GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / staging / wlan-ng / hfa384x_usb.c
blob4eec539487f432ad88fc8a37af0442ba51af0d29
1 /* src/prism2/driver/hfa384x_usb.c
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
8 * linux-wlan
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
31 * --------------------------------------------------------------------
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
40 * --------------------------------------------------------------------
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
45 * --------------------------------------------------------------------
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
91 * hfa384x_dl_xxx download related functions.
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
104 * . Do interesting things w/ the hardware
106 * stop()
107 * destroy()
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
143 enum cmd_mode {
144 DOWAIT = 0,
145 DOASYNC
148 #define THROTTLE_JIFFIES (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
152 #define ROUNDUP64(a) (((a)+63)&~63)
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
161 static void hfa384x_usb_defer(struct work_struct *data);
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 int urb_status);
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
195 static void hfa384x_usb_throttlefn(unsigned long data);
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
205 struct usbctlx_completor {
206 int (*complete) (struct usbctlx_completor *);
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 hfa384x_usbctlx_t *ctlx,
212 struct usbctlx_completor *completor);
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 hfa384x_cmdresult_t *result);
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 hfa384x_rridresult_t *result);
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 enum cmd_mode mode,
234 hfa384x_metacmd_t *cmd,
235 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 enum cmd_mode mode,
240 u16 rid,
241 void *riddata,
242 unsigned int riddatalen,
243 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 enum cmd_mode mode,
248 u16 rid,
249 void *riddata,
250 unsigned int riddatalen,
251 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 enum cmd_mode mode,
256 u16 page,
257 u16 offset,
258 void *data,
259 unsigned int len,
260 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 enum cmd_mode mode,
265 u16 page,
266 u16 offset,
267 void *data,
268 unsigned int len,
269 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
273 static inline const char *ctlxstr(CTLX_STATE s)
275 static const char *ctlx_str[] = {
276 "Initial state",
277 "Complete",
278 "Request failed",
279 "Request pending",
280 "Request packet submitted",
281 "Request packet completed",
282 "Response packet completed"
285 return ctlx_str[s];
288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
290 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
293 #ifdef DEBUG_USB
294 void dbprint_urb(struct urb *urb)
296 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 pr_debug("urb->status=0x%08x\n", urb->status);
298 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 pr_debug("urb->transfer_buffer=0x%08x\n",
300 (unsigned int)urb->transfer_buffer);
301 pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 urb->transfer_buffer_length);
303 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 (unsigned int)urb->setup_packet);
307 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
314 #endif
316 /*----------------------------------------------------------------
317 * submit_rx_urb
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
322 * Arguments:
323 * hw device struct
324 * memflags memory allocation flags
326 * Returns:
327 * error code from submission
329 * Call context:
330 * Any
331 ----------------------------------------------------------------*/
332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
334 struct sk_buff *skb;
335 int result;
337 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 if (skb == NULL) {
339 result = -ENOMEM;
340 goto done;
343 /* Post the IN urb */
344 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 hw->endp_in,
346 skb->data, sizeof(hfa384x_usbin_t),
347 hfa384x_usbin_callback, hw->wlandev);
349 hw->rx_urb_skb = skb;
351 result = -ENOLINK;
352 if (!hw->wlandev->hwremoved &&
353 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 result = SUBMIT_URB(&hw->rx_urb, memflags);
356 /* Check whether we need to reset the RX pipe */
357 if (result == -EPIPE) {
358 printk(KERN_WARNING
359 "%s rx pipe stalled: requesting reset\n",
360 hw->wlandev->netdev->name);
361 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 schedule_work(&hw->usb_work);
366 /* Don't leak memory if anything should go wrong */
367 if (result != 0) {
368 dev_kfree_skb(skb);
369 hw->rx_urb_skb = NULL;
372 done:
373 return result;
376 /*----------------------------------------------------------------
377 * submit_tx_urb
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
383 * Arguments:
384 * hw device struct
385 * tx_urb URB of data for tranmission
386 * memflags memory allocation flags
388 * Returns:
389 * error code from submission
391 * Call context:
392 * Any
393 ----------------------------------------------------------------*/
394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
396 struct net_device *netdev = hw->wlandev->netdev;
397 int result;
399 result = -ENOLINK;
400 if (netif_running(netdev)) {
402 if (!hw->wlandev->hwremoved
403 && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
404 result = SUBMIT_URB(tx_urb, memflags);
406 /* Test whether we need to reset the TX pipe */
407 if (result == -EPIPE) {
408 printk(KERN_WARNING
409 "%s tx pipe stalled: requesting reset\n",
410 netdev->name);
411 set_bit(WORK_TX_HALT, &hw->usb_flags);
412 schedule_work(&hw->usb_work);
413 } else if (result == 0) {
414 netif_stop_queue(netdev);
419 return result;
422 /*----------------------------------------------------------------
423 * hfa394x_usb_defer
425 * There are some things that the USB stack cannot do while
426 * in interrupt context, so we arrange this function to run
427 * in process context.
429 * Arguments:
430 * hw device structure
432 * Returns:
433 * nothing
435 * Call context:
436 * process (by design)
437 ----------------------------------------------------------------*/
438 static void hfa384x_usb_defer(struct work_struct *data)
440 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
441 struct net_device *netdev = hw->wlandev->netdev;
443 /* Don't bother trying to reset anything if the plug
444 * has been pulled ...
446 if (hw->wlandev->hwremoved)
447 return;
449 /* Reception has stopped: try to reset the input pipe */
450 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451 int ret;
453 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
455 ret = usb_clear_halt(hw->usb, hw->endp_in);
456 if (ret != 0) {
457 printk(KERN_ERR
458 "Failed to clear rx pipe for %s: err=%d\n",
459 netdev->name, ret);
460 } else {
461 printk(KERN_INFO "%s rx pipe reset complete.\n",
462 netdev->name);
463 clear_bit(WORK_RX_HALT, &hw->usb_flags);
464 set_bit(WORK_RX_RESUME, &hw->usb_flags);
468 /* Resume receiving data back from the device. */
469 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470 int ret;
472 ret = submit_rx_urb(hw, GFP_KERNEL);
473 if (ret != 0) {
474 printk(KERN_ERR
475 "Failed to resume %s rx pipe.\n", netdev->name);
476 } else {
477 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
481 /* Transmission has stopped: try to reset the output pipe */
482 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 int ret;
485 usb_kill_urb(&hw->tx_urb);
486 ret = usb_clear_halt(hw->usb, hw->endp_out);
487 if (ret != 0) {
488 printk(KERN_ERR
489 "Failed to clear tx pipe for %s: err=%d\n",
490 netdev->name, ret);
491 } else {
492 printk(KERN_INFO "%s tx pipe reset complete.\n",
493 netdev->name);
494 clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 set_bit(WORK_TX_RESUME, &hw->usb_flags);
497 /* Stopping the BULK-OUT pipe also blocked
498 * us from sending any more CTLX URBs, so
499 * we need to re-run our queue ...
501 hfa384x_usbctlxq_run(hw);
505 /* Resume transmitting. */
506 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 netif_wake_queue(hw->wlandev->netdev);
510 /*----------------------------------------------------------------
511 * hfa384x_create
513 * Sets up the hfa384x_t data structure for use. Note this
514 * does _not_ intialize the actual hardware, just the data structures
515 * we use to keep track of its state.
517 * Arguments:
518 * hw device structure
519 * irq device irq number
520 * iobase i/o base address for register access
521 * membase memory base address for register access
523 * Returns:
524 * nothing
526 * Side effects:
528 * Call context:
529 * process
530 ----------------------------------------------------------------*/
531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
533 memset(hw, 0, sizeof(hfa384x_t));
534 hw->usb = usb;
536 /* set up the endpoints */
537 hw->endp_in = usb_rcvbulkpipe(usb, 1);
538 hw->endp_out = usb_sndbulkpipe(usb, 2);
540 /* Set up the waitq */
541 init_waitqueue_head(&hw->cmdq);
543 /* Initialize the command queue */
544 spin_lock_init(&hw->ctlxq.lock);
545 INIT_LIST_HEAD(&hw->ctlxq.pending);
546 INIT_LIST_HEAD(&hw->ctlxq.active);
547 INIT_LIST_HEAD(&hw->ctlxq.completing);
548 INIT_LIST_HEAD(&hw->ctlxq.reapable);
550 /* Initialize the authentication queue */
551 skb_queue_head_init(&hw->authq);
553 tasklet_init(&hw->reaper_bh,
554 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555 tasklet_init(&hw->completion_bh,
556 hfa384x_usbctlx_completion_task, (unsigned long)hw);
557 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
560 init_timer(&hw->throttle);
561 hw->throttle.function = hfa384x_usb_throttlefn;
562 hw->throttle.data = (unsigned long)hw;
564 init_timer(&hw->resptimer);
565 hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566 hw->resptimer.data = (unsigned long)hw;
568 init_timer(&hw->reqtimer);
569 hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570 hw->reqtimer.data = (unsigned long)hw;
572 usb_init_urb(&hw->rx_urb);
573 usb_init_urb(&hw->tx_urb);
574 usb_init_urb(&hw->ctlx_urb);
576 hw->link_status = HFA384x_LINK_NOTCONNECTED;
577 hw->state = HFA384x_STATE_INIT;
579 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580 init_timer(&hw->commsqual_timer);
581 hw->commsqual_timer.data = (unsigned long)hw;
582 hw->commsqual_timer.function = prism2sta_commsqual_timer;
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
588 * Partner to hfa384x_create(). This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree. Currently, this function is just a placeholder. If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done. Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
596 * Arguments:
597 * hw device structure
599 * Returns:
600 * nothing, this function is not allowed to fail.
602 * Side effects:
604 * Call context:
605 * process
606 ----------------------------------------------------------------*/
607 void hfa384x_destroy(hfa384x_t *hw)
609 struct sk_buff *skb;
611 if (hw->state == HFA384x_STATE_RUNNING)
612 hfa384x_drvr_stop(hw);
613 hw->state = HFA384x_STATE_PREINIT;
615 if (hw->scanresults) {
616 kfree(hw->scanresults);
617 hw->scanresults = NULL;
620 /* Now to clean out the auth queue */
621 while ((skb = skb_dequeue(&hw->authq)))
622 dev_kfree_skb(skb);
625 static hfa384x_usbctlx_t *usbctlx_alloc(void)
627 hfa384x_usbctlx_t *ctlx;
629 ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
630 if (ctlx != NULL) {
631 memset(ctlx, 0, sizeof(*ctlx));
632 init_completion(&ctlx->done);
635 return ctlx;
638 static int
639 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
640 hfa384x_cmdresult_t *result)
642 result->status = le16_to_cpu(cmdresp->status);
643 result->resp0 = le16_to_cpu(cmdresp->resp0);
644 result->resp1 = le16_to_cpu(cmdresp->resp1);
645 result->resp2 = le16_to_cpu(cmdresp->resp2);
647 pr_debug("cmdresult:status=0x%04x "
648 "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
649 result->status, result->resp0, result->resp1, result->resp2);
651 return result->status & HFA384x_STATUS_RESULT;
654 static void
655 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
656 hfa384x_rridresult_t *result)
658 result->rid = le16_to_cpu(rridresp->rid);
659 result->riddata = rridresp->data;
660 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
664 /*----------------------------------------------------------------
665 * Completor object:
666 * This completor must be passed to hfa384x_usbctlx_complete_sync()
667 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
668 ----------------------------------------------------------------*/
669 struct usbctlx_cmd_completor {
670 struct usbctlx_completor head;
672 const hfa384x_usb_cmdresp_t *cmdresp;
673 hfa384x_cmdresult_t *result;
676 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
678 struct usbctlx_cmd_completor *complete;
680 complete = (struct usbctlx_cmd_completor *) head;
681 return usbctlx_get_status(complete->cmdresp, complete->result);
684 static inline struct usbctlx_completor *init_cmd_completor(
685 struct usbctlx_cmd_completor
686 *completor,
687 const hfa384x_usb_cmdresp_t
688 *cmdresp,
689 hfa384x_cmdresult_t *result)
691 completor->head.complete = usbctlx_cmd_completor_fn;
692 completor->cmdresp = cmdresp;
693 completor->result = result;
694 return &(completor->head);
697 /*----------------------------------------------------------------
698 * Completor object:
699 * This completor must be passed to hfa384x_usbctlx_complete_sync()
700 * when processing a CTLX that reads a RID.
