GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / staging / wlags49_h2 / hcf.c
blob6e19e92d3eddbab55ce176d198737edb1554c34d
1 // vim:tw=110:ts=4:
2 /************************************************************************************************************
4 * FILE : HCF.C
6 * DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $
7 * Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01
8 * Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01
9 * Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01
10 * Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01
11 * Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01
12 * Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01
13 * Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03
14 * Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01
15 * Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01
17 * AUTHOR : Nico Valster
19 * SPECIFICATION: ........
21 * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
22 * Local Support Routines for above procedures
24 * Customizable via HCFCFG.H, which is included by HCF.H
26 *************************************************************************************************************
29 * SOFTWARE LICENSE
31 * This software is provided subject to the following terms and conditions,
32 * which you should read carefully before using the software. Using this
33 * software indicates your acceptance of these terms and conditions. If you do
34 * not agree with these terms and conditions, do not use the software.
36 * COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved
37 * COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved
38 * COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved
39 * All rights reserved.
41 * Redistribution and use in source or binary forms, with or without
42 * modifications, are permitted provided that the following conditions are met:
44 * . Redistributions of source code must retain the above copyright notice, this
45 * list of conditions and the following Disclaimer as comments in the code as
46 * well as in the documentation and/or other materials provided with the
47 * distribution.
49 * . Redistributions in binary form must reproduce the above copyright notice,
50 * this list of conditions and the following Disclaimer in the documentation
51 * and/or other materials provided with the distribution.
53 * . Neither the name of Agere Systems Inc. nor the names of the contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * Disclaimer
59 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
60 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
62 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
63 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
64 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
66 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
67 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
69 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
70 * DAMAGE.
73 ************************************************************************************************************/
76 /************************************************************************************************************
78 ** Implementation Notes
80 * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
81 * An example is: //!rc = HCF_SUCCESS;
82 * if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
83 * programmer it is an intentional omission at the place where someone could consider it most appropriate at
84 * first glance
85 * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
86 * your model and how you define variables which are used at interrupt time
87 * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
88 * e.g. use "(hcf_16)~foo" rather than "~foo"
90 ************************************************************************************************************/
92 #include "hcf.h" // HCF and MSF common include file
93 #include "hcfdef.h" // HCF specific include file
94 #include "mmd.h" // MoreModularDriver common include file
96 #if ! defined offsetof
97 #define offsetof(s,m) ((unsigned int)&(((s *)0)->m))
98 #endif // offsetof
101 /***********************************************************************************************************/
102 /*************************************** PROTOTYPES ******************************************************/
103 /***********************************************************************************************************/
104 HCF_STATIC int cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 );
105 HCF_STATIC int init( IFBP ifbp );
106 HCF_STATIC int put_info( IFBP ifbp, LTVP ltvp );
107 #if (HCF_EXT) & HCF_EXT_MB
108 HCF_STATIC int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp );
109 #endif // HCF_EXT_MB
110 #if (HCF_TYPE) & HCF_TYPE_WPA
111 HCF_STATIC void calc_mic( hcf_32* p, hcf_32 M );
112 void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len );
113 void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len );
114 HCF_STATIC int check_mic( IFBP ifbp );
115 #endif // HCF_TYPE_WPA
117 HCF_STATIC void calibrate( IFBP ifbp );
118 HCF_STATIC int cmd_cmpl( IFBP ifbp );
119 HCF_STATIC hcf_16 get_fid( IFBP ifbp );
120 HCF_STATIC void isr_info( IFBP ifbp );
121 #if HCF_DMA
122 HCF_STATIC DESC_STRCT* get_frame_lst(IFBP ifbp, int tx_rx_flag);
123 #endif // HCF_DMA
124 HCF_STATIC void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); //char*, byte count (usually even)
125 #if HCF_DMA
126 HCF_STATIC void put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag );
127 #endif // HCF_DMA
128 HCF_STATIC void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );
129 HCF_STATIC void put_frag_finalize( IFBP ifbp );
130 HCF_STATIC int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type );
131 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
132 static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp);
133 #endif // HCF_ASSERT_PRINTF
135 HCF_STATIC int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp );
136 #if (HCF_ENCAP) & HCF_ENC
137 HCF_STATIC hcf_8 hcf_encap( wci_bufp type );
138 #endif // HCF_ENCAP
139 HCF_STATIC hcf_8 null_addr[4] = { 0, 0, 0, 0 };
140 #if ! defined IN_PORT_WORD //replace I/O Macros with logging facility
141 extern FILE *log_file;
143 #define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) )
145 static hcf_16 in_port_word( hcf_io port ) {
146 hcf_16 i = (hcf_16)_inpw( port );
147 if ( log_file ) {
148 fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i);
150 return i;
151 } // in_port_word
153 #define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) )
155 static void out_port_word( hcf_io port, hcf_16 value ) {
156 _outpw( port, value );
157 if ( log_file ) {
158 fprintf( log_file, "\nW %2.02x %4.04x", (port)&0xFF, value );
162 void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) {
163 int i = 0;
164 hcf_16 FAR * p;
165 if ( log_file ) {
166 fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
167 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst);
169 while ( n-- ) {
170 p = (hcf_16 FAR *)dst;
171 *p++ = (hcf_16)_inpw( prt );
172 *p = (hcf_16)_inpw( prt );
173 if ( log_file ) {
174 fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *dst);
176 dst++;
178 } // IN_PORT_STRING_32
180 void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems
181 hcf_16 FAR * p = (hcf_16 FAR *)dst; //this needs more elaborate code in non-x86 platforms
182 int i = 0;
183 if ( log_file ) {
184 fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
185 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst );
187 while ( n-- ) {
188 *p =(hcf_16)_inpw( prt);
189 if ( log_file ) {
190 if ( i++ % 0x10 ) {
191 fprintf( log_file, "%04x ", *p);
192 } else {
193 fprintf( log_file, "\n%04x ", *p);
196 p++;
198 } // IN_PORT_STRING_8_16
200 void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) {
201 int i = 0;
202 hcf_16 FAR * p;
203 if ( log_file ) {
204 fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x",
205 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF);
207 while ( n-- ) {
208 p = (hcf_16 FAR *)src;
209 _outpw( prt, *p++ );
210 _outpw( prt, *p );
211 if ( log_file ) {
212 fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *src);
214 src++;
216 } // OUT_PORT_STRING_32
218 void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles byte alignment problems
219 hcf_16 FAR * p = (hcf_16 FAR *)src; //this needs more elaborate code in non-x86 platforms
220 int i = 0;
221 if ( log_file ) {
222 fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt);
224 while ( n-- ) {
225 (void)_outpw( prt, *p);
226 if ( log_file ) {
227 if ( i++ % 0x10 ) {
228 fprintf( log_file, "%04x ", *p);
229 } else {
230 fprintf( log_file, "\n%04x ", *p);
233 p++;
235 } // OUT_PORT_STRING_8_16
237 #endif // IN_PORT_WORD
239 /************************************************************************************************************
240 ******************************* D A T A D E F I N I T I O N S ********************************************
241 ************************************************************************************************************/
243 #if HCF_ASSERT
244 IFBP BASED assert_ifbp = NULL; //to make asserts easily work under MMD and DHF
245 #endif // HCF_ASSERT
247 #if HCF_ENCAP
248 /* SNAP header to be inserted in Ethernet-II frames */
249 HCF_STATIC hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature +
250 0 }; //1 byte protocol identifier
251 #endif // HCF_ENCAP
253 #if (HCF_TYPE) & HCF_TYPE_WPA
254 HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message
255 #endif // HCF_TYPE_WPA
257 #if defined MSF_COMPONENT_ID
258 CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
259 sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1, //length of RID
260 CFG_DRV_IDENTITY, // (0x0826)
261 MSF_COMPONENT_ID,
262 MSF_COMPONENT_VAR,
263 MSF_COMPONENT_MAJOR_VER,
264 MSF_COMPONENT_MINOR_VER
267 CFG_RANGES_STRCT BASED cfg_drv_sup_range = {
268 sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1, //length of RID
269 CFG_DRV_SUP_RANGE, // (0x0827)
271 COMP_ROLE_SUPL,
272 COMP_ID_DUI,
273 {{ DUI_COMPAT_VAR,
274 DUI_COMPAT_BOT,
275 DUI_COMPAT_TOP
279 struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = {
280 sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1, //length of RID
281 CFG_DRV_ACT_RANGES_PRI, // (0x0828)
283 COMP_ROLE_ACT,
284 COMP_ID_PRI,
286 { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7
287 { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7
288 { 3, //var_rec[2] - Variant number
289 CFG_DRV_ACT_RANGES_PRI_3_BOTTOM, // - Bottom Compatibility
290 CFG_DRV_ACT_RANGES_PRI_3_TOP // - Top Compatibility
296 struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = {
297 sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1, //length of RID
298 CFG_DRV_ACT_RANGES_STA, // (0x0829)
300 COMP_ROLE_ACT,
301 COMP_ID_STA,
303 #if defined HCF_STA_VAR_1
304 { 1, //var_rec[1] - Variant number
305 CFG_DRV_ACT_RANGES_STA_1_BOTTOM, // - Bottom Compatibility
306 CFG_DRV_ACT_RANGES_STA_1_TOP // - Top Compatibility
308 #else
309 { 0, 0, 0 },
310 #endif // HCF_STA_VAR_1
311 #if defined HCF_STA_VAR_2
312 { 2, //var_rec[1] - Variant number
313 CFG_DRV_ACT_RANGES_STA_2_BOTTOM, // - Bottom Compatibility
314 CFG_DRV_ACT_RANGES_STA_2_TOP // - Top Compatibility
316 #else
317 { 0, 0, 0 },
318 #endif // HCF_STA_VAR_2
319 // For Native_USB (Not used!)
320 #if defined HCF_STA_VAR_3
321 { 3, //var_rec[1] - Variant number
322 CFG_DRV_ACT_RANGES_STA_3_BOTTOM, // - Bottom Compatibility
323 CFG_DRV_ACT_RANGES_STA_3_TOP // - Top Compatibility
325 #else
326 { 0, 0, 0 },
327 #endif // HCF_STA_VAR_3
328 // Warp
329 #if defined HCF_STA_VAR_4
330 { 4, //var_rec[1] - Variant number
331 CFG_DRV_ACT_RANGES_STA_4_BOTTOM, // - Bottom Compatibility
332 CFG_DRV_ACT_RANGES_STA_4_TOP // - Top Compatibility
334 #else
335 { 0, 0, 0 }
336 #endif // HCF_STA_VAR_4
341 struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = {
342 sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1, //length of RID
343 CFG_DRV_ACT_RANGES_HSI, // (0x082A)
344 COMP_ROLE_ACT,
345 COMP_ID_HSI,
347 #if defined HCF_HSI_VAR_0 // Controlled deployment
348 { 0, // var_rec[1] - Variant number
349 CFG_DRV_ACT_RANGES_HSI_0_BOTTOM, // - Bottom Compatibility
350 CFG_DRV_ACT_RANGES_HSI_0_TOP // - Top Compatibility
352 #else
353 { 0, 0, 0 },
354 #endif // HCF_HSI_VAR_0
355 { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7
356 { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7
357 { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7
358 #if defined HCF_HSI_VAR_4 // Hermes-II all types
359 { 4, // var_rec[1] - Variant number
360 CFG_DRV_ACT_RANGES_HSI_4_BOTTOM, // - Bottom Compatibility
361 CFG_DRV_ACT_RANGES_HSI_4_TOP // - Top Compatibility
363 #else
364 { 0, 0, 0 },
365 #endif // HCF_HSI_VAR_4
366 #if defined HCF_HSI_VAR_5 // WARP Hermes-2.5
367 { 5, // var_rec[1] - Variant number
368 CFG_DRV_ACT_RANGES_HSI_5_BOTTOM, // - Bottom Compatibility
369 CFG_DRV_ACT_RANGES_HSI_5_TOP // - Top Compatibility
371 #else
372 { 0, 0, 0 }
373 #endif // HCF_HSI_VAR_5
378 CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = {
379 sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1, //length of RID
380 CFG_DRV_ACT_RANGES_APF, // (0x082B)
382 COMP_ROLE_ACT,
383 COMP_ID_APF,
385 #if defined HCF_APF_VAR_1 //(Fake) Hermes-I
386 { 1, //var_rec[1] - Variant number
387 CFG_DRV_ACT_RANGES_APF_1_BOTTOM, // - Bottom Compatibility
388 CFG_DRV_ACT_RANGES_APF_1_TOP // - Top Compatibility
390 #else
391 { 0, 0, 0 },
392 #endif // HCF_APF_VAR_1
393 #if defined HCF_APF_VAR_2 //Hermes-II
394 { 2, // var_rec[1] - Variant number
395 CFG_DRV_ACT_RANGES_APF_2_BOTTOM, // - Bottom Compatibility
396 CFG_DRV_ACT_RANGES_APF_2_TOP // - Top Compatibility
398 #else
399 { 0, 0, 0 },
400 #endif // HCF_APF_VAR_2
401 #if defined HCF_APF_VAR_3 // Native_USB
402 { 3, // var_rec[1] - Variant number
403 CFG_DRV_ACT_RANGES_APF_3_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
404 CFG_DRV_ACT_RANGES_APF_3_TOP // - Top Compatibility
406 #else
407 { 0, 0, 0 },
408 #endif // HCF_APF_VAR_3
409 #if defined HCF_APF_VAR_4 // WARP Hermes 2.5
410 { 4, // var_rec[1] - Variant number
411 CFG_DRV_ACT_RANGES_APF_4_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
412 CFG_DRV_ACT_RANGES_APF_4_TOP // - Top Compatibility
414 #else
415 { 0, 0, 0 }
416 #endif // HCF_APF_VAR_4
419 #define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" )
421 static struct /*CFG_HCF_OPT_STRCT*/ {
422 hcf_16 len; //length of cfg_hcf_opt struct
423 hcf_16 typ; //type 0x082C
424 hcf_16 v0; //offset HCF_VERSION
425 hcf_16 v1; // MSF_COMPONENT_ID
426 hcf_16 v2; // HCF_ALIGN
427 hcf_16 v3; // HCF_ASSERT
428 hcf_16 v4; // HCF_BIG_ENDIAN
429 hcf_16 v5; // /* HCF_DLV | HCF_DLNV */
430 hcf_16 v6; // HCF_DMA
431 hcf_16 v7; // HCF_ENCAP
432 hcf_16 v8; // HCF_EXT
433 hcf_16 v9; // HCF_INT_ON
434 hcf_16 v10; // HCF_IO
435 hcf_16 v11; // HCF_LEGACY
436 hcf_16 v12; // HCF_MAX_LTV
437 hcf_16 v13; // HCF_PROT_TIME
438 hcf_16 v14; // HCF_SLEEP
439 hcf_16 v15; // HCF_TALLIES
440 hcf_16 v16; // HCF_TYPE
441 hcf_16 v17; // HCF_NIC_TAL_CNT
442 hcf_16 v18; // HCF_HCF_TAL_CNT
443 hcf_16 v19; // offset tallies
444 TCHAR val[sizeof(HCF_VERSION)];
445 } BASED cfg_hcf_opt = {
446 sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1,
447 CFG_HCF_OPT, // (0x082C)
448 ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16),
449 #if defined MSF_COMPONENT_ID
450 MSF_COMPONENT_ID,
451 #else
453 #endif // MSF_COMPONENT_ID
454 HCF_ALIGN,
455 HCF_ASSERT,
456 HCF_BIG_ENDIAN,
457 0, // /* HCF_DLV | HCF_DLNV*/,
458 HCF_DMA,
459 HCF_ENCAP,
460 HCF_EXT,
461 HCF_INT_ON,
462 HCF_IO,
463 HCF_LEGACY,
464 HCF_MAX_LTV,
465 HCF_PROT_TIME,
466 HCF_SLEEP,
467 HCF_TALLIES,
468 HCF_TYPE,
469 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
470 HCF_NIC_TAL_CNT,
471 HCF_HCF_TAL_CNT,
472 offsetof(IFB_STRCT, IFB_TallyLen ),
473 #else
474 0, 0, 0,
475 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
476 HCF_VERSION
477 }; // cfg_hcf_opt
478 #endif // MSF_COMPONENT_ID
480 #if defined HCF_TALLIES_EXTRA
481 replaced by HCF_EXT_TALLIES_FW ;
482 #endif // HCF_TALLIES_EXTRA
484 #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB
485 #if (HCF_EXT) & HCF_EXT_MB
486 HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} };
487 #endif // HCF_EXT_MB
488 HCF_STATIC hcf_16* BASED xxxx[ ] = {
489 #if (HCF_EXT) & HCF_EXT_MB
490 &cfg_null.len, //CFG_NULL 0x0820
491 #endif // HCF_EXT_MB
492 #if defined MSF_COMPONENT_ID
493 &cfg_drv_identity.len, //CFG_DRV_IDENTITY 0x0826
494 &cfg_drv_sup_range.len, //CFG_DRV_SUP_RANGE 0x0827
495 &cfg_drv_act_ranges_pri.len, //CFG_DRV_ACT_RANGES_PRI 0x0828
496 &cfg_drv_act_ranges_sta.len, //CFG_DRV_ACT_RANGES_STA 0x0829
497 &cfg_drv_act_ranges_hsi.len, //CFG_DRV_ACT_RANGES_HSI 0x082A
498 &cfg_drv_act_ranges_apf.len, //CFG_DRV_ACT_RANGES_APF 0x082B
499 &cfg_hcf_opt.len, //CFG_HCF_OPT 0x082C
500 NULL, //IFB_PRIIdentity placeholder 0xFD02
501 NULL, //IFB_PRISup placeholder 0xFD03
502 #endif // MSF_COMPONENT_ID
503 NULL //endsentinel
505 #define xxxx_PRI_IDENTITY_OFFSET (ARRAY_SIZE(xxxx) - 3)
507 #endif // MSF_COMPONENT_ID / HCF_EXT_MB
510 /************************************************************************************************************
511 ************************** T O P L E V E L H C F R O U T I N E S **************************************
512 ************************************************************************************************************/
514 #if HCF_DL_ONLY == 0
515 /************************************************************************************************************
517 *.MODULE int hcf_action( IFBP ifbp, hcf_16 action )
518 *.PURPOSE Changes the run-time Card behavior.
519 * Performs Miscellanuous actions.
521 *.ARGUMENTS
522 * ifbp address of the Interface Block
523 * action number identifying the type of change
524 * - HCF_ACT_CCX_OFF disable CKIP
525 * - HCF_ACT_CCX_ON enable CKIP
526 * - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC
527 * - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC
528 * - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
529 * - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command
530 * - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes
531 * - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only)
532 * - HCF_ACT_SLEEP DDS Sleep request
533 * - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command
535 *.RETURNS
536 * HCF_SUCCESS all (including invalid)
537 * HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending
538 * HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails
540 *.CONDITIONS
541 * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
542 * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceeded by a call of hcf_action with
543 * HCF_ACT_INT_OFF as parameter.
544 * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
545 * was called.
547 *.DESCRIPTION
548 * hcf_action supports the following mode changing action-code pairs that are antonyms
549 * - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
550 * - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
552 * Additionally hcf_action can start the following actions in the NIC:
553 * - HCF_ACT_PRS_SCAN
554 * - HCF_ACT_RX_ACK
555 * - HCF_ACT_SCAN
556 * - HCF_ACT_SLEEP
557 * - HCF_ACT_TALLIES
559 * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
560 * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
561 * compile time option is not set at 0x0000.
563 * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
564 * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
566 * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
567 * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
569 * The disabling and enabling of interrupts are antonyms.
