1509 static void process_message(struct ceph_connection *con)
1511 struct ceph_msg *msg;
1513 msg = con->in_msg;
1514 con->in_msg = NULL;
1516 /* if first message, set peer_name */
1517 if (con->peer_name.type == 0)
1518 con->peer_name = msg->hdr.src;
1520 con->in_seq++;
1521 mutex_unlock(&con->mutex);
1523 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1524 msg, le64_to_cpu(msg->hdr.seq),
1525 ENTITY_NAME(msg->hdr.src),
1526 le16_to_cpu(msg->hdr.type),
1527 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1528 le32_to_cpu(msg->hdr.front_len),
1529 le32_to_cpu(msg->hdr.data_len),
1530 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1531 con->ops->dispatch(con, msg);
1533 mutex_lock(&con->mutex);
1534 prepare_read_tag(con);
1539 * Write something to the socket. Called in a worker thread when the
1540 * socket appears to be writeable and we have something ready to send.
1542 static int try_write(struct ceph_connection *con)
1544 struct ceph_messenger *msgr = con->msgr;
1545 int ret = 1;
1547 dout("try_write start %p state %lu nref %d\n", con, con->state,
1548 atomic_read(&con->nref));
1550 more:
1551 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1553 /* open the socket first? */
1554 if (con->sock == NULL) {
1556 * if we were STANDBY and are reconnecting _this_
1557 * connection, bump connect_seq now. Always bump
1558 * global_seq.
1560 if (test_and_clear_bit(STANDBY, &con->state))
1561 con->connect_seq++;
1563 prepare_write_banner(msgr, con);
1564 prepare_write_connect(msgr, con, 1);
1565 prepare_read_banner(con);
1566 set_bit(CONNECTING, &con->state);
1567 clear_bit(NEGOTIATING, &con->state);
1569 BUG_ON(con->in_msg);
1570 con->in_tag = CEPH_MSGR_TAG_READY;
1571 dout("try_write initiating connect on %p new state %lu\n",
1572 con, con->state);
1573 con->sock = ceph_tcp_connect(con);
1574 if (IS_ERR(con->sock)) {
1575 con->sock = NULL;
1576 con->error_msg = "connect error";
1577 ret = -1;
1578 goto out;
1582 more_kvec:
1583 /* kvec data queued? */
1584 if (con->out_skip) {
1585 ret = write_partial_skip(con);
1586 if (ret <= 0)
1587 goto done;
1588 if (ret < 0) {
1589 dout("try_write write_partial_skip err %d\n", ret);
1590 goto done;
1593 if (con->out_kvec_left) {
1594 ret = write_partial_kvec(con);
1595 if (ret <= 0)
1596 goto done;
1599 /* msg pages? */
1600 if (con->out_msg) {
1601 if (con->out_msg_done) {
1602 ceph_msg_put(con->out_msg);
1603 con->out_msg = NULL; /* we're done with this one */
1604 goto do_next;
1607 ret = write_partial_msg_pages(con);
1608 if (ret == 1)
1609 goto more_kvec; /* we need to send the footer, too! */
1610 if (ret == 0)
1611 goto done;
1612 if (ret < 0) {
1613 dout("try_write write_partial_msg_pages err %d\n",
1614 ret);
1615 goto done;
1619 do_next:
1620 if (!test_bit(CONNECTING, &con->state)) {
1621 /* is anything else pending? */
1622 if (!list_empty(&con->out_queue)) {
1623 prepare_write_message(con);
1624 goto more;
1626 if (con->in_seq > con->in_seq_acked) {
1627 prepare_write_ack(con);
1628 goto more;
1630 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1631 prepare_write_keepalive(con);
1632 goto more;
1636 /* Nothing to do! */
1637 clear_bit(WRITE_PENDING, &con->state);
1638 dout("try_write nothing else to write.\n");
1639 done:
1640 ret = 0;
1641 out:
1642 dout("try_write done on %p\n", con);
1643 return ret;
1649 * Read what we can from the socket.