701 ----------------------------------------------------------------*/
702 struct usbctlx_rrid_completor {
703 struct usbctlx_completor head;
705 const hfa384x_usb_rridresp_t *rridresp;
706 void *riddata;
707 unsigned int riddatalen;
710 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
712 struct usbctlx_rrid_completor *complete;
713 hfa384x_rridresult_t rridresult;
715 complete = (struct usbctlx_rrid_completor *) head;
716 usbctlx_get_rridresult(complete->rridresp, &rridresult);
718 /* Validate the length, note body len calculation in bytes */
719 if (rridresult.riddata_len != complete->riddatalen) {
720 printk(KERN_WARNING
721 "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
722 rridresult.rid,
723 complete->riddatalen, rridresult.riddata_len);
724 return -ENODATA;
727 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
728 return 0;
731 static inline struct usbctlx_completor *init_rrid_completor(
732 struct usbctlx_rrid_completor
733 *completor,
734 const hfa384x_usb_rridresp_t
735 *rridresp,
736 void *riddata,
737 unsigned int riddatalen)
739 completor->head.complete = usbctlx_rrid_completor_fn;
740 completor->rridresp = rridresp;
741 completor->riddata = riddata;
742 completor->riddatalen = riddatalen;
743 return &(completor->head);
746 /*----------------------------------------------------------------
747 * Completor object:
748 * Interprets the results of a synchronous RID-write
749 ----------------------------------------------------------------*/
750 typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
751 #define init_wrid_completor init_cmd_completor
753 /*----------------------------------------------------------------
754 * Completor object:
755 * Interprets the results of a synchronous memory-write
756 ----------------------------------------------------------------*/
757 typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
758 #define init_wmem_completor init_cmd_completor
760 /*----------------------------------------------------------------
761 * Completor object:
762 * Interprets the results of a synchronous memory-read
763 ----------------------------------------------------------------*/
764 struct usbctlx_rmem_completor {
765 struct usbctlx_completor head;
767 const hfa384x_usb_rmemresp_t *rmemresp;
768 void *data;
769 unsigned int len;
771 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
773 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
775 usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
777 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
778 memcpy(complete->data, complete->rmemresp->data, complete->len);
779 return 0;
782 static inline struct usbctlx_completor *init_rmem_completor(
783 usbctlx_rmem_completor_t
784 *completor,
785 hfa384x_usb_rmemresp_t
786 *rmemresp,
787 void *data,
788 unsigned int len)
790 completor->head.complete = usbctlx_rmem_completor_fn;
791 completor->rmemresp = rmemresp;
792 completor->data = data;
793 completor->len = len;
794 return &(completor->head);
797 /*----------------------------------------------------------------
798 * hfa384x_cb_status
800 * Ctlx_complete handler for async CMD type control exchanges.
801 * mark the hw struct as such.
803 * Note: If the handling is changed here, it should probably be
804 * changed in docmd as well.
806 * Arguments:
807 * hw hw struct
808 * ctlx completed CTLX
810 * Returns:
811 * nothing
813 * Side effects:
815 * Call context:
816 * interrupt
817 ----------------------------------------------------------------*/
818 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
820 if (ctlx->usercb != NULL) {
821 hfa384x_cmdresult_t cmdresult;
823 if (ctlx->state != CTLX_COMPLETE) {
824 memset(&cmdresult, 0, sizeof(cmdresult));
825 cmdresult.status =
826 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
827 } else {
828 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
831 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
835 /*----------------------------------------------------------------
836 * hfa384x_cb_rrid
838 * CTLX completion handler for async RRID type control exchanges.
840 * Note: If the handling is changed here, it should probably be
841 * changed in dorrid as well.
843 * Arguments:
844 * hw hw struct
845 * ctlx completed CTLX
847 * Returns:
848 * nothing
850 * Side effects:
852 * Call context:
853 * interrupt
854 ----------------------------------------------------------------*/
855 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
857 if (ctlx->usercb != NULL) {
858 hfa384x_rridresult_t rridresult;
860 if (ctlx->state != CTLX_COMPLETE) {
861 memset(&rridresult, 0, sizeof(rridresult));
862 rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
863 } else {
864 usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
865 &rridresult);
868 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
872 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
874 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
877 static inline int
878 hfa384x_docmd_async(hfa384x_t *hw,
879 hfa384x_metacmd_t *cmd,
880 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
882 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
885 static inline int
886 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
887 unsigned int riddatalen)
889 return hfa384x_dorrid(hw, DOWAIT,
890 rid, riddata, riddatalen, NULL, NULL, NULL);
893 static inline int
894 hfa384x_dorrid_async(hfa384x_t *hw,
895 u16 rid, void *riddata, unsigned int riddatalen,
896 ctlx_cmdcb_t cmdcb,
897 ctlx_usercb_t usercb, void *usercb_data)
899 return hfa384x_dorrid(hw, DOASYNC,
900 rid, riddata, riddatalen,
901 cmdcb, usercb, usercb_data);
904 static inline int
905 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
906 unsigned int riddatalen)
908 return hfa384x_dowrid(hw, DOWAIT,
909 rid, riddata, riddatalen, NULL, NULL, NULL);
912 static inline int
913 hfa384x_dowrid_async(hfa384x_t *hw,
914 u16 rid, void *riddata, unsigned int riddatalen,
915 ctlx_cmdcb_t cmdcb,
916 ctlx_usercb_t usercb, void *usercb_data)
918 return hfa384x_dowrid(hw, DOASYNC,
919 rid, riddata, riddatalen,
920 cmdcb, usercb, usercb_data);
923 static inline int
924 hfa384x_dormem_wait(hfa384x_t *hw,
925 u16 page, u16 offset, void *data, unsigned int len)
927 return hfa384x_dormem(hw, DOWAIT,
928 page, offset, data, len, NULL, NULL, NULL);
931 static inline int
932 hfa384x_dormem_async(hfa384x_t *hw,
933 u16 page, u16 offset, void *data, unsigned int len,
934 ctlx_cmdcb_t cmdcb,
935 ctlx_usercb_t usercb, void *usercb_data)
937 return hfa384x_dormem(hw, DOASYNC,
938 page, offset, data, len,
939 cmdcb, usercb, usercb_data);
942 static inline int
943 hfa384x_dowmem_wait(hfa384x_t *hw,
944 u16 page, u16 offset, void *data, unsigned int len)
946 return hfa384x_dowmem(hw, DOWAIT,
947 page, offset, data, len, NULL, NULL, NULL);
950 static inline int
951 hfa384x_dowmem_async(hfa384x_t *hw,
952 u16 page,
953 u16 offset,
954 void *data,
955 unsigned int len,
956 ctlx_cmdcb_t cmdcb,
957 ctlx_usercb_t usercb, void *usercb_data)
959 return hfa384x_dowmem(hw, DOASYNC,
960 page, offset, data, len,
961 cmdcb, usercb, usercb_data);
964 /*----------------------------------------------------------------
965 * hfa384x_cmd_initialize
967 * Issues the initialize command and sets the hw->state based
968 * on the result.
970 * Arguments:
971 * hw device structure
973 * Returns:
974 * 0 success
975 * >0 f/w reported error - f/w status code
976 * <0 driver reported error
978 * Side effects:
980 * Call context:
981 * process
982 ----------------------------------------------------------------*/
983 int hfa384x_cmd_initialize(hfa384x_t *hw)
985 int result = 0;
986 int i;
987 hfa384x_metacmd_t cmd;
989 cmd.cmd = HFA384x_CMDCODE_INIT;
990 cmd.parm0 = 0;
991 cmd.parm1 = 0;
992 cmd.parm2 = 0;
994 result = hfa384x_docmd_wait(hw, &cmd);
996 pr_debug("cmdresp.init: "
997 "status=0x%04x, resp0=0x%04x, "
998 "resp1=0x%04x, resp2=0x%04x\n",
999 cmd.result.status,
1000 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
1001 if (result == 0) {
1002 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1003 hw->port_enabled[i] = 0;
1006 hw->link_status = HFA384x_LINK_NOTCONNECTED;
1008 return result;
1011 /*----------------------------------------------------------------
1012 * hfa384x_cmd_disable
1014 * Issues the disable command to stop communications on one of
1015 * the MACs 'ports'.
1017 * Arguments:
1018 * hw device structure
1019 * macport MAC port number (host order)
1021 * Returns:
1022 * 0 success
1023 * >0 f/w reported failure - f/w status code
1024 * <0 driver reported error (timeout|bad arg)
1026 * Side effects:
1028 * Call context:
1029 * process
1030 ----------------------------------------------------------------*/
1031 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1033 int result = 0;
1034 hfa384x_metacmd_t cmd;
1036 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1037 HFA384x_CMD_MACPORT_SET(macport);
1038 cmd.parm0 = 0;
1039 cmd.parm1 = 0;
1040 cmd.parm2 = 0;
1042 result = hfa384x_docmd_wait(hw, &cmd);
1044 return result;
1047 /*----------------------------------------------------------------
1048 * hfa384x_cmd_enable
1050 * Issues the enable command to enable communications on one of
1051 * the MACs 'ports'.
1053 * Arguments:
1054 * hw device structure
1055 * macport MAC port number
1057 * Returns:
1058 * 0 success
1059 * >0 f/w reported failure - f/w status code
1060 * <0 driver reported error (timeout|bad arg)
1062 * Side effects:
1064 * Call context:
1065 * process
1066 ----------------------------------------------------------------*/
1067 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1069 int result = 0;
1070 hfa384x_metacmd_t cmd;
1072 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1073 HFA384x_CMD_MACPORT_SET(macport);
1074 cmd.parm0 = 0;
1075 cmd.parm1 = 0;
1076 cmd.parm2 = 0;
1078 result = hfa384x_docmd_wait(hw, &cmd);
1080 return result;
1083 /*----------------------------------------------------------------
1084 * hfa384x_cmd_monitor
1086 * Enables the 'monitor mode' of the MAC. Here's the description of
1087 * monitor mode that I've received thus far:
1089 * "The "monitor mode" of operation is that the MAC passes all
1090 * frames for which the PLCP checks are correct. All received
1091 * MPDUs are passed to the host with MAC Port = 7, with a
1092 * receive status of good, FCS error, or undecryptable. Passing
1093 * certain MPDUs is a violation of the 802.11 standard, but useful
1094 * for a debugging tool." Normal communication is not possible
1095 * while monitor mode is enabled.
1097 * Arguments:
1098 * hw device structure
1099 * enable a code (0x0b|0x0f) that enables/disables
1100 * monitor mode. (host order)
1102 * Returns:
1103 * 0 success
1104 * >0 f/w reported failure - f/w status code
1105 * <0 driver reported error (timeout|bad arg)
1107 * Side effects:
1109 * Call context:
1110 * process
1111 ----------------------------------------------------------------*/
1112 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1114 int result = 0;
1115 hfa384x_metacmd_t cmd;
1117 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1118 HFA384x_CMD_AINFO_SET(enable);
1119 cmd.parm0 = 0;
1120 cmd.parm1 = 0;
1121 cmd.parm2 = 0;
1123 result = hfa384x_docmd_wait(hw, &cmd);
1125 return result;
1128 /*----------------------------------------------------------------
1129 * hfa384x_cmd_download
1131 * Sets the controls for the MAC controller code/data download
1132 * process. The arguments set the mode and address associated
1133 * with a download. Note that the aux registers should be enabled
1134 * prior to setting one of the download enable modes.
1136 * Arguments:
1137 * hw device structure
1138 * mode 0 - Disable programming and begin code exec
1139 * 1 - Enable volatile mem programming
1140 * 2 - Enable non-volatile mem programming
1141 * 3 - Program non-volatile section from NV download
1142 * buffer.
1143 * (host order)
1144 * lowaddr
1145 * highaddr For mode 1, sets the high & low order bits of
1146 * the "destination address". This address will be
1147 * the execution start address when download is
1148 * subsequently disabled.
1149 * For mode 2, sets the high & low order bits of
1150 * the destination in NV ram.
1151 * For modes 0 & 3, should be zero. (host order)
1152 * NOTE: these are CMD format.
1153 * codelen Length of the data to write in mode 2,
1154 * zero otherwise. (host order)
1156 * Returns:
1157 * 0 success
1158 * >0 f/w reported failure - f/w status code
1159 * <0 driver reported error (timeout|bad arg)
1161 * Side effects:
1163 * Call context:
1164 * process
1165 ----------------------------------------------------------------*/
1166 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1167 u16 highaddr, u16 codelen)
1169 int result = 0;
1170 hfa384x_metacmd_t cmd;
1172 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1173 mode, lowaddr, highaddr, codelen);
1175 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1176 HFA384x_CMD_PROGMODE_SET(mode));
1178 cmd.parm0 = lowaddr;
1179 cmd.parm1 = highaddr;
1180 cmd.parm2 = codelen;
1182 result = hfa384x_docmd_wait(hw, &cmd);
1184 return result;
1187 /*----------------------------------------------------------------
1188 * hfa384x_corereset
1190 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1191 * structure is in its "created" state. That is, it is initialized
1192 * with proper values. Note that if a reset is done after the
1193 * device has been active for awhile, the caller might have to clean
1194 * up some leftover cruft in the hw structure.