570 * These actions must be balanced.
571 * For each "disable interrupts" there must be a matching "enable interrupts".
572 * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
573 * other words, the disable interrupts may be nested.
574 * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
575 * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
576 * number of calls with INT_OFF.
578 * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
579 * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
580 * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
582 *! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
583 * mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
585 * o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
586 *!! This can use some more explanation;?
587 * Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action
588 * codes is used, the effects of the preceding use cease.
590 * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
591 * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
592 * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
593 * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
594 * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
595 * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
596 * after going into sleep.
598 * The following Miscellanuous actions are defined:
600 * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
601 * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
602 * report the existence of the next Rx frame.
603 * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
604 * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
605 * potential of improving the performance.
606 * If the MSF does not explitly ack te receiver, the acking is done implicitly if:
607 * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
608 * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
609 * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
610 * the hcf_service_nic that reported the Rx frame.
611 * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
613 * o HCF_ACT_TALLIES: Inquire Tallies command
614 * This command is only operational if the F/W is enabled.
615 * The Inquire Tallies command requests the F/W to provide its current set of tallies.
616 * See also hcf_get_info with CFG_TALLIES as parameter.
618 * o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command
619 * This command is only operational if the F/W is enabled.
620 * The Probe Respons Scan command starts a scan sequence.
621 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
623 * o HCF_ACT_SCAN: Inquire Scan command
624 * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
625 * The Inquire Scan command starts a scan sequence.
626 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
628 * Assert fails if
629 * - ifbp has a recognizable out-of-range value.
630 * - NIC interrupts are not disabled while required by parameter action.
631 * - an invalid code is specified in parameter action.
632 * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
633 * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or
634 * multi-threading
636 * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
637 * whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
639 *.DIAGRAM
640 * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
641 * at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
642 * action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
643 * that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
644 * explicitly check for this condition (although there was a report of an MSF which ran into this assert.
645 * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by
646 * writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS
647 * driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
648 * invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
649 * change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
650 * generating an interrupt on the shared interrupt line.
651 * Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
652 * HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for
653 * each and every call to HCF_ACT_INT_OFF.
654 * Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
655 * no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
656 * it is assumed there is no NIC.
657 * Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
658 * register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
659 * card interrupting via a shared IRQ during a download, fails.
660 *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
661 * path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
662 * Enabling of the interrupts is achieved by writing the Hermes IntEn register.
663 * - If the HCF is in Defunct mode, the interrupts stay disabled.
664 * - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
665 * - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
666 * - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
667 * For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
668 * event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
669 * transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
670 * host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
671 * react to and acknowledge this event.
672 *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
673 * IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
674 * supplied to the MSF in the state "no frame received".
675 *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
676 * manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
677 * ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
678 * HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
679 * in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
680 * with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
681 * implementation in F/W and Host.
682 * When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
683 * Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
684 * return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
685 * an acceptable loss due to ignoring all error situations as well).
686 * The "No inquire space" is reported via the Hermes tallies.
687 *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
689 *.ENDDOC END DOCUMENTATION
691 ************************************************************************************************************/
692 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
693 #if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
694 err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
695 #endif
696 #endif // HCF_TYPE_HII5
697 #if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN
698 err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
699 #endif
701 hcf_action( IFBP ifbp, hcf_16 action )
703 int rc = HCF_SUCCESS;
705 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
706 #if HCF_INT_ON
707 HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action ) /* 0 */
708 #if HCF_SLEEP
709 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF,
710 MERGE_2( action, ifbp->IFB_IntOffCnt ) )
711 #else
712 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action )
713 #endif // HCF_SLEEP
714 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF ||
715 action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON, action )
716 HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE,
717 MERGE_2( action, ifbp->IFB_IntOffCnt ) ) //nesting more than 16 deep seems unreasonable
718 #endif // HCF_INT_ON
720 switch (action) {
721 #if HCF_INT_ON
722 hcf_16 i;
723 case HCF_ACT_INT_OFF: // Disable Interrupt generation
724 #if HCF_SLEEP
725 if ( ifbp->IFB_IntOffCnt == 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat
726 ifbp->IFB_IntOffCnt++; // restore conventional I/F
727 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit
728 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit to counteract the clearing by F/W
729 // 800 us latency before FW switches to high power
730 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
731 //OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
732 // printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day
733 // hcf_cntl( ifbp, HCF_CNTL_ENABLE );
734 // }
735 // ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state
737 #endif // HCF_SLEEP
738 /*2*/ ifbp->IFB_IntOffCnt++;
739 //! rc = 0;
740 i = IPW( HREG_INT_EN );
741 OPW( HREG_INT_EN, 0 );
742 if ( i & 0x1000 ) {
743 rc = HCF_ERR_NO_NIC;
744 } else {
745 if ( i & IPW( HREG_EV_STAT ) ) {
746 rc = HCF_INT_PENDING;
749 break;
751 case HCF_ACT_INT_FORCE_ON: // Enforce Enable Interrupt generation
752 ifbp->IFB_IntOffCnt = 0;
753 //Fall through in HCF_ACT_INT_ON
755 case HCF_ACT_INT_ON: // Enable Interrupt generation
756 /*4*/ if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) {
757 //determine Interrupt Event mask
758 #if HCF_DMA
759 if ( ifbp->IFB_CntlOpt & USE_DMA ) {
760 i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT; //mask when DMA active
761 } else
762 #endif // HCF_DMA
764 i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT; //mask when DMA not active
765 if ( ifbp->IFB_RscInd == 0 ) {
766 i |= HREG_EV_ALLOC; //mask when no TxFID available
769 #if HCF_SLEEP
770 if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) {
771 // firmware indicates it would like to go into sleep modus
772 // only acknowledge this request if no other events that can cause an interrupt are pending
773 ifbp->IFB_IntOffCnt--; //becomes 0xFFFE
774 OPW( HREG_INT_EN, i | HREG_EV_TICK );
775 OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY );
776 } else
777 #endif // HCF_SLEEP
779 OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ );
782 break;
783 #endif // HCF_INT_ON
785 #if (HCF_SLEEP) & HCF_DDS
786 case HCF_ACT_SLEEP: // DDS Sleep request
787 hcf_cntl( ifbp, HCF_CNTL_DISABLE );
788 cmd_exe( ifbp, HCMD_SLEEP, 0 );
789 break;
790 // case HCF_ACT_WAKEUP: // DDS Wakeup request
791 // HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt )
792 // ifbp->IFB_IntOffCnt++; // restore conventional I/F
793 // OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
794 // MSF_WAIT(800); // MSF-defined function to wait n microseconds.
795 // rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
796 // *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
797 // *for DDS. "Much" better would be to merge the flows for
798 // *DDS and DEEP_SLEEP
799 // */
800 // break;
801 #endif // HCF_DDS
803 #if (HCF_TYPE) & HCF_TYPE_CCX
804 case HCF_ACT_CCX_ON: // enable CKIP
805 case HCF_ACT_CCX_OFF: // disable CKIP
806 ifbp->IFB_CKIPStat = action;
807 break;
808 #endif // HCF_TYPE_CCX
810 case HCF_ACT_RX_ACK: //Receiver ACK
811 /*6*/ if ( ifbp->IFB_RxFID ) {
812 DAWA_ACK( HREG_EV_RX );
814 ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0;
815 break;
817 /*8*/ case HCF_ACT_PRS_SCAN: // Hermes PRS Scan (F102)
818 OPW( HREG_PARAM_1, 0x3FFF );
819 //Fall through in HCF_ACT_TALLIES
820 case HCF_ACT_TALLIES: // Hermes Inquire Tallies (F100)
821 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
822 case HCF_ACT_SCAN: // Hermes Inquire Scan (F101)
823 #endif // HCF_TYPE_HII5
824 /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
825 * are checked by #if statements just prior to this routine resulting in: err "maintenance" */
826 cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES );
827 break;
829 default:
830 HCFASSERT( DO_ASSERT, action )
831 break;
833 //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/
834 HCFLOGEXIT( HCF_TRACE_ACTION )
835 return rc;
836 } // hcf_action
837 #endif // HCF_DL_ONLY
840 /************************************************************************************************************
842 *.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd )
843 *.PURPOSE Connect or disconnect a specific port to a specific network.
844 *!! ;???????????????? continue needs more explanation
845 * recovers by means of "continue" when the connect proces in CCX mode fails
846 * Enables or disables data transmission and reception for the NIC.
847 * Activates static NIC configuration for a specific port at connect.
848 * Activates static configuration for all ports at enable.
850 *.ARGUMENTS
851 * ifbp address of the Interface Block
852 * cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue)
853 * HCF_CNTL_ENABLE Enable
854 * HCF_CNTL_DISABLE Disable
855 * HCF_CNTL_CONTINUE Continue
856 * HCF_CNTL_CONNECT Connect
857 * HCF_CNTL_DISCONNECT Disconnect
858 * 0x0100: command qualifier (continue)
859 * HCMD_RETRY retry flag
860 * 0x0700: port number (connect/disconnect)
861 * HCF_PORT_0 MAC Port 0
862 * HCF_PORT_1 MAC Port 1
863 * HCF_PORT_2 MAC Port 2
864 * HCF_PORT_3 MAC Port 3
865 * HCF_PORT_4 MAC Port 4
866 * HCF_PORT_5 MAC Port 5
867 * HCF_PORT_6 MAC Port 6
869 *.RETURNS
870 * HCF_SUCCESS
871 *!! via cmd_exe
872 * HCF_ERR_NO_NIC
873 * HCF_ERR_DEFUNCT_...
874 * HCF_ERR_TIME_OUT
876 *.DESCRIPTION
877 * The parameter cmd contains a number of subfields.
878 * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
879 * The field 0x001F contains the command code
880 * - HCF_CNTL_ENABLE
881 * - HCF_CNTL_DISABLE
882 * - HCF_CNTL_CONNECT
883 * - HCF_CNTL_DISCONNECT
884 * - HCF_CNTL_CONTINUE
886 * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
887 * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
888 * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
889 * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
891 * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
892 * Interrupts mode.
894 * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
895 * and reception are concerned.
896 * When a particular port is disconnected:
897 * - the F/W disables the receiver for that port.
898 * - the F/W ignores send commands for that port.
899 * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
901 * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
902 * disconnected.
904 * When a particular port is connected:
905 * - the F/W effectuates the static configuration for that port.
906 * - enables the receiver for that port.
907 * - accepts send commands for that port.
909 * Enabling has the following effects:
910 * - the F/W effectuates the static configuration for all ports.
911 * The F/W only updates its static configuration at a transition from disabled to enabled or from
912 * disconnected to connected.
913 * In order to enforce the static configuration, the MSF must assure that such a transition takes place.
914 * Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
915 * configuration may impact communication.
916 * - The DMA Engine (if applicable) is enabled.
917 * Note that the Enable Function by itself only enables data transmission and reception, it
918 * does not enable the Interrupt Generation mechanism. This is done by hcf_action.
920 * Disabling has the following effects:
921 *!! ;?????is the following statement really true
922 * - it acts as a disconnect on all ports.
923 * - The DMA Engine (if applicable) is disabled.
925 * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
927 * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
928 * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
929 * Each time one of these functions is called, the effects of the preceding calls cease.
931 * Assert fails if
932 * - ifbp has a recognizable out-of-range value.
933 * - NIC interrupts are not disabled.
934 * - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
935 * - An invalid combination of the subfields is given or a bit outside the subfields is given.
936 * - any return code besides HCF_SUCCESS.
937 * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or
938 * multi-threading
940 *.DIAGRAM
941 * hcf_cntl takes successively the following actions:
942 *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
943 * hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
944 *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
945 * packets from the tx descriptor chain.
947 *.ENDDOC END DOCUMENTATION
949 ************************************************************************************************************/
951 hcf_cntl( IFBP ifbp, hcf_16 cmd )
953 int rc = HCF_ERR_INCOMP_FW;
954 #if HCF_ASSERT
955 { int x = cmd & HCMD_CMD_CODE;
956 if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY;
957 else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) {
958 x &= ~HFS_TX_CNTL_PORT;
960 HCFASSERT( x==HCF_CNTL_ENABLE || x==HCF_CNTL_DISABLE || HCF_CNTL_CONTINUE ||
961 x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd )
963 #endif // HCF_ASSERT
964 // #if (HCF_SLEEP) & HCF_DDS
965 // HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd )
966 // #endif // HCF_DDS
967 HCFLOGENTRY( HCF_TRACE_CNTL, cmd )
968 if ( ifbp->IFB_CardStat == 0 ) { /*2*/
969 /*6*/ rc = cmd_exe( ifbp, cmd, 0 );
970 #if (HCF_SLEEP) & HCF_DDS
971 ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
972 #endif // HCF_DDS
974 #if HCF_DMA
975 //!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat.
976 // The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF,
977 // even if the hardware is disfunctional. Practical example under Windows : surprise removal.
978 if ( ifbp->IFB_CntlOpt & USE_DMA ) {
979 hcf_io io_port = ifbp->IFB_IOBase;
980 DESC_STRCT *p;
981 if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) {
982 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET); /*8*/
983 ifbp->IFB_CntlOpt &= ~DMA_ENABLED;
985 if ( cmd == HCF_CNTL_ENABLE ) {
986 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_GO);
987 /* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] )
988 * as additional beneficiary side effect, the SOP and EOP bits will also be cleared
990 ifbp->IFB_CntlOpt |= DMA_ENABLED;
991 HCFASSERT( NT_ASSERT, NEVER_TESTED )
992 // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
993 p = ifbp->IFB_FirstDesc[DMA_RX];
994 if (p != NULL) { //;? Think this over again in the light of the new chaining strategy
995 if ( 1 ) { //begin alternative
996 HCFASSERT( NT_ASSERT, NEVER_TESTED )
997 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX );
998 if ( ifbp->IFB_FirstDesc[DMA_RX] ) {
999 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX]->next_desc_addr, DMA_RX );
1001 } else {
1002 while ( p ) {
1003 //p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1004 p->BUF_CNT |= DESC_DMA_OWNED;
1005 p = p->next_desc_addr;
1007 // a rx chain is available so hand it over to the DMA engine
1008 p = ifbp->IFB_FirstDesc[DMA_RX];
1009 OUT_PORT_DWORD( (io_port + HREG_RXDMA_PTR32), p->desc_phys_addr);
1010 } //end alternative
1014 #endif // HCF_DMA
1015 HCFASSERT( rc == HCF_SUCCESS, rc )
1016 HCFLOGEXIT( HCF_TRACE_CNTL )
1017 return rc;
1018 } // hcf_cntl
1021 /************************************************************************************************************
1023 *.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base )
1024 *.PURPOSE Grants access right for the HCF to the IFB.
1025 * Initializes Card and HCF housekeeping.
1027 *.ARGUMENTS
1028 * ifbp (near) address of the Interface Block
1029 * io_base non-USB: I/O Base address of the NIC (connect)
1030 * non-USB: HCF_DISCONNECT
1031 * USB: HCF_CONNECT, HCF_DISCONNECT
1033 *.RETURNS
1034 * HCF_SUCCESS
1035 * HCF_ERR_INCOMP_PRI
1036 * HCF_ERR_INCOMP_FW
1037 * HCF_ERR_DEFUNCT_CMD_SEQ
1038 *!! HCF_ERR_NO_NIC really returned ;?
1039 * HCF_ERR_NO_NIC
1040 * HCF_ERR_TIME_OUT
1042 * MSF-accessible fields of Result Block:
1043 * IFB_IOBase entry parameter io_base
1044 * IFB_IORange HREG_IO_RANGE (0x40/0x80)
1045 * IFB_Version version of the IFB layout
1046 * IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the
1047 * "running" F/W, i.e. tertiary F/W under normal conditions
1048 * IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of
1049 * the "running" F/W, i.e. tertiary F/W under normal conditions
1050 * IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
1051 * IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
1052 * IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
1053 * all other all MSF accessible fields, which are not specified above, are zero-filled
1055 *.CONDITIONS
1056 * It is the responsibility of the MSF to assure the correctness of the I/O Base address.
1058 * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
1059 * was called.
1061 *.DESCRIPTION
1062 * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
1063 * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
1064 * io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
1065 * in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested.
1066 * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
1067 * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
1069 * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
1070 * information is re-initialized.
1071 * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
1072 * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
1074 * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
1076 * Assert fails if
1077 * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
1078 * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
1080 *.DIAGRAM
1082 *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
1083 * some attention about what to use as "I/O" address when for which purpose.
1085 *2a: Reset H-II by toggling reset bit in IO-register on and off.
1086 * The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
1087 * overcome the 64k size limit posed on DOS drivers.
1088 * The macro OPW is not yet useable because the IFB_IOBase field is not set.
1089 * Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
1090 * specification for S/W reset
1091 * Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
1092 * to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
1093 *2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in
1094 * Ev register gives a workable strategy. The available documentation does not give much clues.
1095 *4: clear and initialize the IFB
1096 * The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
1097 * feasible IFB-items.
1098 * The readable fields mentioned in the description section and some HCF specific fields are given their
1099 * actual value.
1100 * IFB_TickIni is initialized at best guess before calibration
1101 * Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
1102 *6: Register compile-time linked MSF Routine and set default filter level
1103 * cast needed to get around the "near" problem in DOS COM model
1104 * er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1105 * to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1106 *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
1107 * blocked cmd pipe line. To unblock the following actions are done:
1108 * - Ack everything
1109 * - Wait for Busy bit drop in Cmd register
1110 * - Wait for Cmd bit raise in Ev register
1111 * The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
1112 * fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
1113 * next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
1114 *10: Ack everything to unblock a (possibly blocked) cmd pipe line
1115 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
1116 * pending on non-initial calls
1117 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
1118 * Hermes Initialize
1119 *12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
1120 * Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
1121 * Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
1122 * anything useful either, so it is skipped.
1123 * The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
1124 *14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
1125 * the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
1126 * is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
1127 * time.
1129 *.NOTICE
1130 * On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
1131 * in an incorrect initialization of pointers.
1132 * The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
1133 * based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
1134 * MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
1135 * IFB_MBp.
1137 *.NOTICE
1138 * There are a number of problems when asserting and logging hcf_connect, e.g.
1139 * - Asserting on re-entrancy of hcf_connect by means of
1140 * "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
1141 * are undefined
1142 * - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
1143 * as a routine address
1144 * Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
1145 *.ENDDOC END DOCUMENTATION
1147 ************************************************************************************************************/
1149 hcf_connect( IFBP ifbp, hcf_io io_base )
1151 int rc = HCF_SUCCESS;
1152 hcf_io io_addr;
1153 hcf_32 prot_cnt;
1154 hcf_8 *q;
1155 LTV_STRCT x;
1156 #if HCF_ASSERT
1157 hcf_16 xa = ifbp->IFB_FWIdentity.typ;
1158 /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
1159 * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect,
1160 * xa == 0 in subsequent calls with preceding hcf_disconnect,
1161 * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call
1163 #endif // HCF_ASSERT
1165 if ( io_base == HCF_DISCONNECT ) { //disconnect
1166 io_addr = ifbp->IFB_IOBase;
1167 OPW( HREG_INT_EN, 0 );
1168 } else { //connect /* 0 */
1169 io_addr = io_base;
1173 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!!
