GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / scsi / libsas / sas_expander.c
blobece2ede4d0851e12bdf76f257ba31527e438cb56
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task)
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
53 complete(&task->completion);
56 static void smp_task_done(struct sas_task *task)
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84 task->task_done = smp_task_done;
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
138 return res;
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size)
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
151 static inline void *alloc_smp_resp(int size)
153 return kzalloc(size, GFP_KERNEL);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171 BUG_ON(!phy->phy);
174 switch (resp->result) {
175 case SMP_RESP_PHY_VACANT:
176 phy->phy_state = PHY_VACANT;
177 return;
178 default:
179 phy->phy_state = PHY_NOT_PRESENT;
180 return;
181 case SMP_RESP_FUNC_ACC:
182 phy->phy_state = PHY_EMPTY; /* do not know yet */
183 break;
186 phy->phy_id = phy_id;
187 phy->attached_dev_type = dr->attached_dev_type;
188 phy->linkrate = dr->linkrate;
189 phy->attached_sata_host = dr->attached_sata_host;
190 phy->attached_sata_dev = dr->attached_sata_dev;
191 phy->attached_sata_ps = dr->attached_sata_ps;
192 phy->attached_iproto = dr->iproto << 1;
193 phy->attached_tproto = dr->tproto << 1;
194 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195 phy->attached_phy_id = dr->attached_phy_id;
196 phy->phy_change_count = dr->change_count;
197 phy->routing_attr = dr->routing_attr;
198 phy->virtual = dr->virtual;
199 phy->last_da_index = -1;
201 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202 phy->phy->identify.target_port_protocols = phy->attached_tproto;
203 phy->phy->identify.phy_identifier = phy_id;
204 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206 phy->phy->minimum_linkrate = dr->pmin_linkrate;
207 phy->phy->maximum_linkrate = dr->pmax_linkrate;
208 phy->phy->negotiated_linkrate = phy->linkrate;
210 if (!rediscover)
211 sas_phy_add(phy->phy);
213 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214 SAS_ADDR(dev->sas_addr), phy->phy_id,
215 phy->routing_attr == TABLE_ROUTING ? 'T' :
216 phy->routing_attr == DIRECT_ROUTING ? 'D' :
217 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218 SAS_ADDR(phy->attached_sas_addr));
220 return;
223 #define DISCOVER_REQ_SIZE 16
224 #define DISCOVER_RESP_SIZE 56
226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227 u8 *disc_resp, int single)
229 int i, res;
231 disc_req[9] = single;
232 for (i = 1 ; i < 3; i++) {
233 struct discover_resp *dr;
235 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236 disc_resp, DISCOVER_RESP_SIZE);
237 if (res)
238 return res;
239 /* This is detecting a failure to transmit inital
240 * dev to host FIS as described in section G.5 of
241 * sas-2 r 04b */
242 dr = &((struct smp_resp *)disc_resp)->disc;
243 if (!(dr->attached_dev_type == 0 &&
244 dr->attached_sata_dev))
245 break;
246 /* In order to generate the dev to host FIS, we
247 * send a link reset to the expander port */
248 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249 /* Wait for the reset to trigger the negotiation */
250 msleep(500);
252 sas_set_ex_phy(dev, single, disc_resp);
253 return 0;
256 static int sas_ex_phy_discover(struct domain_device *dev, int single)
258 struct expander_device *ex = &dev->ex_dev;
259 int res = 0;
260 u8 *disc_req;
261 u8 *disc_resp;
263 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264 if (!disc_req)
265 return -ENOMEM;
267 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268 if (!disc_resp) {
269 kfree(disc_req);
270 return -ENOMEM;
273 disc_req[1] = SMP_DISCOVER;
275 if (0 <= single && single < ex->num_phys) {
276 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277 } else {
278 int i;
280 for (i = 0; i < ex->num_phys; i++) {
281 res = sas_ex_phy_discover_helper(dev, disc_req,
282 disc_resp, i);
283 if (res)
284 goto out_err;
287 out_err:
288 kfree(disc_resp);
289 kfree(disc_req);
290 return res;
293 static int sas_expander_discover(struct domain_device *dev)
295 struct expander_device *ex = &dev->ex_dev;
296 int res = -ENOMEM;
298 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299 if (!ex->ex_phy)
300 return -ENOMEM;
302 res = sas_ex_phy_discover(dev, -1);
303 if (res)
304 goto out_err;
306 return 0;
307 out_err:
308 kfree(ex->ex_phy);
309 ex->ex_phy = NULL;
310 return res;
313 #define MAX_EXPANDER_PHYS 128
315 static void ex_assign_report_general(struct domain_device *dev,
316 struct smp_resp *resp)
318 struct report_general_resp *rg = &resp->rg;
320 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323 dev->ex_dev.conf_route_table = rg->conf_route_table;
324 dev->ex_dev.configuring = rg->configuring;
325 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
328 #define RG_REQ_SIZE 8
329 #define RG_RESP_SIZE 32
331 static int sas_ex_general(struct domain_device *dev)
333 u8 *rg_req;
334 struct smp_resp *rg_resp;
335 int res;
336 int i;
338 rg_req = alloc_smp_req(RG_REQ_SIZE);
339 if (!rg_req)
