GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / usb / host / ehci-sched.c
blob233527ee3ea0013b0df275ea0d1f5c3315b0736a
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 /* this file is part of ehci-hcd.c */
22 /*-------------------------------------------------------------------------*/
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
37 static int ehci_get_frame (struct usb_hcd *hcd);
39 /*-------------------------------------------------------------------------*/
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 __hc32 tag)
67 switch (hc32_to_cpu(ehci, tag)) {
68 /* our ehci_shadow.qh is actually software part */
69 case Q_TYPE_QH:
70 return &periodic->qh->hw->hw_next;
71 /* others are hw parts */
72 default:
73 return periodic->hw_next;
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
80 union ehci_shadow *prev_p = &ehci->pshadow[frame];
81 __hc32 *hw_p = &ehci->periodic[frame];
82 union ehci_shadow here = *prev_p;
84 /* find predecessor of "ptr"; hw and shadow lists are in sync */
85 while (here.ptr && here.ptr != ptr) {
86 prev_p = periodic_next_shadow(ehci, prev_p,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 hw_p = shadow_next_periodic(ehci, &here,
89 Q_NEXT_TYPE(ehci, *hw_p));
90 here = *prev_p;
92 /* an interrupt entry (at list end) could have been shared */
93 if (!here.ptr)
94 return;
96 /* update shadow and hardware lists ... the old "next" pointers
97 * from ptr may still be in use, the caller updates them.
99 *prev_p = *periodic_next_shadow(ehci, &here,
100 Q_NEXT_TYPE(ehci, *hw_p));
101 *hw_p = *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p));
104 /* how many of the uframe's 125 usecs are allocated? */
105 static unsigned short
106 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
108 __hc32 *hw_p = &ehci->periodic [frame];
109 union ehci_shadow *q = &ehci->pshadow [frame];
110 unsigned usecs = 0;
111 struct ehci_qh_hw *hw;
113 while (q->ptr) {
114 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
115 case Q_TYPE_QH:
116 hw = q->qh->hw;
117 /* is it in the S-mask? */
118 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
119 usecs += q->qh->usecs;
120 /* ... or C-mask? */
121 if (hw->hw_info2 & cpu_to_hc32(ehci,
122 1 << (8 + uframe)))
123 usecs += q->qh->c_usecs;
124 hw_p = &hw->hw_next;
125 q = &q->qh->qh_next;
126 break;
127 // case Q_TYPE_FSTN:
128 default:
129 /* for "save place" FSTNs, count the relevant INTR
130 * bandwidth from the previous frame
132 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
133 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
135 hw_p = &q->fstn->hw_next;
136 q = &q->fstn->fstn_next;
137 break;
138 case Q_TYPE_ITD:
139 if (q->itd->hw_transaction[uframe])
140 usecs += q->itd->stream->usecs;
141 hw_p = &q->itd->hw_next;
142 q = &q->itd->itd_next;
143 break;
144 case Q_TYPE_SITD:
145 /* is it in the S-mask? (count SPLIT, DATA) */
146 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
147 1 << uframe)) {
148 if (q->sitd->hw_fullspeed_ep &
149 cpu_to_hc32(ehci, 1<<31))
150 usecs += q->sitd->stream->usecs;
151 else /* worst case for OUT start-split */
152 usecs += HS_USECS_ISO (188);
155 /* ... C-mask? (count CSPLIT, DATA) */
156 if (q->sitd->hw_uframe &
157 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
158 /* worst case for IN complete-split */
159 usecs += q->sitd->stream->c_usecs;
162 hw_p = &q->sitd->hw_next;
163 q = &q->sitd->sitd_next;
164 break;
167 #ifdef DEBUG
168 if (usecs > 100)
169 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
170 frame * 8 + uframe, usecs);
171 #endif
172 return usecs;
175 /*-------------------------------------------------------------------------*/
177 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
179 if (!dev1->tt || !dev2->tt)
180 return 0;
181 if (dev1->tt != dev2->tt)
182 return 0;
183 if (dev1->tt->multi)
184 return dev1->ttport == dev2->ttport;
185 else
186 return 1;
189 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
191 /* Which uframe does the low/fullspeed transfer start in?
193 * The parameter is the mask of ssplits in "H-frame" terms
194 * and this returns the transfer start uframe in "B-frame" terms,
195 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
196 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
197 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
199 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
201 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
202 if (!smask) {
203 ehci_err(ehci, "invalid empty smask!\n");
204 /* uframe 7 can't have bw so this will indicate failure */
205 return 7;
207 return ffs(smask) - 1;
210 static const unsigned char
211 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
213 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
214 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
216 int i;
217 for (i=0; i<7; i++) {
218 if (max_tt_usecs[i] < tt_usecs[i]) {
219 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
220 tt_usecs[i] = max_tt_usecs[i];
225 /* How many of the tt's periodic downstream 1000 usecs are allocated?
227 * While this measures the bandwidth in terms of usecs/uframe,
228 * the low/fullspeed bus has no notion of uframes, so any particular
229 * low/fullspeed transfer can "carry over" from one uframe to the next,
230 * since the TT just performs downstream transfers in sequence.
232 * For example two separate 100 usec transfers can start in the same uframe,
233 * and the second one would "carry over" 75 usecs into the next uframe.
235 static void
236 periodic_tt_usecs (
237 struct ehci_hcd *ehci,
238 struct usb_device *dev,
239 unsigned frame,
240 unsigned short tt_usecs[8]
243 __hc32 *hw_p = &ehci->periodic [frame];
244 union ehci_shadow *q = &ehci->pshadow [frame];
245 unsigned char uf;
247 memset(tt_usecs, 0, 16);
249 while (q->ptr) {
250 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
251 case Q_TYPE_ITD:
252 hw_p = &q->itd->hw_next;
253 q = &q->itd->itd_next;
254 continue;
255 case Q_TYPE_QH:
256 if (same_tt(dev, q->qh->dev)) {
257 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
258 tt_usecs[uf] += q->qh->tt_usecs;
260 hw_p = &q->qh->hw->hw_next;
261 q = &q->qh->qh_next;
262 continue;
263 case Q_TYPE_SITD:
264 if (same_tt(dev, q->sitd->urb->dev)) {
265 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
266 tt_usecs[uf] += q->sitd->stream->tt_usecs;
268 hw_p = &q->sitd->hw_next;
269 q = &q->sitd->sitd_next;
270 continue;
271 // case Q_TYPE_FSTN:
272 default:
273 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
274 frame);
275 hw_p = &q->fstn->hw_next;
276 q = &q->fstn->fstn_next;
280 carryover_tt_bandwidth(tt_usecs);
282 if (max_tt_usecs[7] < tt_usecs[7])
283 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
284 frame, tt_usecs[7] - max_tt_usecs[7]);
288 * Return true if the device's tt's downstream bus is available for a
289 * periodic transfer of the specified length (usecs), starting at the
290 * specified frame/uframe. Note that (as summarized in section 11.19
291 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
292 * uframe.
294 * The uframe parameter is when the fullspeed/lowspeed transfer
295 * should be executed in "B-frame" terms, which is the same as the
296 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
297 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
298 * See the EHCI spec sec 4.5 and fig 4.7.
300 * This checks if the full/lowspeed bus, at the specified starting uframe,
301 * has the specified bandwidth available, according to rules listed
302 * in USB 2.0 spec section 11.18.1 fig 11-60.
304 * This does not check if the transfer would exceed the max ssplit
305 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
306 * since proper scheduling limits ssplits to less than 16 per uframe.
308 static int tt_available (
309 struct ehci_hcd *ehci,
310 unsigned period,
311 struct usb_device *dev,
312 unsigned frame,
313 unsigned uframe,
314 u16 usecs
317 if ((period == 0) || (uframe >= 7)) /* error */
318 return 0;
320 for (; frame < ehci->periodic_size; frame += period) {
321 unsigned short tt_usecs[8];
323 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
325 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
326 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
327 frame, usecs, uframe,
328 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
329 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
331 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
332 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
333 frame, uframe);
334 return 0;
337 /* special case for isoc transfers larger than 125us:
338 * the first and each subsequent fully used uframe
339 * must be empty, so as to not illegally delay
340 * already scheduled transactions
342 if (125 < usecs) {
343 int ufs = (usecs / 125);
344 int i;
345 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
346 if (0 < tt_usecs[i]) {
347 ehci_vdbg(ehci,
348 "multi-uframe xfer can't fit "
349 "in frame %d uframe %d\n",
350 frame, i);
351 return 0;
355 tt_usecs[uframe] += usecs;
357 carryover_tt_bandwidth(tt_usecs);
359 /* fail if the carryover pushed bw past the last uframe's limit */
360 if (max_tt_usecs[7] < tt_usecs[7]) {
361 ehci_vdbg(ehci,
362 "tt unavailable usecs %d frame %d uframe %d\n",
363 usecs, frame, uframe);
364 return 0;
368 return 1;
371 #else
373 /* return true iff the device's transaction translator is available
374 * for a periodic transfer starting at the specified frame, using
375 * all the uframes in the mask.