1174 OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI ); //OPW not yet useable
1175 prot_cnt = INI_TICK_INI;
1176 HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr + HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1177 OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET ); //OPW not yet useable /* 2a*/
1178 #endif // HCF_TYPE_PRELOADED
1179 for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/; /* 4 */
1180 ifbp->IFB_Magic = HCF_MAGIC;
1181 ifbp->IFB_Version = IFB_VERSION;
1182 #if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
1183 xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL; //IFB_PRIIdentity placeholder 0xFD02
1184 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL; //IFB_PRISup placeholder 0xFD03
1185 #endif // MSF_COMPONENT_ID
1186 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
1187 ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT); //convert # of Tallies to L value for LTV
1188 ifbp->IFB_TallyTyp = CFG_TALLIES; //IFB_TallyTyp: set T value
1189 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
1190 ifbp->IFB_IOBase = io_addr; //set IO_Base asap, so asserts via HREG_SW_2 don't harm
1191 ifbp->IFB_IORange = HREG_IO_RANGE;
1192 ifbp->IFB_CntlOpt = USE_16BIT;
1193 #if HCF_ASSERT
1194 assert_ifbp = ifbp;
1195 ifbp->IFB_AssertLvl = 1;
1196 #if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
1197 if ( io_base != HCF_DISCONNECT ) {
1198 ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert; /* 6 */
1200 #endif // HCF_ASSERT_LNK_MSF_RTN
1201 #if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info
1202 ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1;
1203 ifbp->IFB_AssertStrct.typ = CFG_MB_INFO;
1204 ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT;
1205 ifbp->IFB_AssertStrct.frag_cnt = 1;
1206 ifbp->IFB_AssertStrct.frag_buf[0].frag_len =
1207 ( offsetof(IFB_STRCT, IFB_AssertLvl) - offsetof(IFB_STRCT, IFB_AssertLine) ) / sizeof(hcf_16);
1208 ifbp->IFB_AssertStrct.frag_buf[0].frag_addr = &ifbp->IFB_AssertLine;
1209 #endif // HCF_ASSERT_MB
1210 #endif // HCF_ASSERT
1211 IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI; )
1212 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
1213 //!! No asserts before Reset-bit in HREG_IO is cleared
1214 OPW( HREG_IO, 0x0000 ); //OPW useable /* 2b*/
1215 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1216 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) )
1217 IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni; )
1218 #endif // HCF_TYPE_PRELOADED
1219 //!! No asserts before Reset-bit in HREG_IO is cleared
1220 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ) //just to proof that the complete assert machinery is working
1221 HCFASSERT( xa != CFG_FW_IDENTITY, 0 ) // assert if hcf_connect is called without intervening hcf_disconnect.
1222 HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp )
1223 HCFASSERT( (io_addr & 0x003F) == 0, io_addr )
1224 //if Busy bit in Cmd register
1225 if (IPW( HREG_CMD ) & HCMD_BUSY ) { /* 8 */
1226 //. Ack all to unblock a (possibly) blocked cmd pipe line
1227 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1228 //. Wait for Busy bit drop in Cmd register
1229 //. Wait for Cmd bit raise in Ev register
1230 HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1231 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ) /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
1233 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1234 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/
1235 (void)cmd_exe( ifbp, HCMD_INI, 0 );
1236 #endif // HCF_TYPE_PRELOADED
1237 if ( io_base != HCF_DISCONNECT ) {
1238 rc = init( ifbp ); /*14*/
1239 if ( rc == HCF_SUCCESS ) {
1240 x.len = 2;
1241 x.typ = CFG_NIC_BUS_TYPE;
1242 (void)hcf_get_info( ifbp, &x );
1243 ifbp->IFB_BusType = x.val[0];
1244 //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
1245 if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) {
1246 #if (HCF_IO) & HCF_IO_32BITS
1247 ifbp->IFB_CntlOpt &= ~USE_16BIT; //reset USE_16BIT
1248 #endif // HCF_IO_32BITS
1249 #if HCF_DMA
1250 ifbp->IFB_CntlOpt |= USE_DMA; //SET DMA
1251 #else
1252 ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/;
1253 #endif // HCF_DMA
1256 } else HCFASSERT( ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/;
1257 /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
1258 ifbp->IFB_IOBase = io_base; /* 0*/
1259 return rc;
1260 } // hcf_connect
1262 #if HCF_DMA
1263 /************************************************************************************************************
1264 * Function get_frame_lst
1265 * - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
1267 * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
1268 * and this is always the "current" DELWA Descriptor.
1270 * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
1271 * - a copy is made from the information in the last descriptor of the FrameList into the current
1272 * DELWA Descriptor
1273 * - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
1274 * - the DMA control bits of the copy are cleared to do not confuse the MSF
1275 * - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
1276 * of the FrameList, thus replacing the original last Descriptor of the FrameList.
1277 * - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
1278 * i.e. the "new" DELWA Descriptor.
1280 * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
1281 * On top of that, it adjusts DMA related fields in the IFB structure.
1282 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
1283 // a 'reclaim descriptor' should be available in the HCF:
1285 * Returns: address of the first descriptor of the FrameList
1287 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
1288 * of FrameLists of 1, 2 and more than 2 descriptors
1290 * Input parameters:
1291 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1293 ************************************************************************************************************/
1294 HCF_STATIC DESC_STRCT*
1295 get_frame_lst( IFBP ifbp, int tx_rx_flag )
1298 DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag];
1299 DESC_STRCT *copy, *p, *prev;
1301 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
1302 //if FrameList
1303 if ( head ) {
1304 //. search for last descriptor of first FrameList
1305 p = prev = head;
1306 while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) {
1307 if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) { //clear control bits when disabled
1308 p->BUF_CNT &= DESC_CNT_MASK;
1310 prev = p;
1311 p = p->next_desc_addr;
1313 //. if DMA enabled
1314 if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) {
1315 //. . if last descriptor of FrameList is DMA owned
1316 //. . or if FrameList is single (DELWA) Descriptor
1317 if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) {
1318 //. . . refuse to return FrameList to caller
1319 head = NULL;
1323 //if returnable FrameList found
1324 if ( head ) {
1325 //. if FrameList is single (DELWA) Descriptor (implies DMA disabled)
1326 if ( head->next_desc_addr == NULL ) {
1327 //. . clear DescriptorList
1328 /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL;
1329 //. else
1330 } else {
1331 //. . strip hardware-related bits from last descriptor
1332 //. . remove DELWA Descriptor from head of DescriptorList
1333 copy = head;
1334 head = head->next_desc_addr;
1335 //. . exchange first (Confined) and last (possibly imprisoned) Descriptor
1336 copy->buf_phys_addr = p->buf_phys_addr;
1337 copy->buf_addr = p->buf_addr;
1338 copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK; //get rid of DESC_EOP and possibly DESC_SOP
1339 copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK; //get rid of DESC_DMA_OWNED
1340 #if (HCF_EXT) & HCF_DESC_STRCT_EXT
1341 copy->DESC_MSFSup = p->DESC_MSFSup;
1342 #endif // HCF_DESC_STRCT_EXT
1343 //. . turn into a DELWA Descriptor
1344 p->buf_addr = NULL;
1345 //. . chain copy to prev /* 8*/
1346 prev->next_desc_addr = copy;
1347 //. . detach remainder of the DescriptorList from FrameList
1348 copy->next_desc_addr = NULL;
1349 copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1350 //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
1351 ifbp->IFB_FirstDesc[tx_rx_flag] = p;
1353 //. strip DESC_SOP from first descriptor
1354 head->BUF_SIZE &= DESC_CNT_MASK;
1355 //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED
1356 head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1358 //return the just detached FrameList (if any)
1359 return head;
1360 } // get_frame_lst
1363 /************************************************************************************************************
1364 * Function put_frame_lst
1366 * This function
1368 * Returns: address of the first descriptor of the FrameList
1370 * Input parameters:
1371 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1373 * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
1374 * Assert fails if
1375 * - DMA is not enabled
1376 * - descriptor list is NULL
1377 * - a descriptor in the descriptor list is not double word aligned
1378 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1379 * - the DELWA descriptor is not a "singleton" DescriptorList.
1380 * - the DELWA descriptor is not the first Descriptor supplied
1381 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1382 * - Possibly more checks could be added !!!!!!!!!!!!!
1384 *.NOTICE
1385 * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
1386 * by incorrect MSF behavior
1388 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
1389 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
1390 *********************************************************************************************
1391 * Although not required from a hardware perspective:
1392 * - make each descriptor in this rx-chain DMA-owned.
1393 * - Also set the count to zero. EOP and SOP bits are also cleared.
1394 *********************************************************************************************/
1395 HCF_STATIC void
1396 put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1398 DESC_STRCT *p = descp;
1399 hcf_16 port;
1401 HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt) //only hcf_dma_tx_put must also be DMA_ENABLED
1402 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
1403 HCFASSERT( p , 0 )
1405 while ( p ) {
1406 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
1407 HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT )
1408 HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE )
1409 p->BUF_SIZE &= DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1410 p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1411 p->BUF_CNT |= DESC_DMA_OWNED;
1412 if ( p->next_desc_addr ) {
1413 // HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... )
1414 HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr )
1415 p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr;
1416 } else { //
1417 p->next_desc_phys_addr = 0;
1418 if ( p->buf_addr == NULL ) { // DELWA Descriptor
1419 HCFASSERT( descp == p, (hcf_32)descp ) //singleton DescriptorList
1420 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag])
1421 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag])
1422 descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED;
1423 ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1424 // part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1425 // if "recycling" a FrameList
1426 // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
1427 // . prepare for activation DMA controller
1428 // part of alternative descp = descp->next_desc_addr;
1429 } else { //a "real" FrameList, hand it over to the DMA engine
1430 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp )
1431 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp )
1432 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL,
1433 (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr)
1434 // p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1435 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp;
1436 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr;
1437 port = HREG_RXDMA_PTR32;
1438 if ( tx_rx_flag ) {
1439 p->BUF_SIZE |= DESC_EOP; // p points at the last descriptor in the caller-supplied descriptor chain
1440 descp->BUF_SIZE |= DESC_SOP;
1441 port = HREG_TXDMA_PTR32;
1443 OUT_PORT_DWORD( (ifbp->IFB_IOBase + port), descp->desc_phys_addr );
1445 ifbp->IFB_LastDesc[tx_rx_flag] = p;
1447 p = p->next_desc_addr;
1449 } // put_frame_lst
1452 /************************************************************************************************************
1454 *.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
1455 *.PURPOSE decapsulate a message and provides that message to the MSF.
1456 * reclaim all descriptors in the rx descriptor chain.
1458 *.ARGUMENTS
1459 * ifbp address of the Interface Block
1461 *.RETURNS
1462 * pointer to a FrameList
1464 *.DESCRIPTION
1465 * hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the
1466 * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
1467 * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
1468 * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
1469 * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
1470 * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
1471 * reception.
1472 * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
1473 * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
1474 * transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the
1475 * caller.
1476 * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
1477 * status of the DMA Engine.
1478 * If the DMA Engine is enabled, a NULL pointer is returned.
1479 * If the DMA Engine is disabled, the following strategy is used:
1480 * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
1481 * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
1482 * - If there is no DELWA Descriptor, a NULL pointer is returned.
1484 * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
1485 * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
1486 * retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
1488 * The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
1489 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1490 * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
1491 * accordingly.
1492 *!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
1494 *.DIAGRAM
1496 *.ENDDOC END DOCUMENTATION
1498 ************************************************************************************************************/
1500 DESC_STRCT*
1501 hcf_dma_rx_get (IFBP ifbp)
1503 DESC_STRCT *descp; // pointer to start of FrameList
1505 descp = get_frame_lst( ifbp, DMA_RX );
1506 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1508 //skip decapsulation at confined descriptor
1509 #if HCF_ENCAP == HCF_ENC
1510 #if (HCF_TYPE) & HCF_TYPE_CCX
1511 if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF )
1512 #endif // HCF_TYPE_CCX
1514 int i;
1515 DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame
1516 HCFASSERT(p, 0)
1517 // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
1518 //determine decapsulation sub-flag in RxFS
1519 i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
1520 if ( i == HFS_STAT_TUNNEL ||
1521 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) {
1522 // The 2nd descriptor contains a SNAP header plus part or whole of the payload.
1523 HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT )
1524 // perform decapsulation
1525 HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE)
1526 // move SA[2:5] in the second buffer to replace part of the SNAP header
1527 for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i];
1528 // copy DA[0:5], SA[0:1] from first buffer to second buffer
1529 for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i];
1530 // make first buffer shorter in count
1531 descp->BUF_CNT = HFS_ADDR_DEST;
1534 #endif // HCF_ENC
1535 if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD; //;?could be integrated into get_frame_lst
1536 HCFLOGEXIT( HCF_TRACE_DMA_RX_GET )
1537 return descp;
1538 } // hcf_dma_rx_get
1541 /************************************************************************************************************
1543 *.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1544 *.PURPOSE supply buffers for receive purposes.
1545 * supply the Rx-DELWA descriptor.
1547 *.ARGUMENTS
1548 * ifbp address of the Interface Block
1549 * descp address of a DescriptorList
1551 *.RETURNS N.A.
1553 *.DESCRIPTION
1554 * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
1555 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1556 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1557 * As a consequence, some additional constaints apply to the number of descriptor and the buffers associated
1558 * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
1559 * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
1561 * Assert fails if
1562 * - ifbp has a recognizable out-of-range value.
1563 * - NIC interrupts are not disabled while required by parameter action.
1564 * - in case decapsulation by the HCF is selected:
1565 * - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
1566 * field (== 29 words).
1567 * - The FrameList does not consists of at least 2 Descriptors.
1568 * - The second databuffer does not have the minimum size of 8 bytes.
1569 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1570 *!! them in the WCI-spec !!!!
1571 * - DMA is not enabled
1572 * - descriptor list is NULL
1573 * - a descriptor in the descriptor list is not double word aligned
1574 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1575 * - the DELWA descriptor is not a "singleton" DescriptorList.
1576 * - the DELWA descriptor is not the first Descriptor supplied
1577 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1578 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1580 *.DIAGRAM
1583 *.ENDDOC END DOCUMENTATION
1585 ************************************************************************************************************/
1586 void
1587 hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1590 HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT, 0xDA01 )
1591 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
1592 HCFASSERT_INT
1594 put_frame_lst( ifbp, descp, DMA_RX );
1595 #if HCF_ASSERT && HCF_ENCAP == HCF_ENC
1596 if ( descp->buf_addr ) {
1597 HCFASSERT( descp->BUF_SIZE == HCF_DMA_RX_BUF1_SIZE, descp->BUF_SIZE )
1598 HCFASSERT( descp->next_desc_addr, 0 ) // first descriptor should be followed by another descriptor
1599 // The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size.
1600 HCFASSERT( descp->next_desc_addr->BUF_SIZE >= 12, descp->next_desc_addr->BUF_SIZE )
1602 #endif // HCFASSERT / HCF_ENC
1603 HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT )
1604 } // hcf_dma_rx_put
1607 /************************************************************************************************************
1609 *.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
1610 *.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
1611 * - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
1612 * - The Hermes/DMAengine have been disabled
1614 *.ARGUMENTS
1615 * ifbp address of the Interface Block
1617 *.RETURNS
1618 * pointer to a reclaimed Tx packet.
1620 *.DESCRIPTION
1621 * impact of the disable command:
1622 * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
1623 * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
1624 * disable/enable sequence.
1626 *.DIAGRAM
1628 *.NOTICE
1630 *.ENDDOC END DOCUMENTATION
1632 ************************************************************************************************************/
1633 DESC_STRCT*
1634 hcf_dma_tx_get( IFBP ifbp )
1636 DESC_STRCT *descp; // pointer to start of FrameList
1638 descp = get_frame_lst( ifbp, DMA_TX );
1639 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1640 //skip decapsulation at confined descriptor
1641 #if HCF_ENCAP == HCF_ENC
1642 if ( ( descp->BUF_CNT == HFS_TYPE )
1643 #if (HCF_TYPE) & HCF_TYPE_CCX
1644 || ( descp->BUF_CNT == HFS_DAT )
1645 #endif // HCF_TYPE_CCX
1646 ) { // perform decapsulation if needed
1647 descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE;
1648 descp->next_desc_addr->BUF_CNT += HCF_DASA_SIZE;
1650 #endif // HCF_ENC
1651 if ( descp == NULL ) { //;?could be integrated into get_frame_lst
1652 ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_TDMAD;
1654 HCFLOGEXIT( HCF_TRACE_DMA_TX_GET )
1655 return descp;
1656 } // hcf_dma_tx_get
1659 /************************************************************************************************************
1661 *.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1662 *.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
1663 * supply the Tx-DELWA descriptor.
1665 *.ARGUMENTS
1666 * ifbp address of the Interface Block
1667 * descp address of Tx Descriptor Chain (i.e. a single Tx frame)
1668 * tx_cntl indicates MAC-port and (Hermes) options
1670 *.RETURNS N.A.
1672 *.DESCRIPTION
1673 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1674 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1676 * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
1677 * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
1678 * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
1679 * As a consequence the contents of this space do not matter.
1680 * Nevertheless BUF_CNT must take in account this storage.
1681 * This working space to contain the 802.11 header may not be fragmented, the first buffer must be
1682 * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
1683 * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
1684 * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
1685 * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
1686 * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
1687 * HFS_ADDR_DEST.
1688 * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
1690 * In case the encapsulation feature is compiled in, there are the following additional requirements.
1691 * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
1692 * to store the 802.11 header
1693 * o The BUF_SIZE of the first buffer is at least the space needed to store the
1694 * - 802.11 header (29 words)
1695 * - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
1696 * - 6 bytes SNAP-header
1697 * This results in 39 words or 0x4E bytes or HFS_TYPE.
1698 * Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
1699 * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
1701 * When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors
1702 * or buffers.
1704 * When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
1705 * offset HFS_ADDR_DEST (0x3A) in the first buffer:
1706 * - the 802.3 addressing information, copied from the begin of the second buffer
1707 * - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
1708 * header length and Type field and ignoring the Destination Address, Source Address and Length field
1709 * - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
1711 * The information in the first two descriptors is adjusted accordingly:
1712 * - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
1713 * - the second descriptor count is decreased by 12, being the moved addressing information
1714 * - the second descriptor (physical) buffer address is increased by 12.
1716 * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
1717 * undone.
1719 * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
1720 * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
1722 * Assert fails if
1723 * - ifbp has a recognizable out-of-range value.
1724 * - tx_cntl has a recognizable out-of-range value.
1725 * - NIC interrupts are not disabled while required by parameter action.
1726 * - in case encapsulation by the HCF is selected:
1727 * - The FrameList does not consists of at least 2 Descriptors.
1728 * - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
1729 * - The first databuffer does not have a size to additionally accomodate the 802.3 header and the
1730 * SNAP header of the frame after encapsulation (== 39 words).
1731 * - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
1732 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1733 *!! them in the WCI-spec !!!!
1734 * - DMA is not enabled
1735 * - descriptor list is NULL
1736 * - a descriptor in the descriptor list is not double word aligned
1737 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1738 * - the DELWA descriptor is not a "singleton" DescriptorList.
1739 * - the DELWA descriptor is not the first Descriptor supplied
1740 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1741 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1742 *.DIAGRAM
1744 *.NOTICE
1746 *.ENDDOC END DOCUMENTATION
1749 *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
1750 *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
1751 * offset in the 1st buffer
1752 *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
1753 * - Copy DA/SA fields from the 2nd buffer
1754 * - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
1755 * associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
1756 * SourceAddress and lenght-field)
1757 * Assert the message length
1758 * Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
1759 * ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
1760 * - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
1761 * place as result of the call to hcf_encap.
1762 * Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
1763 * the snap header, HFS_TYPE is choosen as a reference point to make it easier to grasp that the snap header
1764 * and encapsualtion type are at least relative in the right.
1765 *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
1766 * modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
1767 *10: set each descriptor to 'DMA owned', clear all other control bits.
1768 * Set SOP bit on first descriptor. Set EOP bit on last descriptor.