340 return -ENOMEM;
342 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343 if (!rg_resp) {
344 kfree(rg_req);
345 return -ENOMEM;
348 rg_req[1] = SMP_REPORT_GENERAL;
350 for (i = 0; i < 5; i++) {
351 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352 RG_RESP_SIZE);
354 if (res) {
355 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356 SAS_ADDR(dev->sas_addr), res);
357 goto out;
358 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360 SAS_ADDR(dev->sas_addr), rg_resp->result);
361 res = rg_resp->result;
362 goto out;
365 ex_assign_report_general(dev, rg_resp);
367 if (dev->ex_dev.configuring) {
368 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369 SAS_ADDR(dev->sas_addr));
370 schedule_timeout_interruptible(5*HZ);
371 } else
372 break;
374 out:
375 kfree(rg_req);
376 kfree(rg_resp);
377 return res;
380 static void ex_assign_manuf_info(struct domain_device *dev, void
381 *_mi_resp)
383 u8 *mi_resp = _mi_resp;
384 struct sas_rphy *rphy = dev->rphy;
385 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
387 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389 memcpy(edev->product_rev, mi_resp + 36,
390 SAS_EXPANDER_PRODUCT_REV_LEN);
392 if (mi_resp[8] & 1) {
393 memcpy(edev->component_vendor_id, mi_resp + 40,
394 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396 edev->component_revision_id = mi_resp[50];
400 #define MI_REQ_SIZE 8
401 #define MI_RESP_SIZE 64
403 static int sas_ex_manuf_info(struct domain_device *dev)
405 u8 *mi_req;
406 u8 *mi_resp;
407 int res;
409 mi_req = alloc_smp_req(MI_REQ_SIZE);
410 if (!mi_req)
411 return -ENOMEM;
413 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414 if (!mi_resp) {
415 kfree(mi_req);
416 return -ENOMEM;
419 mi_req[1] = SMP_REPORT_MANUF_INFO;
421 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422 if (res) {
423 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424 SAS_ADDR(dev->sas_addr), res);
425 goto out;
426 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428 SAS_ADDR(dev->sas_addr), mi_resp[2]);
429 goto out;
432 ex_assign_manuf_info(dev, mi_resp);
433 out:
434 kfree(mi_req);
435 kfree(mi_resp);
436 return res;
439 #define PC_REQ_SIZE 44
440 #define PC_RESP_SIZE 8
442 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443 enum phy_func phy_func,
444 struct sas_phy_linkrates *rates)
446 u8 *pc_req;
447 u8 *pc_resp;
448 int res;
450 pc_req = alloc_smp_req(PC_REQ_SIZE);
451 if (!pc_req)
452 return -ENOMEM;
454 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455 if (!pc_resp) {
456 kfree(pc_req);
457 return -ENOMEM;
460 pc_req[1] = SMP_PHY_CONTROL;
461 pc_req[9] = phy_id;
462 pc_req[10]= phy_func;
463 if (rates) {
464 pc_req[32] = rates->minimum_linkrate << 4;
465 pc_req[33] = rates->maximum_linkrate << 4;
468 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
470 kfree(pc_resp);
471 kfree(pc_req);
472 return res;
475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
477 struct expander_device *ex = &dev->ex_dev;
478 struct ex_phy *phy = &ex->ex_phy[phy_id];
480 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481 phy->linkrate = SAS_PHY_DISABLED;
484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
486 struct expander_device *ex = &dev->ex_dev;
487 int i;
489 for (i = 0; i < ex->num_phys; i++) {
490 struct ex_phy *phy = &ex->ex_phy[i];
492 if (phy->phy_state == PHY_VACANT ||
493 phy->phy_state == PHY_NOT_PRESENT)
494 continue;
496 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497 sas_ex_disable_phy(dev, i);
501 static int sas_dev_present_in_domain(struct asd_sas_port *port,
502 u8 *sas_addr)
504 struct domain_device *dev;
506 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507 return 1;
508 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510 return 1;
512 return 0;
515 #define RPEL_REQ_SIZE 16
516 #define RPEL_RESP_SIZE 32
517 int sas_smp_get_phy_events(struct sas_phy *phy)
519 int res;
520 u8 *req;
521 u8 *resp;
522 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
525 req = alloc_smp_req(RPEL_REQ_SIZE);
526 if (!req)
527 return -ENOMEM;
529 resp = alloc_smp_resp(RPEL_RESP_SIZE);
530 if (!resp) {
531 kfree(req);
532 return -ENOMEM;
535 req[1] = SMP_REPORT_PHY_ERR_LOG;
536 req[9] = phy->number;
538 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539 resp, RPEL_RESP_SIZE);
541 if (!res)
542 goto out;
544 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
549 out:
550 kfree(resp);
551 return res;
555 #ifdef CONFIG_SCSI_SAS_ATA
557 #define RPS_REQ_SIZE 16
558 #define RPS_RESP_SIZE 60
560 static int sas_get_report_phy_sata(struct domain_device *dev,
561 int phy_id,
562 struct smp_resp *rps_resp)
564 int res;
565 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566 u8 *resp = (u8 *)rps_resp;
568 if (!rps_req)
569 return -ENOMEM;
571 rps_req[1] = SMP_REPORT_PHY_SATA;
572 rps_req[9] = phy_id;
574 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575 rps_resp, RPS_RESP_SIZE);
577 /* 0x34 is the FIS type for the D2H fis. There's a potential
578 * standards cockup here. sas-2 explicitly specifies the FIS
579 * should be encoded so that FIS type is in resp[24].
