GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / staging / tidspbridge / rmgr / proc.c
blob44c26e11fc4a763ed9e6ff63b34c793c2fc94961
1 /*
2 * proc.c
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
6 * Processor interface at the driver level.
8 * Copyright (C) 2005-2006 Texas Instruments, Inc.
10 * This package is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
16 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19 #include <linux/types.h>
20 /* ------------------------------------ Host OS */
21 #include <linux/dma-mapping.h>
22 #include <linux/scatterlist.h>
23 #include <dspbridge/host_os.h>
25 /* ----------------------------------- DSP/BIOS Bridge */
26 #include <dspbridge/dbdefs.h>
28 /* ----------------------------------- Trace & Debug */
29 #include <dspbridge/dbc.h>
31 /* ----------------------------------- OS Adaptation Layer */
32 #include <dspbridge/cfg.h>
33 #include <dspbridge/list.h>
34 #include <dspbridge/ntfy.h>
35 #include <dspbridge/sync.h>
36 /* ----------------------------------- Bridge Driver */
37 #include <dspbridge/dspdefs.h>
38 #include <dspbridge/dspdeh.h>
39 /* ----------------------------------- Platform Manager */
40 #include <dspbridge/cod.h>
41 #include <dspbridge/dev.h>
42 #include <dspbridge/procpriv.h>
43 #include <dspbridge/dmm.h>
45 /* ----------------------------------- Resource Manager */
46 #include <dspbridge/mgr.h>
47 #include <dspbridge/node.h>
48 #include <dspbridge/nldr.h>
49 #include <dspbridge/rmm.h>
51 /* ----------------------------------- Others */
52 #include <dspbridge/dbdcd.h>
53 #include <dspbridge/msg.h>
54 #include <dspbridge/dspioctl.h>
55 #include <dspbridge/drv.h>
57 /* ----------------------------------- This */
58 #include <dspbridge/proc.h>
59 #include <dspbridge/pwr.h>
61 #include <dspbridge/resourcecleanup.h>
62 /* ----------------------------------- Defines, Data Structures, Typedefs */
63 #define MAXCMDLINELEN 255
64 #define PROC_ENVPROCID "PROC_ID=%d"
65 #define MAXPROCIDLEN (8 + 5)
66 #define PROC_DFLT_TIMEOUT 10000 /* Time out in milliseconds */
67 #define PWR_TIMEOUT 500 /* Sleep/wake timout in msec */
68 #define EXTEND "_EXT_END" /* Extmem end addr in DSP binary */
70 #define DSP_CACHE_LINE 128
72 #define BUFMODE_MASK (3 << 14)
74 /* Buffer modes from DSP perspective */
75 #define RBUF 0x4000 /* Input buffer */
76 #define WBUF 0x8000 /* Output Buffer */
78 extern struct device *bridge;
80 /* ----------------------------------- Globals */
82 /* The proc_object structure. */
83 struct proc_object {
84 struct list_head link; /* Link to next proc_object */
85 struct dev_object *hdev_obj; /* Device this PROC represents */
86 u32 process; /* Process owning this Processor */
87 struct mgr_object *hmgr_obj; /* Manager Object Handle */
88 u32 attach_count; /* Processor attach count */
89 u32 processor_id; /* Processor number */
90 u32 utimeout; /* Time out count */
91 enum dsp_procstate proc_state; /* Processor state */
92 u32 ul_unit; /* DDSP unit number */
93 bool is_already_attached; /*
94 * True if the Device below has
95 * GPP Client attached
97 struct ntfy_object *ntfy_obj; /* Manages notifications */
98 /* Bridge Context Handle */
99 struct bridge_dev_context *hbridge_context;
100 /* Function interface to Bridge driver */
101 struct bridge_drv_interface *intf_fxns;
102 char *psz_last_coff;
103 struct list_head proc_list;
106 static u32 refs;
108 DEFINE_MUTEX(proc_lock); /* For critical sections */
110 /* ----------------------------------- Function Prototypes */
111 static int proc_monitor(struct proc_object *proc_obj);
112 static s32 get_envp_count(char **envp);
113 static char **prepend_envp(char **new_envp, char **envp, s32 envp_elems,
114 s32 cnew_envp, char *sz_var);
116 /* remember mapping information */
117 static struct dmm_map_object *add_mapping_info(struct process_context *pr_ctxt,
118 u32 mpu_addr, u32 dsp_addr, u32 size)
120 struct dmm_map_object *map_obj;
122 u32 num_usr_pgs = size / PG_SIZE4K;
124 pr_debug("%s: adding map info: mpu_addr 0x%x virt 0x%x size 0x%x\n",
125 __func__, mpu_addr,
126 dsp_addr, size);
128 map_obj = kzalloc(sizeof(struct dmm_map_object), GFP_KERNEL);
129 if (!map_obj) {
130 pr_err("%s: kzalloc failed\n", __func__);
131 return NULL;
133 INIT_LIST_HEAD(&map_obj->link);
135 map_obj->pages = kcalloc(num_usr_pgs, sizeof(struct page *),
136 GFP_KERNEL);
137 if (!map_obj->pages) {
138 pr_err("%s: kzalloc failed\n", __func__);
139 kfree(map_obj);
140 return NULL;
143 map_obj->mpu_addr = mpu_addr;
144 map_obj->dsp_addr = dsp_addr;
145 map_obj->size = size;
146 map_obj->num_usr_pgs = num_usr_pgs;
148 spin_lock(&pr_ctxt->dmm_map_lock);
149 list_add(&map_obj->link, &pr_ctxt->dmm_map_list);
150 spin_unlock(&pr_ctxt->dmm_map_lock);
152 return map_obj;
155 static int match_exact_map_obj(struct dmm_map_object *map_obj,
156 u32 dsp_addr, u32 size)
158 if (map_obj->dsp_addr == dsp_addr && map_obj->size != size)
159 pr_err("%s: addr match (0x%x), size don't (0x%x != 0x%x)\n",
160 __func__, dsp_addr, map_obj->size, size);
162 return map_obj->dsp_addr == dsp_addr &&
163 map_obj->size == size;
166 static void remove_mapping_information(struct process_context *pr_ctxt,
167 u32 dsp_addr, u32 size)
169 struct dmm_map_object *map_obj;
171 pr_debug("%s: looking for virt 0x%x size 0x%x\n", __func__,
172 dsp_addr, size);
174 spin_lock(&pr_ctxt->dmm_map_lock);
175 list_for_each_entry(map_obj, &pr_ctxt->dmm_map_list, link) {
176 pr_debug("%s: candidate: mpu_addr 0x%x virt 0x%x size 0x%x\n",
177 __func__,
178 map_obj->mpu_addr,
179 map_obj->dsp_addr,
180 map_obj->size);
182 if (match_exact_map_obj(map_obj, dsp_addr, size)) {
183 pr_debug("%s: match, deleting map info\n", __func__);
184 list_del(&map_obj->link);
185 kfree(map_obj->dma_info.sg);
186 kfree(map_obj->pages);
187 kfree(map_obj);
188 goto out;
190 pr_debug("%s: candidate didn't match\n", __func__);
193 pr_err("%s: failed to find given map info\n", __func__);
194 out:
195 spin_unlock(&pr_ctxt->dmm_map_lock);
198 static int match_containing_map_obj(struct dmm_map_object *map_obj,
199 u32 mpu_addr, u32 size)
201 u32 map_obj_end = map_obj->mpu_addr + map_obj->size;
203 return mpu_addr >= map_obj->mpu_addr &&
204 mpu_addr + size <= map_obj_end;
207 static struct dmm_map_object *find_containing_mapping(
208 struct process_context *pr_ctxt,
209 u32 mpu_addr, u32 size)
211 struct dmm_map_object *map_obj;
212 pr_debug("%s: looking for mpu_addr 0x%x size 0x%x\n", __func__,
213 mpu_addr, size);
215 spin_lock(&pr_ctxt->dmm_map_lock);
216 list_for_each_entry(map_obj, &pr_ctxt->dmm_map_list, link) {
217 pr_debug("%s: candidate: mpu_addr 0x%x virt 0x%x size 0x%x\n",
218 __func__,
219 map_obj->mpu_addr,
220 map_obj->dsp_addr,
221 map_obj->size);
222 if (match_containing_map_obj(map_obj, mpu_addr, size)) {
223 pr_debug("%s: match!\n", __func__);
224 goto out;
227 pr_debug("%s: no match!\n", __func__);
230 map_obj = NULL;
231 out:
232 spin_unlock(&pr_ctxt->dmm_map_lock);
233 return map_obj;
236 static int find_first_page_in_cache(struct dmm_map_object *map_obj,
237 unsigned long mpu_addr)
239 u32 mapped_base_page = map_obj->mpu_addr >> PAGE_SHIFT;
240 u32 requested_base_page = mpu_addr >> PAGE_SHIFT;
241 int pg_index = requested_base_page - mapped_base_page;
243 if (pg_index < 0 || pg_index >= map_obj->num_usr_pgs) {
244 pr_err("%s: failed (got %d)\n", __func__, pg_index);
245 return -1;
248 pr_debug("%s: first page is %d\n", __func__, pg_index);
249 return pg_index;
252 static inline struct page *get_mapping_page(struct dmm_map_object *map_obj,
253 int pg_i)
255 pr_debug("%s: looking for pg_i %d, num_usr_pgs: %d\n", __func__,
256 pg_i, map_obj->num_usr_pgs);
258 if (pg_i < 0 || pg_i >= map_obj->num_usr_pgs) {
259 pr_err("%s: requested pg_i %d is out of mapped range\n",
260 __func__, pg_i);
261 return NULL;
264 return map_obj->pages[pg_i];
268 * ======== proc_attach ========
269 * Purpose:
270 * Prepare for communication with a particular DSP processor, and return
271 * a handle to the processor object.