377 static int tt_no_collision (
378 struct ehci_hcd *ehci,
379 unsigned period,
380 struct usb_device *dev,
381 unsigned frame,
382 u32 uf_mask
385 if (period == 0) /* error */
386 return 0;
388 /* note bandwidth wastage: split never follows csplit
389 * (different dev or endpoint) until the next uframe.
390 * calling convention doesn't make that distinction.
392 for (; frame < ehci->periodic_size; frame += period) {
393 union ehci_shadow here;
394 __hc32 type;
395 struct ehci_qh_hw *hw;
397 here = ehci->pshadow [frame];
398 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
399 while (here.ptr) {
400 switch (hc32_to_cpu(ehci, type)) {
401 case Q_TYPE_ITD:
402 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
403 here = here.itd->itd_next;
404 continue;
405 case Q_TYPE_QH:
406 hw = here.qh->hw;
407 if (same_tt (dev, here.qh->dev)) {
408 u32 mask;
410 mask = hc32_to_cpu(ehci,
411 hw->hw_info2);
412 /* "knows" no gap is needed */
413 mask |= mask >> 8;
414 if (mask & uf_mask)
415 break;
417 type = Q_NEXT_TYPE(ehci, hw->hw_next);
418 here = here.qh->qh_next;
419 continue;
420 case Q_TYPE_SITD:
421 if (same_tt (dev, here.sitd->urb->dev)) {
422 u16 mask;
424 mask = hc32_to_cpu(ehci, here.sitd
425 ->hw_uframe);
426 mask |= mask >> 8;
427 if (mask & uf_mask)
428 break;
430 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
431 here = here.sitd->sitd_next;
432 continue;
433 // case Q_TYPE_FSTN:
434 default:
435 ehci_dbg (ehci,
436 "periodic frame %d bogus type %d\n",
437 frame, type);
440 /* collision or error */
441 return 0;
445 /* no collision */
446 return 1;
449 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
451 /*-------------------------------------------------------------------------*/
453 static int enable_periodic (struct ehci_hcd *ehci)
455 u32 cmd;
456 int status;
458 if (ehci->periodic_sched++)
459 return 0;
461 /* did clearing PSE did take effect yet?
462 * takes effect only at frame boundaries...
464 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
465 STS_PSS, 0, 9 * 125);
466 if (status)
467 return status;
469 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
470 ehci_writel(ehci, cmd, &ehci->regs->command);
471 /* posted write ... PSS happens later */
472 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
474 /* make sure ehci_work scans these */
475 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
476 % (ehci->periodic_size << 3);
477 if (unlikely(ehci->broken_periodic))
478 ehci->last_periodic_enable = ktime_get_real();
479 return 0;
482 static int disable_periodic (struct ehci_hcd *ehci)
484 u32 cmd;
485 int status;
487 if (--ehci->periodic_sched)
488 return 0;
490 if (unlikely(ehci->broken_periodic)) {
491 /* delay experimentally determined */
492 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
493 ktime_t now = ktime_get_real();
494 s64 delay = ktime_us_delta(safe, now);
496 if (unlikely(delay > 0))
497 udelay(delay);
500 /* did setting PSE not take effect yet?
501 * takes effect only at frame boundaries...
503 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
504 STS_PSS, STS_PSS, 9 * 125);
505 if (status)
506 return status;
508 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
509 ehci_writel(ehci, cmd, &ehci->regs->command);
510 /* posted write ... */
512 free_cached_lists(ehci);
514 ehci->next_uframe = -1;
515 return 0;
518 /*-------------------------------------------------------------------------*/
520 /* periodic schedule slots have iso tds (normal or split) first, then a
521 * sparse tree for active interrupt transfers.
523 * this just links in a qh; caller guarantees uframe masks are set right.
524 * no FSTN support (yet; ehci 0.96+)
526 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
528 unsigned i;
529 unsigned period = qh->period;
531 dev_dbg (&qh->dev->dev,
532 "link qh%d-%04x/%p start %d [%d/%d us]\n",
533 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
534 & (QH_CMASK | QH_SMASK),
535 qh, qh->start, qh->usecs, qh->c_usecs);
537 /* high bandwidth, or otherwise every microframe */
538 if (period == 0)
539 period = 1;
541 for (i = qh->start; i < ehci->periodic_size; i += period) {
542 union ehci_shadow *prev = &ehci->pshadow[i];
543 __hc32 *hw_p = &ehci->periodic[i];
544 union ehci_shadow here = *prev;
545 __hc32 type = 0;
547 /* skip the iso nodes at list head */
548 while (here.ptr) {
549 type = Q_NEXT_TYPE(ehci, *hw_p);
550 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
551 break;
552 prev = periodic_next_shadow(ehci, prev, type);
553 hw_p = shadow_next_periodic(ehci, &here, type);
554 here = *prev;
557 /* sorting each branch by period (slow-->fast)
558 * enables sharing interior tree nodes
560 while (here.ptr && qh != here.qh) {
561 if (qh->period > here.qh->period)
562 break;
563 prev = &here.qh->qh_next;
564 hw_p = &here.qh->hw->hw_next;
565 here = *prev;
567 /* link in this qh, unless some earlier pass did that */
568 if (qh != here.qh) {
569 qh->qh_next = here;
570 if (here.qh)
571 qh->hw->hw_next = *hw_p;
572 wmb ();
573 prev->qh = qh;
574 *hw_p = QH_NEXT (ehci, qh->qh_dma);
577 qh->qh_state = QH_STATE_LINKED;
578 qh->xacterrs = 0;
579 qh_get (qh);
581 /* update per-qh bandwidth for usbfs */
582 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
583 ? ((qh->usecs + qh->c_usecs) / qh->period)
584 : (qh->usecs * 8);
586 /* maybe enable periodic schedule processing */
587 return enable_periodic(ehci);
590 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
592 unsigned i;
593 unsigned period;
595 // IF this isn't high speed
596 // and this qh is active in the current uframe
597 // (and overlay token SplitXstate is false?)
598 // THEN
599 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
601 /* high bandwidth, or otherwise part of every microframe */
602 if ((period = qh->period) == 0)
603 period = 1;
605 for (i = qh->start; i < ehci->periodic_size; i += period)
606 periodic_unlink (ehci, i, qh);
608 /* update per-qh bandwidth for usbfs */
609 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
610 ? ((qh->usecs + qh->c_usecs) / qh->period)
611 : (qh->usecs * 8);
613 dev_dbg (&qh->dev->dev,
614 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
615 qh->period,
616 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
617 qh, qh->start, qh->usecs, qh->c_usecs);
619 /* qh->qh_next still "live" to HC */
620 qh->qh_state = QH_STATE_UNLINK;
621 qh->qh_next.ptr = NULL;
622 qh_put (qh);
624 /* maybe turn off periodic schedule */
625 return disable_periodic(ehci);
628 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
630 unsigned wait;
631 struct ehci_qh_hw *hw = qh->hw;
632 int rc;
634 /* If the QH isn't linked then there's nothing we can do
635 * unless we were called during a giveback, in which case
636 * qh_completions() has to deal with it.
638 if (qh->qh_state != QH_STATE_LINKED) {
639 if (qh->qh_state == QH_STATE_COMPLETING)
640 qh->needs_rescan = 1;
641 return;
644 qh_unlink_periodic (ehci, qh);
646 /* simple/paranoid: always delay, expecting the HC needs to read
647 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
648 * expect khubd to clean up after any CSPLITs we won't issue.
649 * active high speed queues may need bigger delays...
651 if (list_empty (&qh->qtd_list)
652 || (cpu_to_hc32(ehci, QH_CMASK)
653 & hw->hw_info2) != 0)
654 wait = 2;
655 else
656 wait = 55; /* worst case: 3 * 1024 */
658 udelay (wait);
659 qh->qh_state = QH_STATE_IDLE;
660 hw->hw_next = EHCI_LIST_END(ehci);
661 wmb ();
663 qh_completions(ehci, qh);
665 /* reschedule QH iff another request is queued */
666 if (!list_empty(&qh->qtd_list) &&
667 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
668 rc = qh_schedule(ehci, qh);
670 if (rc != 0)
671 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
672 qh, rc);
676 /*-------------------------------------------------------------------------*/
678 static int check_period (
679 struct ehci_hcd *ehci,
680 unsigned frame,
681 unsigned uframe,
682 unsigned period,
683 unsigned usecs
685 int claimed;
687 /* complete split running into next frame?
688 * given FSTN support, we could sometimes check...
690 if (uframe >= 8)
691 return 0;
694 * 80% periodic == 100 usec/uframe available
695 * convert "usecs we need" to "max already claimed"
697 usecs = 100 - usecs;
699 /* we "know" 2 and 4 uframe intervals were rejected; so
700 * for period 0, check _every_ microframe in the schedule.