580 * However, some expanders endian reverse this. Undo the
581 * reversal here */
582 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583 int i;
585 for (i = 0; i < 5; i++) {
586 int j = 24 + (i*4);
587 u8 a, b;
588 a = resp[j + 0];
589 b = resp[j + 1];
590 resp[j + 0] = resp[j + 3];
591 resp[j + 1] = resp[j + 2];
592 resp[j + 2] = b;
593 resp[j + 3] = a;
597 kfree(rps_req);
598 return res;
600 #endif
602 static void sas_ex_get_linkrate(struct domain_device *parent,
603 struct domain_device *child,
604 struct ex_phy *parent_phy)
606 struct expander_device *parent_ex = &parent->ex_dev;
607 struct sas_port *port;
608 int i;
610 child->pathways = 0;
612 port = parent_phy->port;
614 for (i = 0; i < parent_ex->num_phys; i++) {
615 struct ex_phy *phy = &parent_ex->ex_phy[i];
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
621 if (SAS_ADDR(phy->attached_sas_addr) ==
622 SAS_ADDR(child->sas_addr)) {
624 child->min_linkrate = min(parent->min_linkrate,
625 phy->linkrate);
626 child->max_linkrate = max(parent->max_linkrate,
627 phy->linkrate);
628 child->pathways++;
629 sas_port_add_phy(port, phy->phy);
632 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633 child->pathways = min(child->pathways, parent->pathways);
636 static struct domain_device *sas_ex_discover_end_dev(
637 struct domain_device *parent, int phy_id)
639 struct expander_device *parent_ex = &parent->ex_dev;
640 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641 struct domain_device *child = NULL;
642 struct sas_rphy *rphy;
643 int res;
645 if (phy->attached_sata_host || phy->attached_sata_ps)
646 return NULL;
648 child = kzalloc(sizeof(*child), GFP_KERNEL);
649 if (!child)
650 return NULL;
652 child->parent = parent;
653 child->port = parent->port;
654 child->iproto = phy->attached_iproto;
655 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657 if (!phy->port) {
658 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659 if (unlikely(!phy->port))
660 goto out_err;
661 if (unlikely(sas_port_add(phy->port) != 0)) {
662 sas_port_free(phy->port);
663 goto out_err;
666 sas_ex_get_linkrate(parent, child, phy);
668 #ifdef CONFIG_SCSI_SAS_ATA
669 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670 child->dev_type = SATA_DEV;
671 if (phy->attached_tproto & SAS_PROTOCOL_STP)
672 child->tproto = phy->attached_tproto;
673 if (phy->attached_sata_dev)
674 child->tproto |= SATA_DEV;
675 res = sas_get_report_phy_sata(parent, phy_id,
676 &child->sata_dev.rps_resp);
677 if (res) {
678 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679 "0x%x\n", SAS_ADDR(parent->sas_addr),
680 phy_id, res);
681 goto out_free;
683 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684 sizeof(struct dev_to_host_fis));
686 rphy = sas_end_device_alloc(phy->port);
687 if (unlikely(!rphy))
688 goto out_free;
690 sas_init_dev(child);
692 child->rphy = rphy;
694 spin_lock_irq(&parent->port->dev_list_lock);
695 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696 spin_unlock_irq(&parent->port->dev_list_lock);
698 res = sas_discover_sata(child);
699 if (res) {
700 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701 "%016llx:0x%x returned 0x%x\n",
702 SAS_ADDR(child->sas_addr),
703 SAS_ADDR(parent->sas_addr), phy_id, res);
704 goto out_list_del;
706 } else
707 #endif
708 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709 child->dev_type = SAS_END_DEV;
710 rphy = sas_end_device_alloc(phy->port);
711 if (unlikely(!rphy))
712 goto out_free;
713 child->tproto = phy->attached_tproto;
714 sas_init_dev(child);
716 child->rphy = rphy;
717 sas_fill_in_rphy(child, rphy);
719 spin_lock_irq(&parent->port->dev_list_lock);
720 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
721 spin_unlock_irq(&parent->port->dev_list_lock);
723 res = sas_discover_end_dev(child);
724 if (res) {
725 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
726 "at %016llx:0x%x returned 0x%x\n",
727 SAS_ADDR(child->sas_addr),
728 SAS_ADDR(parent->sas_addr), phy_id, res);
729 goto out_list_del;
731 } else {
732 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
733 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
734 phy_id);
735 goto out_free;
738 list_add_tail(&child->siblings, &parent_ex->children);
739 return child;
741 out_list_del:
742 sas_rphy_free(child->rphy);
743 child->rphy = NULL;
744 list_del(&child->dev_list_node);
745 out_free:
746 sas_port_delete(phy->port);
747 out_err:
748 phy->port = NULL;
749 kfree(child);
750 return NULL;
753 /* See if this phy is part of a wide port */
754 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
756 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
757 int i;
759 for (i = 0; i < parent->ex_dev.num_phys; i++) {
760 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
762 if (ephy == phy)
763 continue;
765 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
766 SAS_ADDR_SIZE) && ephy->port) {
767 sas_port_add_phy(ephy->port, phy->phy);
768 phy->port = ephy->port;
769 phy->phy_state = PHY_DEVICE_DISCOVERED;
770 return 0;
774 return -ENODEV;
777 static struct domain_device *sas_ex_discover_expander(
778 struct domain_device *parent, int phy_id)
780 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
781 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
782 struct domain_device *child = NULL;
783 struct sas_rphy *rphy;
784 struct sas_expander_device *edev;
785 struct asd_sas_port *port;
786 int res;
788 if (phy->routing_attr == DIRECT_ROUTING) {
789 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
790 "allowed\n",
791 SAS_ADDR(parent->sas_addr), phy_id,
792 SAS_ADDR(phy->attached_sas_addr),
793 phy->attached_phy_id);
794 return NULL;
796 child = kzalloc(sizeof(*child), GFP_KERNEL);
797 if (!child)
798 return NULL;
800 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
801 BUG_ON(sas_port_add(phy->port) != 0);
804 switch (phy->attached_dev_type) {
805 case EDGE_DEV:
806 rphy = sas_expander_alloc(phy->port,
807 SAS_EDGE_EXPANDER_DEVICE);
808 break;
809 case FANOUT_DEV:
810 rphy = sas_expander_alloc(phy->port,
811 SAS_FANOUT_EXPANDER_DEVICE);
812 break;