1769 *12: Either append the current frame to an existing descriptor list or
1770 *14: create a list beginning with the current frame
1771 *16: remember the new end of the list
1772 *20: hand the frame over to the DMA engine
1773 ************************************************************************************************************/
1774 void
1775 hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1777 DESC_STRCT *p = descp->next_desc_addr;
1778 int i;
1780 #if HCF_ASSERT
1781 int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
1782 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
1783 #endif // HCF_ASSERT
1784 HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT, 0xDA03 )
1785 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
1786 HCFASSERT_INT
1787 HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt)
1789 if ( descp->buf_addr ) {
1790 *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl; /*1*/
1791 #if HCF_ENCAP == HCF_ENC
1792 HCFASSERT( descp->next_desc_addr, 0 ) //at least 2 descripors
1793 HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT ) //exact length required for 1st buffer
1794 HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE ) //minimal storage for encapsulation
1795 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); //at least DA, SA and 'type' in 2nd buffer
1797 #if (HCF_TYPE) & HCF_TYPE_CCX
1798 /* if we are doing PPK +/- CMIC, or we are sending a DDP frame */
1799 if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
1800 ( ( p->BUF_CNT >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
1801 ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) &&
1802 ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) &&
1803 ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) &&
1804 ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 )))
1806 /* copy the DA/SA to the first buffer */
1807 for ( i = 0; i < HCF_DASA_SIZE; i++ ) {
1808 descp->buf_addr[i + HFS_ADDR_DEST] = p->buf_addr[i];
1810 /* calculate the length of the second fragment only */
1811 i = 0;
1812 do { i += p->BUF_CNT; } while( p = p->next_desc_addr );
1813 i -= HCF_DASA_SIZE ;
1814 /* convert the length field to big endian, using the endian friendly macros */
1815 i = CNV_SHORT_TO_BIG(i); //!! this converts ONLY on LE platforms, how does that relate to the non-CCX code
1816 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i;
1817 descp->BUF_CNT = HFS_DAT;
1818 // modify 2nd descriptor to skip the 'Da/Sa' fields
1819 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1820 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1822 else
1823 #endif // HCF_TYPE_CCX
1825 descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]); /*4*/
1826 if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) {
1827 for ( i=0; i < HCF_DASA_SIZE; i++ ) { /*6*/
1828 descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i];
1830 i = sizeof(snap_header) + 2 - ( 2*6 + 2 );
1831 do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL );
1832 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i); //!! this converts on ALL platforms, how does that relate to the CCX code
1833 for ( i=0; i < sizeof(snap_header) - 1; i++) {
1834 descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i];
1836 descp->BUF_CNT = HFS_TYPE; /*8*/
1837 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1838 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1841 #endif // HCF_ENC
1843 put_frame_lst( ifbp, descp, DMA_TX );
1844 HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT )
1845 } // hcf_dma_tx_put
1847 #endif // HCF_DMA
1849 #if HCF_DL_ONLY == 0
1850 /************************************************************************************************************
1852 *.MODULE hcf_8 hcf_encap( wci_bufp type )
1853 *.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
1855 *.ARGUMENTS
1856 * type (Far) pointer to the (Big Endian) Type/Length field in the message
1858 *.RETURNS
1859 * ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
1860 * ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137
1861 * ENC_1042 len/type is "type" but not 0x80F3 or 0x8137
1863 *.CONDITIONS
1864 * NIC Interrupts d.c
1866 *.DESCRIPTION
1867 * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
1868 * Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as
1869 * a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3
1870 * format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ,
1871 * Bridge Tunnel or RFC1042 encapsulation is needed.
1873 *.DIAGRAM
1875 * 1: presume 802.3, hence preset return value at ENC_NONE
1876 * 2: convert type from "network" Endian format to native Endian
1877 * 4: the litmus test to distinguish type and len.
1878 * The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
1879 * not related at all to the maximum frame size supported by the Hermes.
1880 * 6: check type against:
1881 * 0x80F3 //AppleTalk Address Resolution Protocol (AARP)
1882 * 0x8137 //IPX
1883 * to determine the type of encapsulation
1885 *.ENDDOC END DOCUMENTATION
1887 ************************************************************************************************************/
1888 #if HCF_ENCAP //i.e HCF_ENC or HCF_ENC_SUP
1889 #if ! ( (HCF_ENCAP) & HCF_ENC_SUP )
1890 HCF_STATIC
1891 #endif // HCF_ENCAP
1892 hcf_8
1893 hcf_encap( wci_bufp type )
1896 hcf_8 rc = ENC_NONE; /* 1 */
1897 hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */
1899 if ( t > 1500 ) { /* 4 */
1900 if ( t == 0x8137 || t == 0x80F3 ) {
1901 rc = ENC_TUNNEL; /* 6 */
1902 } else {
1903 rc = ENC_1042;
1906 return rc;
1907 } // hcf_encap
1908 #endif // HCF_ENCAP
1909 #endif // HCF_DL_ONLY
1912 /************************************************************************************************************
1914 *.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp )
1915 *.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF.
1917 *.ARGUMENTS
1918 * ifbp address of the Interface Block
1919 * ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the
1920 * information to be collected from the HCF or from the Hermes
1922 *.RETURNS
1923 * HCF_ERR_LEN The provided buffer was too small
1924 * HCF_SUCCESS Success
1925 *!! via cmd_exe ( type >= CFG_RID_FW_MIN )
1926 * HCF_ERR_NO_NIC NIC removed during retrieval
1927 * HCF_ERR_TIME_OUT Expected Hermes event did not occure in expected time
1928 *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
1929 * HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause)
1931 *.DESCRIPTION
1932 * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
1933 * information identified by the T-field is copied into the V-field.
1934 * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
1935 * includes the size of the T-field, but not the size of the L-field itself.
1936 * On return, the L-field indicates the number of words actually contained by the Type and Value fields.
1937 * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
1938 * V-field can contain at most "Initial DataLength" - 1 words of data.
1939 * Copying stops if either the complete Information is copied or if the number of words indicated by the
1940 * "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration
1941 * Information blocks that have different sizes for different F/W versions, e.g. when later versions support
1942 * more tallies than earlier versions.
1943 * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
1944 * as fits is copied, and an error status of HCF_ERR_LEN is returned.
1946 * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
1947 * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
1948 * hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read
1949 * operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info,
1950 * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
1951 * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
1953 * Assert fails if
1954 * - ifbp has a recognizable out-of-range value.
1955 * - reentrancy, may be caused by calling hcf_functions without adequate protection
1956 * against NIC interrupts or multi-threading.
1957 * - ltvp is a NULL pointer.
1958 * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
1959 * - type field of the LTV-record is invalid.
1961 *.DIAGRAM
1962 * Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
1963 * less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
1964 * the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
1965 * remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
1966 * reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
1967 * the minimum requirements of at least 2, so no PC RAM buffer overrun.
1969 * Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
1970 * results in a "NULL" MailBox Info block.
1972 *12: see NOTICE
1973 *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
1974 * other fails via the IFB_DefunctStat mechanism
1975 *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
1976 * the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.
1978 *.NOTICE
1980 * "HCF embedded" pseudo RIDs:
1981 * CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
1982 * CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
1983 * Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
1985 * Remarks: Transfers operation information and transient and persistent configuration information from the
1986 * Card and from the HCF to the MSF.
1987 * The exact layout of the provided data structure depends on the action code. Copying stops if either the
1988 * complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len
1989 * acts as a safe guard against Configuration Information blocks which have different sizes for different
1990 * Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
1991 * decision that unused parts of the PC RAM buffer are not cleared.
1993 * Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
1994 * last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
1995 * for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
1996 * caught by hcf_enable.
1998 * CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
2000 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
2001 * - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable
2002 * - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
2003 * are valid
2004 * - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an
2005 * LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
2006 * defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
2007 * - all remaining codes are invalid and cause an ASSERT.
2009 *.CONDITIONS
2010 * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
2013 *.ENDDOC END DOCUMENTATION
2015 ************************************************************************************************************/
2017 hcf_get_info( IFBP ifbp, LTVP ltvp )
2020 int rc = HCF_SUCCESS;
2021 hcf_16 len = ltvp->len;
2022 hcf_16 type = ltvp->typ;
2023 wci_recordp p = &ltvp->len; //destination word pointer (in LTV record)
2024 hcf_16 *q = NULL; /* source word pointer Note!! DOS COM can't cope with FAR
2025 * as a consequence MailBox must be near which is usually true anyway
2027 int i;
2029 HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ )
2030 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2031 HCFASSERT_INT
2032 HCFASSERT( ltvp, 0 )
2033 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) )
2035 ltvp->len = 0; //default to: No Info Available
2036 #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials
2037 for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/;
2038 #endif // MSF_COMPONENT_ID / HCF_EXT_MB
2039 #if HCF_TALLIES
2040 if ( type == CFG_TALLIES ) { /*3*/
2041 (void)hcf_action( ifbp, HCF_ACT_TALLIES );
2042 q = (hcf_16*)&ifbp->IFB_TallyLen;
2044 #endif // HCF_TALLIES
2045 #if (HCF_EXT) & HCF_EXT_MB
2046 if ( type == CFG_MB_INFO ) {
2047 if ( ifbp->IFB_MBInfoLen ) {
2048 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
2049 ifbp->IFB_MBRp = 0; //;?Probably superfluous
2051 q = &ifbp->IFB_MBp[ifbp->IFB_MBRp];
2052 ifbp->IFB_MBRp += *q + 1; //update read pointer
2053 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
2054 ifbp->IFB_MBRp = 0;
2056 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];
2059 #endif // HCF_EXT_MB
2060 if ( q != NULL ) { //a special or CFG_TALLIES or CFG_MB_INFO
2061 i = min( len, *q ) + 1; //total size of destination (including T-field)
2062 while ( i-- ) {
2063 *p++ = *q;
2064 #if (HCF_TALLIES) & HCF_TALLIES_RESET
2065 if ( q > &ifbp->IFB_TallyTyp && type == CFG_TALLIES ) {
2066 *q = 0;
2068 #endif // HCF_TALLIES_RESET
2069 q++;
2071 } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO
2072 if ( type == CFG_CNTL_OPT ) { //read back effective options
2073 ltvp->len = 2;
2074 ltvp->val[0] = ifbp->IFB_CntlOpt;
2075 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2076 } else if ( type == CFG_PROD_DATA ) { //only needed for some test tool on top of H-II NDIS driver
2077 hcf_io io_port;
2078 wci_bufp pt; //pointer with the "right" type, just to help ease writing macros with embedded assembly
2079 OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) );
2080 OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) );
2081 io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; //to prevent side effects of the MSF-defined macro
2082 p = ltvp->val; //destination char pointer (in LTV record)
2083 i = len - 1;
2084 if (i > 0 ) {
2085 pt = (wci_bufp)p; //just to help ease writing macros with embedded assembly
2086 IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1
2088 } else if ( type == CFG_CMD_HCF ) {
2089 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2090 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported
2091 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2092 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space
2093 ltvp->len = min( len, 4 ); //RESTORE ltv length
2094 P->add_info = IPW( P->mode );
2096 #undef P
2097 #endif // HCF_EXT_NIC_ACCESS
2098 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2099 } else if (type == CFG_FW_PRINTF) {
2100 rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp);
2101 #endif // HCF_ASSERT_PRINTF
2102 } else if ( type >= CFG_RID_FW_MIN ) {
2103 //;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
2104 //;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
2105 //;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
2106 /*17*/ if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS &&
2107 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) {
2108 get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) );
2109 if ( IPW( HREG_STAT ) == 0xFFFF ) { //NIC removal test
2110 ltvp->len = 0;
2111 HCFASSERT( DO_ASSERT, type )
2114 /*12*/ } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy
2116 if ( len < ltvp->len ) {
2117 ltvp->len = len;
2118 if ( rc == HCF_SUCCESS ) {
2119 rc = HCF_ERR_LEN;
2122 HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ),
2123 MERGE_2( type, rc ) ) /*20*/
2124 HCFLOGEXIT( HCF_TRACE_GET_INFO )
2125 return rc;
2126 } // hcf_get_info
2129 /************************************************************************************************************
2131 *.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp )
2132 *.PURPOSE Transfers operation and configuration information to the Card and to the HCF.
2134 *.ARGUMENTS
2135 * ifbp address of the Interface Block
2136 * ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
2138 *.RETURNS
2139 * HCF_SUCCESS
2140 *!! via cmd_exe
2141 * HCF_ERR_NO_NIC NIC removed during data retrieval
2142 * HCF_ERR_TIME_OUT Expected F/W event did not occur in time
2143 * HCF_ERR_DEFUNCT_...
2144 *!! via download CFG_DLNV_START <= type <= CFG_DL_STOP
2145 *!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
2146 *!! via put_frag
2148 *.DESCRIPTION
2149 * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
2150 * The L-value includes the size of the T-field, but not the size of the L-field.
2151 * The T- field specifies the RID placed in the V-field by the MSF.
2153 * Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info:
2154 * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
2155 * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
2156 * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
2157 * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
2158 * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
2159 * o CFG_PROG.
2160 * This code is used to initiate and terminate the process to download data either to
2161 * volatile or to non-volatile RAM on the NIC as well as for the actual download.
2162 * o CFG-codes related to the HCF behavior.
2163 * The related CFG-codes are:
2164 * - CFG_REG_MB
2165 * - CFG_REG_ASSERT_RTNP
2166 * - CFG_REG_INFO_LOG
2167 * - CFG_CMD_NIC
2168 * - CFG_CMD_DONGLE
2169 * - CFG_CMD_HCF
2170 * - CFG_NOTIFY
2172 * All LTV-records "unknown" to the HCF are forwarded to the F/W.
2174 * Assert fails if
2175 * - ifbp has a recognizable out-of-range value.
2176 * - ltvp is a NULL pointer.
2177 * - hcf_put_info was called without prior call to hcf_connect
2178 * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
2179 * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
2180 * - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
2181 * - reentrancy, may be caused by calling hcf_functions without adequate protection against
2182 * NIC interrupts or multi-threading.
2184 *.DIAGRAM
2186 *.NOTICE
2187 * Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
2188 * identical to the RID. Hermes Configuration information is copied from the provided data structure into the
2189 * Card.
2190 * In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
2191 * RID-range.
2193 *20:
2195 *.ENDDOC END DOCUMENTATION
2197 ************************************************************************************************************/
2200 hcf_put_info( IFBP ifbp, LTVP ltvp )
2202 int rc = HCF_SUCCESS;
2204 HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ )
2205 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2206 HCFASSERT_INT
2207 HCFASSERT( ltvp, 0 )
2208 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len )
2210 //all codes between 0xFA00 and 0xFCFF are passed to Hermes
2211 #if (HCF_TYPE) & HCF_TYPE_WPA
2212 { hcf_16 i;
2213 hcf_32 FAR * key_p;
2215 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) {
2216 key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2217 i = TX_KEY; //i.e. TxKeyIndicator == 1, KeyID == 0
2218 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) {
2219 key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2220 i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info);
2222 if ( i & TX_KEY ) { /* TxKeyIndicator == 1
2223 (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
2224 ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 );
2225 ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p );
2226 ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) );
2228 i = ( i & KEY_ID ) * 2;
2229 ifbp->IFB_MICRxKey[i] = CNV_LONGP_TO_LITTLE( (key_p+2) );
2230 ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
2232 #define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
2233 if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY ) ||
2234 ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY &&
2235 ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id )
2237 ) { ifbp->IFB_MICTxCntl = 0; } //disable MIC-engine
2238 #undef P
2240 #endif // HCF_TYPE_WPA
2242 if ( ltvp->typ == CFG_PROG ) {
2243 rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp );
2244 } else switch (ltvp->typ) {
2245 #if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
2246 case CFG_REG_ASSERT_RTNP: //Register MSF Routines
2247 #define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
2248 ifbp->IFB_AssertRtn = P->rtnp;
2249 // ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect
2250 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) ) //just to proof that the complete assert machinery is working
2251 #undef P
2252 break;
2253 #endif // HCF_ASSERT_RT_MSF_RTN
2254 #if (HCF_EXT) & HCF_EXT_INFO_LOG
2255 case CFG_REG_INFO_LOG: //Register Log filter
2256 ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp;
2257 break;
2258 #endif // HCF_EXT_INFO_LOG
2259 case CFG_CNTL_OPT: //overrule option
2260 HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] )
2261 if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA;
2262 ifbp->IFB_CntlOpt |= ltvp->val[0] & USE_16BIT;
2263 break;
2264 #if (HCF_EXT) & HCF_EXT_MB
2265 case CFG_REG_MB: //Register MailBox
2266 #define P ((CFG_REG_MB_STRCT FAR *)ltvp)
2267 HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr )
2268 HCFASSERT( (P)->mb_size >= 60, (P)->mb_size )
2269 ifbp->IFB_MBp = P->mb_addr;
2270 /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
2271 ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size;
2272 ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0;
2273 ifbp->IFB_MBp[0] = 0; //flag the MailBox as empty
2274 ifbp->IFB_MBInfoLen = 0;
2275 HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize )
2276 #undef P
2277 break;
2278 case CFG_MB_INFO: //store MailBoxInfoBlock
2279 rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp );
2280 break;
2281 #endif // HCF_EXT_MB
2283 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2284 case CFG_CMD_NIC:
2285 #define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
2286 OPW( HREG_PARAM_2, P->parm2 );
2287 OPW( HREG_PARAM_1, P->parm1 );
2288 rc = cmd_exe( ifbp, P->cmd, P->parm0 );
2289 P->hcf_stat = (hcf_16)rc;
2290 P->stat = IPW( HREG_STAT );
2291 P->resp0 = IPW( HREG_RESP_0 );
2292 P->resp1 = IPW( HREG_RESP_1 );
2293 P->resp2 = IPW( HREG_RESP_2 );
2294 P->ifb_err_cmd = ifbp->IFB_ErrCmd;
2295 P->ifb_err_qualifier = ifbp->IFB_ErrQualifier;
2296 #undef P
2297 break;
2298 case CFG_CMD_HCF:
2299 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2300 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported
2301 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2302 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space
2303 OPW( P->mode, P->add_info);
2305 #undef P
2306 break;
2307 #endif // HCF_EXT_NIC_ACCESS
2309 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2310 case CFG_FW_PRINTF_BUFFER_LOCATION:
2311 ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp;
2312 break;
2313 #endif // HCF_ASSERT_PRINTF
2315 default: //pass everything unknown above the "FID" range to the Hermes or Dongle
2316 rc = put_info( ifbp, ltvp );
2318 //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */
2319 HCFLOGEXIT( HCF_TRACE_PUT_INFO )
2320 return rc;
2321 } // hcf_put_info
2324 #if HCF_DL_ONLY == 0
2325 /************************************************************************************************************
2327 *.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2328 *.PURPOSE All: decapsulate a message.
2329 * pre-HermesII.5: verify MIC.
2330 * non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
2331 * USB: Transform a message from proprietary USB format to 802.3 format
2333 *.ARGUMENTS
2334 * ifbp address of the Interface Block
2335 * descp Pointer to the Descriptor List location.
2336 * offset USB: not used
2337 * non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
2338 * of frame).
2340 *.RETURNS
2341 * HCF_SUCCESS No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic)
2342 * HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
2343 * reported by hcf_service_nic)
2344 * HCF_ERR_NO_NIC NIC removed during data retrieval
2345 * HCF_ERR_DEFUNCT...
2347 *.DESCRIPTION
2348 * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
2349 * is reported to be available by the Service NIC Function.
2351 * The Receive Message Function copies the message data available in the Card memory into a buffer structure
2352 * provided by the MSF.