702 if (unlikely (period == 0)) {
703 do {
704 for (uframe = 0; uframe < 7; uframe++) {
705 claimed = periodic_usecs (ehci, frame, uframe);
706 if (claimed > usecs)
707 return 0;
709 } while ((frame += 1) < ehci->periodic_size);
711 /* just check the specified uframe, at that period */
712 } else {
713 do {
714 claimed = periodic_usecs (ehci, frame, uframe);
715 if (claimed > usecs)
716 return 0;
717 } while ((frame += period) < ehci->periodic_size);
720 // success!
721 return 1;
724 static int check_intr_schedule (
725 struct ehci_hcd *ehci,
726 unsigned frame,
727 unsigned uframe,
728 const struct ehci_qh *qh,
729 __hc32 *c_maskp
732 int retval = -ENOSPC;
733 u8 mask = 0;
735 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
736 goto done;
738 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
739 goto done;
740 if (!qh->c_usecs) {
741 retval = 0;
742 *c_maskp = 0;
743 goto done;
746 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
747 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
748 qh->tt_usecs)) {
749 unsigned i;
751 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
752 for (i=uframe+1; i<8 && i<uframe+4; i++)
753 if (!check_period (ehci, frame, i,
754 qh->period, qh->c_usecs))
755 goto done;
756 else
757 mask |= 1 << i;
759 retval = 0;
761 *c_maskp = cpu_to_hc32(ehci, mask << 8);
763 #else
764 /* Make sure this tt's buffer is also available for CSPLITs.
765 * We pessimize a bit; probably the typical full speed case
766 * doesn't need the second CSPLIT.
768 * NOTE: both SPLIT and CSPLIT could be checked in just
769 * one smart pass...
771 mask = 0x03 << (uframe + qh->gap_uf);
772 *c_maskp = cpu_to_hc32(ehci, mask << 8);
774 mask |= 1 << uframe;
775 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
776 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
777 qh->period, qh->c_usecs))
778 goto done;
779 if (!check_period (ehci, frame, uframe + qh->gap_uf,
780 qh->period, qh->c_usecs))
781 goto done;
782 retval = 0;
784 #endif
785 done:
786 return retval;
789 /* "first fit" scheduling policy used the first time through,
790 * or when the previous schedule slot can't be re-used.
792 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
794 int status;
795 unsigned uframe;
796 __hc32 c_mask;
797 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
798 struct ehci_qh_hw *hw = qh->hw;
800 qh_refresh(ehci, qh);
801 hw->hw_next = EHCI_LIST_END(ehci);
802 frame = qh->start;
804 /* reuse the previous schedule slots, if we can */
805 if (frame < qh->period) {
806 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
807 status = check_intr_schedule (ehci, frame, --uframe,
808 qh, &c_mask);
809 } else {
810 uframe = 0;
811 c_mask = 0;
812 status = -ENOSPC;
815 /* else scan the schedule to find a group of slots such that all
816 * uframes have enough periodic bandwidth available.
818 if (status) {
819 /* "normal" case, uframing flexible except with splits */
820 if (qh->period) {
821 int i;
823 for (i = qh->period; status && i > 0; --i) {
824 frame = ++ehci->random_frame % qh->period;
825 for (uframe = 0; uframe < 8; uframe++) {
826 status = check_intr_schedule (ehci,
827 frame, uframe, qh,
828 &c_mask);
829 if (status == 0)
830 break;
834 /* qh->period == 0 means every uframe */
835 } else {
836 frame = 0;
837 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
839 if (status)
840 goto done;
841 qh->start = frame;
843 /* reset S-frame and (maybe) C-frame masks */
844 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
845 hw->hw_info2 |= qh->period
846 ? cpu_to_hc32(ehci, 1 << uframe)
847 : cpu_to_hc32(ehci, QH_SMASK);
848 hw->hw_info2 |= c_mask;
849 } else
850 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
852 /* stuff into the periodic schedule */
853 status = qh_link_periodic (ehci, qh);
854 done:
855 return status;
858 static int intr_submit (
859 struct ehci_hcd *ehci,
860 struct urb *urb,
861 struct list_head *qtd_list,
862 gfp_t mem_flags
864 unsigned epnum;
865 unsigned long flags;
866 struct ehci_qh *qh;
867 int status;
868 struct list_head empty;
870 /* get endpoint and transfer/schedule data */
871 epnum = urb->ep->desc.bEndpointAddress;
873 spin_lock_irqsave (&ehci->lock, flags);
875 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
876 status = -ESHUTDOWN;
877 goto done_not_linked;
879 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
880 if (unlikely(status))
881 goto done_not_linked;
883 /* get qh and force any scheduling errors */
884 INIT_LIST_HEAD (&empty);
885 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
886 if (qh == NULL) {
887 status = -ENOMEM;
888 goto done;
890 if (qh->qh_state == QH_STATE_IDLE) {
891 if ((status = qh_schedule (ehci, qh)) != 0)
892 goto done;
895 /* then queue the urb's tds to the qh */
896 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
897 BUG_ON (qh == NULL);
899 /* ... update usbfs periodic stats */
900 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
902 done:
903 if (unlikely(status))
904 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
905 done_not_linked:
906 spin_unlock_irqrestore (&ehci->lock, flags);
907 if (status)
908 qtd_list_free (ehci, urb, qtd_list);
910 return status;
913 /*-------------------------------------------------------------------------*/
915 /* ehci_iso_stream ops work with both ITD and SITD */
917 static struct ehci_iso_stream *
918 iso_stream_alloc (gfp_t mem_flags)
920 struct ehci_iso_stream *stream;
922 stream = kzalloc(sizeof *stream, mem_flags);
923 if (likely (stream != NULL)) {
924 INIT_LIST_HEAD(&stream->td_list);
925 INIT_LIST_HEAD(&stream->free_list);
926 stream->next_uframe = -1;
927 stream->refcount = 1;
929 return stream;
932 static void
933 iso_stream_init (
934 struct ehci_hcd *ehci,
935 struct ehci_iso_stream *stream,
936 struct usb_device *dev,
937 int pipe,
938 unsigned interval
941 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
943 u32 buf1;
944 unsigned epnum, maxp;
945 int is_input;
946 long bandwidth;
949 * this might be a "high bandwidth" highspeed endpoint,
950 * as encoded in the ep descriptor's wMaxPacket field
952 epnum = usb_pipeendpoint (pipe);
953 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
954 maxp = usb_maxpacket(dev, pipe, !is_input);
955 if (is_input) {
956 buf1 = (1 << 11);
957 } else {
958 buf1 = 0;
961 /* knows about ITD vs SITD */
962 if (dev->speed == USB_SPEED_HIGH) {
963 unsigned multi = hb_mult(maxp);
965 stream->highspeed = 1;
967 maxp = max_packet(maxp);
968 buf1 |= maxp;
969 maxp *= multi;
971 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
972 stream->buf1 = cpu_to_hc32(ehci, buf1);
973 stream->buf2 = cpu_to_hc32(ehci, multi);
975 /* usbfs wants to report the average usecs per frame tied up
976 * when transfers on this endpoint are scheduled ...
978 stream->usecs = HS_USECS_ISO (maxp);
979 bandwidth = stream->usecs * 8;
980 bandwidth /= interval;
982 } else {
983 u32 addr;
984 int think_time;
985 int hs_transfers;
987 addr = dev->ttport << 24;
988 if (!ehci_is_TDI(ehci)
989 || (dev->tt->hub !=
990 ehci_to_hcd(ehci)->self.root_hub))
991 addr |= dev->tt->hub->devnum << 16;
992 addr |= epnum << 8;
993 addr |= dev->devnum;
994 stream->usecs = HS_USECS_ISO (maxp);
995 think_time = dev->tt ? dev->tt->think_time : 0;
996 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
997 dev->speed, is_input, 1, maxp));
998 hs_transfers = max (1u, (maxp + 187) / 188);
999 if (is_input) {
1000 u32 tmp;
1002 addr |= 1 << 31;
1003 stream->c_usecs = stream->usecs;
1004 stream->usecs = HS_USECS_ISO (1);
1005 stream->raw_mask = 1;
1007 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1008 tmp = (1 << (hs_transfers + 2)) - 1;
1009 stream->raw_mask |= tmp << (8 + 2);
1010 } else
1011 stream->raw_mask = smask_out [hs_transfers - 1];
1012 bandwidth = stream->usecs + stream->c_usecs;
1013 bandwidth /= interval << 3;
1015 /* stream->splits gets created from raw_mask later */
1016 stream->address = cpu_to_hc32(ehci, addr);
1018 stream->bandwidth = bandwidth;
1020 stream->udev = dev;
1022 stream->bEndpointAddress = is_input | epnum;
1023 stream->interval = interval;
1024 stream->maxp = maxp;
1027 static void
1028 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1030 stream->refcount--;
1032 /* free whenever just a dev->ep reference remains.