813 default:
814 rphy = NULL; /* shut gcc up */
815 BUG();
817 port = parent->port;
818 child->rphy = rphy;
819 edev = rphy_to_expander_device(rphy);
820 child->dev_type = phy->attached_dev_type;
821 child->parent = parent;
822 child->port = port;
823 child->iproto = phy->attached_iproto;
824 child->tproto = phy->attached_tproto;
825 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
826 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
827 sas_ex_get_linkrate(parent, child, phy);
828 edev->level = parent_ex->level + 1;
829 parent->port->disc.max_level = max(parent->port->disc.max_level,
830 edev->level);
831 sas_init_dev(child);
832 sas_fill_in_rphy(child, rphy);
833 sas_rphy_add(rphy);
835 spin_lock_irq(&parent->port->dev_list_lock);
836 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
837 spin_unlock_irq(&parent->port->dev_list_lock);
839 res = sas_discover_expander(child);
840 if (res) {
841 kfree(child);
842 return NULL;
844 list_add_tail(&child->siblings, &parent->ex_dev.children);
845 return child;
848 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
850 struct expander_device *ex = &dev->ex_dev;
851 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
852 struct domain_device *child = NULL;
853 int res = 0;
855 /* Phy state */
856 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
857 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
858 res = sas_ex_phy_discover(dev, phy_id);
859 if (res)
860 return res;
863 /* Parent and domain coherency */
864 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
865 SAS_ADDR(dev->port->sas_addr))) {
866 sas_add_parent_port(dev, phy_id);
867 return 0;
869 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
870 SAS_ADDR(dev->parent->sas_addr))) {
871 sas_add_parent_port(dev, phy_id);
872 if (ex_phy->routing_attr == TABLE_ROUTING)
873 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
874 return 0;
877 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
878 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
880 if (ex_phy->attached_dev_type == NO_DEVICE) {
881 if (ex_phy->routing_attr == DIRECT_ROUTING) {
882 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
883 sas_configure_routing(dev, ex_phy->attached_sas_addr);
885 return 0;
886 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
887 return 0;
889 if (ex_phy->attached_dev_type != SAS_END_DEV &&
890 ex_phy->attached_dev_type != FANOUT_DEV &&
891 ex_phy->attached_dev_type != EDGE_DEV) {
892 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
893 "phy 0x%x\n", ex_phy->attached_dev_type,
894 SAS_ADDR(dev->sas_addr),
895 phy_id);
896 return 0;
899 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
900 if (res) {
901 SAS_DPRINTK("configure routing for dev %016llx "
902 "reported 0x%x. Forgotten\n",
903 SAS_ADDR(ex_phy->attached_sas_addr), res);
904 sas_disable_routing(dev, ex_phy->attached_sas_addr);
905 return res;
908 res = sas_ex_join_wide_port(dev, phy_id);
909 if (!res) {
910 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
911 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
912 return res;
915 switch (ex_phy->attached_dev_type) {
916 case SAS_END_DEV:
917 child = sas_ex_discover_end_dev(dev, phy_id);
918 break;
919 case FANOUT_DEV:
920 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
921 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
922 "attached to ex %016llx phy 0x%x\n",
923 SAS_ADDR(ex_phy->attached_sas_addr),
924 ex_phy->attached_phy_id,
925 SAS_ADDR(dev->sas_addr),
926 phy_id);
927 sas_ex_disable_phy(dev, phy_id);
928 break;
929 } else
930 memcpy(dev->port->disc.fanout_sas_addr,
931 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
932 /* fallthrough */
933 case EDGE_DEV:
934 child = sas_ex_discover_expander(dev, phy_id);
935 break;
936 default:
937 break;
940 if (child) {
941 int i;
943 for (i = 0; i < ex->num_phys; i++) {
944 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
945 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
946 continue;
948 * Due to races, the phy might not get added to the
949 * wide port, so we add the phy to the wide port here.
951 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
952 SAS_ADDR(child->sas_addr)) {
953 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
954 res = sas_ex_join_wide_port(dev, i);
955 if (!res)
956 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
957 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
963 return res;
966 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
968 struct expander_device *ex = &dev->ex_dev;
969 int i;
971 for (i = 0; i < ex->num_phys; i++) {
972 struct ex_phy *phy = &ex->ex_phy[i];
974 if (phy->phy_state == PHY_VACANT ||
975 phy->phy_state == PHY_NOT_PRESENT)
976 continue;
978 if ((phy->attached_dev_type == EDGE_DEV ||
979 phy->attached_dev_type == FANOUT_DEV) &&
980 phy->routing_attr == SUBTRACTIVE_ROUTING) {
982 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
984 return 1;
987 return 0;
990 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
992 struct expander_device *ex = &dev->ex_dev;
993 struct domain_device *child;
994 u8 sub_addr[8] = {0, };
996 list_for_each_entry(child, &ex->children, siblings) {
997 if (child->dev_type != EDGE_DEV &&
998 child->dev_type != FANOUT_DEV)
999 continue;
1000 if (sub_addr[0] == 0) {
1001 sas_find_sub_addr(child, sub_addr);
1002 continue;
1003 } else {
1004 u8 s2[8];
1006 if (sas_find_sub_addr(child, s2) &&
1007 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1009 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1010 "diverges from subtractive "
1011 "boundary %016llx\n",
1012 SAS_ADDR(dev->sas_addr),
1013 SAS_ADDR(child->sas_addr),
1014 SAS_ADDR(s2),
1015 SAS_ADDR(sub_addr));
1017 sas_ex_disable_port(child, s2);
1021 return 0;
1024 * sas_ex_discover_devices -- discover devices attached to this expander
1025 * dev: pointer to the expander domain device
1026 * single: if you want to do a single phy, else set to -1;
1028 * Configure this expander for use with its devices and register the
1029 * devices of this expander.