1651 static int try_read(struct ceph_connection *con)
1653 int ret = -1;
1655 if (!con->sock)
1656 return 0;
1658 if (test_bit(STANDBY, &con->state))
1659 return 0;
1661 dout("try_read start on %p\n", con);
1663 more:
1664 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1665 con->in_base_pos);
1666 if (test_bit(CONNECTING, &con->state)) {
1667 if (!test_bit(NEGOTIATING, &con->state)) {
1668 dout("try_read connecting\n");
1669 ret = read_partial_banner(con);
1670 if (ret <= 0)
1671 goto done;
1672 if (process_banner(con) < 0) {
1673 ret = -1;
1674 goto out;
1677 ret = read_partial_connect(con);
1678 if (ret <= 0)
1679 goto done;
1680 if (process_connect(con) < 0) {
1681 ret = -1;
1682 goto out;
1684 goto more;
1687 if (con->in_base_pos < 0) {
1688 static char buf[1024];
1689 int skip = min(1024, -con->in_base_pos);
1690 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1691 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1692 if (ret <= 0)
1693 goto done;
1694 con->in_base_pos += ret;
1695 if (con->in_base_pos)
1696 goto more;
1698 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1700 * what's next?
1702 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1703 if (ret <= 0)
1704 goto done;
1705 dout("try_read got tag %d\n", (int)con->in_tag);
1706 switch (con->in_tag) {
1707 case CEPH_MSGR_TAG_MSG:
1708 prepare_read_message(con);
1709 break;
1710 case CEPH_MSGR_TAG_ACK:
1711 prepare_read_ack(con);
1712 break;
1713 case CEPH_MSGR_TAG_CLOSE:
1714 set_bit(CLOSED, &con->state);
1715 goto done;
1716 default:
1717 goto bad_tag;
1720 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1721 ret = read_partial_message(con);
1722 if (ret <= 0) {
1723 switch (ret) {
1724 case -EBADMSG:
1725 con->error_msg = "bad crc";
1726 ret = -EIO;
1727 goto out;
1728 case -EIO:
1729 con->error_msg = "io error";
1730 goto out;
1731 default:
1732 goto done;
1735 if (con->in_tag == CEPH_MSGR_TAG_READY)
1736 goto more;
1737 process_message(con);
1738 goto more;
1740 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1741 ret = read_partial_ack(con);
1742 if (ret <= 0)
1743 goto done;
1744 process_ack(con);
1745 goto more;
1748 done:
1749 ret = 0;
1750 out:
1751 dout("try_read done on %p\n", con);
1752 return ret;
1754 bad_tag:
1755 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1756 con->error_msg = "protocol error, garbage tag";
1757 ret = -1;
1758 goto out;
1763 * Atomically queue work on a connection. Bump @con reference to
1764 * avoid races with connection teardown.
1766 * There is some trickery going on with QUEUED and BUSY because we
1767 * only want a _single_ thread operating on each connection at any
1768 * point in time, but we want to use all available CPUs.
1770 * The worker thread only proceeds if it can atomically set BUSY. It
1771 * clears QUEUED and does it's thing. When it thinks it's done, it
1772 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1773 * (tries again to set BUSY).
1775 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1776 * try to queue work. If that fails (work is already queued, or BUSY)
1777 * we give up (work also already being done or is queued) but leave QUEUED
1778 * set so that the worker thread will loop if necessary.
1780 static void queue_con(struct ceph_connection *con)
1782 if (test_bit(DEAD, &con->state)) {
1783 dout("queue_con %p ignoring: DEAD\n",
1784 con);
1785 return;
1788 if (!con->ops->get(con)) {
1789 dout("queue_con %p ref count 0\n", con);
1790 return;
1793 set_bit(QUEUED, &con->state);
1794 if (test_bit(BUSY, &con->state)) {
1795 dout("queue_con %p - already BUSY\n", con);
1796 con->ops->put(con);
1797 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1798 dout("queue_con %p - already queued\n", con);
1799 con->ops->put(con);
1800 } else {
1801 dout("queue_con %p\n", con);
1806 * Do some work on a connection. Drop a connection ref when we're done.