1033 * not like a QH -- no persistent state (toggle, halt)
1035 if (stream->refcount == 1) {
1036 int is_in;
1038 // BUG_ON (!list_empty(&stream->td_list));
1040 while (!list_empty (&stream->free_list)) {
1041 struct list_head *entry;
1043 entry = stream->free_list.next;
1044 list_del (entry);
1046 /* knows about ITD vs SITD */
1047 if (stream->highspeed) {
1048 struct ehci_itd *itd;
1050 itd = list_entry (entry, struct ehci_itd,
1051 itd_list);
1052 dma_pool_free (ehci->itd_pool, itd,
1053 itd->itd_dma);
1054 } else {
1055 struct ehci_sitd *sitd;
1057 sitd = list_entry (entry, struct ehci_sitd,
1058 sitd_list);
1059 dma_pool_free (ehci->sitd_pool, sitd,
1060 sitd->sitd_dma);
1064 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1065 stream->bEndpointAddress &= 0x0f;
1066 if (stream->ep)
1067 stream->ep->hcpriv = NULL;
1069 kfree(stream);
1073 static inline struct ehci_iso_stream *
1074 iso_stream_get (struct ehci_iso_stream *stream)
1076 if (likely (stream != NULL))
1077 stream->refcount++;
1078 return stream;
1081 static struct ehci_iso_stream *
1082 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1084 unsigned epnum;
1085 struct ehci_iso_stream *stream;
1086 struct usb_host_endpoint *ep;
1087 unsigned long flags;
1089 epnum = usb_pipeendpoint (urb->pipe);
1090 if (usb_pipein(urb->pipe))
1091 ep = urb->dev->ep_in[epnum];
1092 else
1093 ep = urb->dev->ep_out[epnum];
1095 spin_lock_irqsave (&ehci->lock, flags);
1096 stream = ep->hcpriv;
1098 if (unlikely (stream == NULL)) {
1099 stream = iso_stream_alloc(GFP_ATOMIC);
1100 if (likely (stream != NULL)) {
1101 /* dev->ep owns the initial refcount */
1102 ep->hcpriv = stream;
1103 stream->ep = ep;
1104 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1105 urb->interval);
1108 /* if dev->ep [epnum] is a QH, hw is set */
1109 } else if (unlikely (stream->hw != NULL)) {
1110 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1111 urb->dev->devpath, epnum,
1112 usb_pipein(urb->pipe) ? "in" : "out");
1113 stream = NULL;
1116 /* caller guarantees an eventual matching iso_stream_put */
1117 stream = iso_stream_get (stream);
1119 spin_unlock_irqrestore (&ehci->lock, flags);
1120 return stream;
1123 /*-------------------------------------------------------------------------*/
1125 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1127 static struct ehci_iso_sched *
1128 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1130 struct ehci_iso_sched *iso_sched;
1131 int size = sizeof *iso_sched;
1133 size += packets * sizeof (struct ehci_iso_packet);
1134 iso_sched = kzalloc(size, mem_flags);
1135 if (likely (iso_sched != NULL)) {
1136 INIT_LIST_HEAD (&iso_sched->td_list);
1138 return iso_sched;
1141 static inline void
1142 itd_sched_init(
1143 struct ehci_hcd *ehci,
1144 struct ehci_iso_sched *iso_sched,
1145 struct ehci_iso_stream *stream,
1146 struct urb *urb
1149 unsigned i;
1150 dma_addr_t dma = urb->transfer_dma;
1152 /* how many uframes are needed for these transfers */
1153 iso_sched->span = urb->number_of_packets * stream->interval;
1155 /* figure out per-uframe itd fields that we'll need later
1156 * when we fit new itds into the schedule.
1158 for (i = 0; i < urb->number_of_packets; i++) {
1159 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1160 unsigned length;
1161 dma_addr_t buf;
1162 u32 trans;
1164 length = urb->iso_frame_desc [i].length;
1165 buf = dma + urb->iso_frame_desc [i].offset;
1167 trans = EHCI_ISOC_ACTIVE;
1168 trans |= buf & 0x0fff;
1169 if (unlikely (((i + 1) == urb->number_of_packets))
1170 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1171 trans |= EHCI_ITD_IOC;
1172 trans |= length << 16;
1173 uframe->transaction = cpu_to_hc32(ehci, trans);
1175 /* might need to cross a buffer page within a uframe */
1176 uframe->bufp = (buf & ~(u64)0x0fff);
1177 buf += length;
1178 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1179 uframe->cross = 1;
1183 static void
1184 iso_sched_free (
1185 struct ehci_iso_stream *stream,
1186 struct ehci_iso_sched *iso_sched
1189 if (!iso_sched)
1190 return;
1191 // caller must hold ehci->lock!
1192 list_splice (&iso_sched->td_list, &stream->free_list);
1193 kfree (iso_sched);
1196 static int
1197 itd_urb_transaction (
1198 struct ehci_iso_stream *stream,
1199 struct ehci_hcd *ehci,
1200 struct urb *urb,
1201 gfp_t mem_flags
1204 struct ehci_itd *itd;
1205 dma_addr_t itd_dma;
1206 int i;
1207 unsigned num_itds;
1208 struct ehci_iso_sched *sched;
1209 unsigned long flags;
1211 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1212 if (unlikely (sched == NULL))
1213 return -ENOMEM;
1215 itd_sched_init(ehci, sched, stream, urb);
1217 if (urb->interval < 8)
1218 num_itds = 1 + (sched->span + 7) / 8;
1219 else
1220 num_itds = urb->number_of_packets;
1222 /* allocate/init ITDs */
1223 spin_lock_irqsave (&ehci->lock, flags);
1224 for (i = 0; i < num_itds; i++) {
1226 /* free_list.next might be cache-hot ... but maybe
1227 * the HC caches it too. avoid that issue for now.
1230 /* prefer previously-allocated itds */
1231 if (likely (!list_empty(&stream->free_list))) {
1232 itd = list_entry (stream->free_list.prev,
1233 struct ehci_itd, itd_list);
1234 list_del (&itd->itd_list);
1235 itd_dma = itd->itd_dma;
1236 } else {
1237 spin_unlock_irqrestore (&ehci->lock, flags);
1238 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1239 &itd_dma);
1240 spin_lock_irqsave (&ehci->lock, flags);
1241 if (!itd) {
1242 iso_sched_free(stream, sched);
1243 spin_unlock_irqrestore(&ehci->lock, flags);
1244 return -ENOMEM;
1248 memset (itd, 0, sizeof *itd);
1249 itd->itd_dma = itd_dma;
1250 list_add (&itd->itd_list, &sched->td_list);
1252 spin_unlock_irqrestore (&ehci->lock, flags);
1254 /* temporarily store schedule info in hcpriv */
1255 urb->hcpriv = sched;
1256 urb->error_count = 0;
1257 return 0;
1260 /*-------------------------------------------------------------------------*/
1262 static inline int
1263 itd_slot_ok (
1264 struct ehci_hcd *ehci,
1265 u32 mod,
1266 u32 uframe,
1267 u8 usecs,
1268 u32 period
1271 uframe %= period;
1272 do {
1273 /* can't commit more than 80% periodic == 100 usec */
1274 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1275 > (100 - usecs))
1276 return 0;
1278 /* we know urb->interval is 2^N uframes */
1279 uframe += period;
1280 } while (uframe < mod);
1281 return 1;
1284 static inline int
1285 sitd_slot_ok (
1286 struct ehci_hcd *ehci,
1287 u32 mod,
1288 struct ehci_iso_stream *stream,
1289 u32 uframe,
1290 struct ehci_iso_sched *sched,
1291 u32 period_uframes
1294 u32 mask, tmp;
1295 u32 frame, uf;
1297 mask = stream->raw_mask << (uframe & 7);
1299 /* for IN, don't wrap CSPLIT into the next frame */
1300 if (mask & ~0xffff)
1301 return 0;
1303 /* this multi-pass logic is simple, but performance may
1304 * suffer when the schedule data isn't cached.
1307 /* check bandwidth */
1308 uframe %= period_uframes;
1309 do {
1310 u32 max_used;
1312 frame = uframe >> 3;
1313 uf = uframe & 7;
1315 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1316 /* The tt's fullspeed bus bandwidth must be available.
1317 * tt_available scheduling guarantees 10+% for control/bulk.
1319 if (!tt_available (ehci, period_uframes << 3,
1320 stream->udev, frame, uf, stream->tt_usecs))
1321 return 0;
1322 #else
1323 /* tt must be idle for start(s), any gap, and csplit.
1324 * assume scheduling slop leaves 10+% for control/bulk.