1031 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1033 struct expander_device *ex = &dev->ex_dev;
1034 int i = 0, end = ex->num_phys;
1035 int res = 0;
1037 if (0 <= single && single < end) {
1038 i = single;
1039 end = i+1;
1042 for ( ; i < end; i++) {
1043 struct ex_phy *ex_phy = &ex->ex_phy[i];
1045 if (ex_phy->phy_state == PHY_VACANT ||
1046 ex_phy->phy_state == PHY_NOT_PRESENT ||
1047 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1048 continue;
1050 switch (ex_phy->linkrate) {
1051 case SAS_PHY_DISABLED:
1052 case SAS_PHY_RESET_PROBLEM:
1053 case SAS_SATA_PORT_SELECTOR:
1054 continue;
1055 default:
1056 res = sas_ex_discover_dev(dev, i);
1057 if (res)
1058 break;
1059 continue;
1063 if (!res)
1064 sas_check_level_subtractive_boundary(dev);
1066 return res;
1069 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1071 struct expander_device *ex = &dev->ex_dev;
1072 int i;
1073 u8 *sub_sas_addr = NULL;
1075 if (dev->dev_type != EDGE_DEV)
1076 return 0;
1078 for (i = 0; i < ex->num_phys; i++) {
1079 struct ex_phy *phy = &ex->ex_phy[i];
1081 if (phy->phy_state == PHY_VACANT ||
1082 phy->phy_state == PHY_NOT_PRESENT)
1083 continue;
1085 if ((phy->attached_dev_type == FANOUT_DEV ||
1086 phy->attached_dev_type == EDGE_DEV) &&
1087 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1089 if (!sub_sas_addr)
1090 sub_sas_addr = &phy->attached_sas_addr[0];
1091 else if (SAS_ADDR(sub_sas_addr) !=
1092 SAS_ADDR(phy->attached_sas_addr)) {
1094 SAS_DPRINTK("ex %016llx phy 0x%x "
1095 "diverges(%016llx) on subtractive "
1096 "boundary(%016llx). Disabled\n",
1097 SAS_ADDR(dev->sas_addr), i,
1098 SAS_ADDR(phy->attached_sas_addr),
1099 SAS_ADDR(sub_sas_addr));
1100 sas_ex_disable_phy(dev, i);
1104 return 0;
1107 static void sas_print_parent_topology_bug(struct domain_device *child,
1108 struct ex_phy *parent_phy,
1109 struct ex_phy *child_phy)
1111 static const char ra_char[] = {
1112 [DIRECT_ROUTING] = 'D',
1113 [SUBTRACTIVE_ROUTING] = 'S',
1114 [TABLE_ROUTING] = 'T',
1116 static const char *ex_type[] = {
1117 [EDGE_DEV] = "edge",
1118 [FANOUT_DEV] = "fanout",
1120 struct domain_device *parent = child->parent;
1122 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1123 "has %c:%c routing link!\n",
1125 ex_type[parent->dev_type],
1126 SAS_ADDR(parent->sas_addr),
1127 parent_phy->phy_id,
1129 ex_type[child->dev_type],
1130 SAS_ADDR(child->sas_addr),
1131 child_phy->phy_id,
1133 ra_char[parent_phy->routing_attr],
1134 ra_char[child_phy->routing_attr]);
1137 static int sas_check_eeds(struct domain_device *child,
1138 struct ex_phy *parent_phy,
1139 struct ex_phy *child_phy)
1141 int res = 0;
1142 struct domain_device *parent = child->parent;
1144 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1145 res = -ENODEV;
1146 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1147 "phy S:0x%x, while there is a fanout ex %016llx\n",
1148 SAS_ADDR(parent->sas_addr),
1149 parent_phy->phy_id,
1150 SAS_ADDR(child->sas_addr),
1151 child_phy->phy_id,
1152 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1153 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1154 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1155 SAS_ADDR_SIZE);
1156 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1157 SAS_ADDR_SIZE);
1158 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1159 SAS_ADDR(parent->sas_addr)) ||
1160 (SAS_ADDR(parent->port->disc.eeds_a) ==
1161 SAS_ADDR(child->sas_addr)))
1163 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1164 SAS_ADDR(parent->sas_addr)) ||
1165 (SAS_ADDR(parent->port->disc.eeds_b) ==
1166 SAS_ADDR(child->sas_addr))))
1168 else {
1169 res = -ENODEV;
1170 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1171 "phy 0x%x link forms a third EEDS!\n",
1172 SAS_ADDR(parent->sas_addr),
1173 parent_phy->phy_id,
1174 SAS_ADDR(child->sas_addr),
1175 child_phy->phy_id);
1178 return res;
1181 /* Here we spill over 80 columns. It is intentional.