274 proc_attach(u32 processor_id,
275 const struct dsp_processorattrin *attr_in,
276 void **ph_processor, struct process_context *pr_ctxt)
278 int status = 0;
279 struct dev_object *hdev_obj;
280 struct proc_object *p_proc_object = NULL;
281 struct mgr_object *hmgr_obj = NULL;
282 struct drv_object *hdrv_obj = NULL;
283 u8 dev_type;
285 DBC_REQUIRE(refs > 0);
286 DBC_REQUIRE(ph_processor != NULL);
288 if (pr_ctxt->hprocessor) {
289 *ph_processor = pr_ctxt->hprocessor;
290 return status;
293 /* Get the Driver and Manager Object Handles */
294 status = cfg_get_object((u32 *) &hdrv_obj, REG_DRV_OBJECT);
295 if (!status)
296 status = cfg_get_object((u32 *) &hmgr_obj, REG_MGR_OBJECT);
298 if (!status) {
299 /* Get the Device Object */
300 status = drv_get_dev_object(processor_id, hdrv_obj, &hdev_obj);
302 if (!status)
303 status = dev_get_dev_type(hdev_obj, &dev_type);
305 if (status)
306 goto func_end;
308 /* If we made it this far, create the Proceesor object: */
309 p_proc_object = kzalloc(sizeof(struct proc_object), GFP_KERNEL);
310 /* Fill out the Processor Object: */
311 if (p_proc_object == NULL) {
312 status = -ENOMEM;
313 goto func_end;
315 p_proc_object->hdev_obj = hdev_obj;
316 p_proc_object->hmgr_obj = hmgr_obj;
317 p_proc_object->processor_id = dev_type;
318 /* Store TGID instead of process handle */
319 p_proc_object->process = current->tgid;
321 INIT_LIST_HEAD(&p_proc_object->proc_list);
323 if (attr_in)
324 p_proc_object->utimeout = attr_in->utimeout;
325 else
326 p_proc_object->utimeout = PROC_DFLT_TIMEOUT;
328 status = dev_get_intf_fxns(hdev_obj, &p_proc_object->intf_fxns);
329 if (!status) {
330 status = dev_get_bridge_context(hdev_obj,
331 &p_proc_object->hbridge_context);
332 if (status)
333 kfree(p_proc_object);
334 } else
335 kfree(p_proc_object);
337 if (status)
338 goto func_end;
340 /* Create the Notification Object */
341 /* This is created with no event mask, no notify mask
342 * and no valid handle to the notification. They all get
343 * filled up when proc_register_notify is called */
344 p_proc_object->ntfy_obj = kmalloc(sizeof(struct ntfy_object),
345 GFP_KERNEL);
346 if (p_proc_object->ntfy_obj)
347 ntfy_init(p_proc_object->ntfy_obj);
348 else
349 status = -ENOMEM;
351 if (!status) {
352 /* Insert the Processor Object into the DEV List.
353 * Return handle to this Processor Object:
354 * Find out if the Device is already attached to a
355 * Processor. If so, return AlreadyAttached status */
356 lst_init_elem(&p_proc_object->link);
357 status = dev_insert_proc_object(p_proc_object->hdev_obj,
358 (u32) p_proc_object,
359 &p_proc_object->
360 is_already_attached);
361 if (!status) {
362 if (p_proc_object->is_already_attached)
363 status = 0;
364 } else {
365 if (p_proc_object->ntfy_obj) {
366 ntfy_delete(p_proc_object->ntfy_obj);
367 kfree(p_proc_object->ntfy_obj);
370 kfree(p_proc_object);
372 if (!status) {
373 *ph_processor = (void *)p_proc_object;
374 pr_ctxt->hprocessor = *ph_processor;
375 (void)proc_notify_clients(p_proc_object,
376 DSP_PROCESSORATTACH);
378 } else {
379 /* Don't leak memory if status is failed */
380 kfree(p_proc_object);
382 func_end:
383 DBC_ENSURE((status == -EPERM && *ph_processor == NULL) ||
384 (!status && p_proc_object) ||
385 (status == 0 && p_proc_object));
387 return status;
390 static int get_exec_file(struct cfg_devnode *dev_node_obj,
391 struct dev_object *hdev_obj,
392 u32 size, char *exec_file)
394 u8 dev_type;
395 s32 len;
397 dev_get_dev_type(hdev_obj, (u8 *) &dev_type);
398 if (dev_type == DSP_UNIT) {
399 return cfg_get_exec_file(dev_node_obj, size, exec_file);
400 } else if (dev_type == IVA_UNIT) {
401 if (iva_img) {
402 len = strlen(iva_img);
403 strncpy(exec_file, iva_img, len + 1);
404 return 0;
407 return -ENOENT;
411 * ======== proc_auto_start ======== =
412 * Purpose:
413 * A Particular device gets loaded with the default image
414 * if the AutoStart flag is set.
415 * Parameters:
416 * hdev_obj: Handle to the Device
417 * Returns:
418 * 0: On Successful Loading
419 * -EPERM General Failure
420 * Requires:
421 * hdev_obj != NULL
422 * Ensures:
424 int proc_auto_start(struct cfg_devnode *dev_node_obj,
425 struct dev_object *hdev_obj)
427 int status = -EPERM;
428 struct proc_object *p_proc_object;
429 char sz_exec_file[MAXCMDLINELEN];
430 char *argv[2];
431 struct mgr_object *hmgr_obj = NULL;
432 u8 dev_type;
434 DBC_REQUIRE(refs > 0);
435 DBC_REQUIRE(dev_node_obj != NULL);
436 DBC_REQUIRE(hdev_obj != NULL);
438 /* Create a Dummy PROC Object */
439 status = cfg_get_object((u32 *) &hmgr_obj, REG_MGR_OBJECT);
440 if (status)
441 goto func_end;
443 p_proc_object = kzalloc(sizeof(struct proc_object), GFP_KERNEL);
444 if (p_proc_object == NULL) {
445 status = -ENOMEM;
446 goto func_end;
448 p_proc_object->hdev_obj = hdev_obj;
449 p_proc_object->hmgr_obj = hmgr_obj;
450 status = dev_get_intf_fxns(hdev_obj, &p_proc_object->intf_fxns);
451 if (!status)
452 status = dev_get_bridge_context(hdev_obj,
453 &p_proc_object->hbridge_context);
454 if (status)
455 goto func_cont;
457 /* Stop the Device, put it into standby mode */
458 status = proc_stop(p_proc_object);
460 if (status)
461 goto func_cont;
463 /* Get the default executable for this board... */
464 dev_get_dev_type(hdev_obj, (u8 *) &dev_type);
465 p_proc_object->processor_id = dev_type;
466 status = get_exec_file(dev_node_obj, hdev_obj, sizeof(sz_exec_file),
467 sz_exec_file);
468 if (!status) {
469 argv[0] = sz_exec_file;
470 argv[1] = NULL;
471 /* ...and try to load it: */
472 status = proc_load(p_proc_object, 1, (const char **)argv, NULL);
473 if (!status)
474 status = proc_start(p_proc_object);
476 kfree(p_proc_object->psz_last_coff);
477 p_proc_object->psz_last_coff = NULL;
478 func_cont:
479 kfree(p_proc_object);
480 func_end:
481 return status;
485 * ======== proc_ctrl ========
486 * Purpose:
487 * Pass control information to the GPP device driver managing the
488 * DSP processor.