1326 if (!tt_no_collision (ehci, period_uframes << 3,
1327 stream->udev, frame, mask))
1328 return 0;
1329 #endif
1331 /* check starts (OUT uses more than one) */
1332 max_used = 100 - stream->usecs;
1333 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1334 if (periodic_usecs (ehci, frame, uf) > max_used)
1335 return 0;
1338 /* for IN, check CSPLIT */
1339 if (stream->c_usecs) {
1340 uf = uframe & 7;
1341 max_used = 100 - stream->c_usecs;
1342 do {
1343 tmp = 1 << uf;
1344 tmp <<= 8;
1345 if ((stream->raw_mask & tmp) == 0)
1346 continue;
1347 if (periodic_usecs (ehci, frame, uf)
1348 > max_used)
1349 return 0;
1350 } while (++uf < 8);
1353 /* we know urb->interval is 2^N uframes */
1354 uframe += period_uframes;
1355 } while (uframe < mod);
1357 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1358 return 1;
1362 * This scheduler plans almost as far into the future as it has actual
1363 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1364 * "as small as possible" to be cache-friendlier.) That limits the size
1365 * transfers you can stream reliably; avoid more than 64 msec per urb.
1366 * Also avoid queue depths of less than ehci's worst irq latency (affected
1367 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1368 * and other factors); or more than about 230 msec total (for portability,
1369 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1372 #define SCHEDULE_SLOP 80 /* microframes */
1374 static int
1375 iso_stream_schedule (
1376 struct ehci_hcd *ehci,
1377 struct urb *urb,
1378 struct ehci_iso_stream *stream
1381 u32 now, next, start, period, span;
1382 int status;
1383 unsigned mod = ehci->periodic_size << 3;
1384 struct ehci_iso_sched *sched = urb->hcpriv;
1386 period = urb->interval;
1387 span = sched->span;
1388 if (!stream->highspeed) {
1389 period <<= 3;
1390 span <<= 3;
1393 if (span > mod - SCHEDULE_SLOP) {
1394 ehci_dbg (ehci, "iso request %p too long\n", urb);
1395 status = -EFBIG;
1396 goto fail;
1399 now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1401 /* Typical case: reuse current schedule, stream is still active.
1402 * Hopefully there are no gaps from the host falling behind
1403 * (irq delays etc), but if there are we'll take the next
1404 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1406 if (likely (!list_empty (&stream->td_list))) {
1407 u32 excess;
1409 if (!stream->highspeed && ehci->fs_i_thresh)
1410 next = now + ehci->i_thresh;
1411 else
1412 next = now;
1414 /* Fell behind (by up to twice the slop amount)?
1415 * We decide based on the time of the last currently-scheduled
1416 * slot, not the time of the next available slot.
1418 excess = (stream->next_uframe - period - next) & (mod - 1);
1419 if (excess >= mod - 2 * SCHEDULE_SLOP)
1420 start = next + excess - mod + period *
1421 DIV_ROUND_UP(mod - excess, period);
1422 else
1423 start = next + excess + period;
1424 if (start - now >= mod) {
1425 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1426 urb, start - now - period, period,
1427 mod);
1428 status = -EFBIG;
1429 goto fail;
1433 /* need to schedule; when's the next (u)frame we could start?
1434 * this is bigger than ehci->i_thresh allows; scheduling itself
1435 * isn't free, the slop should handle reasonably slow cpus. it
1436 * can also help high bandwidth if the dma and irq loads don't
1437 * jump until after the queue is primed.
1439 else {
1440 start = SCHEDULE_SLOP + (now & ~0x07);
1442 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1444 /* find a uframe slot with enough bandwidth */
1445 next = start + period;
1446 for (; start < next; start++) {
1448 /* check schedule: enough space? */
1449 if (stream->highspeed) {
1450 if (itd_slot_ok(ehci, mod, start,
1451 stream->usecs, period))
1452 break;
1453 } else {
1454 if ((start % 8) >= 6)
1455 continue;
1456 if (sitd_slot_ok(ehci, mod, stream,
1457 start, sched, period))
1458 break;
1462 /* no room in the schedule */
1463 if (start == next) {
1464 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1465 urb, now, now + mod);
1466 status = -ENOSPC;
1467 goto fail;
1471 /* Tried to schedule too far into the future? */
1472 if (unlikely(start - now + span - period
1473 >= mod - 2 * SCHEDULE_SLOP)) {
1474 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1475 urb, start - now, span - period,
1476 mod - 2 * SCHEDULE_SLOP);
1477 status = -EFBIG;
1478 goto fail;
1481 stream->next_uframe = start & (mod - 1);
1483 /* report high speed start in uframes; full speed, in frames */
1484 urb->start_frame = stream->next_uframe;
1485 if (!stream->highspeed)
1486 urb->start_frame >>= 3;
1487 return 0;
1489 fail:
1490 iso_sched_free(stream, sched);
1491 urb->hcpriv = NULL;
1492 return status;
1495 /*-------------------------------------------------------------------------*/
1497 static inline void
1498 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1499 struct ehci_itd *itd)
1501 int i;
1503 /* it's been recently zeroed */
1504 itd->hw_next = EHCI_LIST_END(ehci);
1505 itd->hw_bufp [0] = stream->buf0;
1506 itd->hw_bufp [1] = stream->buf1;
1507 itd->hw_bufp [2] = stream->buf2;
1509 for (i = 0; i < 8; i++)
1510 itd->index[i] = -1;
1512 /* All other fields are filled when scheduling */
1515 static inline void
1516 itd_patch(
1517 struct ehci_hcd *ehci,
1518 struct ehci_itd *itd,
1519 struct ehci_iso_sched *iso_sched,
1520 unsigned index,
1521 u16 uframe
1524 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1525 unsigned pg = itd->pg;
1527 // BUG_ON (pg == 6 && uf->cross);
1529 uframe &= 0x07;
1530 itd->index [uframe] = index;
1532 itd->hw_transaction[uframe] = uf->transaction;
1533 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1534 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1535 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1537 /* iso_frame_desc[].offset must be strictly increasing */
1538 if (unlikely (uf->cross)) {
1539 u64 bufp = uf->bufp + 4096;
1541 itd->pg = ++pg;
1542 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1543 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1547 static inline void
1548 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1550 union ehci_shadow *prev = &ehci->pshadow[frame];
1551 __hc32 *hw_p = &ehci->periodic[frame];
1552 union ehci_shadow here = *prev;
1553 __hc32 type = 0;
1555 /* skip any iso nodes which might belong to previous microframes */
1556 while (here.ptr) {
1557 type = Q_NEXT_TYPE(ehci, *hw_p);
1558 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1559 break;
1560 prev = periodic_next_shadow(ehci, prev, type);
1561 hw_p = shadow_next_periodic(ehci, &here, type);
1562 here = *prev;
1565 itd->itd_next = here;
1566 itd->hw_next = *hw_p;
1567 prev->itd = itd;
1568 itd->frame = frame;
1569 wmb ();
1570 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1573 #define AB_REG_BAR_LOW 0xe0
1574 #define AB_REG_BAR_HIGH 0xe1
1575 #define AB_INDX(addr) ((addr) + 0x00)
1576 #define AB_DATA(addr) ((addr) + 0x04)
1577 #define NB_PCIE_INDX_ADDR 0xe0
1578 #define NB_PCIE_INDX_DATA 0xe4
1579 #define NB_PIF0_PWRDOWN_0 0x01100012
1580 #define NB_PIF0_PWRDOWN_1 0x01100013
1582 static void ehci_quirk_amd_L1(struct ehci_hcd *ehci, int disable)
1584 u32 addr, addr_low, addr_high, val;
1586 outb_p(AB_REG_BAR_LOW, 0xcd6);
1587 addr_low = inb_p(0xcd7);
1588 outb_p(AB_REG_BAR_HIGH, 0xcd6);
1589 addr_high = inb_p(0xcd7);
1590 addr = addr_high << 8 | addr_low;
1591 outl_p(0x30, AB_INDX(addr));
1592 outl_p(0x40, AB_DATA(addr));
1593 outl_p(0x34, AB_INDX(addr));
1594 val = inl_p(AB_DATA(addr));
1596 if (disable) {
1597 val &= ~0x8;
1598 val |= (1 << 4) | (1 << 9);
1599 } else {
1600 val |= 0x8;
1601 val &= ~((1 << 4) | (1 << 9));
1603 outl_p(val, AB_DATA(addr));
1605 if (amd_nb_dev) {
1606 addr = NB_PIF0_PWRDOWN_0;
1607 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr);
1608 pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val);
1609 if (disable)
1610 val &= ~(0x3f << 7);
1611 else
1612 val |= 0x3f << 7;
1614 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val);
1616 addr = NB_PIF0_PWRDOWN_1;
1617 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr);
1618 pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val);
1619 if (disable)
1620 val &= ~(0x3f << 7);
1621 else
1622 val |= 0x3f << 7;
1624 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val);
1627 return;
1630 /* fit urb's itds into the selected schedule slot; activate as needed */
1631 static int
1632 itd_link_urb (
1633 struct ehci_hcd *ehci,
1634 struct urb *urb,
1635 unsigned mod,
1636 struct ehci_iso_stream *stream
1639 int packet;
1640 unsigned next_uframe, uframe, frame;
1641 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1642 struct ehci_itd *itd;
1644 next_uframe = stream->next_uframe & (mod - 1);
1646 if (unlikely (list_empty(&stream->td_list))) {
1647 ehci_to_hcd(ehci)->self.bandwidth_allocated
1648 += stream->bandwidth;
1649 ehci_vdbg (ehci,
1650 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1651 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1652 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1653 urb->interval,
1654 next_uframe >> 3, next_uframe & 0x7);
1657 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1658 if (ehci->amd_l1_fix == 1)
1659 ehci_quirk_amd_L1(ehci, 1);
1662 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1664 /* fill iTDs uframe by uframe */
1665 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1666 if (itd == NULL) {
1667 /* ASSERT: we have all necessary itds */
1668 // BUG_ON (list_empty (&iso_sched->td_list));
1670 /* ASSERT: no itds for this endpoint in this uframe */
1672 itd = list_entry (iso_sched->td_list.next,
1673 struct ehci_itd, itd_list);
1674 list_move_tail (&itd->itd_list, &stream->td_list);
1675 itd->stream = iso_stream_get (stream);
1676 itd->urb = urb;
1677 itd_init (ehci, stream, itd);
1680 uframe = next_uframe & 0x07;
1681 frame = next_uframe >> 3;
1683 itd_patch(ehci, itd, iso_sched, packet, uframe);
1685 next_uframe += stream->interval;
1686 next_uframe &= mod - 1;
1687 packet++;
1689 /* link completed itds into the schedule */
1690 if (((next_uframe >> 3) != frame)
1691 || packet == urb->number_of_packets) {
1692 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1693 itd = NULL;
1696 stream->next_uframe = next_uframe;
1698 /* don't need that schedule data any more */
1699 iso_sched_free (stream, iso_sched);
1700 urb->hcpriv = NULL;
1702 timer_action (ehci, TIMER_IO_WATCHDOG);
1703 return enable_periodic(ehci);
1706 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1708 /* Process and recycle a completed ITD. Return true iff its urb completed,
1709 * and hence its completion callback probably added things to the hardware
1710 * schedule.