1183 static int sas_check_parent_topology(struct domain_device *child)
1185 struct expander_device *child_ex = &child->ex_dev;
1186 struct expander_device *parent_ex;
1187 int i;
1188 int res = 0;
1190 if (!child->parent)
1191 return 0;
1193 if (child->parent->dev_type != EDGE_DEV &&
1194 child->parent->dev_type != FANOUT_DEV)
1195 return 0;
1197 parent_ex = &child->parent->ex_dev;
1199 for (i = 0; i < parent_ex->num_phys; i++) {
1200 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1201 struct ex_phy *child_phy;
1203 if (parent_phy->phy_state == PHY_VACANT ||
1204 parent_phy->phy_state == PHY_NOT_PRESENT)
1205 continue;
1207 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1208 continue;
1210 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1212 switch (child->parent->dev_type) {
1213 case EDGE_DEV:
1214 if (child->dev_type == FANOUT_DEV) {
1215 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1216 child_phy->routing_attr != TABLE_ROUTING) {
1217 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1218 res = -ENODEV;
1220 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1221 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1222 res = sas_check_eeds(child, parent_phy, child_phy);
1223 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1224 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1225 res = -ENODEV;
1227 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1228 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1229 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1230 res = -ENODEV;
1232 break;
1233 case FANOUT_DEV:
1234 if (parent_phy->routing_attr != TABLE_ROUTING ||
1235 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1236 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1237 res = -ENODEV;
1239 break;
1240 default:
1241 break;
1245 return res;
1248 #define RRI_REQ_SIZE 16
1249 #define RRI_RESP_SIZE 44
1251 static int sas_configure_present(struct domain_device *dev, int phy_id,
1252 u8 *sas_addr, int *index, int *present)
1254 int i, res = 0;
1255 struct expander_device *ex = &dev->ex_dev;
1256 struct ex_phy *phy = &ex->ex_phy[phy_id];
1257 u8 *rri_req;
1258 u8 *rri_resp;
1260 *present = 0;
1261 *index = 0;
1263 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1264 if (!rri_req)
1265 return -ENOMEM;
1267 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1268 if (!rri_resp) {
1269 kfree(rri_req);
1270 return -ENOMEM;
1273 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1274 rri_req[9] = phy_id;
1276 for (i = 0; i < ex->max_route_indexes ; i++) {
1277 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1278 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1279 RRI_RESP_SIZE);
1280 if (res)
1281 goto out;
1282 res = rri_resp[2];
1283 if (res == SMP_RESP_NO_INDEX) {
1284 SAS_DPRINTK("overflow of indexes: dev %016llx "
1285 "phy 0x%x index 0x%x\n",
1286 SAS_ADDR(dev->sas_addr), phy_id, i);
1287 goto out;
1288 } else if (res != SMP_RESP_FUNC_ACC) {
1289 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1290 "result 0x%x\n", __func__,
1291 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1292 goto out;
1294 if (SAS_ADDR(sas_addr) != 0) {
1295 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1296 *index = i;
1297 if ((rri_resp[12] & 0x80) == 0x80)
1298 *present = 0;
1299 else
1300 *present = 1;
1301 goto out;
1302 } else if (SAS_ADDR(rri_resp+16) == 0) {
1303 *index = i;
1304 *present = 0;
1305 goto out;
1307 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1308 phy->last_da_index < i) {
1309 phy->last_da_index = i;
1310 *index = i;
1311 *present = 0;
1312 goto out;
1315 res = -1;
1316 out:
1317 kfree(rri_req);
1318 kfree(rri_resp);
1319 return res;
1322 #define CRI_REQ_SIZE 44
1323 #define CRI_RESP_SIZE 8
1325 static int sas_configure_set(struct domain_device *dev, int phy_id,
1326 u8 *sas_addr, int index, int include)
1328 int res;
1329 u8 *cri_req;
1330 u8 *cri_resp;
1332 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1333 if (!cri_req)
1334 return -ENOMEM;
1336 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1337 if (!cri_resp) {
1338 kfree(cri_req);
1339 return -ENOMEM;
1342 cri_req[1] = SMP_CONF_ROUTE_INFO;
1343 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1344 cri_req[9] = phy_id;
1345 if (SAS_ADDR(sas_addr) == 0 || !include)
1346 cri_req[12] |= 0x80;
1347 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1349 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1350 CRI_RESP_SIZE);
1351 if (res)
1352 goto out;
1353 res = cri_resp[2];
1354 if (res == SMP_RESP_NO_INDEX) {
1355 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1356 "index 0x%x\n",
1357 SAS_ADDR(dev->sas_addr), phy_id, index);
1359 out:
1360 kfree(cri_req);
1361 kfree(cri_resp);
1362 return res;
1365 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1366 u8 *sas_addr, int include)
1368 int index;
1369 int present;
1370 int res;
1372 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1373 if (res)
1374 return res;
1375 if (include ^ present)
1376 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1378 return res;
1382 * sas_configure_parent -- configure routing table of parent
1383 * parent: parent expander
1384 * child: child expander
1385 * sas_addr: SAS port identifier of device directly attached to child
1387 static int sas_configure_parent(struct domain_device *parent,
1388 struct domain_device *child,
1389 u8 *sas_addr, int include)
1391 struct expander_device *ex_parent = &parent->ex_dev;
1392 int res = 0;
1393 int i;
1395 if (parent->parent) {
1396 res = sas_configure_parent(parent->parent, parent, sas_addr,
1397 include);
1398 if (res)
1399 return res;
1402 if (ex_parent->conf_route_table == 0) {
1403 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1404 SAS_ADDR(parent->sas_addr));
1405 return 0;
1408 for (i = 0; i < ex_parent->num_phys; i++) {
1409 struct ex_phy *phy = &ex_parent->ex_phy[i];
1411 if ((phy->routing_attr == TABLE_ROUTING) &&
1412 (SAS_ADDR(phy->attached_sas_addr) ==
1413 SAS_ADDR(child->sas_addr))) {
1414 res = sas_configure_phy(parent, i, sas_addr, include);
1415 if (res)
1416 return res;
1420 return res;
1424 * sas_configure_routing -- configure routing
1425 * dev: expander device
1426 * sas_addr: port identifier of device directly attached to the expander device
1428 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1430 if (dev->parent)
1431 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1432 return 0;
1435 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1437 if (dev->parent)
1438 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1439 return 0;
1443 * sas_discover_expander -- expander discovery
1444 * @ex: pointer to expander domain device
1446 * See comment in sas_discover_sata().