1196 * Arguments:
1197 * hw device structure
1198 * holdtime how long (in ms) to hold the reset
1199 * settletime how long (in ms) to wait after releasing
1200 * the reset
1202 * Returns:
1203 * nothing
1205 * Side effects:
1207 * Call context:
1208 * process
1209 ----------------------------------------------------------------*/
1210 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1212 int result = 0;
1214 result = usb_reset_device(hw->usb);
1215 if (result < 0) {
1216 printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1217 result);
1220 return result;
1223 /*----------------------------------------------------------------
1224 * hfa384x_usbctlx_complete_sync
1226 * Waits for a synchronous CTLX object to complete,
1227 * and then handles the response.
1229 * Arguments:
1230 * hw device structure
1231 * ctlx CTLX ptr
1232 * completor functor object to decide what to
1233 * do with the CTLX's result.
1235 * Returns:
1236 * 0 Success
1237 * -ERESTARTSYS Interrupted by a signal
1238 * -EIO CTLX failed
1239 * -ENODEV Adapter was unplugged
1240 * ??? Result from completor
1242 * Side effects:
1244 * Call context:
1245 * process
1246 ----------------------------------------------------------------*/
1247 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1248 hfa384x_usbctlx_t *ctlx,
1249 struct usbctlx_completor *completor)
1251 unsigned long flags;
1252 int result;
1254 result = wait_for_completion_interruptible(&ctlx->done);
1256 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1259 * We can only handle the CTLX if the USB disconnect
1260 * function has not run yet ...
1262 cleanup:
1263 if (hw->wlandev->hwremoved) {
1264 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1265 result = -ENODEV;
1266 } else if (result != 0) {
1267 int runqueue = 0;
1270 * We were probably interrupted, so delete
1271 * this CTLX asynchronously, kill the timers
1272 * and the URB, and then start the next
1273 * pending CTLX.
1275 * NOTE: We can only delete the timers and
1276 * the URB if this CTLX is active.
1278 if (ctlx == get_active_ctlx(hw)) {
1279 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1281 del_singleshot_timer_sync(&hw->reqtimer);
1282 del_singleshot_timer_sync(&hw->resptimer);
1283 hw->req_timer_done = 1;
1284 hw->resp_timer_done = 1;
1285 usb_kill_urb(&hw->ctlx_urb);
1287 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1289 runqueue = 1;
1292 * This scenario is so unlikely that I'm
1293 * happy with a grubby "goto" solution ...
1295 if (hw->wlandev->hwremoved)
1296 goto cleanup;
1300 * The completion task will send this CTLX
1301 * to the reaper the next time it runs. We
1302 * are no longer in a hurry.
1304 ctlx->reapable = 1;
1305 ctlx->state = CTLX_REQ_FAILED;
1306 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1308 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1310 if (runqueue)
1311 hfa384x_usbctlxq_run(hw);
1312 } else {
1313 if (ctlx->state == CTLX_COMPLETE) {
1314 result = completor->complete(completor);
1315 } else {
1316 printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1317 le16_to_cpu(ctlx->outbuf.type),
1318 ctlxstr(ctlx->state));
1319 result = -EIO;
1322 list_del(&ctlx->list);
1323 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1324 kfree(ctlx);
1327 return result;
1330 /*----------------------------------------------------------------
1331 * hfa384x_docmd
1333 * Constructs a command CTLX and submits it.
1335 * NOTE: Any changes to the 'post-submit' code in this function
1336 * need to be carried over to hfa384x_cbcmd() since the handling
1337 * is virtually identical.
1339 * Arguments:
1340 * hw device structure
1341 * mode DOWAIT or DOASYNC
1342 * cmd cmd structure. Includes all arguments and result
1343 * data points. All in host order. in host order
1344 * cmdcb command-specific callback
1345 * usercb user callback for async calls, NULL for DOWAIT calls
1346 * usercb_data user supplied data pointer for async calls, NULL
1347 * for DOASYNC calls
1349 * Returns:
1350 * 0 success
1351 * -EIO CTLX failure
1352 * -ERESTARTSYS Awakened on signal
1353 * >0 command indicated error, Status and Resp0-2 are
1354 * in hw structure.
1356 * Side effects:
1359 * Call context:
1360 * process
1361 ----------------------------------------------------------------*/
1362 static int
1363 hfa384x_docmd(hfa384x_t *hw,
1364 enum cmd_mode mode,
1365 hfa384x_metacmd_t *cmd,
1366 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1368 int result;
1369 hfa384x_usbctlx_t *ctlx;
1371 ctlx = usbctlx_alloc();
1372 if (ctlx == NULL) {
1373 result = -ENOMEM;
1374 goto done;
1377 /* Initialize the command */
1378 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1379 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1380 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1381 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1382 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1384 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1386 pr_debug("cmdreq: cmd=0x%04x "
1387 "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1388 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1390 ctlx->reapable = mode;
1391 ctlx->cmdcb = cmdcb;
1392 ctlx->usercb = usercb;
1393 ctlx->usercb_data = usercb_data;
1395 result = hfa384x_usbctlx_submit(hw, ctlx);
1396 if (result != 0) {
1397 kfree(ctlx);
1398 } else if (mode == DOWAIT) {
1399 struct usbctlx_cmd_completor completor;
1401 result =
1402 hfa384x_usbctlx_complete_sync(hw, ctlx,
1403 init_cmd_completor(&completor,
1404 &ctlx->
1405 inbuf.
1406 cmdresp,
1407 &cmd->
1408 result));
1411 done:
1412 return result;
1415 /*----------------------------------------------------------------
1416 * hfa384x_dorrid
1418 * Constructs a read rid CTLX and issues it.
1420 * NOTE: Any changes to the 'post-submit' code in this function
1421 * need to be carried over to hfa384x_cbrrid() since the handling
1422 * is virtually identical.
1424 * Arguments:
1425 * hw device structure
1426 * mode DOWAIT or DOASYNC
1427 * rid Read RID number (host order)
1428 * riddata Caller supplied buffer that MAC formatted RID.data
1429 * record will be written to for DOWAIT calls. Should
1430 * be NULL for DOASYNC calls.
1431 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1432 * cmdcb command callback for async calls, NULL for DOWAIT calls
1433 * usercb user callback for async calls, NULL for DOWAIT calls
1434 * usercb_data user supplied data pointer for async calls, NULL
1435 * for DOWAIT calls
1437 * Returns:
1438 * 0 success
1439 * -EIO CTLX failure
1440 * -ERESTARTSYS Awakened on signal
1441 * -ENODATA riddatalen != macdatalen
1442 * >0 command indicated error, Status and Resp0-2 are
1443 * in hw structure.
1445 * Side effects:
1447 * Call context:
1448 * interrupt (DOASYNC)
1449 * process (DOWAIT or DOASYNC)
1450 ----------------------------------------------------------------*/
1451 static int
1452 hfa384x_dorrid(hfa384x_t *hw,
1453 enum cmd_mode mode,
1454 u16 rid,
1455 void *riddata,
1456 unsigned int riddatalen,
1457 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1459 int result;
1460 hfa384x_usbctlx_t *ctlx;
1462 ctlx = usbctlx_alloc();
1463 if (ctlx == NULL) {
1464 result = -ENOMEM;
1465 goto done;
1468 /* Initialize the command */
1469 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1470 ctlx->outbuf.rridreq.frmlen =
1471 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1472 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1474 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1476 ctlx->reapable = mode;
1477 ctlx->cmdcb = cmdcb;
1478 ctlx->usercb = usercb;
1479 ctlx->usercb_data = usercb_data;
1481 /* Submit the CTLX */
1482 result = hfa384x_usbctlx_submit(hw, ctlx);
1483 if (result != 0) {
1484 kfree(ctlx);
1485 } else if (mode == DOWAIT) {
1486 struct usbctlx_rrid_completor completor;
1488 result =
1489 hfa384x_usbctlx_complete_sync(hw, ctlx,
1490 init_rrid_completor
1491 (&completor,
1492 &ctlx->inbuf.rridresp,
1493 riddata, riddatalen));
1496 done:
1497 return result;
1500 /*----------------------------------------------------------------
1501 * hfa384x_dowrid
1503 * Constructs a write rid CTLX and issues it.
1505 * NOTE: Any changes to the 'post-submit' code in this function
1506 * need to be carried over to hfa384x_cbwrid() since the handling
1507 * is virtually identical.
1509 * Arguments:
1510 * hw device structure
1511 * enum cmd_mode DOWAIT or DOASYNC
1512 * rid RID code
1513 * riddata Data portion of RID formatted for MAC
1514 * riddatalen Length of the data portion in bytes
1515 * cmdcb command callback for async calls, NULL for DOWAIT calls
1516 * usercb user callback for async calls, NULL for DOWAIT calls
1517 * usercb_data user supplied data pointer for async calls
1519 * Returns:
1520 * 0 success
1521 * -ETIMEDOUT timed out waiting for register ready or
1522 * command completion
1523 * >0 command indicated error, Status and Resp0-2 are
1524 * in hw structure.
1526 * Side effects:
1528 * Call context:
1529 * interrupt (DOASYNC)
1530 * process (DOWAIT or DOASYNC)
1531 ----------------------------------------------------------------*/
1532 static int
1533 hfa384x_dowrid(hfa384x_t *hw,
1534 enum cmd_mode mode,
1535 u16 rid,
1536 void *riddata,
1537 unsigned int riddatalen,
1538 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1540 int result;
1541 hfa384x_usbctlx_t *ctlx;
1543 ctlx = usbctlx_alloc();
1544 if (ctlx == NULL) {
1545 result = -ENOMEM;
1546 goto done;
1549 /* Initialize the command */
1550 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1551 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1552 (ctlx->outbuf.wridreq.rid) +
1553 riddatalen + 1) / 2);
1554 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1555 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1557 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1558 sizeof(ctlx->outbuf.wridreq.frmlen) +
1559 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1561 ctlx->reapable = mode;
1562 ctlx->cmdcb = cmdcb;
1563 ctlx->usercb = usercb;
1564 ctlx->usercb_data = usercb_data;
1566 /* Submit the CTLX */
1567 result = hfa384x_usbctlx_submit(hw, ctlx);
1568 if (result != 0) {
1569 kfree(ctlx);
1570 } else if (mode == DOWAIT) {
1571 usbctlx_wrid_completor_t completor;
1572 hfa384x_cmdresult_t wridresult;
1574 result = hfa384x_usbctlx_complete_sync(hw,
1575 ctlx,
1576 init_wrid_completor
1577 (&completor,
1578 &ctlx->inbuf.wridresp,
1579 &wridresult));
1582 done:
1583 return result;
1586 /*----------------------------------------------------------------
1587 * hfa384x_dormem
1589 * Constructs a readmem CTLX and issues it.
1591 * NOTE: Any changes to the 'post-submit' code in this function
1592 * need to be carried over to hfa384x_cbrmem() since the handling
1593 * is virtually identical.
1595 * Arguments:
1596 * hw device structure
1597 * mode DOWAIT or DOASYNC
1598 * page MAC address space page (CMD format)
1599 * offset MAC address space offset
1600 * data Ptr to data buffer to receive read
1601 * len Length of the data to read (max == 2048)
1602 * cmdcb command callback for async calls, NULL for DOWAIT calls
1603 * usercb user callback for async calls, NULL for DOWAIT calls
1604 * usercb_data user supplied data pointer for async calls
1606 * Returns:
1607 * 0 success
1608 * -ETIMEDOUT timed out waiting for register ready or
1609 * command completion
1610 * >0 command indicated error, Status and Resp0-2 are
1611 * in hw structure.
1613 * Side effects:
1615 * Call context:
1616 * interrupt (DOASYNC)
1617 * process (DOWAIT or DOASYNC)
1618 ----------------------------------------------------------------*/
1619 static int
1620 hfa384x_dormem(hfa384x_t *hw,
1621 enum cmd_mode mode,
1622 u16 page,
1623 u16 offset,
1624 void *data,
1625 unsigned int len,
1626 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1628 int result;
1629 hfa384x_usbctlx_t *ctlx;
1631 ctlx = usbctlx_alloc();
1632 if (ctlx == NULL) {
1633 result = -ENOMEM;
1634 goto done;
1637 /* Initialize the command */
1638 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1639 ctlx->outbuf.rmemreq.frmlen =
1640 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1641 sizeof(ctlx->outbuf.rmemreq.page) + len);
1642 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1643 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1645 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1647 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1648 ctlx->outbuf.rmemreq.type,
1649 ctlx->outbuf.rmemreq.frmlen,
1650 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1652 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1654 ctlx->reapable = mode;
1655 ctlx->cmdcb = cmdcb;
1656 ctlx->usercb = usercb;
1657 ctlx->usercb_data = usercb_data;
1659 result = hfa384x_usbctlx_submit(hw, ctlx);
1660 if (result != 0) {
1661 kfree(ctlx);
1662 } else if (mode == DOWAIT) {
1663 usbctlx_rmem_completor_t completor;
1665 result =
1666 hfa384x_usbctlx_complete_sync(hw, ctlx,
1667 init_rmem_completor
1668 (&completor,
1669 &ctlx->inbuf.rmemresp, data,
1670 len));
1673 done:
1674 return result;
1677 /*----------------------------------------------------------------
1678 * hfa384x_dowmem
1680 * Constructs a writemem CTLX and issues it.