1712 * Note that we carefully avoid recycling this descriptor until after any
1713 * completion callback runs, so that it won't be reused quickly. That is,
1714 * assuming (a) no more than two urbs per frame on this endpoint, and also
1715 * (b) only this endpoint's completions submit URBs. It seems some silicon
1716 * corrupts things if you reuse completed descriptors very quickly...
1718 static unsigned
1719 itd_complete (
1720 struct ehci_hcd *ehci,
1721 struct ehci_itd *itd
1723 struct urb *urb = itd->urb;
1724 struct usb_iso_packet_descriptor *desc;
1725 u32 t;
1726 unsigned uframe;
1727 int urb_index = -1;
1728 struct ehci_iso_stream *stream = itd->stream;
1729 struct usb_device *dev;
1730 unsigned retval = false;
1732 /* for each uframe with a packet */
1733 for (uframe = 0; uframe < 8; uframe++) {
1734 if (likely (itd->index[uframe] == -1))
1735 continue;
1736 urb_index = itd->index[uframe];
1737 desc = &urb->iso_frame_desc [urb_index];
1739 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1740 itd->hw_transaction [uframe] = 0;
1742 /* report transfer status */
1743 if (unlikely (t & ISO_ERRS)) {
1744 urb->error_count++;
1745 if (t & EHCI_ISOC_BUF_ERR)
1746 desc->status = usb_pipein (urb->pipe)
1747 ? -ENOSR /* hc couldn't read */
1748 : -ECOMM; /* hc couldn't write */
1749 else if (t & EHCI_ISOC_BABBLE)
1750 desc->status = -EOVERFLOW;
1751 else /* (t & EHCI_ISOC_XACTERR) */
1752 desc->status = -EPROTO;
1754 /* HC need not update length with this error */
1755 if (!(t & EHCI_ISOC_BABBLE)) {
1756 desc->actual_length = EHCI_ITD_LENGTH(t);
1757 urb->actual_length += desc->actual_length;
1759 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1760 desc->status = 0;
1761 desc->actual_length = EHCI_ITD_LENGTH(t);
1762 urb->actual_length += desc->actual_length;
1763 } else {
1764 /* URB was too late */
1765 desc->status = -EXDEV;
1769 /* handle completion now? */
1770 if (likely ((urb_index + 1) != urb->number_of_packets))
1771 goto done;
1773 /* ASSERT: it's really the last itd for this urb
1774 list_for_each_entry (itd, &stream->td_list, itd_list)
1775 BUG_ON (itd->urb == urb);
1778 /* give urb back to the driver; completion often (re)submits */
1779 dev = urb->dev;
1780 ehci_urb_done(ehci, urb, 0);
1781 retval = true;
1782 urb = NULL;
1783 (void) disable_periodic(ehci);
1784 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1786 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1787 if (ehci->amd_l1_fix == 1)
1788 ehci_quirk_amd_L1(ehci, 0);
1791 if (unlikely(list_is_singular(&stream->td_list))) {
1792 ehci_to_hcd(ehci)->self.bandwidth_allocated
1793 -= stream->bandwidth;
1794 ehci_vdbg (ehci,
1795 "deschedule devp %s ep%d%s-iso\n",
1796 dev->devpath, stream->bEndpointAddress & 0x0f,
1797 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1799 iso_stream_put (ehci, stream);
1801 done:
1802 itd->urb = NULL;
1803 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1804 /* OK to recycle this ITD now. */
1805 itd->stream = NULL;
1806 list_move(&itd->itd_list, &stream->free_list);
1807 iso_stream_put(ehci, stream);
1808 } else {
1809 /* HW might remember this ITD, so we can't recycle it yet.
1810 * Move it to a safe place until a new frame starts.
1812 list_move(&itd->itd_list, &ehci->cached_itd_list);
1813 if (stream->refcount == 2) {
1814 /* If iso_stream_put() were called here, stream
1815 * would be freed. Instead, just prevent reuse.
1817 stream->ep->hcpriv = NULL;
1818 stream->ep = NULL;
1821 return retval;
1824 /*-------------------------------------------------------------------------*/
1826 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1827 gfp_t mem_flags)
1829 int status = -EINVAL;
1830 unsigned long flags;
1831 struct ehci_iso_stream *stream;
1833 /* Get iso_stream head */
1834 stream = iso_stream_find (ehci, urb);
1835 if (unlikely (stream == NULL)) {
1836 ehci_dbg (ehci, "can't get iso stream\n");
1837 return -ENOMEM;
1839 if (unlikely (urb->interval != stream->interval)) {
1840 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1841 stream->interval, urb->interval);
1842 goto done;
1845 #ifdef EHCI_URB_TRACE
1846 ehci_dbg (ehci,
1847 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1848 __func__, urb->dev->devpath, urb,
1849 usb_pipeendpoint (urb->pipe),
1850 usb_pipein (urb->pipe) ? "in" : "out",
1851 urb->transfer_buffer_length,
1852 urb->number_of_packets, urb->interval,
1853 stream);
1854 #endif
1856 /* allocate ITDs w/o locking anything */
1857 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1858 if (unlikely (status < 0)) {
1859 ehci_dbg (ehci, "can't init itds\n");
1860 goto done;
1863 /* schedule ... need to lock */
1864 spin_lock_irqsave (&ehci->lock, flags);
1865 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1866 status = -ESHUTDOWN;
1867 goto done_not_linked;
1869 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1870 if (unlikely(status))
1871 goto done_not_linked;
1872 status = iso_stream_schedule(ehci, urb, stream);
1873 if (likely (status == 0))
1874 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1875 else
1876 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1877 done_not_linked:
1878 spin_unlock_irqrestore (&ehci->lock, flags);
1880 done:
1881 if (unlikely (status < 0))
1882 iso_stream_put (ehci, stream);
1883 return status;
1886 /*-------------------------------------------------------------------------*/
1889 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1890 * TTs in USB 2.0 hubs. These need microframe scheduling.
1893 static inline void
1894 sitd_sched_init(
1895 struct ehci_hcd *ehci,
1896 struct ehci_iso_sched *iso_sched,
1897 struct ehci_iso_stream *stream,
1898 struct urb *urb
1901 unsigned i;
1902 dma_addr_t dma = urb->transfer_dma;
1904 /* how many frames are needed for these transfers */
1905 iso_sched->span = urb->number_of_packets * stream->interval;
1907 /* figure out per-frame sitd fields that we'll need later
1908 * when we fit new sitds into the schedule.