490 * This will be an OEM-only function, and not part of the DSP/BIOS Bridge
491 * application developer's API.
492 * Call the bridge_dev_ctrl fxn with the Argument. This is a Synchronous
493 * Operation. arg can be null.
495 int proc_ctrl(void *hprocessor, u32 dw_cmd, struct dsp_cbdata * arg)
497 int status = 0;
498 struct proc_object *p_proc_object = hprocessor;
499 u32 timeout = 0;
501 DBC_REQUIRE(refs > 0);
503 if (p_proc_object) {
504 /* intercept PWR deep sleep command */
505 if (dw_cmd == BRDIOCTL_DEEPSLEEP) {
506 timeout = arg->cb_data;
507 status = pwr_sleep_dsp(PWR_DEEPSLEEP, timeout);
509 /* intercept PWR emergency sleep command */
510 else if (dw_cmd == BRDIOCTL_EMERGENCYSLEEP) {
511 timeout = arg->cb_data;
512 status = pwr_sleep_dsp(PWR_EMERGENCYDEEPSLEEP, timeout);
513 } else if (dw_cmd == PWR_DEEPSLEEP) {
514 /* timeout = arg->cb_data; */
515 status = pwr_sleep_dsp(PWR_DEEPSLEEP, timeout);
517 /* intercept PWR wake commands */
518 else if (dw_cmd == BRDIOCTL_WAKEUP) {
519 timeout = arg->cb_data;
520 status = pwr_wake_dsp(timeout);
521 } else if (dw_cmd == PWR_WAKEUP) {
522 /* timeout = arg->cb_data; */
523 status = pwr_wake_dsp(timeout);
524 } else
525 if (!((*p_proc_object->intf_fxns->pfn_dev_cntrl)
526 (p_proc_object->hbridge_context, dw_cmd,
527 arg))) {
528 status = 0;
529 } else {
530 status = -EPERM;
532 } else {
533 status = -EFAULT;
536 return status;
540 * ======== proc_detach ========
541 * Purpose:
542 * Destroys the Processor Object. Removes the notification from the Dev
543 * List.
545 int proc_detach(struct process_context *pr_ctxt)
547 int status = 0;
548 struct proc_object *p_proc_object = NULL;
550 DBC_REQUIRE(refs > 0);
552 p_proc_object = (struct proc_object *)pr_ctxt->hprocessor;
554 if (p_proc_object) {
555 /* Notify the Client */
556 ntfy_notify(p_proc_object->ntfy_obj, DSP_PROCESSORDETACH);
557 /* Remove the notification memory */
558 if (p_proc_object->ntfy_obj) {
559 ntfy_delete(p_proc_object->ntfy_obj);
560 kfree(p_proc_object->ntfy_obj);
563 kfree(p_proc_object->psz_last_coff);
564 p_proc_object->psz_last_coff = NULL;
565 /* Remove the Proc from the DEV List */
566 (void)dev_remove_proc_object(p_proc_object->hdev_obj,
567 (u32) p_proc_object);
568 /* Free the Processor Object */
569 kfree(p_proc_object);
570 pr_ctxt->hprocessor = NULL;
571 } else {
572 status = -EFAULT;
575 return status;
579 * ======== proc_enum_nodes ========
580 * Purpose:
581 * Enumerate and get configuration information about nodes allocated
582 * on a DSP processor.
584 int proc_enum_nodes(void *hprocessor, void **node_tab,
585 u32 node_tab_size, u32 *pu_num_nodes,
586 u32 *pu_allocated)
588 int status = -EPERM;
589 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
590 struct node_mgr *hnode_mgr = NULL;
592 DBC_REQUIRE(refs > 0);
593 DBC_REQUIRE(node_tab != NULL || node_tab_size == 0);
594 DBC_REQUIRE(pu_num_nodes != NULL);
595 DBC_REQUIRE(pu_allocated != NULL);
597 if (p_proc_object) {
598 if (!(dev_get_node_manager(p_proc_object->hdev_obj,
599 &hnode_mgr))) {
600 if (hnode_mgr) {
601 status = node_enum_nodes(hnode_mgr, node_tab,
602 node_tab_size,
603 pu_num_nodes,
604 pu_allocated);
607 } else {
608 status = -EFAULT;
611 return status;
614 /* Cache operation against kernel address instead of users */
615 static int build_dma_sg(struct dmm_map_object *map_obj, unsigned long start,
616 ssize_t len, int pg_i)
618 struct page *page;
619 unsigned long offset;
620 ssize_t rest;
621 int ret = 0, i = 0;
622 struct scatterlist *sg = map_obj->dma_info.sg;
624 while (len) {
625 page = get_mapping_page(map_obj, pg_i);
626 if (!page) {
627 pr_err("%s: no page for %08lx\n", __func__, start);
628 ret = -EINVAL;
629 goto out;
630 } else if (IS_ERR(page)) {
631 pr_err("%s: err page for %08lx(%lu)\n", __func__, start,
632 PTR_ERR(page));
633 ret = PTR_ERR(page);
634 goto out;
637 offset = start & ~PAGE_MASK;
638 rest = min_t(ssize_t, PAGE_SIZE - offset, len);
640 sg_set_page(&sg[i], page, rest, offset);
642 len -= rest;
643 start += rest;
644 pg_i++, i++;
647 if (i != map_obj->dma_info.num_pages) {
648 pr_err("%s: bad number of sg iterations\n", __func__);
649 ret = -EFAULT;
650 goto out;
653 out:
654 return ret;
657 static int memory_regain_ownership(struct dmm_map_object *map_obj,
658 unsigned long start, ssize_t len, enum dma_data_direction dir)
660 int ret = 0;
661 unsigned long first_data_page = start >> PAGE_SHIFT;
662 unsigned long last_data_page = ((u32)(start + len - 1) >> PAGE_SHIFT);
663 /* calculating the number of pages this area spans */
664 unsigned long num_pages = last_data_page - first_data_page + 1;
665 struct bridge_dma_map_info *dma_info = &map_obj->dma_info;
667 if (!dma_info->sg)
668 goto out;
670 if (dma_info->dir != dir || dma_info->num_pages != num_pages) {
671 pr_err("%s: dma info doesn't match given params\n", __func__);
672 return -EINVAL;
675 dma_unmap_sg(bridge, dma_info->sg, num_pages, dma_info->dir);
677 pr_debug("%s: dma_map_sg unmapped\n", __func__);
679 kfree(dma_info->sg);
681 map_obj->dma_info.sg = NULL;
683 out:
684 return ret;
687 /* Cache operation against kernel address instead of users */
688 static int memory_give_ownership(struct dmm_map_object *map_obj,
689 unsigned long start, ssize_t len, enum dma_data_direction dir)
691 int pg_i, ret, sg_num;
692 struct scatterlist *sg;
693 unsigned long first_data_page = start >> PAGE_SHIFT;
694 unsigned long last_data_page = ((u32)(start + len - 1) >> PAGE_SHIFT);
695 /* calculating the number of pages this area spans */
696 unsigned long num_pages = last_data_page - first_data_page + 1;
698 pg_i = find_first_page_in_cache(map_obj, start);
699 if (pg_i < 0) {
700 pr_err("%s: failed to find first page in cache\n", __func__);
701 ret = -EINVAL;
702 goto out;
705 sg = kcalloc(num_pages, sizeof(*sg), GFP_KERNEL);
706 if (!sg) {
707 pr_err("%s: kcalloc failed\n", __func__);
708 ret = -ENOMEM;
709 goto out;
712 sg_init_table(sg, num_pages);
714 /* cleanup a previous sg allocation */
715 /* this may happen if application doesn't signal for e/o DMA */
716 kfree(map_obj->dma_info.sg);
718 map_obj->dma_info.sg = sg;
719 map_obj->dma_info.dir = dir;
720 map_obj->dma_info.num_pages = num_pages;
722 ret = build_dma_sg(map_obj, start, len, pg_i);
723 if (ret)
724 goto kfree_sg;
726 sg_num = dma_map_sg(bridge, sg, num_pages, dir);
727 if (sg_num < 1) {
728 pr_err("%s: dma_map_sg failed: %d\n", __func__, sg_num);
729 ret = -EFAULT;
730 goto kfree_sg;
733 pr_debug("%s: dma_map_sg mapped %d elements\n", __func__, sg_num);
734 map_obj->dma_info.sg_num = sg_num;
736 return 0;
738 kfree_sg:
739 kfree(sg);
740 map_obj->dma_info.sg = NULL;
741 out:
742 return ret;