1808 static void con_work(struct work_struct *work)
1810 struct ceph_connection *con = container_of(work, struct ceph_connection,
1811 work.work);
1812 int backoff = 0;
1814 more:
1815 if (test_and_set_bit(BUSY, &con->state) != 0) {
1816 dout("con_work %p BUSY already set\n", con);
1817 goto out;
1819 dout("con_work %p start, clearing QUEUED\n", con);
1820 clear_bit(QUEUED, &con->state);
1822 mutex_lock(&con->mutex);
1824 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1825 dout("con_work CLOSED\n");
1826 con_close_socket(con);
1827 goto done;
1829 if (test_and_clear_bit(OPENING, &con->state)) {
1830 /* reopen w/ new peer */
1831 dout("con_work OPENING\n");
1832 con_close_socket(con);
1835 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1836 try_read(con) < 0 ||
1837 try_write(con) < 0) {
1838 mutex_unlock(&con->mutex);
1839 backoff = 1;
1840 ceph_fault(con); /* error/fault path */
1841 goto done_unlocked;
1844 done:
1845 mutex_unlock(&con->mutex);
1847 done_unlocked:
1848 clear_bit(BUSY, &con->state);
1849 dout("con->state=%lu\n", con->state);
1850 if (test_bit(QUEUED, &con->state)) {
1851 if (!backoff || test_bit(OPENING, &con->state)) {
1852 dout("con_work %p QUEUED reset, looping\n", con);
1853 goto more;
1855 dout("con_work %p QUEUED reset, but just faulted\n", con);
1856 clear_bit(QUEUED, &con->state);
1858 dout("con_work %p done\n", con);
1860 out:
1861 con->ops->put(con);
1866 * Generic error/fault handler. A retry mechanism is used with
1867 * exponential backoff
1869 static void ceph_fault(struct ceph_connection *con)
1871 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1872 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1873 dout("fault %p state %lu to peer %s\n",
1874 con, con->state, pr_addr(&con->peer_addr.in_addr));
1876 if (test_bit(LOSSYTX, &con->state)) {
1877 dout("fault on LOSSYTX channel\n");
1878 goto out;
1881 mutex_lock(&con->mutex);
1882 if (test_bit(CLOSED, &con->state))
1883 goto out_unlock;
1885 con_close_socket(con);
1887 if (con->in_msg) {
1888 ceph_msg_put(con->in_msg);
1889 con->in_msg = NULL;
1892 /* Requeue anything that hasn't been acked */
1893 list_splice_init(&con->out_sent, &con->out_queue);
1895 /* If there are no messages in the queue, place the connection
1896 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1897 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1898 dout("fault setting STANDBY\n");
1899 set_bit(STANDBY, &con->state);
1900 } else {
1901 /* retry after a delay. */
1902 if (con->delay == 0)
1903 con->delay = BASE_DELAY_INTERVAL;
1904 else if (con->delay < MAX_DELAY_INTERVAL)
1905 con->delay *= 2;
1906 dout("fault queueing %p delay %lu\n", con, con->delay);
1907 con->ops->get(con);
1908 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1909 round_jiffies_relative(con->delay)) == 0)
1910 con->ops->put(con);
1913 out_unlock:
1914 mutex_unlock(&con->mutex);
1915 out:
1917 * in case we faulted due to authentication, invalidate our
1918 * current tickets so that we can get new ones.
1920 if (con->auth_retry && con->ops->invalidate_authorizer) {
1921 dout("calling invalidate_authorizer()\n");
1922 con->ops->invalidate_authorizer(con);
1925 if (con->ops->fault)
1926 con->ops->fault(con);
1932 * create a new messenger instance
1934 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1936 struct ceph_messenger *msgr;
1938 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1939 if (msgr == NULL)
1940 return ERR_PTR(-ENOMEM);
1942 spin_lock_init(&msgr->global_seq_lock);
1944 /* the zero page is needed if a request is "canceled" while the message
1945 * is being written over the socket */
1946 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
1947 if (!msgr->zero_page) {
1948 kfree(msgr);
1949 return ERR_PTR(-ENOMEM);
1951 kmap(msgr->zero_page);
1953 if (myaddr)
1954 msgr->inst.addr = *myaddr;
1956 /* select a random nonce */
1957 msgr->inst.addr.type = 0;
1958 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1959 encode_my_addr(msgr);
1961 dout("messenger_create %p\n", msgr);
1962 return msgr;
1965 void ceph_messenger_destroy(struct ceph_messenger *msgr)
1967 dout("destroy %p\n", msgr);
1968 kunmap(msgr->zero_page);
1969 __free_page(msgr->zero_page);
1970 kfree(msgr);
1971 dout("destroyed messenger %p\n", msgr);
1975 * Queue up an outgoing message on the given connection.