1448 static int sas_discover_expander(struct domain_device *dev)
1450 int res;
1452 res = sas_notify_lldd_dev_found(dev);
1453 if (res)
1454 return res;
1456 res = sas_ex_general(dev);
1457 if (res)
1458 goto out_err;
1459 res = sas_ex_manuf_info(dev);
1460 if (res)
1461 goto out_err;
1463 res = sas_expander_discover(dev);
1464 if (res) {
1465 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1466 SAS_ADDR(dev->sas_addr), res);
1467 goto out_err;
1470 sas_check_ex_subtractive_boundary(dev);
1471 res = sas_check_parent_topology(dev);
1472 if (res)
1473 goto out_err;
1474 return 0;
1475 out_err:
1476 sas_notify_lldd_dev_gone(dev);
1477 return res;
1480 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1482 int res = 0;
1483 struct domain_device *dev;
1485 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1486 if (dev->dev_type == EDGE_DEV ||
1487 dev->dev_type == FANOUT_DEV) {
1488 struct sas_expander_device *ex =
1489 rphy_to_expander_device(dev->rphy);
1491 if (level == ex->level)
1492 res = sas_ex_discover_devices(dev, -1);
1493 else if (level > 0)
1494 res = sas_ex_discover_devices(port->port_dev, -1);
1499 return res;
1502 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1504 int res;
1505 int level;
1507 do {
1508 level = port->disc.max_level;
1509 res = sas_ex_level_discovery(port, level);
1510 mb();
1511 } while (level < port->disc.max_level);
1513 return res;
1516 int sas_discover_root_expander(struct domain_device *dev)
1518 int res;
1519 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1521 res = sas_rphy_add(dev->rphy);
1522 if (res)
1523 goto out_err;
1525 ex->level = dev->port->disc.max_level; /* 0 */
1526 res = sas_discover_expander(dev);
1527 if (res)
1528 goto out_err2;
1530 sas_ex_bfs_disc(dev->port);
1532 return res;
1534 out_err2:
1535 sas_rphy_remove(dev->rphy);
1536 out_err:
1537 return res;
1540 /* ---------- Domain revalidation ---------- */
1542 static int sas_get_phy_discover(struct domain_device *dev,
1543 int phy_id, struct smp_resp *disc_resp)
1545 int res;
1546 u8 *disc_req;
1548 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1549 if (!disc_req)
1550 return -ENOMEM;
1552 disc_req[1] = SMP_DISCOVER;
1553 disc_req[9] = phy_id;
1555 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1556 disc_resp, DISCOVER_RESP_SIZE);
1557 if (res)
1558 goto out;
1559 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1560 res = disc_resp->result;
1561 goto out;
1563 out:
1564 kfree(disc_req);
1565 return res;
1568 static int sas_get_phy_change_count(struct domain_device *dev,
1569 int phy_id, int *pcc)
1571 int res;
1572 struct smp_resp *disc_resp;
1574 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1575 if (!disc_resp)
1576 return -ENOMEM;
1578 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1579 if (!res)
1580 *pcc = disc_resp->disc.change_count;
1582 kfree(disc_resp);
1583 return res;
1586 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1587 int phy_id, u8 *attached_sas_addr)
1589 int res;
1590 struct smp_resp *disc_resp;
1591 struct discover_resp *dr;
1593 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1594 if (!disc_resp)
1595 return -ENOMEM;
1596 dr = &disc_resp->disc;
1598 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1599 if (!res) {
1600 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1601 if (dr->attached_dev_type == 0)
1602 memset(attached_sas_addr, 0, 8);
1604 kfree(disc_resp);
1605 return res;
1608 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1609 int from_phy, bool update)
1611 struct expander_device *ex = &dev->ex_dev;
1612 int res = 0;
1613 int i;
1615 for (i = from_phy; i < ex->num_phys; i++) {
1616 int phy_change_count = 0;
1618 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1619 if (res)
1620 goto out;
1621 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1622 if (update)
1623 ex->ex_phy[i].phy_change_count =
1624 phy_change_count;
1625 *phy_id = i;
1626 return 0;
1629 out:
1630 return res;
1633 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1635 int res;
1636 u8 *rg_req;
1637 struct smp_resp *rg_resp;
1639 rg_req = alloc_smp_req(RG_REQ_SIZE);
1640 if (!rg_req)
1641 return -ENOMEM;
1643 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1644 if (!rg_resp) {
1645 kfree(rg_req);
1646 return -ENOMEM;
1649 rg_req[1] = SMP_REPORT_GENERAL;
1651 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1652 RG_RESP_SIZE);
1653 if (res)
1654 goto out;
1655 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1656 res = rg_resp->result;
1657 goto out;
1660 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1661 out:
1662 kfree(rg_resp);
1663 kfree(rg_req);
1664 return res;
1667 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1668 * @dev:domain device to be detect.
1669 * @src_dev: the device which originated BROADCAST(CHANGE).
1671 * Add self-configuration expander suport. Suppose two expander cascading,
1672 * when the first level expander is self-configuring, hotplug the disks in
1673 * second level expander, BROADCAST(CHANGE) will not only be originated
1674 * in the second level expander, but also be originated in the first level
1675 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1676 * expander changed count in two level expanders will all increment at least
1677 * once, but the phy which chang count has changed is the source device which
1678 * we concerned.
1681 static int sas_find_bcast_dev(struct domain_device *dev,
1682 struct domain_device **src_dev)
1684 struct expander_device *ex = &dev->ex_dev;
1685 int ex_change_count = -1;
1686 int phy_id = -1;
1687 int res;
1688 struct domain_device *ch;
1690 res = sas_get_ex_change_count(dev, &ex_change_count);
1691 if (res)
1692 goto out;
1693 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1694 /* Just detect if this expander phys phy change count changed,
1695 * in order to determine if this expander originate BROADCAST,
1696 * and do not update phy change count field in our structure.