745 int proc_begin_dma(void *hprocessor, void *pmpu_addr, u32 ul_size,
746 enum dma_data_direction dir)
748 /* Keep STATUS here for future additions to this function */
749 int status = 0;
750 struct process_context *pr_ctxt = (struct process_context *) hprocessor;
751 struct dmm_map_object *map_obj;
753 DBC_REQUIRE(refs > 0);
755 if (!pr_ctxt) {
756 status = -EFAULT;
757 goto err_out;
760 pr_debug("%s: addr 0x%x, size 0x%x, type %d\n", __func__,
761 (u32)pmpu_addr,
762 ul_size, dir);
764 /* find requested memory are in cached mapping information */
765 map_obj = find_containing_mapping(pr_ctxt, (u32) pmpu_addr, ul_size);
766 if (!map_obj) {
767 pr_err("%s: find_containing_mapping failed\n", __func__);
768 status = -EFAULT;
769 goto err_out;
772 if (memory_give_ownership(map_obj, (u32) pmpu_addr, ul_size, dir)) {
773 pr_err("%s: InValid address parameters %p %x\n",
774 __func__, pmpu_addr, ul_size);
775 status = -EFAULT;
778 err_out:
780 return status;
783 int proc_end_dma(void *hprocessor, void *pmpu_addr, u32 ul_size,
784 enum dma_data_direction dir)
786 /* Keep STATUS here for future additions to this function */
787 int status = 0;
788 struct process_context *pr_ctxt = (struct process_context *) hprocessor;
789 struct dmm_map_object *map_obj;
791 DBC_REQUIRE(refs > 0);
793 if (!pr_ctxt) {
794 status = -EFAULT;
795 goto err_out;
798 pr_debug("%s: addr 0x%x, size 0x%x, type %d\n", __func__,
799 (u32)pmpu_addr,
800 ul_size, dir);
802 /* find requested memory are in cached mapping information */
803 map_obj = find_containing_mapping(pr_ctxt, (u32) pmpu_addr, ul_size);
804 if (!map_obj) {
805 pr_err("%s: find_containing_mapping failed\n", __func__);
806 status = -EFAULT;
807 goto err_out;
810 if (memory_regain_ownership(map_obj, (u32) pmpu_addr, ul_size, dir)) {
811 pr_err("%s: InValid address parameters %p %x\n",
812 __func__, pmpu_addr, ul_size);
813 status = -EFAULT;
814 goto err_out;
817 err_out:
818 return status;
822 * ======== proc_flush_memory ========
823 * Purpose:
824 * Flush cache
826 int proc_flush_memory(void *hprocessor, void *pmpu_addr,
827 u32 ul_size, u32 ul_flags)
829 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
831 return proc_begin_dma(hprocessor, pmpu_addr, ul_size, dir);
835 * ======== proc_invalidate_memory ========
836 * Purpose:
837 * Invalidates the memory specified
839 int proc_invalidate_memory(void *hprocessor, void *pmpu_addr, u32 size)
841 enum dma_data_direction dir = DMA_FROM_DEVICE;
843 return proc_begin_dma(hprocessor, pmpu_addr, size, dir);
847 * ======== proc_get_resource_info ========
848 * Purpose:
849 * Enumerate the resources currently available on a processor.
851 int proc_get_resource_info(void *hprocessor, u32 resource_type,
852 struct dsp_resourceinfo *resource_info,
853 u32 resource_info_size)
855 int status = -EPERM;
856 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
857 struct node_mgr *hnode_mgr = NULL;
858 struct nldr_object *nldr_obj = NULL;
859 struct rmm_target_obj *rmm = NULL;
860 struct io_mgr *hio_mgr = NULL; /* IO manager handle */
862 DBC_REQUIRE(refs > 0);
863 DBC_REQUIRE(resource_info != NULL);
864 DBC_REQUIRE(resource_info_size >= sizeof(struct dsp_resourceinfo));
866 if (!p_proc_object) {
867 status = -EFAULT;
868 goto func_end;
870 switch (resource_type) {
871 case DSP_RESOURCE_DYNDARAM:
872 case DSP_RESOURCE_DYNSARAM:
873 case DSP_RESOURCE_DYNEXTERNAL:
874 case DSP_RESOURCE_DYNSRAM:
875 status = dev_get_node_manager(p_proc_object->hdev_obj,
876 &hnode_mgr);
877 if (!hnode_mgr) {
878 status = -EFAULT;
879 goto func_end;
882 status = node_get_nldr_obj(hnode_mgr, &nldr_obj);
883 if (!status) {
884 status = nldr_get_rmm_manager(nldr_obj, &rmm);
885 if (rmm) {
886 if (!rmm_stat(rmm,
887 (enum dsp_memtype)resource_type,
888 (struct dsp_memstat *)
889 &(resource_info->result.
890 mem_stat)))
891 status = -EINVAL;
892 } else {
893 status = -EFAULT;
896 break;
897 case DSP_RESOURCE_PROCLOAD:
898 status = dev_get_io_mgr(p_proc_object->hdev_obj, &hio_mgr);
899 if (hio_mgr)
900 status =
901 p_proc_object->intf_fxns->
902 pfn_io_get_proc_load(hio_mgr,
903 (struct dsp_procloadstat *)
904 &(resource_info->result.
905 proc_load_stat));
906 else
907 status = -EFAULT;
908 break;
909 default:
910 status = -EPERM;
911 break;
913 func_end:
914 return status;
918 * ======== proc_exit ========
919 * Purpose:
920 * Decrement reference count, and free resources when reference count is
921 * 0.
923 void proc_exit(void)
925 DBC_REQUIRE(refs > 0);
927 refs--;
929 DBC_ENSURE(refs >= 0);
933 * ======== proc_get_dev_object ========
934 * Purpose:
935 * Return the Dev Object handle for a given Processor.
938 int proc_get_dev_object(void *hprocessor,
939 struct dev_object **device_obj)
941 int status = -EPERM;
942 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
944 DBC_REQUIRE(refs > 0);
945 DBC_REQUIRE(device_obj != NULL);
947 if (p_proc_object) {
948 *device_obj = p_proc_object->hdev_obj;
949 status = 0;
950 } else {
951 *device_obj = NULL;
952 status = -EFAULT;
955 DBC_ENSURE((!status && *device_obj != NULL) ||
956 (status && *device_obj == NULL));
958 return status;
962 * ======== proc_get_state ========
963 * Purpose:
964 * Report the state of the specified DSP processor.
966 int proc_get_state(void *hprocessor,
967 struct dsp_processorstate *proc_state_obj,
968 u32 state_info_size)
970 int status = 0;
971 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
972 int brd_status;
974 DBC_REQUIRE(refs > 0);
975 DBC_REQUIRE(proc_state_obj != NULL);
976 DBC_REQUIRE(state_info_size >= sizeof(struct dsp_processorstate));
978 if (p_proc_object) {
979 /* First, retrieve BRD state information */
980 status = (*p_proc_object->intf_fxns->pfn_brd_status)
981 (p_proc_object->hbridge_context, &brd_status);
982 if (!status) {
983 switch (brd_status) {
984 case BRD_STOPPED:
985 proc_state_obj->proc_state = PROC_STOPPED;
986 break;
987 case BRD_SLEEP_TRANSITION:
988 case BRD_DSP_HIBERNATION:
989 /* Fall through */
990 case BRD_RUNNING:
991 proc_state_obj->proc_state = PROC_RUNNING;
992 break;
993 case BRD_LOADED:
994 proc_state_obj->proc_state = PROC_LOADED;
995 break;
996 case BRD_ERROR:
997 proc_state_obj->proc_state = PROC_ERROR;
998 break;
999 default:
1000 proc_state_obj->proc_state = 0xFF;
1001 status = -EPERM;
1002 break;
1005 } else {
1006 status = -EFAULT;
1008 dev_dbg(bridge, "%s, results: status: 0x%x proc_state_obj: 0x%x\n",
1009 __func__, status, proc_state_obj->proc_state);
1010 return status;
1014 * ======== proc_get_trace ========
1015 * Purpose:
1016 * Retrieve the current contents of the trace buffer, located on the
1017 * Processor. Predefined symbols for the trace buffer must have been
1018 * configured into the DSP executable.