2353 * Only data of the message indicated by the Service NIC Function can be obtained.
2354 * Execution of the Service NIC function may result in the availability of a new message, but it definitely
2355 * makes the message reported by the preceding Service NIC function, unavailable.
2357 * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
2358 * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
2359 * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
2360 * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
2361 * When offset is within lookahead, data is copied from lookahead.
2362 * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
2363 * of offset
2365 *.NOTICE:
2366 * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
2367 * o at exit: Receive Frame in NIC memory is released
2369 * Description:
2370 * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
2371 * Part of the current Receive Frame Structure to the Host memory data buffer structure
2372 * identified by descp.
2373 * The maximum value for Offset is the number of characters of the 802.3 frame read into the
2374 * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
2375 * Control and 802.11 fields)
2376 * If Offset is less than the maximum value, copying starts from the look ahead buffer till the
2377 * end of that buffer is reached
2378 * Then (or if the maximum value is specified for Offset), the
2379 * message is directly copied from NIC memory to Host memory.
2380 * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
2381 * undefined.
2382 * Copying stops if either:
2383 * o the end of the 802.3 frame is reached
2384 * o the Descriptor with a NULL pointer in the next_desc_addr field is reached
2386 * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
2387 * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
2389 * For the time being (PCI Bus mastering not yet supported), only the following fields of each
2390 * of the descriptors in the descriptor list must be set by the MSF:
2391 * o buf_cntl.buf_dim[1]
2392 * o *next_desc_addr
2393 * o *buf_addr
2394 * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
2395 * the number of bytes in the buffer corresponding with the Descriptor.
2396 * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
2397 * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
2398 * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
2399 * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
2400 * be, so it may change.
2402 * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
2403 * data as elegantly as possible under the constraints and requirements posed by the (N)OS.
2404 * If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
2405 * This error constitutes a logic flaw in the MSF
2406 * The HCF can only catch a minority of this
2407 * type of errors
2408 * Based on consistency ideas, the HCF catches none of these errors.
2410 * Assert fails if
2411 * - ifbp has a recognizable out-of-range value
2412 * - there is no unacknowledged Rx-message available
2413 * - offset is out of range (outside look ahead buffer)
2414 * - descp is a NULL pointer
2415 * - any of the descriptors is not double word aligned
2416 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2417 * against NIC interrupts or multi-threading.
2418 * - Interrupts are enabled.
2420 *.DIAGRAM
2422 *.NOTICE
2423 * - by using unsigned int as type for offset, no need to worry about negative offsets
2424 * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
2425 * was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
2426 * descriptor to zero.
2428 *.ENDDOC END DOCUMENTATION
2430 ************************************************************************************************************/
2432 hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2434 int rc = HCF_SUCCESS;
2435 wci_bufp cp; //char oriented working pointer
2436 hcf_16 i;
2437 int tot_len = ifbp->IFB_RxLen - offset; //total length
2438 wci_bufp lap = ifbp->IFB_lap + offset; //start address in LookAhead Buffer
2439 hcf_16 lal = ifbp->IFB_lal - offset; //available data within LookAhead Buffer
2440 hcf_16 j;
2442 HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset )
2443 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2444 HCFASSERT_INT
2445 HCFASSERT( descp, HCF_TRACE_RCV_MSG )
2446 HCFASSERT( ifbp->IFB_RxLen, HCF_TRACE_RCV_MSG )
2447 HCFASSERT( ifbp->IFB_RxLen >= offset, MERGE_2( offset, ifbp->IFB_RxLen ) )
2448 HCFASSERT( ifbp->IFB_lal >= offset, offset )
2449 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA )
2451 if ( tot_len < 0 ) {
2452 lal = 0; tot_len = 0; //suppress all copying activity in the do--while loop
2454 do { //loop over all available fragments
2455 // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
2456 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
2457 cp = descp->buf_addr;
2458 j = min( (hcf_16)tot_len, descp->BUF_SIZE ); //minimum of "what's` available" and fragment size
2459 descp->BUF_CNT = j;
2460 tot_len -= j; //adjust length still to go
2461 if ( lal ) { //if lookahead Buffer not yet completely copied
2462 i = min( lal, j ); //minimum of "what's available" in LookAhead and fragment size
2463 lal -= i; //adjust length still available in LookAhead
2464 j -= i; //adjust length still available in current fragment
2465 /*;? while loop could be improved by moving words but that is complicated on platforms with
2466 * alignment requirements*/
2467 while ( i-- ) *cp++ = *lap++;
2469 if ( j ) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
2470 get_frag( ifbp, cp, j BE_PAR(0) );
2471 CALC_RX_MIC( cp, j );
2473 } while ( ( descp = descp->next_desc_addr ) != NULL );
2474 #if (HCF_TYPE) & HCF_TYPE_WPA
2475 if ( ifbp->IFB_RxFID ) {
2476 rc = check_mic( ifbp ); //prevents MIC error report if hcf_service_nic already consumed all
2478 #endif // HCF_TYPE_WPA
2479 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); //only 1 shot to get the data, so free the resources in the NIC
2480 HCFASSERT( rc == HCF_SUCCESS, rc )
2481 HCFLOGEXIT( HCF_TRACE_RCV_MSG )
2482 return rc;
2483 } // hcf_rcv_msg
2484 #endif // HCF_DL_ONLY
2487 #if HCF_DL_ONLY == 0
2488 /************************************************************************************************************
2490 *.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2491 *.PURPOSE Encapsulate a message and append padding and MIC.
2492 * non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
2493 * USB: Transfer resulting message into a flat buffer.
2495 *.ARGUMENTS
2496 * ifbp address of the Interface Block
2497 * descp pointer to the DescriptorList or NULL
2498 * tx_cntl indicates MAC-port and (Hermes) options
2499 * HFS_TX_CNTL_SPECTRALINK
2500 * HFS_TX_CNTL_PRIO
2501 * HFS_TX_CNTL_TX_OK
2502 * HFS_TX_CNTL_TX_EX
2503 * HFS_TX_CNTL_TX_DELAY
2504 * HFS_TX_CNTL_TX_CONT
2505 * HCF_PORT_0 MAC Port 0 (default)
2506 * HCF_PORT_1 (AP only) MAC Port 1
2507 * HCF_PORT_2 (AP only) MAC Port 2
2508 * HCF_PORT_3 (AP only) MAC Port 3
2509 * HCF_PORT_4 (AP only) MAC Port 4
2510 * HCF_PORT_5 (AP only) MAC Port 5
2511 * HCF_PORT_6 (AP only) MAC Port 6
2513 *.RETURNS
2514 * HCF_SUCCESS
2515 * HCF_ERR_DEFUNCT_..
2516 * HCF_ERR_TIME_OUT
2518 *.DESCRIPTION:
2519 * The Send Message Function embodies 2 functions:
2520 * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
2521 * Frame Structure (TxFS) in NIC memory.
2522 * o Issue a send command to the F/W to actually transmit the contents of the TxFS.
2524 * Control is based on the Resource Indicator IFB_RscInd.
2525 * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
2526 * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
2527 * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
2528 * Resource Indicator periodically after calling hcf_service_nic.
2530 * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
2531 * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
2532 * If the Resource is not available, Send Message Function execution must be postponed until after processing of
2533 * a next hcf_service_nic it appears that the Resource has become available.
2534 * The message is copied from the buffer structure identified by descp to the NIC.
2535 * Copying stops if a NULL pointer in the next_desc_addr field is reached.
2536 * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
2537 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2539 * The Send Message Function activates the F/W to actually send the message to the medium when the
2540 * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
2541 * If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
2542 * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
2543 * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
2544 * represented by the descp of the preceding call is send.
2546 * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
2547 * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
2548 * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
2549 * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
2550 * frame, otherwise it is treated as an 802.3 frame.
2551 * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
2552 * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
2553 * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
2554 * type field. This insertion is transparent for the MSF.
2555 * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
2556 * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
2557 * Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header,
2558 * RFC1042 uses AA AA 03 00 00 00 as SNAP header.
2559 * The table currently contains:
2560 * 0 0x80F3 AppleTalk Address Resolution Protocol (AARP)
2561 * 0 0x8137 IPX
2563 * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
2564 * 802.3 frames to 1514 bytes.
2565 * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
2566 * protocols with 802.3 like frames with a size larger than 1514 bytes.
2568 * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
2569 * cumulative value of the buf_cntl.buf_dim[0] fields.
2570 * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
2571 * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
2572 * the Length field of the 802.3 frame.
2573 * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
2574 * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
2575 * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
2576 * will result in MIC errors on the Receiving side.
2577 * Currently this problem is flagged on the Transmit side by an Assert.
2578 * The following fields of each of the descriptors in the descriptor list must be set by the MSF:
2579 * o buf_cntl.buf_dim[0]
2580 * o *next_desc_addr
2581 * o *buf_addr
2583 * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
2584 * the HFS_TX_CNTL field of the TxFS.
2586 * Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent-
2587 * way to recognize card removal/insertion.
2588 * The total system must be robust against card removal and there is no principal difference between card removal
2589 * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
2591 * Assert fails if
2592 * - ifbp has a recognizable out-of-range value
2593 * - descp is a NULL pointer
2594 * - no resources for PIF available.
2595 * - Interrupts are enabled.
2596 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2597 * against NIC interrupts or multi-threading.
2599 *.DIAGRAM
2600 *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
2601 * routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After
2602 * all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
2603 *7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the
2604 * return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the
2605 * need for a return code below).
2606 * Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different
2607 * values for H-I (regardless of SSN) and H-II.
2608 * By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
2609 * HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively.
2610 *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
2611 * really help but it makes the flow easier to follow to do not optimize on this difference
2613 * hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
2614 * The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
2615 * 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
2616 * descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
2617 * or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
2619 *.NOTICE
2620 * hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
2621 * This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
2622 * processor utilization and being still acceptable robust at the WCI !!!!!
2624 * hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
2625 * hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
2626 * after a successful completion of hcf_send_msg() but before the actual transmission took place.
2627 * To accommodate user expectations the current implementation does report NIC absence.
2628 * Defunct blocks all NIC access and will (also) be reported on a number of other calls.
2630 * hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
2631 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2632 * Note that this possibly results in the transmission of incomplete frames.
2634 * After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
2635 * whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
2636 * is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
2637 * over by the F/W and hopes for an Allocate event in due time
2639 *.ENDDOC END DOCUMENTATION
2641 ************************************************************************************************************/
2643 hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2645 int rc = HCF_SUCCESS;
2646 DESC_STRCT *p /* = descp*/; //working pointer
2647 hcf_16 len; // total byte count
2648 hcf_16 i;
2650 hcf_16 fid = 0;
2652 HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd )
2653 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB )
2655 HCFLOGENTRY( HCF_TRACE_SEND_MSG, tx_cntl )
2656 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2657 HCFASSERT_INT
2658 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2659 * so skip */
2660 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
2661 #if HCF_ASSERT
2662 { int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
2663 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
2665 #endif // HCF_ASSERT
2667 if ( descp ) ifbp->IFB_TxFID = 0; //cancel a pre-put message
2669 #if (HCF_EXT) & HCF_EXT_TX_CONT // Continuous transmit test
2670 if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) {
2671 fid = get_fid(ifbp);
2672 if (fid != 0 ) {
2673 //setup BAP to begin of TxFS
2674 (void)setup_bap( ifbp, fid, 0, IO_OUT );
2675 //copy all the fragments in a transparent fashion
2676 for ( p = descp; p; p = p->next_desc_addr ) {
2677 /* obnoxious warning C4769: conversion of near pointer to long integer */
2678 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
2679 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2681 rc = cmd_exe( ifbp, HCMD_THESEUS | HCMD_BUSY | HCMD_STARTPREAMBLE, fid );
2682 if ( ifbp->IFB_RscInd == 0 ) {
2683 ifbp->IFB_RscInd = get_fid( ifbp );
2686 // een slecht voorbeeld doet goed volgen ;?
2687 HCFLOGEXIT( HCF_TRACE_SEND_MSG )
2688 return rc;
2690 #endif // HCF_EXT_TX_CONT
2691 /* the following initialization code is redundant for a pre-put message
2692 * but moving it inside the "if fid" logic makes the merging with the
2693 * USB flow awkward
2695 #if (HCF_TYPE) & HCF_TYPE_WPA
2696 tx_cntl |= ifbp->IFB_MICTxCntl;
2697 #endif // HCF_TYPE_WPA
2698 fid = ifbp->IFB_TxFID;
2699 if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 ) /* 4 */
2700 /* skip the next compound statement if:
2701 - pre-put message or
2702 - no fid available (which should never occur if the MSF adheres to the WCI)
2704 { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
2705 //calculate total length ;? superfluous unless CCX or Encapsulation
2706 len = 0;
2707 p = descp;
2708 do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL );
2709 p = descp;
2710 //;? HCFASSERT( len <= HCF_MAX_MSG, len )
2711 /*7*/ (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT );
2712 #if (HCF_TYPE) & HCF_TYPE_TX_DELAY
2713 HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl )
2714 if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) {
2715 tx_cntl &= ~HFS_TX_CNTL_TX_DELAY; //!!HFS_TX_CNTL_TX_DELAY no longer available
2716 ifbp->IFB_TxFID = fid;
2717 fid = 0; //!!fid no longer available, be careful when modifying code
2719 #endif // HCF_TYPE_TX_DELAY
2720 OPW( HREG_DATA_1, tx_cntl ) ;
2721 OPW( HREG_DATA_1, 0 );
2722 #if ! ( (HCF_TYPE) & HCF_TYPE_CCX )
2723 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT )
2724 /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
2725 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
2726 if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */
2727 #endif // HCF_TYPE_CCX
2728 CALC_TX_MIC( NULL, -1 ); //initialize MIC
2729 /*10*/ put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation
2730 CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE ); //MIC over DA, SA
2731 CALC_TX_MIC( null_addr, 4 ); //MIC over (virtual) priority field
2732 #if (HCF_TYPE) & HCF_TYPE_CCX
2733 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
2734 if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
2735 ((GET_BUF_CNT(p) >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
2736 (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) &&
2737 (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) &&
2738 (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) &&
2739 (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00)))
2741 i = HCF_DASA_SIZE;
2743 OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i ));
2745 /* need to send out the remainder of the fragment */
2746 put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) );
2748 else
2749 #endif // HCF_TYPE_CCX
2751 //if encapsulation needed
2752 #if HCF_ENCAP == HCF_ENC
2753 //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
2754 if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) {
2755 OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) );
2756 //write splice with MIC calculation
2757 put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) );
2758 CALC_TX_MIC( snap_header, sizeof(snap_header) ); //MIC over 6 byte SNAP
2759 i = HCF_DASA_SIZE;
2760 } else
2761 #endif // HCF_ENC
2763 OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] );
2764 i = 14;
2766 //complete 1st fragment starting with Type with MIC calculation
2767 put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) );
2768 CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i );
2770 //do the remaining fragments with MIC calculation
2771 while ( ( p = p->next_desc_addr ) != NULL ) {
2772 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2773 * so skip */
2774 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
2775 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2776 CALC_TX_MIC( p->buf_addr, p->BUF_CNT );
2778 //pad message, finalize MIC calculation and write MIC to NIC
2779 put_frag_finalize( ifbp );
2781 if ( fid ) {
2782 /*16*/ rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid );
2783 ifbp->IFB_TxFID = 0;
2784 /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
2785 * that it might just as well be acceptable to skip this
2786 * "optimization" code and handle that additional interrupt once in a while
2788 // 180 degree error in logic ;? #if ALLOC_15
2789 /*20*/ if ( ifbp->IFB_RscInd == 0 ) {
2790 ifbp->IFB_RscInd = get_fid( ifbp );
2792 // #endif // ALLOC_15
2794 // HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd )
2795 HCFLOGEXIT( HCF_TRACE_SEND_MSG )
2796 return rc;
2797 } // hcf_send_msg
2798 #endif // HCF_DL_ONLY
2801 #if HCF_DL_ONLY == 0
2802 /************************************************************************************************************
2804 *.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2805 *.PURPOSE Services (most) NIC events.
2806 * Provides received message
2807 * Provides status information.
2809 *.ARGUMENTS
2810 * ifbp address of the Interface Block
2811 * In non-DMA mode:
2812 * bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
2813 * len length in bytes of buffer specified by bufp
2814 * value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
2816 *.RETURNS
2817 * HCF_SUCCESS
2818 * HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp)
2820 *.DESCRIPTION
2822 * MSF-accessible fields of Result Block
2823 * - IFB_RxLen 0 or Frame size.
2824 * - IFB_MBInfoLen 0 or the L-field of the oldest MBIB.
2825 * - IFB_RscInd
2826 * - IFB_HCF_Tallies updated if a corresponding event occurred.
2827 * - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC.
2828 * - IFB_DmaPackets
2829 * - IFB_TxFsStat
2830 * - IFB_TxFsSwSup
2831 * - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
2833 * - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call.
2835 * When IFB_MBInfoLen is non-zero, at least one MBIB is available.
2837 * IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
2838 * excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
2839 * equals 0x0000.
2840 * Repeated execution causes the Service NIC Function to provide information about subsequently received
2841 * messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between.
2843 * When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack.
2844 * When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame.
2845 * In case of Monitor Mode, it may also be a frame with an error or a WMP frame.
2846 * Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer.
2848 * If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to
2849 * the buffer identified by bufp.
2850 * Copying stops either after len bytes or when the complete 802.3 frame is copied.
2851 * During the copying the message is decapsulated (if appropriate).
2852 * If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer),
2853 * the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg.
2854 * Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return
2855 * status accordingly. In this case, hcf_rcv_msg does not check the MIC.
2857 * The MIC calculation algorithm works more efficient if the length of the look ahead buffer is
2858 * such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n.
2860 * The Service NIC Function supports the NIC event service handling process.
2861 * It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related
2862 * information is saved.
2863 * The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event
2864 * cause(s). It is the responsibility of the MSF to perform all not directly NIC related interrupt service
2865 * actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt
2866 * Enabling/Disabling.
2867 * In case of a polled based system, the Service NIC Function must be executed "frequently".
2868 * The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd).
2870 * hcf_service_nic returns:
2871 * - The length of the data in the available MBIB (IFB_MBInfoLen)
2872 * - Changes in the link status (IFB_LinkStat)
2873 * - The length of the data in the available Receive Frame Structure (IFB_RxLen)
2874 * - updated IFB_RscInd
2875 * - Updated Tallies
2877 * hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks.
2878 * A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to
2879 * hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to
2880 * restore (which is not necessarily the same as enabling) the card interrupts.
2881 * In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the
2882 * specific requirements of that environment to translate the interrupt strategy to a polled strategy.
2884 * hcf_service_nic services the following Hermes events:
2885 * - HREG_EV_INFO Asynchronous Information Frame
2886 * - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame
2887 * - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
2888 * - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
2889 * ** in non_DMA mode
2890 * - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at
2891 * completion of hcf_send_msg/notify
2892 * - HREG_EV_RX the detection of the availability of received messages
2893 * including WaveLAN Management Protocol (WMP) message processing
2894 * ** in DMA mode
2895 * - HREG_EV_RDMAD
2896 * - HREG_EV_TDMAD
2897 *!! hcf_service_nic does not service the following Hermes events:
2898 *!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
2899 *!! what the cause is, so no meaningful strategy is available. Not acking the bit is
2900 *!! probably the best help that can be given to the debugger.
2901 *!! HREG_EV_CMD handled in cmd_wait.
2902 *!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
2903 *!! between the F/W and the DMA engine.
2904 *!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
2906 * If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
2907 * This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
2908 * but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is
2909 * zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
2910 * which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
2911 * moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
2912 * implementation under control of the MSF.