1682 * NOTE: Any changes to the 'post-submit' code in this function
1683 * need to be carried over to hfa384x_cbwmem() since the handling
1684 * is virtually identical.
1686 * Arguments:
1687 * hw device structure
1688 * mode DOWAIT or DOASYNC
1689 * page MAC address space page (CMD format)
1690 * offset MAC address space offset
1691 * data Ptr to data buffer containing write data
1692 * len Length of the data to read (max == 2048)
1693 * cmdcb command callback for async calls, NULL for DOWAIT calls
1694 * usercb user callback for async calls, NULL for DOWAIT calls
1695 * usercb_data user supplied data pointer for async calls.
1697 * Returns:
1698 * 0 success
1699 * -ETIMEDOUT timed out waiting for register ready or
1700 * command completion
1701 * >0 command indicated error, Status and Resp0-2 are
1702 * in hw structure.
1704 * Side effects:
1706 * Call context:
1707 * interrupt (DOWAIT)
1708 * process (DOWAIT or DOASYNC)
1709 ----------------------------------------------------------------*/
1710 static int
1711 hfa384x_dowmem(hfa384x_t *hw,
1712 enum cmd_mode mode,
1713 u16 page,
1714 u16 offset,
1715 void *data,
1716 unsigned int len,
1717 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1719 int result;
1720 hfa384x_usbctlx_t *ctlx;
1722 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1724 ctlx = usbctlx_alloc();
1725 if (ctlx == NULL) {
1726 result = -ENOMEM;
1727 goto done;
1730 /* Initialize the command */
1731 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1732 ctlx->outbuf.wmemreq.frmlen =
1733 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1734 sizeof(ctlx->outbuf.wmemreq.page) + len);
1735 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1736 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1737 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1739 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1740 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1741 sizeof(ctlx->outbuf.wmemreq.offset) +
1742 sizeof(ctlx->outbuf.wmemreq.page) + len;
1744 ctlx->reapable = mode;
1745 ctlx->cmdcb = cmdcb;
1746 ctlx->usercb = usercb;
1747 ctlx->usercb_data = usercb_data;
1749 result = hfa384x_usbctlx_submit(hw, ctlx);
1750 if (result != 0) {
1751 kfree(ctlx);
1752 } else if (mode == DOWAIT) {
1753 usbctlx_wmem_completor_t completor;
1754 hfa384x_cmdresult_t wmemresult;
1756 result = hfa384x_usbctlx_complete_sync(hw,
1757 ctlx,
1758 init_wmem_completor
1759 (&completor,
1760 &ctlx->inbuf.wmemresp,
1761 &wmemresult));
1764 done:
1765 return result;
1768 /*----------------------------------------------------------------
1769 * hfa384x_drvr_commtallies
1771 * Send a commtallies inquiry to the MAC. Note that this is an async
1772 * call that will result in an info frame arriving sometime later.
1774 * Arguments:
1775 * hw device structure
1777 * Returns:
1778 * zero success.
1780 * Side effects:
1782 * Call context:
1783 * process
1784 ----------------------------------------------------------------*/
1785 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1787 hfa384x_metacmd_t cmd;
1789 cmd.cmd = HFA384x_CMDCODE_INQ;
1790 cmd.parm0 = HFA384x_IT_COMMTALLIES;
1791 cmd.parm1 = 0;
1792 cmd.parm2 = 0;
1794 hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1796 return 0;
1799 /*----------------------------------------------------------------
1800 * hfa384x_drvr_disable
1802 * Issues the disable command to stop communications on one of
1803 * the MACs 'ports'. Only macport 0 is valid for stations.
1804 * APs may also disable macports 1-6. Only ports that have been
1805 * previously enabled may be disabled.
1807 * Arguments:
1808 * hw device structure
1809 * macport MAC port number (host order)
1811 * Returns:
1812 * 0 success
1813 * >0 f/w reported failure - f/w status code
1814 * <0 driver reported error (timeout|bad arg)
1816 * Side effects:
1818 * Call context:
1819 * process
1820 ----------------------------------------------------------------*/
1821 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1823 int result = 0;
1825 if ((!hw->isap && macport != 0) ||
1826 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1827 !(hw->port_enabled[macport])) {
1828 result = -EINVAL;
1829 } else {
1830 result = hfa384x_cmd_disable(hw, macport);
1831 if (result == 0)
1832 hw->port_enabled[macport] = 0;
1834 return result;
1837 /*----------------------------------------------------------------
1838 * hfa384x_drvr_enable
1840 * Issues the enable command to enable communications on one of
1841 * the MACs 'ports'. Only macport 0 is valid for stations.
1842 * APs may also enable macports 1-6. Only ports that are currently
1843 * disabled may be enabled.
1845 * Arguments:
1846 * hw device structure
1847 * macport MAC port number
1849 * Returns:
1850 * 0 success
1851 * >0 f/w reported failure - f/w status code
1852 * <0 driver reported error (timeout|bad arg)
1854 * Side effects:
1856 * Call context:
1857 * process
1858 ----------------------------------------------------------------*/
1859 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1861 int result = 0;
1863 if ((!hw->isap && macport != 0) ||
1864 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1865 (hw->port_enabled[macport])) {
1866 result = -EINVAL;
1867 } else {
1868 result = hfa384x_cmd_enable(hw, macport);
1869 if (result == 0)
1870 hw->port_enabled[macport] = 1;
1872 return result;
1875 /*----------------------------------------------------------------
1876 * hfa384x_drvr_flashdl_enable
1878 * Begins the flash download state. Checks to see that we're not
1879 * already in a download state and that a port isn't enabled.
1880 * Sets the download state and retrieves the flash download
1881 * buffer location, buffer size, and timeout length.
1883 * Arguments:
1884 * hw device structure
1886 * Returns:
1887 * 0 success
1888 * >0 f/w reported error - f/w status code
1889 * <0 driver reported error
1891 * Side effects:
1893 * Call context:
1894 * process
1895 ----------------------------------------------------------------*/
1896 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1898 int result = 0;
1899 int i;
1901 /* Check that a port isn't active */
1902 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1903 if (hw->port_enabled[i]) {
1904 pr_debug("called when port enabled.\n");
1905 return -EINVAL;
1909 /* Check that we're not already in a download state */
1910 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1911 return -EINVAL;
1913 /* Retrieve the buffer loc&size and timeout */
1914 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1915 &(hw->bufinfo), sizeof(hw->bufinfo));
1916 if (result)
1917 return result;
1919 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1920 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1921 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1922 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1923 &(hw->dltimeout));
1924 if (result)
1925 return result;
1927 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1929 pr_debug("flashdl_enable\n");
1931 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1933 return result;
1936 /*----------------------------------------------------------------
1937 * hfa384x_drvr_flashdl_disable
1939 * Ends the flash download state. Note that this will cause the MAC
1940 * firmware to restart.
1942 * Arguments:
1943 * hw device structure
1945 * Returns:
1946 * 0 success
1947 * >0 f/w reported error - f/w status code
1948 * <0 driver reported error
1950 * Side effects:
1952 * Call context:
1953 * process
1954 ----------------------------------------------------------------*/
1955 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1957 /* Check that we're already in the download state */
1958 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1959 return -EINVAL;
1961 pr_debug("flashdl_enable\n");
1963 /* There isn't much we can do at this point, so I don't */
1964 /* bother w/ the return value */
1965 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1966 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1968 return 0;
1971 /*----------------------------------------------------------------
1972 * hfa384x_drvr_flashdl_write
1974 * Performs a FLASH download of a chunk of data. First checks to see
1975 * that we're in the FLASH download state, then sets the download
1976 * mode, uses the aux functions to 1) copy the data to the flash
1977 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1978 * compare. Lather rinse, repeat as many times an necessary to get
1979 * all the given data into flash.
1980 * When all data has been written using this function (possibly
1981 * repeatedly), call drvr_flashdl_disable() to end the download state
1982 * and restart the MAC.
1984 * Arguments:
1985 * hw device structure
1986 * daddr Card address to write to. (host order)
1987 * buf Ptr to data to write.
1988 * len Length of data (host order).
1990 * Returns:
1991 * 0 success
1992 * >0 f/w reported error - f/w status code
1993 * <0 driver reported error
1995 * Side effects:
1997 * Call context:
1998 * process
1999 ----------------------------------------------------------------*/
2000 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2002 int result = 0;
2003 u32 dlbufaddr;
2004 int nburns;
2005 u32 burnlen;
2006 u32 burndaddr;
2007 u16 burnlo;
2008 u16 burnhi;
2009 int nwrites;
2010 u8 *writebuf;
2011 u16 writepage;
2012 u16 writeoffset;
2013 u32 writelen;
2014 int i;
2015 int j;
2017 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2019 /* Check that we're in the flash download state */
2020 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2021 return -EINVAL;
2023 printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2025 /* Convert to flat address for arithmetic */
2026 /* NOTE: dlbuffer RID stores the address in AUX format */
2027 dlbufaddr =
2028 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2029 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2030 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2032 /* Calculations to determine how many fills of the dlbuffer to do
2033 * and how many USB wmemreq's to do for each fill. At this point
2034 * in time, the dlbuffer size and the wmemreq size are the same.
2035 * Therefore, nwrites should always be 1. The extra complexity
2036 * here is a hedge against future changes.
2039 /* Figure out how many times to do the flash programming */
2040 nburns = len / hw->bufinfo.len;
2041 nburns += (len % hw->bufinfo.len) ? 1 : 0;
2043 /* For each flash program cycle, how many USB wmemreq's are needed? */
2044 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2045 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2047 /* For each burn */
2048 for (i = 0; i < nburns; i++) {
2049 /* Get the dest address and len */
2050 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2051 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2052 burndaddr = daddr + (hw->bufinfo.len * i);
2053 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2054 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2056 printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2057 burnlen, burndaddr);
2059 /* Set the download mode */
2060 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2061 burnlo, burnhi, burnlen);
2062 if (result) {
2063 printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2064 "cmd failed, result=%d. Aborting d/l\n",
2065 burnlo, burnhi, burnlen, result);
2066 goto exit_proc;
2069 /* copy the data to the flash download buffer */
2070 for (j = 0; j < nwrites; j++) {
2071 writebuf = buf +
2072 (i * hw->bufinfo.len) +
2073 (j * HFA384x_USB_RWMEM_MAXLEN);
2075 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2076 (j * HFA384x_USB_RWMEM_MAXLEN));
2077 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2078 (j * HFA384x_USB_RWMEM_MAXLEN));
2080 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2081 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2082 HFA384x_USB_RWMEM_MAXLEN : writelen;
2084 result = hfa384x_dowmem_wait(hw,
2085 writepage,
2086 writeoffset,
2087 writebuf, writelen);
2090 /* set the download 'write flash' mode */
2091 result = hfa384x_cmd_download(hw,
2092 HFA384x_PROGMODE_NVWRITE,
2093 0, 0, 0);
2094 if (result) {
2095 printk(KERN_ERR
2096 "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2097 "cmd failed, result=%d. Aborting d/l\n",
2098 burnlo, burnhi, burnlen, result);
2099 goto exit_proc;
2102 /* TODO: We really should do a readback and compare. */
2105 exit_proc:
2107 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2108 /* actually disable programming mode. Remember, that will cause the */
2109 /* the firmware to effectively reset itself. */
2111 return result;
2114 /*----------------------------------------------------------------
2115 * hfa384x_drvr_getconfig
2117 * Performs the sequence necessary to read a config/info item.
2119 * Arguments:
2120 * hw device structure
2121 * rid config/info record id (host order)
2122 * buf host side record buffer. Upon return it will
2123 * contain the body portion of the record (minus the
2124 * RID and len).
2125 * len buffer length (in bytes, should match record length)
2127 * Returns:
2128 * 0 success
2129 * >0 f/w reported error - f/w status code
2130 * <0 driver reported error
2131 * -ENODATA length mismatch between argument and retrieved
2132 * record.
2134 * Side effects:
2136 * Call context:
2137 * process
2138 ----------------------------------------------------------------*/
2139 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2141 int result;
2143 result = hfa384x_dorrid_wait(hw, rid, buf, len);
2145 return result;
2148 /*----------------------------------------------------------------
2149 * hfa384x_drvr_getconfig_async
2151 * Performs the sequence necessary to perform an async read of
2152 * of a config/info item.
2154 * Arguments:
2155 * hw device structure
2156 * rid config/info record id (host order)
2157 * buf host side record buffer. Upon return it will
2158 * contain the body portion of the record (minus the
2159 * RID and len).
2160 * len buffer length (in bytes, should match record length)
2161 * cbfn caller supplied callback, called when the command
2162 * is done (successful or not).
2163 * cbfndata pointer to some caller supplied data that will be
2164 * passed in as an argument to the cbfn.
2166 * Returns:
2167 * nothing the cbfn gets a status argument identifying if
2168 * any errors occur.
2169 * Side effects:
2170 * Queues an hfa384x_usbcmd_t for subsequent execution.