1019 * Details:
1020 * We support using the symbols SYS_PUTCBEG and SYS_PUTCEND to define a
1021 * trace buffer, only. Treat it as an undocumented feature.
1022 * This call is destructive, meaning the processor is placed in the monitor
1023 * state as a result of this function.
1025 int proc_get_trace(void *hprocessor, u8 * pbuf, u32 max_size)
1027 int status;
1028 status = -ENOSYS;
1029 return status;
1033 * ======== proc_init ========
1034 * Purpose:
1035 * Initialize PROC's private state, keeping a reference count on each call
1037 bool proc_init(void)
1039 bool ret = true;
1041 DBC_REQUIRE(refs >= 0);
1043 if (ret)
1044 refs++;
1046 DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
1048 return ret;
1052 * ======== proc_load ========
1053 * Purpose:
1054 * Reset a processor and load a new base program image.
1055 * This will be an OEM-only function, and not part of the DSP/BIOS Bridge
1056 * application developer's API.
1058 int proc_load(void *hprocessor, const s32 argc_index,
1059 const char **user_args, const char **user_envp)
1061 int status = 0;
1062 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1063 struct io_mgr *hio_mgr; /* IO manager handle */
1064 struct msg_mgr *hmsg_mgr;
1065 struct cod_manager *cod_mgr; /* Code manager handle */
1066 char *pargv0; /* temp argv[0] ptr */
1067 char **new_envp; /* Updated envp[] array. */
1068 char sz_proc_id[MAXPROCIDLEN]; /* Size of "PROC_ID=<n>" */
1069 s32 envp_elems; /* Num elements in envp[]. */
1070 s32 cnew_envp; /* " " in new_envp[] */
1071 s32 nproc_id = 0; /* Anticipate MP version. */
1072 struct dcd_manager *hdcd_handle;
1073 struct dmm_object *dmm_mgr;
1074 u32 dw_ext_end;
1075 u32 proc_id;
1076 int brd_state;
1077 struct drv_data *drv_datap = dev_get_drvdata(bridge);
1079 #ifdef OPT_LOAD_TIME_INSTRUMENTATION
1080 struct timeval tv1;
1081 struct timeval tv2;
1082 #endif
1084 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1085 struct dspbridge_platform_data *pdata =
1086 omap_dspbridge_dev->dev.platform_data;
1087 #endif
1089 DBC_REQUIRE(refs > 0);
1090 DBC_REQUIRE(argc_index > 0);
1091 DBC_REQUIRE(user_args != NULL);
1093 #ifdef OPT_LOAD_TIME_INSTRUMENTATION
1094 do_gettimeofday(&tv1);
1095 #endif
1096 if (!p_proc_object) {
1097 status = -EFAULT;
1098 goto func_end;
1100 dev_get_cod_mgr(p_proc_object->hdev_obj, &cod_mgr);
1101 if (!cod_mgr) {
1102 status = -EPERM;
1103 goto func_end;
1105 status = proc_stop(hprocessor);
1106 if (status)
1107 goto func_end;
1109 /* Place the board in the monitor state. */
1110 status = proc_monitor(hprocessor);
1111 if (status)
1112 goto func_end;
1114 /* Save ptr to original argv[0]. */
1115 pargv0 = (char *)user_args[0];
1116 /*Prepend "PROC_ID=<nproc_id>"to envp array for target. */
1117 envp_elems = get_envp_count((char **)user_envp);
1118 cnew_envp = (envp_elems ? (envp_elems + 1) : (envp_elems + 2));
1119 new_envp = kzalloc(cnew_envp * sizeof(char **), GFP_KERNEL);
1120 if (new_envp) {
1121 status = snprintf(sz_proc_id, MAXPROCIDLEN, PROC_ENVPROCID,
1122 nproc_id);
1123 if (status == -1) {
1124 dev_dbg(bridge, "%s: Proc ID string overflow\n",
1125 __func__);
1126 status = -EPERM;
1127 } else {
1128 new_envp =
1129 prepend_envp(new_envp, (char **)user_envp,
1130 envp_elems, cnew_envp, sz_proc_id);
1131 /* Get the DCD Handle */
1132 status = mgr_get_dcd_handle(p_proc_object->hmgr_obj,
1133 (u32 *) &hdcd_handle);
1134 if (!status) {
1135 /* Before proceeding with new load,
1136 * check if a previously registered COFF
1137 * exists.
1138 * If yes, unregister nodes in previously
1139 * registered COFF. If any error occurred,
1140 * set previously registered COFF to NULL. */
1141 if (p_proc_object->psz_last_coff != NULL) {
1142 status =
1143 dcd_auto_unregister(hdcd_handle,
1144 p_proc_object->
1145 psz_last_coff);
1146 /* Regardless of auto unregister status,
1147 * free previously allocated
1148 * memory. */
1149 kfree(p_proc_object->psz_last_coff);
1150 p_proc_object->psz_last_coff = NULL;
1153 /* On success, do cod_open_base() */
1154 status = cod_open_base(cod_mgr, (char *)user_args[0],
1155 COD_SYMB);
1157 } else {
1158 status = -ENOMEM;
1160 if (!status) {
1161 /* Auto-register data base */
1162 /* Get the DCD Handle */
1163 status = mgr_get_dcd_handle(p_proc_object->hmgr_obj,
1164 (u32 *) &hdcd_handle);
1165 if (!status) {
1166 /* Auto register nodes in specified COFF
1167 * file. If registration did not fail,
1168 * (status = 0 or -EACCES)
1169 * save the name of the COFF file for
1170 * de-registration in the future. */
1171 status =
1172 dcd_auto_register(hdcd_handle,
1173 (char *)user_args[0]);
1174 if (status == -EACCES)
1175 status = 0;
1177 if (status) {
1178 status = -EPERM;
1179 } else {
1180 DBC_ASSERT(p_proc_object->psz_last_coff ==
1181 NULL);
1182 /* Allocate memory for pszLastCoff */
1183 p_proc_object->psz_last_coff =
1184 kzalloc((strlen(user_args[0]) +
1185 1), GFP_KERNEL);
1186 /* If memory allocated, save COFF file name */
1187 if (p_proc_object->psz_last_coff) {
1188 strncpy(p_proc_object->psz_last_coff,
1189 (char *)user_args[0],
1190 (strlen((char *)user_args[0]) +
1191 1));
1196 /* Update shared memory address and size */
1197 if (!status) {
1198 /* Create the message manager. This must be done
1199 * before calling the IOOnLoaded function. */
1200 dev_get_msg_mgr(p_proc_object->hdev_obj, &hmsg_mgr);
1201 if (!hmsg_mgr) {
1202 status = msg_create(&hmsg_mgr, p_proc_object->hdev_obj,
1203 (msg_onexit) node_on_exit);
1204 DBC_ASSERT(!status);
1205 dev_set_msg_mgr(p_proc_object->hdev_obj, hmsg_mgr);
1208 if (!status) {
1209 /* Set the Device object's message manager */
1210 status = dev_get_io_mgr(p_proc_object->hdev_obj, &hio_mgr);
1211 if (hio_mgr)
1212 status = (*p_proc_object->intf_fxns->pfn_io_on_loaded)
1213 (hio_mgr);
1214 else
1215 status = -EFAULT;
1217 if (!status) {
1218 /* Now, attempt to load an exec: */
1220 /* Boost the OPP level to Maximum level supported by baseport */
1221 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1222 if (pdata->cpu_set_freq)
1223 (*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP5]);
1224 #endif
1225 status = cod_load_base(cod_mgr, argc_index, (char **)user_args,
1226 dev_brd_write_fxn,
1227 p_proc_object->hdev_obj, NULL);
1228 if (status) {
1229 if (status == -EBADF) {
1230 dev_dbg(bridge, "%s: Failure to Load the EXE\n",