2914 * **Rx Buffer free strategy
2915 * When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
2916 * means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
2917 * before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
2918 * when:
2919 * - the complete frame fits in the lookahead buffer or
2920 * - hcf_rcv_msg is called or
2921 * - hcf_action with HCF_ACT_RX is called or
2922 * - hcf_service_nic is called again
2923 * It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
2924 * a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
2925 * MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
2926 * interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
2927 * to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
2928 * Assert fails if
2929 * - ifbp is zero or other recognizable out-of-range value.
2930 * - hcf_service_nic is called without a prior call to hcf_connect.
2931 * - interrupts are enabled.
2932 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2933 * against NIC interrupts or multi-threading.
2936 *.DIAGRAM
2937 *1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
2938 * by isr_info.
2940 *1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
2941 * accordingly by isr_info.
2942 *2: IFB_RxLen must be cleared before the NIC presence check otherwise:
2943 * - this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
2944 * - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
2945 * Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
2946 * well.
2947 *4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
2948 * hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
2949 * hcf_service_nic is also skipped in those cases.
2950 * To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
2951 * debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
2952 * test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is choosen for strategy based on
2953 * HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
2954 * due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
2955 * Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
2956 * hcf_service_nic even more important.
2957 *8: The event status register of the Hermes is sampled
2958 * The assert checks for unexpected events ;?????????????????????????????????????.
2959 * - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
2960 * a too heavily loaded system.
2961 * - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2964 * HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
2965 * definition at compile time.
2966 * The following activities are handled:
2967 * - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
2968 * alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
2969 * 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
2970 * TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
2971 * in IFB_RscInd is restored.
2972 * - Info drop events are handled by incrementing a tally
2973 * - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
2974 * - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
2975 * into the IFB for further processing by the MSF.
2976 * Note the complication of the zero-FID protection sub-scheme in DAWA.
2977 * Note, the Ack of all of above events is handled at the end of hcf_service_nic
2978 *16: In case of non-DMA ( either not compiled in or due to a run-time choice):
2979 * If an Rx-frame is available, first the FID of that frame is read, including the complication of the
2980 * zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
2981 * hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
2982 * The Assert validates the HCF assumption about Hermes implementation upon which the range of
2983 * Pseudo-RIDs is based.
2984 * Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
2985 * The status field is converted to native Endianess.
2986 * The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the
2987 * 802.3 MAC header, stored in IFB_RxLen.
2988 * In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
2989 * length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
2990 * No MIC calculation processes are associated with the reading of these Control fields.
2991 *26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
2992 * needed in the real (hostile) world.
2993 * The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
2994 * 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
2995 * that the implementation goes haywire, a check on the length is needed.
2996 * The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
2997 * Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
2998 * compensated for the SNAP header length.
2999 * The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
3000 * MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
3001 *30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch
3002 *32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
3003 * routine address and appropriate key.
3004 *34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
3005 * - the Hermes reported Tunnel encapsulation or
3006 * - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
3007 * 1042 as the encapsulation mechanism
3008 * Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the
3009 * BE_PAR in get_frag.
3010 *36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
3011 * L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
3012 * be adjusted by 8.
3013 *40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
3014 * read data into the lookahead buffer.
3015 * If the lookahead buffer contains the complete message, check the MIC. The majority considered this
3016 * I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
3017 *44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
3018 * to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
3019 * This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
3020 * IFB_RxLEN thus corrupting the I/F to the MSF.
3021 *;?: In case of DMA (compiled in and activated):
3024 *54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
3025 * ACKs), is supposed to diminish the potential of race conditions in the F/W.
3026 * Note 1: The CMD event is acknowledged in cmd_cmpl
3027 * Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
3028 * Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
3030 *.NOTICE
3031 * The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
3032 * The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the
3033 * hcf_service_nic call that reported the occurrence of this event.
3034 * This acknowledgment
3035 * makes the next Receive Frame Structure (if any) available.
3036 * An updated IFB_RxLen
3037 * field reflects this availability.
3039 *.NOTICE
3040 * The minimum size for Len must supply space for:
3041 * - an F/W dependent number of bytes of Control Info field including the 802.11 Header field
3042 * - Destination Address
3043 * - Source Address
3044 * - Length field
3045 * - [ SNAP Header]
3046 * - [ Ethernet-II Type]
3047 * This results in 68 for Hermes-I and 80 for Hermes-II
3048 * This way the minimum amount of information is available needed by the HCF to determine whether the frame
3049 * must be decapsulated.
3050 *.ENDDOC END DOCUMENTATION
3052 ************************************************************************************************************/
3054 hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
3057 int rc = HCF_SUCCESS;
3058 hcf_16 stat;
3059 wci_bufp buf_addr;
3060 hcf_16 i;
3062 HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt )
3063 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
3064 HCFASSERT_INT
3066 ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP /* 1*/
3067 ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE; /* 1*/
3068 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); /* 2*/
3069 if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) { /* 4*/
3070 /* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3071 * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3072 * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
3074 /* 8*/
3075 if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA
3076 ifbp->IFB_RscInd = 1;
3078 IF_TALLY( if ( stat & HREG_EV_INFO_DROP ) ifbp->IFB_HCF_Tallies.NoBufInfo++; )
3079 #if (HCF_EXT) & HCF_EXT_INT_TICK
3080 if ( stat & HREG_EV_TICK ) {
3081 ifbp->IFB_TickCnt++;
3083 #endif // HCF_EXT_INT_TICK
3084 if ( stat & HREG_EV_INFO ) {
3085 isr_info( ifbp );
3087 #if (HCF_EXT) & HCF_EXT_INT_TX_EX
3088 if ( stat & HREG_EV_TX_EXT && ( i = IPW( HREG_TX_COMPL_FID ) ) != 0 /*DAWA*/ ) {
3089 DAWA_ZERO_FID( HREG_TX_COMPL_FID )
3090 (void)setup_bap( ifbp, i, 0, IO_IN );
3091 get_frag( ifbp, &ifbp->IFB_TxFsStat, HFS_SWSUP BE_PAR(1) );
3093 #endif // HCF_EXT_INT_TX_EX
3094 //!rlav DMA engine will handle the rx event, not the driver
3095 #if HCF_DMA
3096 if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations
3097 #endif // HCF_DMA
3098 /*16*/ if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK
3099 HCFASSERT( bufp, len )
3100 HCFASSERT( len >= HFS_DAT + 2, len )
3101 DAWA_ZERO_FID( HREG_RX_FID )
3102 HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID)
3103 (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN );
3104 get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) );
3105 ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST;
3106 ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2);
3107 /*26*/ if ( ifbp->IFB_RxLen >= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W)
3108 //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
3109 /*30*/ get_frag( ifbp, buf_addr, 22 BE_PAR(0) );
3110 /*32*/ CALC_RX_MIC( bufp, -1 ); //. initialize MIC
3111 CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //. MIC over DA, SA
3112 CALC_RX_MIC( null_addr, 4 ); //. MIC over (virtual) priority field
3113 CALC_RX_MIC( buf_addr+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes)
3114 buf_addr += 22;
3115 #if (HCF_TYPE) & HCF_TYPE_CCX
3116 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
3117 if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON )
3118 #endif // HCF_TYPE_CCX
3120 #if HCF_ENCAP == HCF_ENC
3121 HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len )
3122 /*34*/ i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
3123 if ( i == HFS_STAT_TUNNEL ||
3124 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) {
3125 //. copy E-II Type to 802.3 LEN field
3126 /*36*/ bufp[HFS_LEN ] = bufp[HFS_TYPE ];
3127 bufp[HFS_LEN+1] = bufp[HFS_TYPE+1];
3128 //. discard Snap by overwriting with data
3129 ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN);
3130 buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36
3132 #endif // HCF_ENC
3135 /*40*/ ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen );
3136 i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) );
3137 get_frag( ifbp, buf_addr, i BE_PAR(0) );
3138 CALC_RX_MIC( buf_addr, i );
3139 #if (HCF_TYPE) & HCF_TYPE_WPA
3140 if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) {
3141 rc = check_mic( ifbp );
3143 #endif // HCF_TYPE_WPA
3144 /*44*/ if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) {
3145 ifbp->IFB_RxFID = 0;
3146 } else { /* IFB_RxFID is cleared, so you do not get another Rx_Ack at next entry of hcf_service_nic */
3147 stat &= (hcf_16)~HREG_EV_RX; //don't ack Rx if processing not yet completed
3150 // in case of DMA: signal availability of rx and/or tx packets to MSF
3151 IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ); )
3152 // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
3153 /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3154 //a positive mask would be easier to understand /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3155 IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX; )
3156 if ( stat ) {
3157 DAWA_ACK( stat ); /*DAWA*/
3160 HCFLOGEXIT( HCF_TRACE_SERVICE_NIC )
3161 return rc;
3162 } // hcf_service_nic
3163 #endif // HCF_DL_ONLY
3166 /************************************************************************************************************
3167 ************************** H C F S U P P O R T R O U T I N E S ******************************************
3168 ************************************************************************************************************/
3171 /************************************************************************************************************
3173 *.SUBMODULE void calc_mic( hcf_32* p, hcf_32 m )
3174 *.PURPOSE calculate MIC on a quad byte.
3176 *.ARGUMENTS
3177 * p address of the MIC
3178 * m 32 bit value to be processed by the MIC calculation engine
3180 *.RETURNS N.A.
3182 *.DESCRIPTION
3183 * calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
3184 * Michael::appendByte()
3185 * of Appendix C of ..........
3188 *.DIAGRAM
3190 *.NOTICE
3191 *.ENDDOC END DOCUMENTATION
3193 ************************************************************************************************************/
3195 #if (HCF_TYPE) & HCF_TYPE_WPA
3197 #define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) )
3198 #define ROR32( A, n ) ROL32( (A), 32-(n) )
3200 #define L *p
3201 #define R *(p+1)
3203 void
3204 calc_mic( hcf_32* p, hcf_32 m )
3206 #if HCF_BIG_ENDIAN
3207 m = (m >> 16) | (m << 16);
3208 #endif // HCF_BIG_ENDIAN
3209 L ^= m;
3210 R ^= ROL32( L, 17 );
3211 L += R;
3212 R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);
3213 L += R;
3214 R ^= ROL32( L, 3 );
3215 L += R;
3216 R ^= ROR32( L, 2 );
3217 L += R;
3218 } // calc_mic
3219 #undef R
3220 #undef L
3221 #endif // HCF_TYPE_WPA
3225 #if (HCF_TYPE) & HCF_TYPE_WPA
3226 /************************************************************************************************************
3228 *.SUBMODULE void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3229 *.PURPOSE calculate MIC on a single fragment.
3231 *.ARGUMENTS
3232 * ifbp address of the Interface Block
3233 * bufp (byte) address of buffer
3234 * len length in bytes of buffer specified by bufp
3236 *.RETURNS N.A.
3238 *.DESCRIPTION
3239 * calc_mic_rx_frag ........
3241 * The MIC is located in the IFB.
3242 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3243 * hcf_rcv_msg.
3246 *.DIAGRAM
3248 *.NOTICE
3249 *.ENDDOC END DOCUMENTATION
3251 ************************************************************************************************************/
3252 void
3253 calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3255 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3256 int i;
3258 if ( len == -1 ) { //initialize MIC housekeeping
3259 i = *(wci_recordp)&p[HFS_STAT];
3260 /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
3261 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
3262 * to be re-investigated by NvR
3265 if ( ( i & HFS_STAT_MIC ) == 0 ) {
3266 ifbp->IFB_MICRxCarry = 0xFFFF; //suppress MIC calculation
3267 } else {
3268 ifbp->IFB_MICRxCarry = 0;
3269 //* Note that "coincidentally" the bit positions used in HFS_STAT
3270 //* correspond with the offset of the key in IFB_MICKey
3271 i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10; /* coincidentally no shift needed for i itself */
3272 ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i ]);
3273 ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]);
3275 } else {
3276 if ( ifbp->IFB_MICRxCarry == 0 ) {
3277 x.x32 = CNV_LONGP_TO_LITTLE(p);
3278 p += 4;
3279 if ( len < 4 ) {
3280 ifbp->IFB_MICRxCarry = (hcf_16)len;
3281 } else {
3282 ifbp->IFB_MICRxCarry = 4;
3283 len -= 4;
3285 } else while ( ifbp->IFB_MICRxCarry < 4 && len ) { //note for hcf_16 applies: 0xFFFF > 4
3286 x.x8[ifbp->IFB_MICRxCarry++] = *p++;
3287 len--;
3289 while ( ifbp->IFB_MICRxCarry == 4 ) { //contrived so we have only 1 call to calc_mic so we could bring it in-line
3290 calc_mic( ifbp->IFB_MICRx, x.x32 );
3291 x.x32 = CNV_LONGP_TO_LITTLE(p);
3292 p += 4;
3293 if ( len < 4 ) {
3294 ifbp->IFB_MICRxCarry = (hcf_16)len;
3296 len -= 4;
3299 } // calc_mic_rx_frag
3300 #endif // HCF_TYPE_WPA
3303 #if (HCF_TYPE) & HCF_TYPE_WPA
3304 /************************************************************************************************************
3306 *.SUBMODULE void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3307 *.PURPOSE calculate MIC on a single fragment.
3309 *.ARGUMENTS
3310 * ifbp address of the Interface Block
3311 * bufp (byte) address of buffer
3312 * len length in bytes of buffer specified by bufp
3314 *.RETURNS N.A.
3316 *.DESCRIPTION
3317 * calc_mic_tx_frag ........
3319 * The MIC is located in the IFB.
3320 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3321 * hcf_rcv_msg.
3324 *.DIAGRAM
3326 *.NOTICE
3327 *.ENDDOC END DOCUMENTATION
3329 ************************************************************************************************************/
3330 void
3331 calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3333 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3335 //if initialization request
3336 if ( len == -1 ) {
3337 //. presume MIC calculation disabled
3338 ifbp->IFB_MICTxCarry = 0xFFFF;
3339 //. if MIC calculation enabled
3340 if ( ifbp->IFB_MICTxCntl ) {
3341 //. . clear MIC carry
3342 ifbp->IFB_MICTxCarry = 0;
3343 //. . initialize MIC-engine
3344 ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]); /*Tx always uses Key 0 */
3345 ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]);
3347 //else
3348 } else {
3349 //. if MIC enabled (Tx) / if MIC present (Rx)
3350 //. and no carry from previous calc_mic_frag
3351 if ( ifbp->IFB_MICTxCarry == 0 ) {
3352 //. . preset accu with 4 bytes from buffer
3353 x.x32 = CNV_LONGP_TO_LITTLE(p);
3354 //. . adjust pointer accordingly
3355 p += 4;
3356 //. . if buffer contained less then 4 bytes
3357 if ( len < 4 ) {
3358 //. . . promote valid bytes in accu to carry
3359 //. . . flag accu to contain incomplete double word
3360 ifbp->IFB_MICTxCarry = (hcf_16)len;
3361 //. . else
3362 } else {
3363 //. . . flag accu to contain complete double word
3364 ifbp->IFB_MICTxCarry = 4;
3365 //. . adjust remaining buffer length
3366 len -= 4;
3368 //. else if MIC enabled
3369 //. and if carry bytes from previous calc_mic_tx_frag
3370 //. . move (1-3) bytes from carry into accu
3371 } else while ( ifbp->IFB_MICTxCarry < 4 && len ) { /* note for hcf_16 applies: 0xFFFF > 4 */
3372 x.x8[ifbp->IFB_MICTxCarry++] = *p++;
3373 len--;
3375 //. while accu contains complete double word
3376 //. and MIC enabled
3377 while ( ifbp->IFB_MICTxCarry == 4 ) {
3378 //. . pass accu to MIC engine
3379 calc_mic( ifbp->IFB_MICTx, x.x32 );
3380 //. . copy next 4 bytes from buffer to accu
3381 x.x32 = CNV_LONGP_TO_LITTLE(p);
3382 //. . adjust buffer pointer
3383 p += 4;
3384 //. . if buffer contained less then 4 bytes
3385 //. . . promote valid bytes in accu to carry
3386 //. . . flag accu to contain incomplete double word
3387 if ( len < 4 ) {
3388 ifbp->IFB_MICTxCarry = (hcf_16)len;
3390 //. . adjust remaining buffer length
3391 len -= 4;
3394 } // calc_mic_tx_frag
3395 #endif // HCF_TYPE_WPA
3398 #if HCF_PROT_TIME
3399 /************************************************************************************************************
3401 *.SUBMODULE void calibrate( IFBP ifbp )
3402 *.PURPOSE calibrates the S/W protection counter against the Hermes Timer tick.
3404 *.ARGUMENTS
3405 * ifbp address of the Interface Block
3407 *.RETURNS N.A.
3409 *.DESCRIPTION
3410 * calibrates the S/W protection counter against the Hermes Timer tick
3411 * IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
3412 * more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
3413 * This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
3414 * Initialize command.
3417 *.DIAGRAM
3419 *1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
3420 * guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
3421 * number of init calls) under normal circumstances.
3422 *2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
3423 * especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
3424 * from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
3425 * 16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
3426 * requested range. This way a compromise is achieved between accuracy and duration of the calibration
3427 * process.
3428 *3: Acknowledge the Timer Tick Event.
3429 * Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
3430 * Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
3431 * to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
3432 * The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
3433 * microseconds.
3434 *4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
3435 * Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
3436 * set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
3437 *8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
3439 *.NOTICE
3440 * o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
3441 * failure of the Hermes TimerTick is considered fatal.
3442 * o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
3443 * believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
3444 * environment with humans.
3445 * o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
3446 * next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
3447 * of the last call
3448 * o The return code is preset at Time out.
3449 * The additional complication that no calibrated value for the protection count can be assumed since
3450 * calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
3451 * initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
3452 * - the HCF does not use the pipeline mechanism of Hermes commands.
3453 * - the likelihood of failure (the only time when protection count is relevant) is small.
3454 * - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
3455 * expires)
3456 * - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
3457 * switches the power off in despair
3458 * The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
3459 * less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
3460 * short on a scream-machine.
3462 *.ENDDOC END DOCUMENTATION
3464 ************************************************************************************************************/
3465 HCF_STATIC void
3466 calibrate( IFBP ifbp )
3468 int cnt = HCF_PROT_TIME_CNT;
3469 hcf_32 prot_cnt;
3471 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE );
3472 if ( ifbp->IFB_TickIni == INI_TICK_INI ) { /*1*/
3473 ifbp->IFB_TickIni = 0; /*2*/
3474 while ( cnt-- ) {
3475 prot_cnt = INI_TICK_INI;
3476 OPW( HREG_EV_ACK, HREG_EV_TICK ); /*3*/
3477 while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) {
3478 ifbp->IFB_TickIni++;
3480 if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) { /*4*/
3481 ifbp->IFB_TickIni = INI_TICK_INI;
3482 ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
3483 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3484 HCFASSERT( DO_ASSERT, prot_cnt )
3487 ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT; /*8*/
3489 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT );
3490 } // calibrate
3491 #endif // HCF_PROT_TIME
3494 #if HCF_DL_ONLY == 0
3495 #if (HCF_TYPE) & HCF_TYPE_WPA
3496 /************************************************************************************************************
3498 *.SUBMODULE int check_mic( IFBP ifbp )
3499 *.PURPOSE verifies the MIC of a received non-USB frame.