1910 for (i = 0; i < urb->number_of_packets; i++) {
1911 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1912 unsigned length;
1913 dma_addr_t buf;
1914 u32 trans;
1916 length = urb->iso_frame_desc [i].length & 0x03ff;
1917 buf = dma + urb->iso_frame_desc [i].offset;
1919 trans = SITD_STS_ACTIVE;
1920 if (((i + 1) == urb->number_of_packets)
1921 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1922 trans |= SITD_IOC;
1923 trans |= length << 16;
1924 packet->transaction = cpu_to_hc32(ehci, trans);
1926 /* might need to cross a buffer page within a td */
1927 packet->bufp = buf;
1928 packet->buf1 = (buf + length) & ~0x0fff;
1929 if (packet->buf1 != (buf & ~(u64)0x0fff))
1930 packet->cross = 1;
1932 /* OUT uses multiple start-splits */
1933 if (stream->bEndpointAddress & USB_DIR_IN)
1934 continue;
1935 length = (length + 187) / 188;
1936 if (length > 1) /* BEGIN vs ALL */
1937 length |= 1 << 3;
1938 packet->buf1 |= length;
1942 static int
1943 sitd_urb_transaction (
1944 struct ehci_iso_stream *stream,
1945 struct ehci_hcd *ehci,
1946 struct urb *urb,
1947 gfp_t mem_flags
1950 struct ehci_sitd *sitd;
1951 dma_addr_t sitd_dma;
1952 int i;
1953 struct ehci_iso_sched *iso_sched;
1954 unsigned long flags;
1956 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1957 if (iso_sched == NULL)
1958 return -ENOMEM;
1960 sitd_sched_init(ehci, iso_sched, stream, urb);
1962 /* allocate/init sITDs */
1963 spin_lock_irqsave (&ehci->lock, flags);
1964 for (i = 0; i < urb->number_of_packets; i++) {
1966 /* NOTE: for now, we don't try to handle wraparound cases
1967 * for IN (using sitd->hw_backpointer, like a FSTN), which
1968 * means we never need two sitds for full speed packets.
1971 /* free_list.next might be cache-hot ... but maybe
1972 * the HC caches it too. avoid that issue for now.
1975 /* prefer previously-allocated sitds */
1976 if (!list_empty(&stream->free_list)) {
1977 sitd = list_entry (stream->free_list.prev,
1978 struct ehci_sitd, sitd_list);
1979 list_del (&sitd->sitd_list);
1980 sitd_dma = sitd->sitd_dma;
1981 } else {
1982 spin_unlock_irqrestore (&ehci->lock, flags);
1983 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1984 &sitd_dma);
1985 spin_lock_irqsave (&ehci->lock, flags);
1986 if (!sitd) {
1987 iso_sched_free(stream, iso_sched);
1988 spin_unlock_irqrestore(&ehci->lock, flags);
1989 return -ENOMEM;
1993 memset (sitd, 0, sizeof *sitd);
1994 sitd->sitd_dma = sitd_dma;
1995 list_add (&sitd->sitd_list, &iso_sched->td_list);
1998 /* temporarily store schedule info in hcpriv */
1999 urb->hcpriv = iso_sched;
2000 urb->error_count = 0;
2002 spin_unlock_irqrestore (&ehci->lock, flags);
2003 return 0;
2006 /*-------------------------------------------------------------------------*/
2008 static inline void
2009 sitd_patch(
2010 struct ehci_hcd *ehci,
2011 struct ehci_iso_stream *stream,
2012 struct ehci_sitd *sitd,
2013 struct ehci_iso_sched *iso_sched,
2014 unsigned index
2017 struct ehci_iso_packet *uf = &iso_sched->packet [index];
2018 u64 bufp = uf->bufp;
2020 sitd->hw_next = EHCI_LIST_END(ehci);
2021 sitd->hw_fullspeed_ep = stream->address;
2022 sitd->hw_uframe = stream->splits;
2023 sitd->hw_results = uf->transaction;
2024 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2026 bufp = uf->bufp;
2027 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2028 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2030 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2031 if (uf->cross)
2032 bufp += 4096;
2033 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2034 sitd->index = index;
2037 static inline void
2038 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2040 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2041 sitd->sitd_next = ehci->pshadow [frame];
2042 sitd->hw_next = ehci->periodic [frame];
2043 ehci->pshadow [frame].sitd = sitd;
2044 sitd->frame = frame;
2045 wmb ();
2046 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2049 /* fit urb's sitds into the selected schedule slot; activate as needed */
2050 static int
2051 sitd_link_urb (
2052 struct ehci_hcd *ehci,
2053 struct urb *urb,
2054 unsigned mod,
2055 struct ehci_iso_stream *stream
2058 int packet;
2059 unsigned next_uframe;
2060 struct ehci_iso_sched *sched = urb->hcpriv;
2061 struct ehci_sitd *sitd;
2063 next_uframe = stream->next_uframe;
2065 if (list_empty(&stream->td_list)) {
2066 /* usbfs ignores TT bandwidth */
2067 ehci_to_hcd(ehci)->self.bandwidth_allocated
2068 += stream->bandwidth;
2069 ehci_vdbg (ehci,
2070 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2071 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2072 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2073 (next_uframe >> 3) & (ehci->periodic_size - 1),
2074 stream->interval, hc32_to_cpu(ehci, stream->splits));
2077 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2078 if (ehci->amd_l1_fix == 1)
2079 ehci_quirk_amd_L1(ehci, 1);
2082 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2084 /* fill sITDs frame by frame */
2085 for (packet = 0, sitd = NULL;
2086 packet < urb->number_of_packets;
2087 packet++) {
2089 /* ASSERT: we have all necessary sitds */
2090 BUG_ON (list_empty (&sched->td_list));
2092 /* ASSERT: no itds for this endpoint in this frame */
2094 sitd = list_entry (sched->td_list.next,
2095 struct ehci_sitd, sitd_list);
2096 list_move_tail (&sitd->sitd_list, &stream->td_list);
2097 sitd->stream = iso_stream_get (stream);
2098 sitd->urb = urb;
2100 sitd_patch(ehci, stream, sitd, sched, packet);
2101 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2102 sitd);
2104 next_uframe += stream->interval << 3;
2106 stream->next_uframe = next_uframe & (mod - 1);
2108 /* don't need that schedule data any more */
2109 iso_sched_free (stream, sched);
2110 urb->hcpriv = NULL;
2112 timer_action (ehci, TIMER_IO_WATCHDOG);
2113 return enable_periodic(ehci);
2116 /*-------------------------------------------------------------------------*/
2118 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2119 | SITD_STS_XACT | SITD_STS_MMF)
2121 /* Process and recycle a completed SITD. Return true iff its urb completed,
2122 * and hence its completion callback probably added things to the hardware
2123 * schedule.
2125 * Note that we carefully avoid recycling this descriptor until after any
2126 * completion callback runs, so that it won't be reused quickly. That is,
2127 * assuming (a) no more than two urbs per frame on this endpoint, and also
2128 * (b) only this endpoint's completions submit URBs. It seems some silicon
2129 * corrupts things if you reuse completed descriptors very quickly...
2131 static unsigned
2132 sitd_complete (
2133 struct ehci_hcd *ehci,
2134 struct ehci_sitd *sitd
2136 struct urb *urb = sitd->urb;
2137 struct usb_iso_packet_descriptor *desc;
2138 u32 t;
2139 int urb_index = -1;
2140 struct ehci_iso_stream *stream = sitd->stream;
2141 struct usb_device *dev;
2142 unsigned retval = false;
2144 urb_index = sitd->index;
2145 desc = &urb->iso_frame_desc [urb_index];
2146 t = hc32_to_cpup(ehci, &sitd->hw_results);
2148 /* report transfer status */
2149 if (t & SITD_ERRS) {
2150 urb->error_count++;
2151 if (t & SITD_STS_DBE)
2152 desc->status = usb_pipein (urb->pipe)
2153 ? -ENOSR /* hc couldn't read */
2154 : -ECOMM; /* hc couldn't write */
2155 else if (t & SITD_STS_BABBLE)
2156 desc->status = -EOVERFLOW;
2157 else /* XACT, MMF, etc */
2158 desc->status = -EPROTO;
2159 } else {
2160 desc->status = 0;
2161 desc->actual_length = desc->length - SITD_LENGTH(t);
2162 urb->actual_length += desc->actual_length;
2165 /* handle completion now? */
2166 if ((urb_index + 1) != urb->number_of_packets)
2167 goto done;
2169 /* ASSERT: it's really the last sitd for this urb
2170 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2171 BUG_ON (sitd->urb == urb);
2174 /* give urb back to the driver; completion often (re)submits */
2175 dev = urb->dev;
2176 ehci_urb_done(ehci, urb, 0);
2177 retval = true;
2178 urb = NULL;
2179 (void) disable_periodic(ehci);
2180 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2182 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2183 if (ehci->amd_l1_fix == 1)
2184 ehci_quirk_amd_L1(ehci, 0);
2187 if (list_is_singular(&stream->td_list)) {
2188 ehci_to_hcd(ehci)->self.bandwidth_allocated
2189 -= stream->bandwidth;
2190 ehci_vdbg (ehci,
2191 "deschedule devp %s ep%d%s-iso\n",
2192 dev->devpath, stream->bEndpointAddress & 0x0f,
2193 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2195 iso_stream_put (ehci, stream);
2197 done:
2198 sitd->urb = NULL;
2199 if (ehci->clock_frame != sitd->frame) {
2200 /* OK to recycle this SITD now. */
2201 sitd->stream = NULL;
2202 list_move(&sitd->sitd_list, &stream->free_list);
2203 iso_stream_put(ehci, stream);
2204 } else {
2205 /* HW might remember this SITD, so we can't recycle it yet.