1977 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1979 if (test_bit(CLOSED, &con->state)) {
1980 dout("con_send %p closed, dropping %p\n", con, msg);
1981 ceph_msg_put(msg);
1982 return;
1985 /* set src+dst */
1986 msg->hdr.src = con->msgr->inst.name;
1988 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1990 msg->needs_out_seq = true;
1992 /* queue */
1993 mutex_lock(&con->mutex);
1994 BUG_ON(!list_empty(&msg->list_head));
1995 list_add_tail(&msg->list_head, &con->out_queue);
1996 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1997 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1998 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1999 le32_to_cpu(msg->hdr.front_len),
2000 le32_to_cpu(msg->hdr.middle_len),
2001 le32_to_cpu(msg->hdr.data_len));
2002 mutex_unlock(&con->mutex);
2004 /* if there wasn't anything waiting to send before, queue
2005 * new work */
2006 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2007 queue_con(con);
2011 * Revoke a message that was previously queued for send
2013 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2015 mutex_lock(&con->mutex);
2016 if (!list_empty(&msg->list_head)) {
2017 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2018 list_del_init(&msg->list_head);
2019 ceph_msg_put(msg);
2020 msg->hdr.seq = 0;
2022 if (con->out_msg == msg) {
2023 dout("con_revoke %p msg %p - was sending\n", con, msg);
2024 con->out_msg = NULL;
2025 if (con->out_kvec_is_msg) {
2026 con->out_skip = con->out_kvec_bytes;
2027 con->out_kvec_is_msg = false;
2029 ceph_msg_put(msg);
2030 msg->hdr.seq = 0;
2032 mutex_unlock(&con->mutex);
2036 * Revoke a message that we may be reading data into
2038 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2040 mutex_lock(&con->mutex);
2041 if (con->in_msg && con->in_msg == msg) {
2042 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2043 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2044 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2046 /* skip rest of message */
2047 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2048 con->in_base_pos = con->in_base_pos -
2049 sizeof(struct ceph_msg_header) -
2050 front_len -
2051 middle_len -
2052 data_len -
2053 sizeof(struct ceph_msg_footer);
2054 ceph_msg_put(con->in_msg);
2055 con->in_msg = NULL;
2056 con->in_tag = CEPH_MSGR_TAG_READY;
2057 con->in_seq++;
2058 } else {
2059 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2060 con, con->in_msg, msg);
2062 mutex_unlock(&con->mutex);
2066 * Queue a keepalive byte to ensure the tcp connection is alive.
2068 void ceph_con_keepalive(struct ceph_connection *con)
2070 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2071 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2072 queue_con(con);
2077 * construct a new message with given type, size
2078 * the new msg has a ref count of 1.
2080 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2082 struct ceph_msg *m;
2084 m = kmalloc(sizeof(*m), flags);
2085 if (m == NULL)
2086 goto out;
2087 kref_init(&m->kref);
2088 INIT_LIST_HEAD(&m->list_head);
2090 m->hdr.tid = 0;
2091 m->hdr.type = cpu_to_le16(type);
2092 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2093 m->hdr.version = 0;
2094 m->hdr.front_len = cpu_to_le32(front_len);
2095 m->hdr.middle_len = 0;
2096 m->hdr.data_len = 0;
2097 m->hdr.data_off = 0;
2098 m->hdr.reserved = 0;
2099 m->footer.front_crc = 0;
2100 m->footer.middle_crc = 0;
2101 m->footer.data_crc = 0;
2102 m->footer.flags = 0;
2103 m->front_max = front_len;
2104 m->front_is_vmalloc = false;
2105 m->more_to_follow = false;
2106 m->pool = NULL;
2108 /* front */
2109 if (front_len) {
2110 if (front_len > PAGE_CACHE_SIZE) {
2111 m->front.iov_base = __vmalloc(front_len, flags,
2112 PAGE_KERNEL);
2113 m->front_is_vmalloc = true;
2114 } else {
2115 m->front.iov_base = kmalloc(front_len, flags);
2117 if (m->front.iov_base == NULL) {
2118 pr_err("msg_new can't allocate %d bytes\n",
2119 front_len);
2120 goto out2;
2122 } else {
2123 m->front.iov_base = NULL;
2125 m->front.iov_len = front_len;
2127 /* middle */
2128 m->middle = NULL;
2130 /* data */
2131 m->nr_pages = 0;
2132 m->pages = NULL;
2133 m->pagelist = NULL;
2135 dout("ceph_msg_new %p front %d\n", m, front_len);
2136 return m;
2138 out2:
2139 ceph_msg_put(m);
2140 out:
2141 pr_err("msg_new can't create type %d front %d\n", type, front_len);
2142 return NULL;
2146 * Allocate "middle" portion of a message, if it is needed and wasn't
2147 * allocated by alloc_msg. This allows us to read a small fixed-size
2148 * per-type header in the front and then gracefully fail (i.e.,
2149 * propagate the error to the caller based on info in the front) when
2150 * the middle is too large.