3501 *.ARGUMENTS
3502 * ifbp address of the Interface Block
3504 *.RETURNS
3505 * HCF_SUCCESS
3506 * HCF_ERR_MIC
3508 *.DESCRIPTION
3511 *.DIAGRAM
3513 *4: test whether or not a MIC is reported by the Hermes
3514 *14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
3516 *.NOTICE
3517 *.ENDDOC END DOCUMENTATION
3519 ************************************************************************************************************/
3521 check_mic( IFBP ifbp )
3523 int rc = HCF_SUCCESS;
3524 hcf_32 x32[2]; //* area to save rcvd 8 bytes MIC
3526 //if MIC present in RxFS
3527 if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) {
3528 //or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
3529 CALC_RX_MIC( mic_pad, 8 ); //. process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
3530 get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//. get 8 byte MIC from NIC
3531 //. if calculated and received MIC do not match
3532 //. . set status at HCF_ERR_MIC
3533 /*14*/ if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) ||
3534 x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1]) ) {
3535 rc = HCF_ERR_MIC;
3538 //return status
3539 return rc;
3540 } // check_mic
3541 #endif // HCF_TYPE_WPA
3542 #endif // HCF_DL_ONLY
3545 /************************************************************************************************************
3547 *.SUBMODULE int cmd_cmpl( IFBP ifbp )
3548 *.PURPOSE waits for Hermes Command Completion.
3550 *.ARGUMENTS
3551 * ifbp address of the Interface Block
3553 *.RETURNS
3554 * IFB_DefunctStat
3555 * HCF_ERR_TIME_OUT
3556 * HCF_ERR_DEFUNCT_CMD_SEQ
3557 * HCF_SUCCESS
3559 *.DESCRIPTION
3562 *.DIAGRAM
3564 *2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
3565 *4: If Status register and command code don't match either:
3566 * - the Hermes and Host are out of sync ( a fatal error)
3567 * - error bits are reported via the Status Register.
3568 * Out of sync is considered fatal and brings the HCF in Defunct mode
3569 * Errors reported via the Status Register should be caused by sequence violations in Hermes command
3570 * sequences and hence these bugs should have been found during engineering testing. Since there is no
3571 * strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
3572 * situation where a strategy is formulated to handle the consequences of a particular bug causing a
3573 * particular Error situation reported via the Status Register, the bug should be removed rather than adding
3574 * logic to cope with the consequences of the bug.
3575 * There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
3576 * mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
3577 * general library.
3578 * Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
3579 * strategy using the "vague" HCF_FAILURE code.
3580 * The error is reported via:
3581 * - MiscErr tally of the HCF Tally set
3582 * - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
3583 * - the assert mechanism
3584 *8: Here the Defunct case and the Status error are separately treated
3587 *.ENDDOC END DOCUMENTATION
3589 ************************************************************************************************************/
3590 HCF_STATIC int
3591 cmd_cmpl( IFBP ifbp )
3594 PROT_CNT_INI
3595 int rc = HCF_SUCCESS;
3596 hcf_16 stat;
3598 HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd )
3599 ifbp->IFB_Cmd &= ~HCMD_BUSY; /* 2 */
3600 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); /* 4 */
3601 stat = IPW( HREG_STAT );
3602 #if HCF_PROT_TIME
3603 if ( prot_cnt == 0 ) {
3604 IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
3605 rc = HCF_ERR_TIME_OUT;
3606 HCFASSERT( DO_ASSERT, ifbp->IFB_Cmd )
3607 } else
3608 #endif // HCF_PROT_TIME
3610 DAWA_ACK( HREG_EV_CMD );
3611 /*4*/ if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) {
3612 /*8*/ if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) {
3613 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ;
3614 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3616 IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
3617 ifbp->IFB_ErrCmd = stat;
3618 ifbp->IFB_ErrQualifier = IPW( HREG_RESP_0 );
3619 HCFASSERT( DO_ASSERT, MERGE_2( IPW( HREG_PARAM_0 ), ifbp->IFB_Cmd ) )
3620 HCFASSERT( DO_ASSERT, MERGE_2( ifbp->IFB_ErrQualifier, ifbp->IFB_ErrCmd ) )
3623 HCFASSERT( rc == HCF_SUCCESS, rc)
3624 HCFLOGEXIT( HCF_TRACE_CMD_CPL )
3625 return rc;
3626 } // cmd_cmpl
3629 /************************************************************************************************************
3631 *.SUBMODULE int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
3632 *.PURPOSE Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
3634 *.ARGUMENTS
3635 * ifbp address of the Interface Block
3636 * cmd_code
3637 * par_0
3639 *.RETURNS
3640 * IFB_DefunctStat
3641 * HCF_ERR_DEFUNCT_CMD_SEQ
3642 * HCF_SUCCESS
3643 * HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3645 *.DESCRIPTION
3646 * Executes synchronous Hermes Command and waits for Command Completion
3648 * The general HCF strategy is to wait for command completion. As a consequence:
3649 * - the read of the busy bit before writing the command register is superfluous
3650 * - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
3651 * Inquiry command outstanding, is automatically met.
3652 * The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
3653 * The idea is that by not busy-waiting on completion of this frequently used command the processor
3654 * utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
3655 * simple.
3659 *.DIAGRAM
3661 *1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
3662 * read back test - there is apparently no NIC.
3663 * Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
3664 * the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
3665 * Support register is involved), the increasing number of Hermes commands which do an implicit initialize
3666 * (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
3667 * the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
3668 * giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
3669 * problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
3670 * effect of the S/W Support register check.
3671 *2: check whether the preceding command skipped the busy wait and if so, check for command completion
3673 *.NOTICE
3674 *.ENDDOC END DOCUMENTATION
3676 ************************************************************************************************************/
3678 HCF_STATIC int
3679 cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion
3681 int rc;
3683 HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code )
3684 HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ) //Tx must have Busy bit set
3685 OPW( HREG_SW_0, HCF_MAGIC );
3686 if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) { /* 1 */
3687 rc = ifbp->IFB_DefunctStat;
3689 else rc = HCF_ERR_NO_NIC;
3690 if ( rc == HCF_SUCCESS ) {
3691 //;?is this a hot idea, better MEASURE performance impact
3692 /*2*/ if ( ifbp->IFB_Cmd & HCMD_BUSY ) {
3693 rc = cmd_cmpl( ifbp );
3695 OPW( HREG_PARAM_0, par_0 );
3696 OPW( HREG_CMD, cmd_code &~HCMD_BUSY );
3697 ifbp->IFB_Cmd = cmd_code;
3698 if ( (cmd_code & HCMD_BUSY) == 0 ) { //;?is this a hot idea, better MEASURE performance impact
3699 rc = cmd_cmpl( ifbp );
3702 HCFASSERT( rc == HCF_SUCCESS, MERGE_2( rc, cmd_code ) )
3703 HCFLOGEXIT( HCF_TRACE_CMD_EXE )
3704 return rc;
3705 } // cmd_exe
3708 /************************************************************************************************************
3710 *.SUBMODULE int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
3711 *.PURPOSE downloads F/W image into NIC and initiates execution of the downloaded F/W.
3713 *.ARGUMENTS
3714 * ifbp address of the Interface Block
3715 * ltvp specifies the pseudo-RID (as defined by WCI)
3717 *.RETURNS
3719 *.DESCRIPTION
3722 *.DIAGRAM
3723 *1: First, Ack everything to unblock a (possibly) blocked cmd pipe line
3724 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
3725 * pending
3726 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
3727 * Hermes Initialize
3730 *.ENDDOC END DOCUMENTATION
3732 ************************************************************************************************************/
3733 HCF_STATIC int
3734 download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ) //Hermes-II download (volatile only)
3736 hcf_16 i;
3737 int rc = HCF_SUCCESS;
3738 wci_bufp cp;
3739 hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3741 HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ )
3742 #if (HCF_TYPE) & HCF_TYPE_PRELOADED
3743 HCFASSERT( DO_ASSERT, ltvp->mode )
3744 #else
3745 //if initial "program" LTV
3746 if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) {
3747 //. switch Hermes to initial mode
3748 /*1*/ OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
3749 rc = cmd_exe( ifbp, HCMD_INI, 0 ); /* HCMD_INI can not be part of init() because that is called on
3750 * other occasions as well */
3751 rc = init( ifbp );
3753 //if final "program" LTV
3754 if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) {
3755 //. start tertiary (or secondary)
3756 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3757 rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr );
3758 if (rc == HCF_SUCCESS) {
3759 rc = init( ifbp ); /*;? do we really want to skip init if cmd_exe failed, i.e.
3760 * IFB_FW_Comp_Id is than possibly incorrect */
3762 //else (non-final)
3763 } else {
3764 //. if mode == Readback SEEPROM
3765 { //. . get number of words to program
3766 HCFASSERT( ltvp->segment_size, *ltvp->host_addr )
3767 i = ltvp->segment_size/2;
3768 //. . copy data (words) from LTV via AUX port to NIC
3769 cp = (wci_bufp)ltvp->host_addr; //OUT_PORT_STRING_8_16 macro may modify its parameters
3770 //. . if mode == volatile programming
3771 if ( ltvp->mode == CFG_PROG_VOLATILE ) {
3772 //. . . set up NIC RAM addressability via AUX port
3773 OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) );
3774 OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) );
3775 OUT_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer
3779 ifbp->IFB_DLMode = ltvp->mode; //save state in IFB_DLMode
3780 #endif // HCF_TYPE_PRELOADED
3781 HCFASSERT( rc == HCF_SUCCESS, rc )
3782 HCFLOGEXIT( HCF_TRACE_DL )
3783 return rc;
3784 } // download
3787 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
3788 /**************************************************
3789 * Certain Hermes-II firmware versions can generate
3790 * debug information. This debug information is
3791 * contained in a buffer in nic-RAM, and can be read
3792 * via the aux port.
3793 **************************************************/
3794 HCF_STATIC int
3795 fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp)
3797 int rc = HCF_SUCCESS;
3798 hcf_16 fw_cnt;
3799 // hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
3800 // hcf_16 DbMsgSize=0x00000080;
3801 hcf_32 DbMsgBuffer;
3802 CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff;
3803 ltvp->len = 1;
3804 if ( p->DbMsgSize != 0 ) {
3805 // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
3806 OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) );
3807 OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) );
3808 fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1));
3809 if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) {
3810 // DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
3811 DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words
3812 OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) );
3813 OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) );
3814 ltvp->msg_id = IPW(HREG_AUX_DATA);
3815 ltvp->msg_par = IPW(HREG_AUX_DATA);
3816 ltvp->msg_tstamp = IPW(HREG_AUX_DATA);
3817 ltvp->len = 4;
3818 ifbp->IFB_DbgPrintF_Cnt++;
3819 ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1);
3822 return rc;
3824 #endif // HCF_ASSERT_PRINTF
3827 #if HCF_DL_ONLY == 0
3828 /************************************************************************************************************
3830 *.SUBMODULE hcf_16 get_fid( IFBP ifbp )
3831 *.PURPOSE get allocated FID for either transmit or notify.
3833 *.ARGUMENTS
3834 * ifbp address of the Interface Block
3836 *.RETURNS
3837 * 0 no FID available
3838 * <>0 FID number
3840 *.DESCRIPTION
3843 *.DIAGRAM
3844 * The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
3845 * is used.
3846 * If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
3847 * If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
3848 * In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
3849 * value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
3851 * Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
3852 * in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
3853 * part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
3854 * handle this automatically, i.e. without additional code in get_fid.
3855 *.ENDDOC END DOCUMENTATION
3857 ************************************************************************************************************/
3858 HCF_STATIC hcf_16
3859 get_fid( IFBP ifbp )
3862 hcf_16 fid = 0;
3863 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3864 PROT_CNT_INI
3865 #endif // HCF_TYPE_HII5
3867 IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) )
3869 if ( IPW( HREG_EV_STAT) & HREG_EV_ALLOC) {
3870 fid = IPW( HREG_ALLOC_FID );
3871 HCFASSERT( fid, ifbp->IFB_RscInd )
3872 DAWA_ZERO_FID( HREG_ALLOC_FID )
3873 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3874 HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 );
3875 HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) )
3876 #endif // HCF_TYPE_HII5
3877 DAWA_ACK( HREG_EV_ALLOC ); //!!note that HREG_EV_ALLOC is written only once
3878 // 180 degree error in logic ;? #if ALLOC_15
3879 if ( ifbp->IFB_RscInd == 1 ) {
3880 ifbp->IFB_RscInd = 0;
3882 //#endif // ALLOC_15
3883 } else {
3884 // 180 degree error in logic ;? #if ALLOC_15
3885 fid = ifbp->IFB_RscInd;
3886 //#endif // ALLOC_15
3887 ifbp->IFB_RscInd = 0;
3889 return fid;
3890 } // get_fid
3891 #endif // HCF_DL_ONLY
3894 /************************************************************************************************************
3896 *.SUBMODULE void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3897 *.PURPOSE reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
3899 *.ARGUMENTS
3900 * ifbp address of the Interface Block
3901 * bufp (byte) address of buffer
3902 * len length in bytes of buffer specified by bufp
3903 * word_len Big Endian only: number of leading bytes to swap in pairs
3905 *.RETURNS N.A.
3907 *.DESCRIPTION
3908 * process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
3909 * NIC to bufp.
3910 * On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianess is
3911 * converted (i.e. byte swapped)
3914 *.DIAGRAM
3915 *10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
3916 * HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
3917 * determined whether the card is still present. The return status is set accordingly.
3918 * Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
3919 * because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
3920 * hcf_service_nic has this behavior).
3922 *.NOTICE
3923 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
3924 * Assert on len is possible
3926 *.ENDDOC END DOCUMENTATION
3928 ************************************************************************************************************/
3929 HCF_STATIC void
3930 get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3932 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
3933 wci_bufp p = bufp; //working pointer
3934 int i; //prevent side effects from macro
3935 int j;
3937 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )
3939 /*1: here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
3940 * if current access is RxInitial
3941 * . persistent_offset += len
3944 i = len;
3945 //if buffer length > 0 and carry from previous get_frag
3946 if ( i && ifbp->IFB_CarryIn ) {
3947 //. move carry to buffer
3948 //. adjust buffer length and pointer accordingly
3949 *p++ = (hcf_8)(ifbp->IFB_CarryIn>>8);
3950 i--;
3951 //. clear carry flag
3952 ifbp->IFB_CarryIn = 0;
3954 #if (HCF_IO) & HCF_IO_32BITS
3955 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
3956 //if buffer length >= 6 and 32 bits I/O support
3957 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
3958 hcf_32 FAR *p4; //prevent side effects from macro
3959 if ( ( (hcf_32)p & 0x1 ) == 0 ) { //. if buffer at least word aligned
3960 if ( (hcf_32)p & 0x2 ) { //. . if buffer not double word aligned
3961 //. . . read single word to get double word aligned
3962 *(wci_recordp)p = IN_PORT_WORD( io_port );
3963 //. . . adjust buffer length and pointer accordingly
3964 p += 2;
3965 i -= 2;
3967 //. . read as many double word as possible
3968 p4 = (hcf_32 FAR *)p;
3969 j = i/4;
3970 IN_PORT_STRING_32( io_port, p4, j );
3971 //. . adjust buffer length and pointer accordingly
3972 p += i & ~0x0003;
3973 i &= 0x0003;
3976 #endif // HCF_IO_32BITS
3977 //if no 32-bit support OR byte aligned OR 1-3 bytes left
3978 if ( i ) {
3979 //. read as many word as possible in "alignment safe" way
3980 j = i/2;
3981 IN_PORT_STRING_8_16( io_port, p, j );
3982 //. if 1 byte left
3983 if ( i & 0x0001 ) {
3984 //. . read 1 word
3985 ifbp->IFB_CarryIn = IN_PORT_WORD( io_port );
3986 //. . store LSB in last char of buffer
3987 bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn;
3988 //. . save MSB in carry, set carry flag
3989 ifbp->IFB_CarryIn |= 0x1;
3992 #if HCF_BIG_ENDIAN
3993 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
3994 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
3995 HCFASSERT( word_len <= len, MERGE2( word_len, len ) )
3996 //see put_frag for an alternative implementation, but be carefull about what are int's and what are
3997 //hcf_16's
3998 if ( word_len ) { //. if there is anything to convert
3999 hcf_8 c;
4000 c = bufp[1]; //. . convert the 1st hcf_16
4001 bufp[1] = bufp[0];
4002 bufp[0] = c;
4003 if ( word_len > 1 ) { //. . if there is to convert more than 1 word ( i.e 2 )
4004 c = bufp[3]; //. . . convert the 2nd hcf_16
4005 bufp[3] = bufp[2];
4006 bufp[2] = c;
4009 #endif // HCF_BIG_ENDIAN
4010 } // get_frag
4012 HCF_STATIC int
4013 init( IFBP ifbp )
4016 int rc = HCF_SUCCESS;
4018 HCFLOGENTRY( HCF_TRACE_INIT, 0 )
4020 ifbp->IFB_CardStat = 0; /* 2*/
4021 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); /* 4*/
4022 IF_PROT_TIME( calibrate( ifbp ); ) /*10*/
4023 ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1;
4024 ifbp->IFB_FWIdentity.typ = CFG_FW_IDENTITY;
4025 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4026 /* ;? conversion should not be needed for mmd_check_comp */
4027 #if HCF_BIG_ENDIAN
4028 ifbp->IFB_FWIdentity.comp_id = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.comp_id );
4029 ifbp->IFB_FWIdentity.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.variant );
4030 ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major );
4031 ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor );
4032 #endif // HCF_BIG_ENDIAN
4033 #if defined MSF_COMPONENT_ID /*14*/
4034 if ( rc == HCF_SUCCESS ) { /*16*/
4035 ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4036 ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE;
4037 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len );
4038 /* ;? conversion should not be needed for mmd_check_comp , BUT according to a report of a BE-user it is
4039 * should be resolved in the WARP release
4040 * since some compilers make ugly but unnecessary code of these instructions even for LE,
4041 * it is conditionally compiled */
4042 #if HCF_BIG_ENDIAN
4043 ifbp->IFB_HSISup.role = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.role );
4044 ifbp->IFB_HSISup.id = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.id );
4045 ifbp->IFB_HSISup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.variant );
4046 ifbp->IFB_HSISup.bottom = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.bottom );
4047 ifbp->IFB_HSISup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.top );
4048 #endif // HCF_BIG_ENDIAN
4049 ifbp->IFB_FWSup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4050 ifbp->IFB_FWSup.typ = CFG_FW_SUP_RANGE;
4051 (void)hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWSup.len );
4052 /* ;? conversion should not be needed for mmd_check_comp */
4053 #if HCF_BIG_ENDIAN
4054 ifbp->IFB_FWSup.role = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.role );
4055 ifbp->IFB_FWSup.id = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.id );
4056 ifbp->IFB_FWSup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.variant );
4057 ifbp->IFB_FWSup.bottom = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.bottom );
4058 ifbp->IFB_FWSup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top );
4059 #endif // HCF_BIG_ENDIAN
4061 if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) { /* 20*/
4062 int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT );
4063 while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i];
4064 ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY;
4065 ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE;
4066 xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len;
4067 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len;
4069 if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup) /* 22*/
4070 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
4071 //;? the PRI compatibility check is only relevant for DHF
4072 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup)
4073 #endif // HCF_TYPE_PRELOADED
4075 ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI;
4076 rc = HCF_ERR_INCOMP_PRI;
4078 if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA && !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) ||
4079 ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) )
4080 ) { /* 24 */
4081 ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW;
4082 rc = HCF_ERR_INCOMP_FW;
4085 #endif // MSF_COMPONENT_ID
4086 #if HCF_DL_ONLY == 0 /* 28 */
4087 if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) {
4088 PROT_CNT_INI
4089 /**************************************************************************************
4090 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
4091 * not sure if this is the right spot in the HCF, thinking about hcf_enable...