2206 * Move it to a safe place until a new frame starts.
2208 list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2209 if (stream->refcount == 2) {
2210 /* If iso_stream_put() were called here, stream
2211 * would be freed. Instead, just prevent reuse.
2213 stream->ep->hcpriv = NULL;
2214 stream->ep = NULL;
2217 return retval;
2221 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2222 gfp_t mem_flags)
2224 int status = -EINVAL;
2225 unsigned long flags;
2226 struct ehci_iso_stream *stream;
2228 /* Get iso_stream head */
2229 stream = iso_stream_find (ehci, urb);
2230 if (stream == NULL) {
2231 ehci_dbg (ehci, "can't get iso stream\n");
2232 return -ENOMEM;
2234 if (urb->interval != stream->interval) {
2235 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2236 stream->interval, urb->interval);
2237 goto done;
2240 #ifdef EHCI_URB_TRACE
2241 ehci_dbg (ehci,
2242 "submit %p dev%s ep%d%s-iso len %d\n",
2243 urb, urb->dev->devpath,
2244 usb_pipeendpoint (urb->pipe),
2245 usb_pipein (urb->pipe) ? "in" : "out",
2246 urb->transfer_buffer_length);
2247 #endif
2249 /* allocate SITDs */
2250 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2251 if (status < 0) {
2252 ehci_dbg (ehci, "can't init sitds\n");
2253 goto done;
2256 /* schedule ... need to lock */
2257 spin_lock_irqsave (&ehci->lock, flags);
2258 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2259 status = -ESHUTDOWN;
2260 goto done_not_linked;
2262 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2263 if (unlikely(status))
2264 goto done_not_linked;
2265 status = iso_stream_schedule(ehci, urb, stream);
2266 if (status == 0)
2267 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2268 else
2269 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2270 done_not_linked:
2271 spin_unlock_irqrestore (&ehci->lock, flags);
2273 done:
2274 if (status < 0)
2275 iso_stream_put (ehci, stream);
2276 return status;
2279 /*-------------------------------------------------------------------------*/
2281 static void free_cached_lists(struct ehci_hcd *ehci)
2283 struct ehci_itd *itd, *n;
2284 struct ehci_sitd *sitd, *sn;
2286 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2287 struct ehci_iso_stream *stream = itd->stream;
2288 itd->stream = NULL;
2289 list_move(&itd->itd_list, &stream->free_list);
2290 iso_stream_put(ehci, stream);
2293 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2294 struct ehci_iso_stream *stream = sitd->stream;
2295 sitd->stream = NULL;
2296 list_move(&sitd->sitd_list, &stream->free_list);
2297 iso_stream_put(ehci, stream);
2301 /*-------------------------------------------------------------------------*/
2303 static void
2304 scan_periodic (struct ehci_hcd *ehci)
2306 unsigned now_uframe, frame, clock, clock_frame, mod;
2307 unsigned modified;
2309 mod = ehci->periodic_size << 3;
2312 * When running, scan from last scan point up to "now"
2313 * else clean up by scanning everything that's left.
2314 * Touches as few pages as possible: cache-friendly.
2316 now_uframe = ehci->next_uframe;
2317 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2318 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2319 clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2320 } else {
2321 clock = now_uframe + mod - 1;
2322 clock_frame = -1;
2324 if (ehci->clock_frame != clock_frame) {
2325 free_cached_lists(ehci);
2326 ehci->clock_frame = clock_frame;
2328 clock &= mod - 1;
2329 clock_frame = clock >> 3;
2331 for (;;) {
2332 union ehci_shadow q, *q_p;
2333 __hc32 type, *hw_p;
2334 unsigned incomplete = false;
2336 frame = now_uframe >> 3;
2338 restart:
2339 /* scan each element in frame's queue for completions */
2340 q_p = &ehci->pshadow [frame];
2341 hw_p = &ehci->periodic [frame];
2342 q.ptr = q_p->ptr;
2343 type = Q_NEXT_TYPE(ehci, *hw_p);
2344 modified = 0;
2346 while (q.ptr != NULL) {
2347 unsigned uf;
2348 union ehci_shadow temp;
2349 int live;
2351 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2352 switch (hc32_to_cpu(ehci, type)) {
2353 case Q_TYPE_QH:
2354 /* handle any completions */
2355 temp.qh = qh_get (q.qh);
2356 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2357 q = q.qh->qh_next;
2358 modified = qh_completions (ehci, temp.qh);
2359 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2360 temp.qh->needs_rescan))
2361 intr_deschedule (ehci, temp.qh);
2362 qh_put (temp.qh);
2363 break;
2364 case Q_TYPE_FSTN:
2365 /* for "save place" FSTNs, look at QH entries
2366 * in the previous frame for completions.
2368 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2369 dbg ("ignoring completions from FSTNs");
2371 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2372 q = q.fstn->fstn_next;
2373 break;
2374 case Q_TYPE_ITD:
2375 /* If this ITD is still active, leave it for
2376 * later processing ... check the next entry.
2377 * No need to check for activity unless the
2378 * frame is current.
2380 if (frame == clock_frame && live) {
2381 rmb();
2382 for (uf = 0; uf < 8; uf++) {
2383 if (q.itd->hw_transaction[uf] &
2384 ITD_ACTIVE(ehci))
2385 break;
2387 if (uf < 8) {
2388 incomplete = true;
2389 q_p = &q.itd->itd_next;
2390 hw_p = &q.itd->hw_next;
2391 type = Q_NEXT_TYPE(ehci,
2392 q.itd->hw_next);
2393 q = *q_p;
2394 break;
2398 /* Take finished ITDs out of the schedule
2399 * and process them: recycle, maybe report
2400 * URB completion. HC won't cache the
2401 * pointer for much longer, if at all.
2403 *q_p = q.itd->itd_next;
2404 *hw_p = q.itd->hw_next;
2405 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2406 wmb();
2407 modified = itd_complete (ehci, q.itd);
2408 q = *q_p;
2409 break;
2410 case Q_TYPE_SITD:
2411 /* If this SITD is still active, leave it for
2412 * later processing ... check the next entry.
2413 * No need to check for activity unless the
2414 * frame is current.
2416 if (((frame == clock_frame) ||
2417 (((frame + 1) & (ehci->periodic_size - 1))
2418 == clock_frame))
2419 && live
2420 && (q.sitd->hw_results &
2421 SITD_ACTIVE(ehci))) {
2423 incomplete = true;
2424 q_p = &q.sitd->sitd_next;
2425 hw_p = &q.sitd->hw_next;
2426 type = Q_NEXT_TYPE(ehci,
2427 q.sitd->hw_next);
2428 q = *q_p;
2429 break;
2432 /* Take finished SITDs out of the schedule
2433 * and process them: recycle, maybe report
2434 * URB completion.
2436 *q_p = q.sitd->sitd_next;
2437 *hw_p = q.sitd->hw_next;
2438 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2439 wmb();
2440 modified = sitd_complete (ehci, q.sitd);
2441 q = *q_p;
2442 break;
2443 default:
2444 dbg ("corrupt type %d frame %d shadow %p",
2445 type, frame, q.ptr);
2446 // BUG ();
2447 q.ptr = NULL;
2450 /* assume completion callbacks modify the queue */
2451 if (unlikely (modified)) {
2452 if (likely(ehci->periodic_sched > 0))
2453 goto restart;
2454 /* short-circuit this scan */
2455 now_uframe = clock;
2456 break;
2460 /* If we can tell we caught up to the hardware, stop now.
2461 * We can't advance our scan without collecting the ISO
2462 * transfers that are still pending in this frame.
2464 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2465 ehci->next_uframe = now_uframe;
2466 break;
2469 // latencies climb; that should be rare, but...
2470 // detect it, and just go all the way around.
2471 // FLR might help detect this case, so long as latencies
2472 // don't exceed periodic_size msec (default 1.024 sec).
2475 if (now_uframe == clock) {
2476 unsigned now;
2478 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2479 || ehci->periodic_sched == 0)
2480 break;
2481 ehci->next_uframe = now_uframe;
2482 now = ehci_readl(ehci, &ehci->regs->frame_index) &
2483 (mod - 1);
2484 if (now_uframe == now)
2485 break;
2487 /* rescan the rest of this frame, then ... */
2488 clock = now;
2489 clock_frame = clock >> 3;
2490 if (ehci->clock_frame != clock_frame) {
2491 free_cached_lists(ehci);
2492 ehci->clock_frame = clock_frame;
2494 } else {
2495 now_uframe++;
2496 now_uframe &= mod - 1;