1231 __func__);
1233 if (status == -ESPIPE) {
1234 pr_err("%s: Couldn't parse the file\n",
1235 __func__);
1238 /* Requesting the lowest opp supported */
1239 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1240 if (pdata->cpu_set_freq)
1241 (*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP1]);
1242 #endif
1245 if (!status) {
1246 /* Update the Processor status to loaded */
1247 status = (*p_proc_object->intf_fxns->pfn_brd_set_state)
1248 (p_proc_object->hbridge_context, BRD_LOADED);
1249 if (!status) {
1250 p_proc_object->proc_state = PROC_LOADED;
1251 if (p_proc_object->ntfy_obj)
1252 proc_notify_clients(p_proc_object,
1253 DSP_PROCESSORSTATECHANGE);
1256 if (!status) {
1257 status = proc_get_processor_id(hprocessor, &proc_id);
1258 if (proc_id == DSP_UNIT) {
1259 /* Use all available DSP address space after EXTMEM
1260 * for DMM */
1261 if (!status)
1262 status = cod_get_sym_value(cod_mgr, EXTEND,
1263 &dw_ext_end);
1265 /* Reset DMM structs and add an initial free chunk */
1266 if (!status) {
1267 status =
1268 dev_get_dmm_mgr(p_proc_object->hdev_obj,
1269 &dmm_mgr);
1270 if (dmm_mgr) {
1271 /* Set dw_ext_end to DMM START u8
1272 * address */
1273 dw_ext_end =
1274 (dw_ext_end + 1) * DSPWORDSIZE;
1275 /* DMM memory is from EXT_END */
1276 status = dmm_create_tables(dmm_mgr,
1277 dw_ext_end,
1278 DMMPOOLSIZE);
1279 } else {
1280 status = -EFAULT;
1285 /* Restore the original argv[0] */
1286 kfree(new_envp);
1287 user_args[0] = pargv0;
1288 if (!status) {
1289 if (!((*p_proc_object->intf_fxns->pfn_brd_status)
1290 (p_proc_object->hbridge_context, &brd_state))) {
1291 pr_info("%s: Processor Loaded %s\n", __func__, pargv0);
1292 kfree(drv_datap->base_img);
1293 drv_datap->base_img = kmalloc(strlen(pargv0) + 1,
1294 GFP_KERNEL);
1295 if (drv_datap->base_img)
1296 strncpy(drv_datap->base_img, pargv0,
1297 strlen(pargv0) + 1);
1298 else
1299 status = -ENOMEM;
1300 DBC_ASSERT(brd_state == BRD_LOADED);
1304 func_end:
1305 if (status) {
1306 pr_err("%s: Processor failed to load\n", __func__);
1307 proc_stop(p_proc_object);
1309 DBC_ENSURE((!status
1310 && p_proc_object->proc_state == PROC_LOADED)
1311 || status);
1312 #ifdef OPT_LOAD_TIME_INSTRUMENTATION
1313 do_gettimeofday(&tv2);
1314 if (tv2.tv_usec < tv1.tv_usec) {
1315 tv2.tv_usec += 1000000;
1316 tv2.tv_sec--;
1318 dev_dbg(bridge, "%s: time to load %d sec and %d usec\n", __func__,
1319 tv2.tv_sec - tv1.tv_sec, tv2.tv_usec - tv1.tv_usec);
1320 #endif
1321 return status;
1325 * ======== proc_map ========
1326 * Purpose:
1327 * Maps a MPU buffer to DSP address space.
1329 int proc_map(void *hprocessor, void *pmpu_addr, u32 ul_size,
1330 void *req_addr, void **pp_map_addr, u32 ul_map_attr,
1331 struct process_context *pr_ctxt)
1333 u32 va_align;
1334 u32 pa_align;
1335 struct dmm_object *dmm_mgr;
1336 u32 size_align;
1337 int status = 0;
1338 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1339 struct dmm_map_object *map_obj;
1340 u32 tmp_addr = 0;
1342 #ifdef CONFIG_TIDSPBRIDGE_CACHE_LINE_CHECK
1343 if ((ul_map_attr & BUFMODE_MASK) != RBUF) {
1344 if (!IS_ALIGNED((u32)pmpu_addr, DSP_CACHE_LINE) ||
1345 !IS_ALIGNED(ul_size, DSP_CACHE_LINE)) {
1346 pr_err("%s: not aligned: 0x%x (%d)\n", __func__,
1347 (u32)pmpu_addr, ul_size);
1348 return -EFAULT;
1351 #endif
1353 /* Calculate the page-aligned PA, VA and size */
1354 va_align = PG_ALIGN_LOW((u32) req_addr, PG_SIZE4K);
1355 pa_align = PG_ALIGN_LOW((u32) pmpu_addr, PG_SIZE4K);
1356 size_align = PG_ALIGN_HIGH(ul_size + (u32) pmpu_addr - pa_align,
1357 PG_SIZE4K);
1359 if (!p_proc_object) {
1360 status = -EFAULT;
1361 goto func_end;
1363 /* Critical section */
1364 mutex_lock(&proc_lock);
1365 dmm_get_handle(p_proc_object, &dmm_mgr);
1366 if (dmm_mgr)
1367 status = dmm_map_memory(dmm_mgr, va_align, size_align);
1368 else
1369 status = -EFAULT;
1371 /* Add mapping to the page tables. */
1372 if (!status) {
1374 /* Mapped address = MSB of VA | LSB of PA */
1375 tmp_addr = (va_align | ((u32) pmpu_addr & (PG_SIZE4K - 1)));
1376 /* mapped memory resource tracking */
1377 map_obj = add_mapping_info(pr_ctxt, pa_align, tmp_addr,
1378 size_align);
1379 if (!map_obj)
1380 status = -ENOMEM;
1381 else
1382 status = (*p_proc_object->intf_fxns->pfn_brd_mem_map)
1383 (p_proc_object->hbridge_context, pa_align, va_align,
1384 size_align, ul_map_attr, map_obj->pages);
1386 if (!status) {
1387 /* Mapped address = MSB of VA | LSB of PA */
1388 *pp_map_addr = (void *) tmp_addr;
1389 } else {
1390 remove_mapping_information(pr_ctxt, tmp_addr, size_align);
1391 dmm_un_map_memory(dmm_mgr, va_align, &size_align);
1393 mutex_unlock(&proc_lock);
1395 if (status)
1396 goto func_end;
1398 func_end:
1399 dev_dbg(bridge, "%s: hprocessor %p, pmpu_addr %p, ul_size %x, "
1400 "req_addr %p, ul_map_attr %x, pp_map_addr %p, va_align %x, "
1401 "pa_align %x, size_align %x status 0x%x\n", __func__,
1402 hprocessor, pmpu_addr, ul_size, req_addr, ul_map_attr,
1403 pp_map_addr, va_align, pa_align, size_align, status);
1405 return status;
1409 * ======== proc_register_notify ========
1410 * Purpose:
1411 * Register to be notified of specific processor events.
1413 int proc_register_notify(void *hprocessor, u32 event_mask,
1414 u32 notify_type, struct dsp_notification
1415 * hnotification)
1417 int status = 0;
1418 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1419 struct deh_mgr *hdeh_mgr;
1421 DBC_REQUIRE(hnotification != NULL);
1422 DBC_REQUIRE(refs > 0);
1424 /* Check processor handle */
1425 if (!p_proc_object) {
1426 status = -EFAULT;
1427 goto func_end;
1429 /* Check if event mask is a valid processor related event */
1430 if (event_mask & ~(DSP_PROCESSORSTATECHANGE | DSP_PROCESSORATTACH |
1431 DSP_PROCESSORDETACH | DSP_PROCESSORRESTART |
1432 DSP_MMUFAULT | DSP_SYSERROR | DSP_PWRERROR |
1433 DSP_WDTOVERFLOW))
1434 status = -EINVAL;
1436 /* Check if notify type is valid */
1437 if (notify_type != DSP_SIGNALEVENT)
1438 status = -EINVAL;
1440 if (!status) {
1441 /* If event mask is not DSP_SYSERROR, DSP_MMUFAULT,
1442 * or DSP_PWRERROR then register event immediately. */
1443 if (event_mask &
1444 ~(DSP_SYSERROR | DSP_MMUFAULT | DSP_PWRERROR |
1445 DSP_WDTOVERFLOW)) {
1446 status = ntfy_register(p_proc_object->ntfy_obj,
1447 hnotification, event_mask,
1448 notify_type);
1449 /* Special case alert, special case alert!