2172 * Call context:
2173 * Any
2174 ----------------------------------------------------------------*/
2176 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2177 u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2179 return hfa384x_dorrid_async(hw, rid, NULL, 0,
2180 hfa384x_cb_rrid, usercb, usercb_data);
2183 /*----------------------------------------------------------------
2184 * hfa384x_drvr_setconfig_async
2186 * Performs the sequence necessary to write a config/info item.
2188 * Arguments:
2189 * hw device structure
2190 * rid config/info record id (in host order)
2191 * buf host side record buffer
2192 * len buffer length (in bytes)
2193 * usercb completion callback
2194 * usercb_data completion callback argument
2196 * Returns:
2197 * 0 success
2198 * >0 f/w reported error - f/w status code
2199 * <0 driver reported error
2201 * Side effects:
2203 * Call context:
2204 * process
2205 ----------------------------------------------------------------*/
2207 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2208 u16 rid,
2209 void *buf,
2210 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2212 return hfa384x_dowrid_async(hw, rid, buf, len,
2213 hfa384x_cb_status, usercb, usercb_data);
2216 /*----------------------------------------------------------------
2217 * hfa384x_drvr_ramdl_disable
2219 * Ends the ram download state.
2221 * Arguments:
2222 * hw device structure
2224 * Returns:
2225 * 0 success
2226 * >0 f/w reported error - f/w status code
2227 * <0 driver reported error
2229 * Side effects:
2231 * Call context:
2232 * process
2233 ----------------------------------------------------------------*/
2234 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2236 /* Check that we're already in the download state */
2237 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2238 return -EINVAL;
2240 pr_debug("ramdl_disable()\n");
2242 /* There isn't much we can do at this point, so I don't */
2243 /* bother w/ the return value */
2244 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2245 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2247 return 0;
2250 /*----------------------------------------------------------------
2251 * hfa384x_drvr_ramdl_enable
2253 * Begins the ram download state. Checks to see that we're not
2254 * already in a download state and that a port isn't enabled.
2255 * Sets the download state and calls cmd_download with the
2256 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2258 * Arguments:
2259 * hw device structure
2260 * exeaddr the card execution address that will be
2261 * jumped to when ramdl_disable() is called
2262 * (host order).
2264 * Returns:
2265 * 0 success
2266 * >0 f/w reported error - f/w status code
2267 * <0 driver reported error
2269 * Side effects:
2271 * Call context:
2272 * process
2273 ----------------------------------------------------------------*/
2274 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2276 int result = 0;
2277 u16 lowaddr;
2278 u16 hiaddr;
2279 int i;
2281 /* Check that a port isn't active */
2282 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2283 if (hw->port_enabled[i]) {
2284 printk(KERN_ERR
2285 "Can't download with a macport enabled.\n");
2286 return -EINVAL;
2290 /* Check that we're not already in a download state */
2291 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2292 printk(KERN_ERR "Download state not disabled.\n");
2293 return -EINVAL;
2296 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2298 /* Call the download(1,addr) function */
2299 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2300 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2302 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2303 lowaddr, hiaddr, 0);
2305 if (result == 0) {
2306 /* Set the download state */
2307 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2308 } else {
2309 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2310 lowaddr, hiaddr, result);
2313 return result;
2316 /*----------------------------------------------------------------
2317 * hfa384x_drvr_ramdl_write
2319 * Performs a RAM download of a chunk of data. First checks to see
2320 * that we're in the RAM download state, then uses the [read|write]mem USB
2321 * commands to 1) copy the data, 2) readback and compare. The download
2322 * state is unaffected. When all data has been written using
2323 * this function, call drvr_ramdl_disable() to end the download state
2324 * and restart the MAC.
2326 * Arguments:
2327 * hw device structure
2328 * daddr Card address to write to. (host order)
2329 * buf Ptr to data to write.
2330 * len Length of data (host order).
2332 * Returns:
2333 * 0 success
2334 * >0 f/w reported error - f/w status code
2335 * <0 driver reported error
2337 * Side effects:
2339 * Call context:
2340 * process
2341 ----------------------------------------------------------------*/
2342 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2344 int result = 0;
2345 int nwrites;
2346 u8 *data = buf;
2347 int i;
2348 u32 curraddr;
2349 u16 currpage;
2350 u16 curroffset;
2351 u16 currlen;
2353 /* Check that we're in the ram download state */
2354 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2355 return -EINVAL;
2357 printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2359 /* How many dowmem calls? */
2360 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2361 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2363 /* Do blocking wmem's */
2364 for (i = 0; i < nwrites; i++) {
2365 /* make address args */
2366 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2367 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2368 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2369 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2370 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2371 currlen = HFA384x_USB_RWMEM_MAXLEN;
2373 /* Do blocking ctlx */
2374 result = hfa384x_dowmem_wait(hw,
2375 currpage,
2376 curroffset,
2377 data +
2378 (i * HFA384x_USB_RWMEM_MAXLEN),
2379 currlen);
2381 if (result)
2382 break;
2384 /* TODO: We really should have a readback. */
2387 return result;
2390 /*----------------------------------------------------------------
2391 * hfa384x_drvr_readpda
2393 * Performs the sequence to read the PDA space. Note there is no
2394 * drvr_writepda() function. Writing a PDA is
2395 * generally implemented by a calling component via calls to
2396 * cmd_download and writing to the flash download buffer via the
2397 * aux regs.
2399 * Arguments:
2400 * hw device structure
2401 * buf buffer to store PDA in
2402 * len buffer length
2404 * Returns:
2405 * 0 success
2406 * >0 f/w reported error - f/w status code
2407 * <0 driver reported error
2408 * -ETIMEDOUT timout waiting for the cmd regs to become
2409 * available, or waiting for the control reg
2410 * to indicate the Aux port is enabled.
2411 * -ENODATA the buffer does NOT contain a valid PDA.
2412 * Either the card PDA is bad, or the auxdata
2413 * reads are giving us garbage.
2416 * Side effects:
2418 * Call context:
2419 * process or non-card interrupt.
2420 ----------------------------------------------------------------*/
2421 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2423 int result = 0;
2424 u16 *pda = buf;
2425 int pdaok = 0;
2426 int morepdrs = 1;
2427 int currpdr = 0; /* word offset of the current pdr */
2428 size_t i;
2429 u16 pdrlen; /* pdr length in bytes, host order */
2430 u16 pdrcode; /* pdr code, host order */
2431 u16 currpage;
2432 u16 curroffset;
2433 struct pdaloc {
2434 u32 cardaddr;
2435 u16 auxctl;
2436 } pdaloc[] = {
2438 HFA3842_PDA_BASE, 0}, {
2439 HFA3841_PDA_BASE, 0}, {
2440 HFA3841_PDA_BOGUS_BASE, 0}
2443 /* Read the pda from each known address. */
2444 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2445 /* Make address */
2446 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2447 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2449 /* units of bytes */
2450 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2451 len);
2453 if (result) {
2454 printk(KERN_WARNING
2455 "Read from index %zd failed, continuing\n", i);
2456 continue;
2459 /* Test for garbage */
2460 pdaok = 1; /* initially assume good */
2461 morepdrs = 1;
2462 while (pdaok && morepdrs) {
2463 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2464 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2465 /* Test the record length */
2466 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2467 printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2468 pdaok = 0;
2469 break;
2471 /* Test the code */
2472 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2473 printk(KERN_ERR "pdrcode invalid=%d\n",
2474 pdrcode);
2475 pdaok = 0;
2476 break;
2478 /* Test for completion */
2479 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2480 morepdrs = 0;
2482 /* Move to the next pdr (if necessary) */
2483 if (morepdrs) {
2484 /* note the access to pda[], need words here */
2485 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2488 if (pdaok) {
2489 printk(KERN_INFO
2490 "PDA Read from 0x%08x in %s space.\n",
2491 pdaloc[i].cardaddr,
2492 pdaloc[i].auxctl == 0 ? "EXTDS" :
2493 pdaloc[i].auxctl == 1 ? "NV" :
2494 pdaloc[i].auxctl == 2 ? "PHY" :
2495 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2496 "<bogus auxctl>");
2497 break;
2500 result = pdaok ? 0 : -ENODATA;
2502 if (result)
2503 pr_debug("Failure: pda is not okay\n");
2505 return result;
2508 /*----------------------------------------------------------------
2509 * hfa384x_drvr_setconfig
2511 * Performs the sequence necessary to write a config/info item.
2513 * Arguments:
2514 * hw device structure
2515 * rid config/info record id (in host order)
2516 * buf host side record buffer
2517 * len buffer length (in bytes)
2519 * Returns:
2520 * 0 success
2521 * >0 f/w reported error - f/w status code
2522 * <0 driver reported error
2524 * Side effects:
2526 * Call context:
2527 * process
2528 ----------------------------------------------------------------*/
2529 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2531 return hfa384x_dowrid_wait(hw, rid, buf, len);
2534 /*----------------------------------------------------------------
2535 * hfa384x_drvr_start
2537 * Issues the MAC initialize command, sets up some data structures,
2538 * and enables the interrupts. After this function completes, the
2539 * low-level stuff should be ready for any/all commands.
2541 * Arguments:
2542 * hw device structure
2543 * Returns:
2544 * 0 success
2545 * >0 f/w reported error - f/w status code
2546 * <0 driver reported error
2548 * Side effects:
2550 * Call context:
2551 * process
2552 ----------------------------------------------------------------*/
2554 int hfa384x_drvr_start(hfa384x_t *hw)
2556 int result, result1, result2;
2557 u16 status;
2559 might_sleep();
2561 /* Clear endpoint stalls - but only do this if the endpoint
2562 * is showing a stall status. Some prism2 cards seem to behave
2563 * badly if a clear_halt is called when the endpoint is already
2564 * ok
2566 result =
2567 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2568 if (result < 0) {
2569 printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2570 goto done;
2572 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2573 printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2575 result =
2576 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2577 if (result < 0) {
2578 printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2579 goto done;
2581 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2582 printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2584 /* Synchronous unlink, in case we're trying to restart the driver */
2585 usb_kill_urb(&hw->rx_urb);
2587 /* Post the IN urb */
2588 result = submit_rx_urb(hw, GFP_KERNEL);
2589 if (result != 0) {
2590 printk(KERN_ERR
2591 "Fatal, failed to submit RX URB, result=%d\n", result);
2592 goto done;
2595 result1 = hfa384x_cmd_initialize(hw);
2596 msleep(1000);
2597 result = result2 = hfa384x_cmd_initialize(hw);
2598 if (result1 != 0) {
2599 if (result2 != 0) {
2600 printk(KERN_ERR
2601 "cmd_initialize() failed on two attempts, results %d and %d\n",
2602 result1, result2);
2603 usb_kill_urb(&hw->rx_urb);
2604 goto done;
2605 } else {
2606 pr_debug("First cmd_initialize() failed (result %d),\n",
2607 result1);
2608 pr_debug("but second attempt succeeded. All should be ok\n");
2610 } else if (result2 != 0) {
2611 printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2612 result2);
2613 printk(KERN_WARNING
2614 "Most likely the card will be functional\n");
2615 goto done;
2618 hw->state = HFA384x_STATE_RUNNING;
2620 done:
2621 return result;
2624 /*----------------------------------------------------------------
2625 * hfa384x_drvr_stop
2627 * Shuts down the MAC to the point where it is safe to unload the
2628 * driver. Any subsystem that may be holding a data or function
2629 * ptr into the driver must be cleared/deinitialized.
2631 * Arguments:
2632 * hw device structure
2633 * Returns:
2634 * 0 success
2635 * >0 f/w reported error - f/w status code
2636 * <0 driver reported error
2638 * Side effects:
2640 * Call context:
2641 * process
2642 ----------------------------------------------------------------*/
2643 int hfa384x_drvr_stop(hfa384x_t *hw)
2645 int result = 0;
2646 int i;
2648 might_sleep();
2650 /* There's no need for spinlocks here. The USB "disconnect"
2651 * function sets this "removed" flag and then calls us.
2653 if (!hw->wlandev->hwremoved) {
2654 /* Call initialize to leave the MAC in its 'reset' state */
2655 hfa384x_cmd_initialize(hw);
2657 /* Cancel the rxurb */
2658 usb_kill_urb(&hw->rx_urb);
2661 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2662 hw->state = HFA384x_STATE_INIT;
2664 del_timer_sync(&hw->commsqual_timer);
2666 /* Clear all the port status */
2667 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2668 hw->port_enabled[i] = 0;
2670 return result;
2673 /*----------------------------------------------------------------
2674 * hfa384x_drvr_txframe
2676 * Takes a frame from prism2sta and queues it for transmission.
2678 * Arguments:
2679 * hw device structure
2680 * skb packet buffer struct. Contains an 802.11
2681 * data frame.
2682 * p80211_hdr points to the 802.11 header for the packet.