2152 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2154 int type = le16_to_cpu(msg->hdr.type);
2155 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2157 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2158 ceph_msg_type_name(type), middle_len);
2159 BUG_ON(!middle_len);
2160 BUG_ON(msg->middle);
2162 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2163 if (!msg->middle)
2164 return -ENOMEM;
2165 return 0;
2169 * Generic message allocator, for incoming messages.
2171 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2172 struct ceph_msg_header *hdr,
2173 int *skip)
2175 int type = le16_to_cpu(hdr->type);
2176 int front_len = le32_to_cpu(hdr->front_len);
2177 int middle_len = le32_to_cpu(hdr->middle_len);
2178 struct ceph_msg *msg = NULL;
2179 int ret;
2181 if (con->ops->alloc_msg) {
2182 mutex_unlock(&con->mutex);
2183 msg = con->ops->alloc_msg(con, hdr, skip);
2184 mutex_lock(&con->mutex);
2185 if (!msg || *skip)
2186 return NULL;
2188 if (!msg) {
2189 *skip = 0;
2190 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2191 if (!msg) {
2192 pr_err("unable to allocate msg type %d len %d\n",
2193 type, front_len);
2194 return NULL;
2197 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2199 if (middle_len && !msg->middle) {
2200 ret = ceph_alloc_middle(con, msg);
2201 if (ret < 0) {
2202 ceph_msg_put(msg);
2203 return NULL;
2207 return msg;
2212 * Free a generically kmalloc'd message.
2214 void ceph_msg_kfree(struct ceph_msg *m)
2216 dout("msg_kfree %p\n", m);
2217 if (m->front_is_vmalloc)
2218 vfree(m->front.iov_base);
2219 else
2220 kfree(m->front.iov_base);
2221 kfree(m);
2225 * Drop a msg ref. Destroy as needed.
2227 void ceph_msg_last_put(struct kref *kref)
2229 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2231 dout("ceph_msg_put last one on %p\n", m);
2232 WARN_ON(!list_empty(&m->list_head));
2234 /* drop middle, data, if any */
2235 if (m->middle) {
2236 ceph_buffer_put(m->middle);
2237 m->middle = NULL;
2239 m->nr_pages = 0;
2240 m->pages = NULL;
2242 if (m->pagelist) {
2243 ceph_pagelist_release(m->pagelist);
2244 kfree(m->pagelist);
2245 m->pagelist = NULL;
2248 if (m->pool)
2249 ceph_msgpool_put(m->pool, m);
2250 else
2251 ceph_msg_kfree(m);
2254 void ceph_msg_dump(struct ceph_msg *msg)
2256 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2257 msg->front_max, msg->nr_pages);
2258 print_hex_dump(KERN_DEBUG, "header: ",
2259 DUMP_PREFIX_OFFSET, 16, 1,
2260 &msg->hdr, sizeof(msg->hdr), true);
2261 print_hex_dump(KERN_DEBUG, " front: ",
2262 DUMP_PREFIX_OFFSET, 16, 1,
2263 msg->front.iov_base, msg->front.iov_len, true);
2264 if (msg->middle)
2265 print_hex_dump(KERN_DEBUG, "middle: ",
2266 DUMP_PREFIX_OFFSET, 16, 1,
2267 msg->middle->vec.iov_base,
2268 msg->middle->vec.iov_len, true);
2269 print_hex_dump(KERN_DEBUG, "footer: ",
2270 DUMP_PREFIX_OFFSET, 16, 1,
2271 &msg->footer, sizeof(msg->footer), true);