1450 * If we're trying to *deregister* (i.e. event_mask
1451 * is 0), a DSP_SYSERROR or DSP_MMUFAULT notification,
1452 * we have to deregister with the DEH manager.
1453 * There's no way to know, based on event_mask which
1454 * manager the notification event was registered with,
1455 * so if we're trying to deregister and ntfy_register
1456 * failed, we'll give the deh manager a shot.
1458 if ((event_mask == 0) && status) {
1459 status =
1460 dev_get_deh_mgr(p_proc_object->hdev_obj,
1461 &hdeh_mgr);
1462 status =
1463 bridge_deh_register_notify(hdeh_mgr,
1464 event_mask,
1465 notify_type,
1466 hnotification);
1468 } else {
1469 status = dev_get_deh_mgr(p_proc_object->hdev_obj,
1470 &hdeh_mgr);
1471 status =
1472 bridge_deh_register_notify(hdeh_mgr,
1473 event_mask,
1474 notify_type,
1475 hnotification);
1479 func_end:
1480 return status;
1484 * ======== proc_reserve_memory ========
1485 * Purpose:
1486 * Reserve a virtually contiguous region of DSP address space.
1488 int proc_reserve_memory(void *hprocessor, u32 ul_size,
1489 void **pp_rsv_addr,
1490 struct process_context *pr_ctxt)
1492 struct dmm_object *dmm_mgr;
1493 int status = 0;
1494 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1495 struct dmm_rsv_object *rsv_obj;
1497 if (!p_proc_object) {
1498 status = -EFAULT;
1499 goto func_end;
1502 status = dmm_get_handle(p_proc_object, &dmm_mgr);
1503 if (!dmm_mgr) {
1504 status = -EFAULT;
1505 goto func_end;
1508 status = dmm_reserve_memory(dmm_mgr, ul_size, (u32 *) pp_rsv_addr);
1509 if (status != 0)
1510 goto func_end;
1513 * A successful reserve should be followed by insertion of rsv_obj
1514 * into dmm_rsv_list, so that reserved memory resource tracking
1515 * remains uptodate
1517 rsv_obj = kmalloc(sizeof(struct dmm_rsv_object), GFP_KERNEL);
1518 if (rsv_obj) {
1519 rsv_obj->dsp_reserved_addr = (u32) *pp_rsv_addr;
1520 spin_lock(&pr_ctxt->dmm_rsv_lock);
1521 list_add(&rsv_obj->link, &pr_ctxt->dmm_rsv_list);
1522 spin_unlock(&pr_ctxt->dmm_rsv_lock);
1525 func_end:
1526 dev_dbg(bridge, "%s: hprocessor: 0x%p ul_size: 0x%x pp_rsv_addr: 0x%p "
1527 "status 0x%x\n", __func__, hprocessor,
1528 ul_size, pp_rsv_addr, status);
1529 return status;
1533 * ======== proc_start ========
1534 * Purpose:
1535 * Start a processor running.
1537 int proc_start(void *hprocessor)
1539 int status = 0;
1540 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1541 struct cod_manager *cod_mgr; /* Code manager handle */
1542 u32 dw_dsp_addr; /* Loaded code's entry point. */
1543 int brd_state;
1545 DBC_REQUIRE(refs > 0);
1546 if (!p_proc_object) {
1547 status = -EFAULT;
1548 goto func_end;
1550 /* Call the bridge_brd_start */
1551 if (p_proc_object->proc_state != PROC_LOADED) {
1552 status = -EBADR;
1553 goto func_end;
1555 status = dev_get_cod_mgr(p_proc_object->hdev_obj, &cod_mgr);
1556 if (!cod_mgr) {
1557 status = -EFAULT;
1558 goto func_cont;
1561 status = cod_get_entry(cod_mgr, &dw_dsp_addr);
1562 if (status)
1563 goto func_cont;
1565 status = (*p_proc_object->intf_fxns->pfn_brd_start)
1566 (p_proc_object->hbridge_context, dw_dsp_addr);
1567 if (status)
1568 goto func_cont;
1570 /* Call dev_create2 */
1571 status = dev_create2(p_proc_object->hdev_obj);
1572 if (!status) {
1573 p_proc_object->proc_state = PROC_RUNNING;
1574 /* Deep sleep switces off the peripheral clocks.
1575 * we just put the DSP CPU in idle in the idle loop.
1576 * so there is no need to send a command to DSP */
1578 if (p_proc_object->ntfy_obj) {
1579 proc_notify_clients(p_proc_object,
1580 DSP_PROCESSORSTATECHANGE);
1582 } else {
1583 /* Failed to Create Node Manager and DISP Object
1584 * Stop the Processor from running. Put it in STOPPED State */
1585 (void)(*p_proc_object->intf_fxns->
1586 pfn_brd_stop) (p_proc_object->hbridge_context);
1587 p_proc_object->proc_state = PROC_STOPPED;
1589 func_cont:
1590 if (!status) {
1591 if (!((*p_proc_object->intf_fxns->pfn_brd_status)
1592 (p_proc_object->hbridge_context, &brd_state))) {
1593 pr_info("%s: dsp in running state\n", __func__);
1594 DBC_ASSERT(brd_state != BRD_HIBERNATION);
1596 } else {
1597 pr_err("%s: Failed to start the dsp\n", __func__);
1598 proc_stop(p_proc_object);
1601 func_end:
1602 DBC_ENSURE((!status && p_proc_object->proc_state ==
1603 PROC_RUNNING) || status);
1604 return status;
1608 * ======== proc_stop ========
1609 * Purpose:
1610 * Stop a processor running.
1612 int proc_stop(void *hprocessor)
1614 int status = 0;
1615 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1616 struct msg_mgr *hmsg_mgr;
1617 struct node_mgr *hnode_mgr;
1618 void *hnode;
1619 u32 node_tab_size = 1;
1620 u32 num_nodes = 0;
1621 u32 nodes_allocated = 0;
1622 int brd_state;
1624 DBC_REQUIRE(refs > 0);
1625 if (!p_proc_object) {
1626 status = -EFAULT;
1627 goto func_end;
1629 /* check if there are any running nodes */
1630 status = dev_get_node_manager(p_proc_object->hdev_obj, &hnode_mgr);
1631 if (!status && hnode_mgr) {
1632 status = node_enum_nodes(hnode_mgr, &hnode, node_tab_size,
1633 &num_nodes, &nodes_allocated);
1634 if ((status == -EINVAL) || (nodes_allocated > 0)) {
1635 pr_err("%s: Can't stop device, active nodes = %d \n",
1636 __func__, nodes_allocated);
1637 return -EBADR;
1640 /* Call the bridge_brd_stop */
1641 /* It is OK to stop a device that does n't have nodes OR not started */
1642 status =
1643 (*p_proc_object->intf_fxns->
1644 pfn_brd_stop) (p_proc_object->hbridge_context);
1645 if (!status) {
1646 dev_dbg(bridge, "%s: processor in standby mode\n", __func__);
1647 p_proc_object->proc_state = PROC_STOPPED;
1648 /* Destory the Node Manager, msg_ctrl Manager */
1649 if (!(dev_destroy2(p_proc_object->hdev_obj))) {
1650 /* Destroy the msg_ctrl by calling msg_delete */
1651 dev_get_msg_mgr(p_proc_object->hdev_obj, &hmsg_mgr);
1652 if (hmsg_mgr) {
1653 msg_delete(hmsg_mgr);
1654 dev_set_msg_mgr(p_proc_object->hdev_obj, NULL);
1656 if (!((*p_proc_object->
1657 intf_fxns->pfn_brd_status) (p_proc_object->
1658 hbridge_context,
1659 &brd_state)))
1660 DBC_ASSERT(brd_state == BRD_STOPPED);
1662 } else {
1663 pr_err("%s: Failed to stop the processor\n", __func__);
1665 func_end:
1667 return status;
1671 * ======== proc_un_map ========
1672 * Purpose:
1673 * Removes a MPU buffer mapping from the DSP address space.