2683 * Returns:
2684 * 0 Success and more buffs available
2685 * 1 Success but no more buffs
2686 * 2 Allocation failure
2687 * 4 Buffer full or queue busy
2689 * Side effects:
2691 * Call context:
2692 * interrupt
2693 ----------------------------------------------------------------*/
2694 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2695 union p80211_hdr *p80211_hdr,
2696 struct p80211_metawep *p80211_wep)
2698 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2699 int result;
2700 int ret;
2701 char *ptr;
2703 if (hw->tx_urb.status == -EINPROGRESS) {
2704 printk(KERN_WARNING "TX URB already in use\n");
2705 result = 3;
2706 goto exit;
2709 /* Build Tx frame structure */
2710 /* Set up the control field */
2711 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2713 /* Setup the usb type field */
2714 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2716 /* Set up the sw_support field to identify this frame */
2717 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2719 /* Tx complete and Tx exception disable per dleach. Might be causing
2720 * buf depletion
2722 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2723 #if defined(DOBOTH)
2724 hw->txbuff.txfrm.desc.tx_control =
2725 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2726 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2727 #elif defined(DOEXC)
2728 hw->txbuff.txfrm.desc.tx_control =
2729 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2730 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2731 #else
2732 hw->txbuff.txfrm.desc.tx_control =
2733 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2734 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2735 #endif
2736 hw->txbuff.txfrm.desc.tx_control =
2737 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2739 /* copy the header over to the txdesc */
2740 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2741 sizeof(union p80211_hdr));
2743 /* if we're using host WEP, increase size by IV+ICV */
2744 if (p80211_wep->data) {
2745 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2746 usbpktlen += 8;
2747 } else {
2748 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2751 usbpktlen += skb->len;
2753 /* copy over the WEP IV if we are using host WEP */
2754 ptr = hw->txbuff.txfrm.data;
2755 if (p80211_wep->data) {
2756 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2757 ptr += sizeof(p80211_wep->iv);
2758 memcpy(ptr, p80211_wep->data, skb->len);
2759 } else {
2760 memcpy(ptr, skb->data, skb->len);
2762 /* copy over the packet data */
2763 ptr += skb->len;
2765 /* copy over the WEP ICV if we are using host WEP */
2766 if (p80211_wep->data)
2767 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2769 /* Send the USB packet */
2770 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2771 hw->endp_out,
2772 &(hw->txbuff), ROUNDUP64(usbpktlen),
2773 hfa384x_usbout_callback, hw->wlandev);
2774 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2776 result = 1;
2777 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2778 if (ret != 0) {
2779 printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2780 result = 3;
2783 exit:
2784 return result;
2787 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2789 hfa384x_t *hw = wlandev->priv;
2790 unsigned long flags;
2792 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2794 if (!hw->wlandev->hwremoved) {
2795 int sched;
2797 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2798 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2799 if (sched)
2800 schedule_work(&hw->usb_work);
2803 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2806 /*----------------------------------------------------------------
2807 * hfa384x_usbctlx_reaper_task
2809 * Tasklet to delete dead CTLX objects
2811 * Arguments:
2812 * data ptr to a hfa384x_t
2814 * Returns:
2816 * Call context:
2817 * Interrupt
2818 ----------------------------------------------------------------*/
2819 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2821 hfa384x_t *hw = (hfa384x_t *) data;
2822 struct list_head *entry;
2823 struct list_head *temp;
2824 unsigned long flags;
2826 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2828 /* This list is guaranteed to be empty if someone
2829 * has unplugged the adapter.
2831 list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2832 hfa384x_usbctlx_t *ctlx;
2834 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2835 list_del(&ctlx->list);
2836 kfree(ctlx);
2839 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2843 /*----------------------------------------------------------------
2844 * hfa384x_usbctlx_completion_task
2846 * Tasklet to call completion handlers for returned CTLXs
2848 * Arguments:
2849 * data ptr to hfa384x_t
2851 * Returns:
2852 * Nothing
2854 * Call context:
2855 * Interrupt
2856 ----------------------------------------------------------------*/
2857 static void hfa384x_usbctlx_completion_task(unsigned long data)
2859 hfa384x_t *hw = (hfa384x_t *) data;
2860 struct list_head *entry;
2861 struct list_head *temp;
2862 unsigned long flags;
2864 int reap = 0;
2866 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2868 /* This list is guaranteed to be empty if someone
2869 * has unplugged the adapter ...
2871 list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2872 hfa384x_usbctlx_t *ctlx;
2874 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2876 /* Call the completion function that this
2877 * command was assigned, assuming it has one.
2879 if (ctlx->cmdcb != NULL) {
2880 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2881 ctlx->cmdcb(hw, ctlx);
2882 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2884 /* Make sure we don't try and complete
2885 * this CTLX more than once!
2887 ctlx->cmdcb = NULL;
2889 /* Did someone yank the adapter out
2890 * while our list was (briefly) unlocked?
2892 if (hw->wlandev->hwremoved) {
2893 reap = 0;
2894 break;
2899 * "Reapable" CTLXs are ones which don't have any
2900 * threads waiting for them to die. Hence they must
2901 * be delivered to The Reaper!
2903 if (ctlx->reapable) {
2904 /* Move the CTLX off the "completing" list (hopefully)
2905 * on to the "reapable" list where the reaper task
2906 * can find it. And "reapable" means that this CTLX
2907 * isn't sitting on a wait-queue somewhere.
2909 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2910 reap = 1;
2913 complete(&ctlx->done);
2915 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2917 if (reap)
2918 tasklet_schedule(&hw->reaper_bh);
2921 /*----------------------------------------------------------------
2922 * unlocked_usbctlx_cancel_async
2924 * Mark the CTLX dead asynchronously, and ensure that the
2925 * next command on the queue is run afterwards.
2927 * Arguments:
2928 * hw ptr to the hfa384x_t structure
2929 * ctlx ptr to a CTLX structure
2931 * Returns:
2932 * 0 the CTLX's URB is inactive
2933 * -EINPROGRESS the URB is currently being unlinked
2935 * Call context:
2936 * Either process or interrupt, but presumably interrupt
2937 ----------------------------------------------------------------*/
2938 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2939 hfa384x_usbctlx_t *ctlx)
2941 int ret;
2944 * Try to delete the URB containing our request packet.
2945 * If we succeed, then its completion handler will be
2946 * called with a status of -ECONNRESET.
2948 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2949 ret = usb_unlink_urb(&hw->ctlx_urb);
2951 if (ret != -EINPROGRESS) {
2953 * The OUT URB had either already completed
2954 * or was still in the pending queue, so the
2955 * URB's completion function will not be called.
2956 * We will have to complete the CTLX ourselves.
2958 ctlx->state = CTLX_REQ_FAILED;
2959 unlocked_usbctlx_complete(hw, ctlx);
2960 ret = 0;
2963 return ret;
2966 /*----------------------------------------------------------------
2967 * unlocked_usbctlx_complete
2969 * A CTLX has completed. It may have been successful, it may not
2970 * have been. At this point, the CTLX should be quiescent. The URBs
2971 * aren't active and the timers should have been stopped.
2973 * The CTLX is migrated to the "completing" queue, and the completing
2974 * tasklet is scheduled.
2976 * Arguments:
2977 * hw ptr to a hfa384x_t structure
2978 * ctlx ptr to a ctlx structure
2980 * Returns:
2981 * nothing
2983 * Side effects:
2985 * Call context:
2986 * Either, assume interrupt
2987 ----------------------------------------------------------------*/
2988 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2990 /* Timers have been stopped, and ctlx should be in
2991 * a terminal state. Retire it from the "active"
2992 * queue.
2994 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2995 tasklet_schedule(&hw->completion_bh);
2997 switch (ctlx->state) {
2998 case CTLX_COMPLETE:
2999 case CTLX_REQ_FAILED:
3000 /* This are the correct terminating states. */
3001 break;
3003 default:
3004 printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3005 le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3006 break;
3007 } /* switch */
3010 /*----------------------------------------------------------------
3011 * hfa384x_usbctlxq_run
3013 * Checks to see if the head item is running. If not, starts it.
3015 * Arguments:
3016 * hw ptr to hfa384x_t
3018 * Returns:
3019 * nothing
3021 * Side effects:
3023 * Call context:
3024 * any
3025 ----------------------------------------------------------------*/
3026 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3028 unsigned long flags;
3030 /* acquire lock */
3031 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3033 /* Only one active CTLX at any one time, because there's no
3034 * other (reliable) way to match the response URB to the
3035 * correct CTLX.
3037 * Don't touch any of these CTLXs if the hardware
3038 * has been removed or the USB subsystem is stalled.
3040 if (!list_empty(&hw->ctlxq.active) ||
3041 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3042 goto unlock;
3044 while (!list_empty(&hw->ctlxq.pending)) {
3045 hfa384x_usbctlx_t *head;
3046 int result;
3048 /* This is the first pending command */
3049 head = list_entry(hw->ctlxq.pending.next,
3050 hfa384x_usbctlx_t, list);
3052 /* We need to split this off to avoid a race condition */
3053 list_move_tail(&head->list, &hw->ctlxq.active);
3055 /* Fill the out packet */
3056 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3057 hw->endp_out,
3058 &(head->outbuf), ROUNDUP64(head->outbufsize),
3059 hfa384x_ctlxout_callback, hw);
3060 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3062 /* Now submit the URB and update the CTLX's state */
3063 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3064 if (result == 0) {
3065 /* This CTLX is now running on the active queue */
3066 head->state = CTLX_REQ_SUBMITTED;
3068 /* Start the OUT wait timer */
3069 hw->req_timer_done = 0;
3070 hw->reqtimer.expires = jiffies + HZ;
3071 add_timer(&hw->reqtimer);
3073 /* Start the IN wait timer */
3074 hw->resp_timer_done = 0;
3075 hw->resptimer.expires = jiffies + 2 * HZ;
3076 add_timer(&hw->resptimer);
3078 break;
3081 if (result == -EPIPE) {
3082 /* The OUT pipe needs resetting, so put
3083 * this CTLX back in the "pending" queue
3084 * and schedule a reset ...
3086 printk(KERN_WARNING
3087 "%s tx pipe stalled: requesting reset\n",
3088 hw->wlandev->netdev->name);
3089 list_move(&head->list, &hw->ctlxq.pending);
3090 set_bit(WORK_TX_HALT, &hw->usb_flags);
3091 schedule_work(&hw->usb_work);
3092 break;
3095 if (result == -ESHUTDOWN) {
3096 printk(KERN_WARNING "%s urb shutdown!\n",
3097 hw->wlandev->netdev->name);
3098 break;
3101 printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3102 le16_to_cpu(head->outbuf.type), result);
3103 unlocked_usbctlx_complete(hw, head);
3104 } /* while */
3106 unlock:
3107 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3110 /*----------------------------------------------------------------
3111 * hfa384x_usbin_callback
3113 * Callback for URBs on the BULKIN endpoint.
3115 * Arguments:
3116 * urb ptr to the completed urb
3118 * Returns:
3119 * nothing
3121 * Side effects:
3123 * Call context:
3124 * interrupt
3125 ----------------------------------------------------------------*/
3126 static void hfa384x_usbin_callback(struct urb *urb)
3128 wlandevice_t *wlandev = urb->context;
3129 hfa384x_t *hw;
3130 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3131 struct sk_buff *skb = NULL;
3132 int result;
3133 int urb_status;
3134 u16 type;
3136 enum USBIN_ACTION {
3137 HANDLE,
3138 RESUBMIT,
3139 ABORT
3140 } action;
3142 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3143 goto exit;
3145 hw = wlandev->priv;
3146 if (!hw)
3147 goto exit;
3149 skb = hw->rx_urb_skb;
3150 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3152 hw->rx_urb_skb = NULL;
3154 /* Check for error conditions within the URB */
3155 switch (urb->status) {
3156 case 0:
3157 action = HANDLE;
3159 /* Check for short packet */
3160 if (urb->actual_length == 0) {
3161 ++(wlandev->linux_stats.rx_errors);
3162 ++(wlandev->linux_stats.rx_length_errors);
3163 action = RESUBMIT;
3165 break;
3167 case -EPIPE:
3168 printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3169 wlandev->netdev->name);
3170 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3171 schedule_work(&hw->usb_work);
3172 ++(wlandev->linux_stats.rx_errors);
3173 action = ABORT;
3174 break;
3176 case -EILSEQ:
3177 case -ETIMEDOUT:
3178 case -EPROTO:
3179 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3180 !timer_pending(&hw->throttle)) {
3181 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3183 ++(wlandev->linux_stats.rx_errors);
3184 action = ABORT;
3185 break;
3187 case -EOVERFLOW:
3188 ++(wlandev->linux_stats.rx_over_errors);
3189 action = RESUBMIT;
3190 break;
3192 case -ENODEV:
3193 case -ESHUTDOWN:
3194 pr_debug("status=%d, device removed.\n", urb->status);
3195 action = ABORT;
3196 break;
3198 case -ENOENT:
3199 case -ECONNRESET:
3200 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3201 action = ABORT;
3202 break;
3204 default:
3205 pr_debug("urb status=%d, transfer flags=0x%x\n",
3206 urb->status, urb->transfer_flags);
3207 ++(wlandev->linux_stats.rx_errors);
3208 action = RESUBMIT;
3209 break;
3212 urb_status = urb->status;
3214 if (action != ABORT) {
3215 /* Repost the RX URB */
3216 result = submit_rx_urb(hw, GFP_ATOMIC);
3218 if (result != 0) {
3219 printk(KERN_ERR
3220 "Fatal, failed to resubmit rx_urb. error=%d\n",
3221 result);
3225 /* Handle any USB-IN packet */
3226 /* Note: the check of the sw_support field, the type field doesn't
3227 * have bit 12 set like the docs suggest.