4092 **************************************************************************************/
4093 rc = cmd_exe( ifbp, HCMD_ALLOC, 0 );
4094 // 180 degree error in logic ;? #if ALLOC_15
4095 // ifbp->IFB_RscInd = 1; //let's hope that by the time hcf_send_msg isa called, there will be a FID
4096 //#else
4097 if ( rc == HCF_SUCCESS ) {
4098 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 );
4099 IF_PROT_TIME( HCFASSERT(prot_cnt, IPW( HREG_EV_STAT ) ) /*NOP*/;)
4100 #if HCF_DMA
4101 if ( ! ( ifbp->IFB_CntlOpt & USE_DMA ) )
4102 #endif // HCF_DMA
4104 ifbp->IFB_RscInd = get_fid( ifbp );
4105 HCFASSERT( ifbp->IFB_RscInd, 0 )
4106 cmd_exe( ifbp, HCMD_ALLOC, 0 );
4107 IF_PROT_TIME( if ( prot_cnt == 0 ) rc = HCF_ERR_TIME_OUT; )
4110 //#endif // ALLOC_15
4112 #endif // HCF_DL_ONLY
4113 HCFASSERT( rc == HCF_SUCCESS, rc )
4114 HCFLOGEXIT( HCF_TRACE_INIT )
4115 return rc;
4116 } // init
4118 #if HCF_DL_ONLY == 0
4119 /************************************************************************************************************
4121 *.SUBMODULE void isr_info( IFBP ifbp )
4122 *.PURPOSE handles link events.
4124 *.ARGUMENTS
4125 * ifbp address of the Interface Block
4127 *.RETURNS N.A.
4129 *.DESCRIPTION
4132 *.DIAGRAM
4133 *1: First the FID number corresponding with the InfoEvent is determined.
4134 * Note the complication of the zero-FID protection sub-scheme in DAWA.
4135 * Next the L-field and the T-field are fetched into scratch buffer info.
4136 *2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
4137 * is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
4138 * "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
4139 * decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
4140 * in a very long loop in the pre-decrement logic.
4141 *4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat
4142 *6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
4143 * via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
4144 * pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
4145 * Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
4146 * AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
4148 *.ENDDOC END DOCUMENTATION
4150 ************************************************************************************************************/
4151 HCF_STATIC void
4152 isr_info( IFBP ifbp )
4154 hcf_16 info[2], fid;
4155 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4156 RID_LOGP ridp = ifbp->IFB_RIDLogp; //NULL or pointer to array of RID_LOG structures (terminated by zero typ)
4157 #endif // HCF_EXT_INFO_LOG
4159 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO ); /* 1 */
4160 fid = IPW( HREG_INFO_FID );
4161 DAWA_ZERO_FID( HREG_INFO_FID )
4162 if ( fid ) {
4163 (void)setup_bap( ifbp, fid, 0, IO_IN );
4164 get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) );
4165 HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) ) //;? a smaller value makes more sense
4166 #if (HCF_TALLIES) & HCF_TALLIES_NIC //Hermes tally support
4167 if ( info[1] == CFG_TALLIES ) {
4168 hcf_32 *p;
4169 /*2*/ if ( info[0] > HCF_NIC_TAL_CNT ) {
4170 info[0] = HCF_NIC_TAL_CNT + 1;
4172 p = (hcf_32*)&ifbp->IFB_NIC_Tallies;
4173 while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 ); //request may return zero length
4175 else
4176 #endif // HCF_TALLIES_NIC
4178 /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4179 ifbp->IFB_LinkStat = IPW( HREG_DATA_1 );
4181 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4182 /*6*/ while ( 1 ) {
4183 if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4184 if ( ridp->bufp ) {
4185 HCFASSERT( ridp->len >= 2, ridp->typ )
4186 ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] ); //save L
4187 ridp->bufp[1] = info[1]; //save T
4188 get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) );
4190 break;
4192 ridp++;
4194 #endif // HCF_EXT_INFO_LOG
4196 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4198 return;
4199 } // isr_info
4200 #endif // HCF_DL_ONLY
4204 // #endif // HCF_TALLIES_NIC
4205 // /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4206 // ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE; //corrupts BAP !! ;?
4207 // ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
4208 // printk( "<4>linkstatus: %04x\n", ifbp->IFB_DSLinkStat ); //;?remove me 1 day
4209 // #if (HCF_SLEEP) & HCF_DDS
4210 // if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { //even values are disconnected etc.
4211 // ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
4212 // printk( "<5>isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" ); //;?remove me 1 day
4213 // }
4214 // #endif // HCF_DDS
4215 // }
4216 // #if (HCF_EXT) & HCF_EXT_INFO_LOG
4217 // /*6*/ while ( 1 ) {
4218 // if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4219 // if ( ridp->bufp ) {
4220 // HCFASSERT( ridp->len >= 2, ridp->typ )
4221 // (void)setup_bap( ifbp, fid, 2, IO_IN ); //restore BAP for tallies, linkstat and specific type followed by wild card
4222 // ridp->bufp[0] = min( ridp->len - 1, info[0] ); //save L
4223 // get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
4224 // }
4225 // break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
4226 // }
4227 // ridp++;
4228 // }
4229 // #endif // HCF_EXT_INFO_LOG
4230 // }
4231 // HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4236 // return;
4237 //} // isr_info
4238 //#endif // HCF_DL_ONLY
4241 /************************************************************************************************************
4243 *.SUBMODULE void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4244 *.PURPOSE filters assert on level and interfaces to the MSF supplied msf_assert routine.
4246 *.ARGUMENTS
4247 * ifbp address of the Interface Block
4248 * line_number line number of the line which caused the assert
4249 * q qualifier, additional information which may give a clue about the problem
4251 *.RETURNS N.A.
4253 *.DESCRIPTION
4256 *.DIAGRAM
4258 *.NOTICE
4259 * mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
4260 * and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
4261 * MMD.
4262 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
4263 * however it is called from mmd.c and dhf.c, so it must be external.
4264 * To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
4265 * they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
4267 * When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
4268 * the MMD module by MMD_FILE_NAME_OFFSET.
4270 *.ENDDOC END DOCUMENTATION
4272 ************************************************************************************************************/
4273 #if HCF_ASSERT
4274 void
4275 mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4277 hcf_16 run_time_flag = ifbp->IFB_AssertLvl;
4279 if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
4280 ifbp->IFB_AssertQualifier = q;
4281 ifbp->IFB_AssertLine = (hcf_16)line_number;
4282 #if (HCF_ASSERT) & ( HCF_ASSERT_LNK_MSF_RTN | HCF_ASSERT_RT_MSF_RTN )
4283 if ( ifbp->IFB_AssertRtn ) {
4284 ifbp->IFB_AssertRtn( line_number, ifbp->IFB_AssertTrace, q );
4286 #endif // HCF_ASSERT_LNK_MSF_RTN / HCF_ASSERT_RT_MSF_RTN
4287 #if (HCF_ASSERT) & HCF_ASSERT_SW_SUP
4288 OPW( HREG_SW_2, line_number );
4289 OPW( HREG_SW_2, ifbp->IFB_AssertTrace );
4290 OPW( HREG_SW_2, (hcf_16)q );
4291 OPW( HREG_SW_2, (hcf_16)(q >> 16 ) );
4292 #endif // HCF_ASSERT_SW_SUP
4294 #if (HCF_EXT) & HCF_EXT_MB && (HCF_ASSERT) & HCF_ASSERT_MB
4295 ifbp->IFB_AssertLvl = 0; // prevent recursive behavior
4296 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct );
4297 ifbp->IFB_AssertLvl = run_time_flag; // restore appropriate filter level
4298 #endif // HCF_EXT_MB / HCF_ASSERT_MB
4300 } // mdd_assert
4301 #endif // HCF_ASSERT
4304 /************************************************************************************************************
4306 *.SUBMODULE void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4307 *.PURPOSE writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
4309 *.ARGUMENTS
4310 * ifbp address of the Interface Block
4311 * bufp (byte) address of buffer
4312 * len length in bytes of buffer specified by bufp
4313 * word_len Big Endian only: number of leading bytes to swap in pairs
4315 *.RETURNS N.A.
4317 *.DESCRIPTION
4318 * process the single byte (if applicable) not yet written by the previous put_frag and copy len
4319 * (or len-1) bytes from bufp to NIC.
4322 *.DIAGRAM
4324 *.NOTICE
4325 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
4326 * Assert on len is possible
4328 *.ENDDOC END DOCUMENTATION
4330 ************************************************************************************************************/
4331 HCF_STATIC void
4332 put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4334 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
4335 int i; //prevent side effects from macro
4336 hcf_16 j;
4337 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )
4338 #if HCF_BIG_ENDIAN
4339 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
4340 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
4341 HCFASSERT( word_len <= len, MERGE_2( word_len, len ) )
4343 if ( word_len ) { //if there is anything to convert
4344 //. convert and write the 1st hcf_16
4345 j = bufp[1] | bufp[0]<<8;
4346 OUT_PORT_WORD( io_port, j );
4347 //. update pointer and counter accordingly
4348 len -= 2;
4349 bufp += 2;
4350 if ( word_len > 1 ) { //. if there is to convert more than 1 word ( i.e 2 )
4351 //. . convert and write the 2nd hcf_16
4352 j = bufp[1] | bufp[0]<<8; /*bufp is already incremented by 2*/
4353 OUT_PORT_WORD( io_port, j );
4354 //. . update pointer and counter accordingly
4355 len -= 2;
4356 bufp += 2;
4359 #endif // HCF_BIG_ENDIAN
4360 i = len;
4361 if ( i && ifbp->IFB_CarryOut ) { //skip zero-length
4362 j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF );
4363 OUT_PORT_WORD( io_port, j );
4364 bufp++; i--;
4365 ifbp->IFB_CarryOut = 0;
4367 #if (HCF_IO) & HCF_IO_32BITS
4368 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4369 //if buffer length >= 6 and 32 bits I/O support
4370 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4371 hcf_32 FAR *p4; //prevent side effects from macro
4372 if ( ( (hcf_32)bufp & 0x1 ) == 0 ) { //. if buffer at least word aligned
4373 if ( (hcf_32)bufp & 0x2 ) { //. . if buffer not double word aligned
4374 //. . . write a single word to get double word aligned
4375 j = *(wci_recordp)bufp; //just to help ease writing macros with embedded assembly
4376 OUT_PORT_WORD( io_port, j );
4377 //. . . adjust buffer length and pointer accordingly
4378 bufp += 2; i -= 2;
4380 //. . write as many double word as possible
4381 p4 = (hcf_32 FAR *)bufp;
4382 j = (hcf_16)i/4;
4383 OUT_PORT_STRING_32( io_port, p4, j );
4384 //. . adjust buffer length and pointer accordingly
4385 bufp += i & ~0x0003;
4386 i &= 0x0003;
4389 #endif // HCF_IO_32BITS
4390 //if no 32-bit support OR byte aligned OR 1 word left
4391 if ( i ) {
4392 //. if odd number of bytes left
4393 if ( i & 0x0001 ) {
4394 //. . save left over byte (before bufp is corrupted) in carry, set carry flag
4395 ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100; //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
4397 //. write as many word as possible in "alignment safe" way
4398 j = (hcf_16)i/2;
4399 OUT_PORT_STRING_8_16( io_port, bufp, j );
4401 } // put_frag
4404 /************************************************************************************************************
4406 *.SUBMODULE void put_frag_finalize( IFBP ifbp )
4407 *.PURPOSE cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
4409 *.ARGUMENTS
4410 * ifbp address of the Interface Block
4412 *.RETURNS N.A.
4414 *.DESCRIPTION
4415 * finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
4416 * of the message and the MIC to the TxFS
4419 *.DIAGRAM
4420 *2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
4421 * 1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
4422 * The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
4423 * just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
4424 * bytes simply end up in the MIC engine carry holder and are never used.
4425 *8: write the remainder of the MIC and possible some garbage to NIC RAM
4426 * Note: i is always 4 (a loop-invariant of the while in point 2)
4428 *.NOTICE
4430 *.ENDDOC END DOCUMENTATION
4432 ************************************************************************************************************/
4433 HCF_STATIC void
4434 put_frag_finalize( IFBP ifbp )
4436 #if (HCF_TYPE) & HCF_TYPE_WPA
4437 if ( ifbp->IFB_MICTxCarry != 0xFFFF) { //if MIC calculation active
4438 CALC_TX_MIC( mic_pad, 8); //. feed (up to 8 bytes of) virtual padding to MIC engine
4439 //. write (possibly) trailing byte + (most of) MIC
4440 put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) );
4442 #endif // HCF_TYPE_WPA
4443 put_frag( ifbp, null_addr, 1 BE_PAR(0) ); //write (possibly) trailing data or MIC byte
4444 } // put_frag_finalize
4447 /************************************************************************************************************
4449 *.SUBMODULE int put_info( IFBP ifbp, LTVP ltvp )
4450 *.PURPOSE support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
4452 *.ARGUMENTS
4453 * ifbp address of the Interface Block
4454 * ltvp address in NIC RAM where LVT-records are located
4456 *.RETURNS
4457 * HCF_SUCCESS
4458 * >>put_frag
4459 * >>cmd_wait
4461 *.DESCRIPTION
4464 *.DIAGRAM
4465 *20: do not write RIDs to NICs which have incompatible Firmware
4466 *24: If the RID does not exist, the L-field is set to zero.
4467 * Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
4468 *28: If the RID is written successful, pass it to the NIC by means of an Access Write command
4470 *.NOTICE
4471 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
4472 * - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
4473 * are valid. These codes are already consumed by hcf_put_info.
4474 * - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
4475 * with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code
4476 * field. If the put action type is valid, it is also valid as a get action type code - except
4477 * for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
4478 * not catch.
4480 *.ENDDOC END DOCUMENTATION
4482 ************************************************************************************************************/
4483 HCF_STATIC int
4484 put_info( IFBP ifbp, LTVP ltvp )
4487 int rc = HCF_SUCCESS;
4489 HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) )
4490 HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ )
4492 if ( ifbp->IFB_CardStat == 0 && /* 20*/
4493 ( ( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX ) ||
4494 ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */ ) ) ) {
4495 #if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
4497 hcf_16 t = ltvp->typ;
4498 LTV_STRCT x = { 2, t, {0} }; /*24*/
4499 hcf_get_info( ifbp, (LTVP)&x );
4500 if ( x.len == 0 &&
4501 ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY &&
4502 t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY &&
4503 t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR &&
4504 t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF &&
4505 t != CFG_DEAUTHENTICATE_ADDR
4508 HCFASSERT( DO_ASSERT, ltvp->typ )
4511 #endif // HCF_ASSERT
4513 rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT );
4514 put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) );
4515 /*28*/ if ( rc == HCF_SUCCESS ) {
4516 rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ );
4519 return rc;
4520 } // put_info
4523 #if HCF_DL_ONLY == 0
4524 /************************************************************************************************************
4526 *.SUBMODULE int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4527 *.PURPOSE accumulates a ( series of) buffers into a single Info block into the MailBox.
4529 *.ARGUMENTS
4530 * ifbp address of the Interface Block
4531 * ltvp address of structure specifying the "type" and the fragments of the information to be synthesized
4532 * as an LTV into the MailBox
4534 *.RETURNS
4536 *.DESCRIPTION
4537 * If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
4538 * error status is returned.
4539 * HCF_ASSERT does not catch.
4540 * Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
4542 * Note that there is always at least 1 word of unused space in the mail box.
4543 * As a consequence:
4544 * - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
4545 * - There is always free space to write an L field with a value of zero after each MB_Info block. This
4546 * allows for an easy scan mechanism in the "get MB_Info block" logic.
4549 *.DIAGRAM
4550 *1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
4551 *2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
4552 * turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
4553 * + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
4554 * dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
4555 * - the value len in the first word
4556 * - type in the second word
4557 * - a copy of the contents of the fragments in the second and higher word
4559 *4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
4560 * against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
4561 * len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
4562 *6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
4563 * Note that len is unsigned, so even MSF I/F violation works out O.K.
4564 * The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
4565 * for the zero-sentinel
4566 *8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be carefull here, if you get
4567 * here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
4568 * Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
4569 * a buffer.
4571 *.NOTICE
4572 * boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
4573 * and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
4575 *.ENDDOC END DOCUMENTATION
4577 ************************************************************************************************************/
4578 #if (HCF_EXT) & HCF_EXT_MB
4580 HCF_STATIC int
4581 put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4584 int rc = HCF_SUCCESS;
4585 hcf_16 i; //work counter
4586 hcf_16 *dp; //destination pointer (in MailBox)
4587 wci_recordp sp; //source pointer
4588 hcf_16 len; //total length to copy to MailBox
4589 hcf_16 tlen; //free length/working length/offset in WMP frame
4591 if ( ifbp->IFB_MBp == NULL ) return rc; //;?not sufficient
4592 HCFASSERT( ifbp->IFB_MBp != NULL, 0 ) //!!!be careful, don't get into an endless recursion
4593 HCFASSERT( ifbp->IFB_MBSize, 0 )
4595 len = 1; /* 1 */
4596 for ( i = 0; i < ltvp->frag_cnt; i++ ) {
4597 len += ltvp->frag_buf[i].frag_len;
4599 if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) {
4600 tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp; /* 2a*/
4601 } else {
4602 if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) {
4603 ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0; // optimize Wrapping
4605 tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp; /* 2b*/
4606 if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) { //if trailing space is too small but
4607 // leading space is sufficiently large
4608 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF; //flag dummy LTV to fill the trailing space
4609 ifbp->IFB_MBWp = 0; //reset WritePointer to begin of MailBox
4610 tlen = ifbp->IFB_MBRp; //get new available space size
4613 dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp];
4614 if ( len == 0 ) {
4615 tlen = 0; //;? what is this good for
4617 if ( len + 2 >= tlen ){ /* 6 */
4618 //Do Not ASSERT, this is a normal condition
4619 IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++; ) /*NOP to cover against analomies with empty compound*/;
4620 rc = HCF_ERR_LEN;
4621 } else {
4622 *dp++ = len; //write Len (= size of T+V in words to MB_Info block
4623 *dp++ = ltvp->base_typ; //write Type to MB_Info block
4624 ifbp->IFB_MBWp += len + 1; //update WritePointer of MailBox
4625 for ( i = 0; i < ltvp->frag_cnt; i++ ) { // process each of the fragments
4626 sp = ltvp->frag_buf[i].frag_addr;
4627 len = ltvp->frag_buf[i].frag_len;
4628 while ( len-- ) *dp++ = *sp++;
4630 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0; //to assure get_info for CFG_MB_INFO stops
4631 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp]; /* 8 */
4633 return rc;
4634 } // put_info_mb
4636 #endif // HCF_EXT_MB
4637 #endif // HCF_DL_ONLY
4640 HCF_STATIC int
4641 setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4643 PROT_CNT_INI
4644 int rc;
4646 HCFTRACE( ifbp, HCF_TRACE_STRIO );
4647 rc = ifbp->IFB_DefunctStat;
4648 if (rc == HCF_SUCCESS) { /*2*/
4649 OPW( HREG_SELECT_1, fid ); /*4*/
4650 OPW( HREG_OFFSET_1, offset );
4651 if ( type == IO_IN ) {
4652 ifbp->IFB_CarryIn = 0;
4654 else ifbp->IFB_CarryOut = 0;
4655 HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY );
4656 HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) ) /*8*/
4657 if ( prot_cnt == 0 ) {
4658 HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) )
4659 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT;
4660 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
4663 HCFTRACE( ifbp, HCF_TRACE_STRIO | HCF_TRACE_EXIT );
4664 return rc;
4665 } // setup_bap