1675 int proc_un_map(void *hprocessor, void *map_addr,
1676 struct process_context *pr_ctxt)
1678 int status = 0;
1679 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1680 struct dmm_object *dmm_mgr;
1681 u32 va_align;
1682 u32 size_align;
1684 va_align = PG_ALIGN_LOW((u32) map_addr, PG_SIZE4K);
1685 if (!p_proc_object) {
1686 status = -EFAULT;
1687 goto func_end;
1690 status = dmm_get_handle(hprocessor, &dmm_mgr);
1691 if (!dmm_mgr) {
1692 status = -EFAULT;
1693 goto func_end;
1696 /* Critical section */
1697 mutex_lock(&proc_lock);
1699 * Update DMM structures. Get the size to unmap.
1700 * This function returns error if the VA is not mapped
1702 status = dmm_un_map_memory(dmm_mgr, (u32) va_align, &size_align);
1703 /* Remove mapping from the page tables. */
1704 if (!status) {
1705 status = (*p_proc_object->intf_fxns->pfn_brd_mem_un_map)
1706 (p_proc_object->hbridge_context, va_align, size_align);
1709 mutex_unlock(&proc_lock);
1710 if (status)
1711 goto func_end;
1714 * A successful unmap should be followed by removal of map_obj
1715 * from dmm_map_list, so that mapped memory resource tracking
1716 * remains uptodate
1718 remove_mapping_information(pr_ctxt, (u32) map_addr, size_align);
1720 func_end:
1721 dev_dbg(bridge, "%s: hprocessor: 0x%p map_addr: 0x%p status: 0x%x\n",
1722 __func__, hprocessor, map_addr, status);
1723 return status;
1727 * ======== proc_un_reserve_memory ========
1728 * Purpose:
1729 * Frees a previously reserved region of DSP address space.
1731 int proc_un_reserve_memory(void *hprocessor, void *prsv_addr,
1732 struct process_context *pr_ctxt)
1734 struct dmm_object *dmm_mgr;
1735 int status = 0;
1736 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
1737 struct dmm_rsv_object *rsv_obj;
1739 if (!p_proc_object) {
1740 status = -EFAULT;
1741 goto func_end;
1744 status = dmm_get_handle(p_proc_object, &dmm_mgr);
1745 if (!dmm_mgr) {
1746 status = -EFAULT;
1747 goto func_end;
1750 status = dmm_un_reserve_memory(dmm_mgr, (u32) prsv_addr);
1751 if (status != 0)
1752 goto func_end;
1755 * A successful unreserve should be followed by removal of rsv_obj
1756 * from dmm_rsv_list, so that reserved memory resource tracking
1757 * remains uptodate
1759 spin_lock(&pr_ctxt->dmm_rsv_lock);
1760 list_for_each_entry(rsv_obj, &pr_ctxt->dmm_rsv_list, link) {
1761 if (rsv_obj->dsp_reserved_addr == (u32) prsv_addr) {
1762 list_del(&rsv_obj->link);
1763 kfree(rsv_obj);
1764 break;
1767 spin_unlock(&pr_ctxt->dmm_rsv_lock);
1769 func_end:
1770 dev_dbg(bridge, "%s: hprocessor: 0x%p prsv_addr: 0x%p status: 0x%x\n",
1771 __func__, hprocessor, prsv_addr, status);
1772 return status;
1776 * ======== = proc_monitor ======== ==
1777 * Purpose:
1778 * Place the Processor in Monitor State. This is an internal
1779 * function and a requirement before Processor is loaded.
1780 * This does a bridge_brd_stop, dev_destroy2 and bridge_brd_monitor.
1781 * In dev_destroy2 we delete the node manager.
1782 * Parameters:
1783 * p_proc_object: Pointer to Processor Object
1784 * Returns:
1785 * 0: Processor placed in monitor mode.
1786 * !0: Failed to place processor in monitor mode.
1787 * Requires:
1788 * Valid Processor Handle
1789 * Ensures:
1790 * Success: ProcObject state is PROC_IDLE
1792 static int proc_monitor(struct proc_object *proc_obj)
1794 int status = -EPERM;
1795 struct msg_mgr *hmsg_mgr;
1796 int brd_state;
1798 DBC_REQUIRE(refs > 0);
1799 DBC_REQUIRE(proc_obj);
1801 /* This is needed only when Device is loaded when it is
1802 * already 'ACTIVE' */
1803 /* Destory the Node Manager, msg_ctrl Manager */
1804 if (!dev_destroy2(proc_obj->hdev_obj)) {
1805 /* Destroy the msg_ctrl by calling msg_delete */
1806 dev_get_msg_mgr(proc_obj->hdev_obj, &hmsg_mgr);
1807 if (hmsg_mgr) {
1808 msg_delete(hmsg_mgr);
1809 dev_set_msg_mgr(proc_obj->hdev_obj, NULL);
1812 /* Place the Board in the Monitor State */
1813 if (!((*proc_obj->intf_fxns->pfn_brd_monitor)
1814 (proc_obj->hbridge_context))) {
1815 status = 0;
1816 if (!((*proc_obj->intf_fxns->pfn_brd_status)
1817 (proc_obj->hbridge_context, &brd_state)))
1818 DBC_ASSERT(brd_state == BRD_IDLE);
1821 DBC_ENSURE((!status && brd_state == BRD_IDLE) ||
1822 status);
1823 return status;
1827 * ======== get_envp_count ========
1828 * Purpose:
1829 * Return the number of elements in the envp array, including the
1830 * terminating NULL element.
1832 static s32 get_envp_count(char **envp)
1834 s32 ret = 0;
1835 if (envp) {
1836 while (*envp++)
1837 ret++;
1839 ret += 1; /* Include the terminating NULL in the count. */
1842 return ret;
1846 * ======== prepend_envp ========
1847 * Purpose:
1848 * Prepend an environment variable=value pair to the new envp array, and
1849 * copy in the existing var=value pairs in the old envp array.
1851 static char **prepend_envp(char **new_envp, char **envp, s32 envp_elems,
1852 s32 cnew_envp, char *sz_var)
1854 char **pp_envp = new_envp;
1856 DBC_REQUIRE(new_envp);
1858 /* Prepend new environ var=value string */
1859 *new_envp++ = sz_var;
1861 /* Copy user's environment into our own. */
1862 while (envp_elems--)
1863 *new_envp++ = *envp++;
1865 /* Ensure NULL terminates the new environment strings array. */
1866 if (envp_elems == 0)
1867 *new_envp = NULL;
1869 return pp_envp;
1873 * ======== proc_notify_clients ========
1874 * Purpose:
1875 * Notify the processor the events.
1877 int proc_notify_clients(void *proc, u32 events)
1879 int status = 0;
1880 struct proc_object *p_proc_object = (struct proc_object *)proc;
1882 DBC_REQUIRE(p_proc_object);
1883 DBC_REQUIRE(is_valid_proc_event(events));
1884 DBC_REQUIRE(refs > 0);
1885 if (!p_proc_object) {
1886 status = -EFAULT;
1887 goto func_end;
1890 ntfy_notify(p_proc_object->ntfy_obj, events);
1891 func_end:
1892 return status;
1896 * ======== proc_notify_all_clients ========
1897 * Purpose:
1898 * Notify the processor the events. This includes notifying all clients
1899 * attached to a particulat DSP.
1901 int proc_notify_all_clients(void *proc, u32 events)
1903 int status = 0;
1904 struct proc_object *p_proc_object = (struct proc_object *)proc;
1906 DBC_REQUIRE(is_valid_proc_event(events));
1907 DBC_REQUIRE(refs > 0);
1909 if (!p_proc_object) {
1910 status = -EFAULT;
1911 goto func_end;
1914 dev_notify_clients(p_proc_object->hdev_obj, events);
1916 func_end:
1917 return status;
1921 * ======== proc_get_processor_id ========
1922 * Purpose:
1923 * Retrieves the processor ID.
1925 int proc_get_processor_id(void *proc, u32 * proc_id)
1927 int status = 0;
1928 struct proc_object *p_proc_object = (struct proc_object *)proc;
1930 if (p_proc_object)
1931 *proc_id = p_proc_object->processor_id;
1932 else
1933 status = -EFAULT;
1935 return status;