3229 type = le16_to_cpu(usbin->type);
3230 if (HFA384x_USB_ISRXFRM(type)) {
3231 if (action == HANDLE) {
3232 if (usbin->txfrm.desc.sw_support == 0x0123) {
3233 hfa384x_usbin_txcompl(wlandev, usbin);
3234 } else {
3235 skb_put(skb, sizeof(*usbin));
3236 hfa384x_usbin_rx(wlandev, skb);
3237 skb = NULL;
3240 goto exit;
3242 if (HFA384x_USB_ISTXFRM(type)) {
3243 if (action == HANDLE)
3244 hfa384x_usbin_txcompl(wlandev, usbin);
3245 goto exit;
3247 switch (type) {
3248 case HFA384x_USB_INFOFRM:
3249 if (action == ABORT)
3250 goto exit;
3251 if (action == HANDLE)
3252 hfa384x_usbin_info(wlandev, usbin);
3253 break;
3255 case HFA384x_USB_CMDRESP:
3256 case HFA384x_USB_WRIDRESP:
3257 case HFA384x_USB_RRIDRESP:
3258 case HFA384x_USB_WMEMRESP:
3259 case HFA384x_USB_RMEMRESP:
3260 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3261 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3262 break;
3264 case HFA384x_USB_BUFAVAIL:
3265 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3266 usbin->bufavail.frmlen);
3267 break;
3269 case HFA384x_USB_ERROR:
3270 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3271 usbin->usberror.errortype);
3272 break;
3274 default:
3275 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3276 usbin->type, urb_status);
3277 break;
3278 } /* switch */
3280 exit:
3282 if (skb)
3283 dev_kfree_skb(skb);
3286 /*----------------------------------------------------------------
3287 * hfa384x_usbin_ctlx
3289 * We've received a URB containing a Prism2 "response" message.
3290 * This message needs to be matched up with a CTLX on the active
3291 * queue and our state updated accordingly.
3293 * Arguments:
3294 * hw ptr to hfa384x_t
3295 * usbin ptr to USB IN packet
3296 * urb_status status of this Bulk-In URB
3298 * Returns:
3299 * nothing
3301 * Side effects:
3303 * Call context:
3304 * interrupt
3305 ----------------------------------------------------------------*/
3306 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3307 int urb_status)
3309 hfa384x_usbctlx_t *ctlx;
3310 int run_queue = 0;
3311 unsigned long flags;
3313 retry:
3314 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3316 /* There can be only one CTLX on the active queue
3317 * at any one time, and this is the CTLX that the
3318 * timers are waiting for.
3320 if (list_empty(&hw->ctlxq.active))
3321 goto unlock;
3323 /* Remove the "response timeout". It's possible that
3324 * we are already too late, and that the timeout is
3325 * already running. And that's just too bad for us,
3326 * because we could lose our CTLX from the active
3327 * queue here ...
3329 if (del_timer(&hw->resptimer) == 0) {
3330 if (hw->resp_timer_done == 0) {
3331 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3332 goto retry;
3334 } else {
3335 hw->resp_timer_done = 1;
3338 ctlx = get_active_ctlx(hw);
3340 if (urb_status != 0) {
3342 * Bad CTLX, so get rid of it. But we only
3343 * remove it from the active queue if we're no
3344 * longer expecting the OUT URB to complete.
3346 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3347 run_queue = 1;
3348 } else {
3349 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3352 * Check that our message is what we're expecting ...
3354 if (ctlx->outbuf.type != intype) {
3355 printk(KERN_WARNING
3356 "Expected IN[%d], received IN[%d] - ignored.\n",
3357 le16_to_cpu(ctlx->outbuf.type),
3358 le16_to_cpu(intype));
3359 goto unlock;
3362 /* This URB has succeeded, so grab the data ... */
3363 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3365 switch (ctlx->state) {
3366 case CTLX_REQ_SUBMITTED:
3368 * We have received our response URB before
3369 * our request has been acknowledged. Odd,
3370 * but our OUT URB is still alive...
3372 pr_debug("Causality violation: please reboot Universe\n");
3373 ctlx->state = CTLX_RESP_COMPLETE;
3374 break;
3376 case CTLX_REQ_COMPLETE:
3378 * This is the usual path: our request
3379 * has already been acknowledged, and
3380 * now we have received the reply too.
3382 ctlx->state = CTLX_COMPLETE;
3383 unlocked_usbctlx_complete(hw, ctlx);
3384 run_queue = 1;
3385 break;
3387 default:
3389 * Throw this CTLX away ...
3391 printk(KERN_ERR
3392 "Matched IN URB, CTLX[%d] in invalid state(%s)."
3393 " Discarded.\n",
3394 le16_to_cpu(ctlx->outbuf.type),
3395 ctlxstr(ctlx->state));
3396 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3397 run_queue = 1;
3398 break;
3399 } /* switch */
3402 unlock:
3403 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3405 if (run_queue)
3406 hfa384x_usbctlxq_run(hw);
3409 /*----------------------------------------------------------------
3410 * hfa384x_usbin_txcompl
3412 * At this point we have the results of a previous transmit.
3414 * Arguments:
3415 * wlandev wlan device
3416 * usbin ptr to the usb transfer buffer
3418 * Returns:
3419 * nothing
3421 * Side effects:
3423 * Call context:
3424 * interrupt
3425 ----------------------------------------------------------------*/
3426 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3427 hfa384x_usbin_t *usbin)
3429 u16 status;
3431 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3433 /* Was there an error? */
3434 if (HFA384x_TXSTATUS_ISERROR(status))
3435 prism2sta_ev_txexc(wlandev, status);
3436 else
3437 prism2sta_ev_tx(wlandev, status);
3440 /*----------------------------------------------------------------
3441 * hfa384x_usbin_rx
3443 * At this point we have a successful received a rx frame packet.
3445 * Arguments:
3446 * wlandev wlan device
3447 * usbin ptr to the usb transfer buffer
3449 * Returns:
3450 * nothing
3452 * Side effects:
3454 * Call context:
3455 * interrupt
3456 ----------------------------------------------------------------*/
3457 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3459 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3460 hfa384x_t *hw = wlandev->priv;
3461 int hdrlen;
3462 struct p80211_rxmeta *rxmeta;
3463 u16 data_len;
3464 u16 fc;
3466 /* Byte order convert once up front. */
3467 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3468 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3470 /* Now handle frame based on port# */
3471 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3472 case 0:
3473 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3475 /* If exclude and we receive an unencrypted, drop it */
3476 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3477 !WLAN_GET_FC_ISWEP(fc)) {
3478 goto done;
3481 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3483 /* How much header data do we have? */
3484 hdrlen = p80211_headerlen(fc);
3486 /* Pull off the descriptor */
3487 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3489 /* Now shunt the header block up against the data block
3490 * with an "overlapping" copy
3492 memmove(skb_push(skb, hdrlen),
3493 &usbin->rxfrm.desc.frame_control, hdrlen);
3495 skb->dev = wlandev->netdev;
3496 skb->dev->last_rx = jiffies;
3498 /* And set the frame length properly */
3499 skb_trim(skb, data_len + hdrlen);
3501 /* The prism2 series does not return the CRC */
3502 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3504 skb_reset_mac_header(skb);
3506 /* Attach the rxmeta, set some stuff */
3507 p80211skb_rxmeta_attach(wlandev, skb);
3508 rxmeta = P80211SKB_RXMETA(skb);
3509 rxmeta->mactime = usbin->rxfrm.desc.time;
3510 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3511 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3512 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3514 prism2sta_ev_rx(wlandev, skb);
3516 break;
3518 case 7:
3519 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3520 /* Copy to wlansnif skb */
3521 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3522 dev_kfree_skb(skb);
3523 } else {
3524 pr_debug("Received monitor frame: FCSerr set\n");
3526 break;
3528 default:
3529 printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3530 HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3531 goto done;
3532 break;
3535 done:
3536 return;
3539 /*----------------------------------------------------------------
3540 * hfa384x_int_rxmonitor
3542 * Helper function for int_rx. Handles monitor frames.
3543 * Note that this function allocates space for the FCS and sets it
3544 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3545 * higher layers expect it. 0xffffffff is used as a flag to indicate
3546 * the FCS is bogus.
3548 * Arguments:
3549 * wlandev wlan device structure
3550 * rxfrm rx descriptor read from card in int_rx
3552 * Returns:
3553 * nothing
3555 * Side effects:
3556 * Allocates an skb and passes it up via the PF_PACKET interface.
3557 * Call context:
3558 * interrupt
3559 ----------------------------------------------------------------*/
3560 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3561 hfa384x_usb_rxfrm_t *rxfrm)
3563 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3564 unsigned int hdrlen = 0;
3565 unsigned int datalen = 0;
3566 unsigned int skblen = 0;
3567 u8 *datap;
3568 u16 fc;
3569 struct sk_buff *skb;
3570 hfa384x_t *hw = wlandev->priv;
3572 /* Remember the status, time, and data_len fields are in host order */
3573 /* Figure out how big the frame is */
3574 fc = le16_to_cpu(rxdesc->frame_control);
3575 hdrlen = p80211_headerlen(fc);
3576 datalen = le16_to_cpu(rxdesc->data_len);
3578 /* Allocate an ind message+framesize skb */
3579 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3581 /* sanity check the length */
3582 if (skblen >
3583 (sizeof(struct p80211_caphdr) +
3584 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3585 pr_debug("overlen frm: len=%zd\n",
3586 skblen - sizeof(struct p80211_caphdr));
3589 skb = dev_alloc_skb(skblen);
3590 if (skb == NULL) {
3591 printk(KERN_ERR
3592 "alloc_skb failed trying to allocate %d bytes\n",
3593 skblen);
3594 return;
3597 /* only prepend the prism header if in the right mode */
3598 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3599 (hw->sniffhdr != 0)) {
3600 struct p80211_caphdr *caphdr;
3601 /* The NEW header format! */
3602 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3603 caphdr = (struct p80211_caphdr *) datap;
3605 caphdr->version = htonl(P80211CAPTURE_VERSION);
3606 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3607 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3608 caphdr->hosttime = __cpu_to_be64(jiffies);
3609 caphdr->phytype = htonl(4); /* dss_dot11_b */
3610 caphdr->channel = htonl(hw->sniff_channel);
3611 caphdr->datarate = htonl(rxdesc->rate);
3612 caphdr->antenna = htonl(0); /* unknown */
3613 caphdr->priority = htonl(0); /* unknown */
3614 caphdr->ssi_type = htonl(3); /* rssi_raw */
3615 caphdr->ssi_signal = htonl(rxdesc->signal);
3616 caphdr->ssi_noise = htonl(rxdesc->silence);
3617 caphdr->preamble = htonl(0); /* unknown */
3618 caphdr->encoding = htonl(1); /* cck */
3621 /* Copy the 802.11 header to the skb
3622 (ctl frames may be less than a full header) */
3623 datap = skb_put(skb, hdrlen);
3624 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3626 /* If any, copy the data from the card to the skb */
3627 if (datalen > 0) {
3628 datap = skb_put(skb, datalen);
3629 memcpy(datap, rxfrm->data, datalen);
3631 /* check for unencrypted stuff if WEP bit set. */
3632 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3633 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3634 /* clear wep; it's the 802.2 header! */
3635 *(datap - hdrlen + 1) &= 0xbf;
3638 if (hw->sniff_fcs) {
3639 /* Set the FCS */
3640 datap = skb_put(skb, WLAN_CRC_LEN);
3641 memset(datap, 0xff, WLAN_CRC_LEN);
3644 /* pass it back up */
3645 prism2sta_ev_rx(wlandev, skb);
3647 return;
3650 /*----------------------------------------------------------------
3651 * hfa384x_usbin_info
3653 * At this point we have a successful received a Prism2 info frame.
3655 * Arguments:
3656 * wlandev wlan device
3657 * usbin ptr to the usb transfer buffer
3659 * Returns:
3660 * nothing
3662 * Side effects:
3664 * Call context:
3665 * interrupt
3666 ----------------------------------------------------------------*/
3667 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3669 usbin->infofrm.info.framelen =
3670 le16_to_cpu(usbin->infofrm.info.framelen);
3671 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3674 /*----------------------------------------------------------------
3675 * hfa384x_usbout_callback
3677 * Callback for URBs on the BULKOUT endpoint.
3679 * Arguments:
3680 * urb ptr to the completed urb
3682 * Returns:
3683 * nothing
3685 * Side effects:
3687 * Call context:
3688 * interrupt
3689 ----------------------------------------------------------------*/
3690 static void hfa384x_usbout_callback(struct urb *urb)
3692 wlandevice_t *wlandev = urb->context;
3693 hfa384x_usbout_t *usbout = urb->transfer_buffer;
3695 #ifdef DEBUG_USB
3696 dbprint_urb(urb);
3697 #endif
3699 if (wlandev && wlandev->netdev) {
3701 switch (urb->status) {
3702 case 0:
3703 hfa384x_usbout_tx(wlandev, usbout);
3704 break;
3706 case -EPIPE:
3708 hfa384x_t *hw = wlandev->priv;
3709 printk(KERN_WARNING
3710 "%s tx pipe stalled: requesting reset\n",
3711 wlandev->netdev->name);
3712 if (!test_and_set_bit
3713 (WORK_TX_HALT, &hw->usb_flags))
3714 schedule_work(&hw->usb_work);
3715 ++(wlandev->linux_stats.tx_errors);
3716 break;
3719 case -EPROTO:
3720 case -ETIMEDOUT:
3721 case -EILSEQ:
3723 hfa384x_t *hw = wlandev->priv;
3725 if (!test_and_set_bit
3726 (THROTTLE_TX, &hw->usb_flags)
3727 && !timer_pending(&hw->throttle)) {
3728 mod_timer(&hw->throttle,
3729 jiffies + THROTTLE_JIFFIES);
3731 ++(wlandev->linux_stats.tx_errors);
3732 netif_stop_queue(wlandev->netdev);
3733 break;
3736 case -ENOENT:
3737 case -ESHUTDOWN:
3738 /* Ignorable errors */
3739 break;
3741 default:
3742 printk(KERN_INFO "unknown urb->status=%d\n",
3743 urb->status);
3744 ++(wlandev->linux_stats.tx_errors);
3745 break;
3746 } /* switch */
3750 /*----------------------------------------------------------------
3751 * hfa384x_ctlxout_callback
3753 * Callback for control data on the BULKOUT endpoint.
3755 * Arguments:
3756 * urb ptr to the completed urb
3758 * Returns:
3759 * nothing
3761 * Side effects:
3763 * Call context:
3764 * interrupt
3765 ----------------------------------------------------------------*/
3766 static void hfa384x_ctlxout_callback(struct urb *urb)
3768 hfa384x_t *hw = urb->context;
3769 int delete_resptimer = 0;
3770 int timer_ok = 1;
3771 int run_queue = 0;
3772 hfa384x_usbctlx_t *ctlx;
3773 unsigned long flags;
3775 pr_debug("urb->status=%d\n", urb->status);
3776 #ifdef DEBUG_USB
3777 dbprint_urb(urb);
3778 #endif
3779 if ((urb->status == -ESHUTDOWN) ||
3780 (urb->status == -ENODEV) || (hw == NULL))
3781 goto done;
3783 retry:
3784 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3787 * Only one CTLX at a time on the "active" list, and
3788 * none at all if we are unplugged. However, we can
3789 * rely on the disconnect function to clean everything
3790 * up if someone unplugged the adapter.
3792 if (list_empty(&hw->ctlxq.active)) {
3793 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3794 goto done;
3798 * Having something on the "active" queue means
3799 * that we have timers to worry about ...
3801 if (del_timer(&hw->reqtimer) == 0) {
3802 if (hw->req_timer_done == 0) {
3804 * This timer was actually running while we
3805 * were trying to delete it. Let it terminate
3806 * gracefully instead.
3808 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3809 goto retry;
3811 } else {
3812 hw->req_timer_done = 1;
3815 ctlx = get_active_ctlx(hw);
3817 if (urb->status == 0) {
3818 /* Request portion of a CTLX is successful */
3819 switch (ctlx->state) {
3820 case CTLX_REQ_SUBMITTED:
3821 /* This OUT-ACK received before IN */
3822 ctlx->state = CTLX_REQ_COMPLETE;
3823 break;
3825 case CTLX_RESP_COMPLETE:
3826 /* IN already received before this OUT-ACK,
3827 * so this command must now be complete.
3829 ctlx->state = CTLX_COMPLETE;
3830 unlocked_usbctlx_complete(hw, ctlx);
3831 run_queue = 1;
3832 break;
3834 default:
3835 /* This is NOT a valid CTLX "success" state! */
3836 printk(KERN_ERR
3837 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3838 le16_to_cpu(ctlx->outbuf.type),
3839 ctlxstr(ctlx->state), urb->status);
3840 break;
3841 } /* switch */
3842 } else {
3843 /* If the pipe has stalled then we need to reset it */
3844 if ((urb->status == -EPIPE) &&
3845 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3846 printk(KERN_WARNING
3847 "%s tx pipe stalled: requesting reset\n",
3848 hw->wlandev->netdev->name);
3849 schedule_work(&hw->usb_work);
3852 /* If someone cancels the OUT URB then its status
3853 * should be either -ECONNRESET or -ENOENT.
3855 ctlx->state = CTLX_REQ_FAILED;
3856 unlocked_usbctlx_complete(hw, ctlx);
3857 delete_resptimer = 1;
3858 run_queue = 1;
3861 delresp:
3862 if (delete_resptimer) {
3863 timer_ok = del_timer(&hw->resptimer);
3864 if (timer_ok != 0)
3865 hw->resp_timer_done = 1;
3868 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3870 if (!timer_ok && (hw->resp_timer_done == 0)) {
3871 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3872 goto delresp;
3875 if (run_queue)
3876 hfa384x_usbctlxq_run(hw);
3878 done:
3882 /*----------------------------------------------------------------
3883 * hfa384x_usbctlx_reqtimerfn
3885 * Timer response function for CTLX request timeouts. If this
3886 * function is called, it means that the callback for the OUT
3887 * URB containing a Prism2.x XXX_Request was never called.
3889 * Arguments:
3890 * data a ptr to the hfa384x_t
3892 * Returns:
3893 * nothing
3895 * Side effects:
3897 * Call context:
3898 * interrupt
3899 ----------------------------------------------------------------*/
3900 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3902 hfa384x_t *hw = (hfa384x_t *) data;
3903 unsigned long flags;
3905 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3907 hw->req_timer_done = 1;
3909 /* Removing the hardware automatically empties
3910 * the active list ...
3912 if (!list_empty(&hw->ctlxq.active)) {
3914 * We must ensure that our URB is removed from
3915 * the system, if it hasn't already expired.
3917 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3918 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3919 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3921 ctlx->state = CTLX_REQ_FAILED;
3923 /* This URB was active, but has now been
3924 * cancelled. It will now have a status of
3925 * -ECONNRESET in the callback function.
3927 * We are cancelling this CTLX, so we're
3928 * not going to need to wait for a response.
3929 * The URB's callback function will check
3930 * that this timer is truly dead.
3932 if (del_timer(&hw->resptimer) != 0)
3933 hw->resp_timer_done = 1;
3937 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3940 /*----------------------------------------------------------------
3941 * hfa384x_usbctlx_resptimerfn
3943 * Timer response function for CTLX response timeouts. If this
3944 * function is called, it means that the callback for the IN
3945 * URB containing a Prism2.x XXX_Response was never called.
3947 * Arguments:
3948 * data a ptr to the hfa384x_t
3950 * Returns:
3951 * nothing
3953 * Side effects:
3955 * Call context:
3956 * interrupt
3957 ----------------------------------------------------------------*/
3958 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3960 hfa384x_t *hw = (hfa384x_t *) data;
3961 unsigned long flags;
3963 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3965 hw->resp_timer_done = 1;
3967 /* The active list will be empty if the
3968 * adapter has been unplugged ...
3970 if (!list_empty(&hw->ctlxq.active)) {
3971 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3973 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3974 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3975 hfa384x_usbctlxq_run(hw);
3976 goto done;
3980 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3982 done:
3987 /*----------------------------------------------------------------
3988 * hfa384x_usb_throttlefn
3991 * Arguments:
3992 * data ptr to hw
3994 * Returns:
3995 * Nothing
3997 * Side effects:
3999 * Call context:
4000 * Interrupt
4001 ----------------------------------------------------------------*/
4002 static void hfa384x_usb_throttlefn(unsigned long data)
4004 hfa384x_t *hw = (hfa384x_t *) data;
4005 unsigned long flags;
4007 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4010 * We need to check BOTH the RX and the TX throttle controls,
4011 * so we use the bitwise OR instead of the logical OR.
4013 pr_debug("flags=0x%lx\n", hw->usb_flags);
4014 if (!hw->wlandev->hwremoved &&
4015 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4016 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4018 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4019 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4020 )) {
4021 schedule_work(&hw->usb_work);
4024 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4027 /*----------------------------------------------------------------
4028 * hfa384x_usbctlx_submit
4030 * Called from the doxxx functions to submit a CTLX to the queue
4032 * Arguments:
4033 * hw ptr to the hw struct
4034 * ctlx ctlx structure to enqueue
4036 * Returns:
4037 * -ENODEV if the adapter is unplugged
4040 * Side effects:
4042 * Call context:
4043 * process or interrupt
4044 ----------------------------------------------------------------*/
4045 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4047 unsigned long flags;
4048 int ret;
4050 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4052 if (hw->wlandev->hwremoved) {
4053 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4054 ret = -ENODEV;
4055 } else {
4056 ctlx->state = CTLX_PENDING;
4057 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4059 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4060 hfa384x_usbctlxq_run(hw);
4061 ret = 0;
4064 return ret;
4067 /*----------------------------------------------------------------
4068 * hfa384x_usbout_tx
4070 * At this point we have finished a send of a frame. Mark the URB
4071 * as available and call ev_alloc to notify higher layers we're
4072 * ready for more.
4074 * Arguments:
4075 * wlandev wlan device
4076 * usbout ptr to the usb transfer buffer
4078 * Returns:
4079 * nothing
4081 * Side effects:
4083 * Call context:
4084 * interrupt
4085 ----------------------------------------------------------------*/
4086 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4088 prism2sta_ev_alloc(wlandev);
4091 /*----------------------------------------------------------------
4092 * hfa384x_isgood_pdrcore
4094 * Quick check of PDR codes.
4096 * Arguments:
4097 * pdrcode PDR code number (host order)
4099 * Returns:
4100 * zero not good.
4101 * one is good.
4103 * Side effects:
4105 * Call context:
4106 ----------------------------------------------------------------*/
4107 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4109 switch (pdrcode) {
4110 case HFA384x_PDR_END_OF_PDA:
4111 case HFA384x_PDR_PCB_PARTNUM:
4112 case HFA384x_PDR_PDAVER:
4113 case HFA384x_PDR_NIC_SERIAL:
4114 case HFA384x_PDR_MKK_MEASUREMENTS:
4115 case HFA384x_PDR_NIC_RAMSIZE:
4116 case HFA384x_PDR_MFISUPRANGE:
4117 case HFA384x_PDR_CFISUPRANGE:
4118 case HFA384x_PDR_NICID:
4119 case HFA384x_PDR_MAC_ADDRESS:
4120 case HFA384x_PDR_REGDOMAIN:
4121 case HFA384x_PDR_ALLOWED_CHANNEL:
4122 case HFA384x_PDR_DEFAULT_CHANNEL:
4123 case HFA384x_PDR_TEMPTYPE:
4124 case HFA384x_PDR_IFR_SETTING:
4125 case HFA384x_PDR_RFR_SETTING:
4126 case HFA384x_PDR_HFA3861_BASELINE:
4127 case HFA384x_PDR_HFA3861_SHADOW:
4128 case HFA384x_PDR_HFA3861_IFRF:
4129 case HFA384x_PDR_HFA3861_CHCALSP:
4130 case HFA384x_PDR_HFA3861_CHCALI:
4131 case HFA384x_PDR_3842_NIC_CONFIG:
4132 case HFA384x_PDR_USB_ID:
4133 case HFA384x_PDR_PCI_ID:
4134 case HFA384x_PDR_PCI_IFCONF:
4135 case HFA384x_PDR_PCI_PMCONF:
4136 case HFA384x_PDR_RFENRGY:
4137 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4138 case HFA384x_PDR_HFA3861_MANF_TESTI:
4139 /* code is OK */
4140 return 1;
4141 break;
4142 default:
4143 if (pdrcode < 0x1000) {
4144 /* code is OK, but we don't know exactly what it is */
4145 pr_debug("Encountered unknown PDR#=0x%04x, "
4146 "assuming it's ok.\n", pdrcode);
4147 return 1;
4148 } else {
4149 /* bad code */
4150 pr_debug("Encountered unknown PDR#=0x%04x, "
4151 "(>=0x1000), assuming it's bad.\n", pdrcode);
4152 return 0;
4154 break;
4156 return 0; /* avoid compiler warnings */