1698 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1699 if (phy_id != -1) {
1700 *src_dev = dev;
1701 ex->ex_change_count = ex_change_count;
1702 SAS_DPRINTK("Expander phy change count has changed\n");
1703 return res;
1704 } else
1705 SAS_DPRINTK("Expander phys DID NOT change\n");
1707 list_for_each_entry(ch, &ex->children, siblings) {
1708 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1709 res = sas_find_bcast_dev(ch, src_dev);
1710 if (src_dev)
1711 return res;
1714 out:
1715 return res;
1718 static void sas_unregister_ex_tree(struct domain_device *dev)
1720 struct expander_device *ex = &dev->ex_dev;
1721 struct domain_device *child, *n;
1723 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1724 if (child->dev_type == EDGE_DEV ||
1725 child->dev_type == FANOUT_DEV)
1726 sas_unregister_ex_tree(child);
1727 else
1728 sas_unregister_dev(child);
1730 sas_unregister_dev(dev);
1733 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1734 int phy_id, bool last)
1736 struct expander_device *ex_dev = &parent->ex_dev;
1737 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1738 struct domain_device *child, *n;
1739 if (last) {
1740 list_for_each_entry_safe(child, n,
1741 &ex_dev->children, siblings) {
1742 if (SAS_ADDR(child->sas_addr) ==
1743 SAS_ADDR(phy->attached_sas_addr)) {
1744 if (child->dev_type == EDGE_DEV ||
1745 child->dev_type == FANOUT_DEV)
1746 sas_unregister_ex_tree(child);
1747 else
1748 sas_unregister_dev(child);
1749 break;
1752 sas_disable_routing(parent, phy->attached_sas_addr);
1754 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1755 sas_port_delete_phy(phy->port, phy->phy);
1756 if (phy->port->num_phys == 0)
1757 sas_port_delete(phy->port);
1758 phy->port = NULL;
1761 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1762 const int level)
1764 struct expander_device *ex_root = &root->ex_dev;
1765 struct domain_device *child;
1766 int res = 0;
1768 list_for_each_entry(child, &ex_root->children, siblings) {
1769 if (child->dev_type == EDGE_DEV ||
1770 child->dev_type == FANOUT_DEV) {
1771 struct sas_expander_device *ex =
1772 rphy_to_expander_device(child->rphy);
1774 if (level > ex->level)
1775 res = sas_discover_bfs_by_root_level(child,
1776 level);
1777 else if (level == ex->level)
1778 res = sas_ex_discover_devices(child, -1);
1781 return res;
1784 static int sas_discover_bfs_by_root(struct domain_device *dev)
1786 int res;
1787 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1788 int level = ex->level+1;
1790 res = sas_ex_discover_devices(dev, -1);
1791 if (res)
1792 goto out;
1793 do {
1794 res = sas_discover_bfs_by_root_level(dev, level);
1795 mb();
1796 level += 1;
1797 } while (level <= dev->port->disc.max_level);
1798 out:
1799 return res;
1802 static int sas_discover_new(struct domain_device *dev, int phy_id)
1804 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1805 struct domain_device *child;
1806 bool found = false;
1807 int res, i;
1809 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1810 SAS_ADDR(dev->sas_addr), phy_id);
1811 res = sas_ex_phy_discover(dev, phy_id);
1812 if (res)
1813 goto out;
1814 /* to support the wide port inserted */
1815 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1816 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1817 if (i == phy_id)
1818 continue;
1819 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1820 SAS_ADDR(ex_phy->attached_sas_addr)) {
1821 found = true;
1822 break;
1825 if (found) {
1826 sas_ex_join_wide_port(dev, phy_id);
1827 return 0;
1829 res = sas_ex_discover_devices(dev, phy_id);
1830 if (!res)
1831 goto out;
1832 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1833 if (SAS_ADDR(child->sas_addr) ==
1834 SAS_ADDR(ex_phy->attached_sas_addr)) {
1835 if (child->dev_type == EDGE_DEV ||
1836 child->dev_type == FANOUT_DEV)
1837 res = sas_discover_bfs_by_root(child);
1838 break;
1841 out:
1842 return res;
1845 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1847 struct expander_device *ex = &dev->ex_dev;
1848 struct ex_phy *phy = &ex->ex_phy[phy_id];
1849 u8 attached_sas_addr[8];
1850 int res;
1852 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1853 switch (res) {
1854 case SMP_RESP_NO_PHY:
1855 phy->phy_state = PHY_NOT_PRESENT;
1856 sas_unregister_devs_sas_addr(dev, phy_id, last);
1857 goto out; break;
1858 case SMP_RESP_PHY_VACANT:
1859 phy->phy_state = PHY_VACANT;
1860 sas_unregister_devs_sas_addr(dev, phy_id, last);
1861 goto out; break;
1862 case SMP_RESP_FUNC_ACC:
1863 break;
1866 if (SAS_ADDR(attached_sas_addr) == 0) {
1867 phy->phy_state = PHY_EMPTY;
1868 sas_unregister_devs_sas_addr(dev, phy_id, last);
1869 } else if (SAS_ADDR(attached_sas_addr) ==
1870 SAS_ADDR(phy->attached_sas_addr)) {
1871 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1872 SAS_ADDR(dev->sas_addr), phy_id);
1873 sas_ex_phy_discover(dev, phy_id);
1874 } else
1875 res = sas_discover_new(dev, phy_id);
1876 out:
1877 return res;
1881 * sas_rediscover - revalidate the domain.
1882 * @dev:domain device to be detect.
1883 * @phy_id: the phy id will be detected.
1885 * NOTE: this process _must_ quit (return) as soon as any connection
1886 * errors are encountered. Connection recovery is done elsewhere.
1887 * Discover process only interrogates devices in order to discover the
1888 * domain.For plugging out, we un-register the device only when it is
1889 * the last phy in the port, for other phys in this port, we just delete it
1890 * from the port.For inserting, we do discovery when it is the
1891 * first phy,for other phys in this port, we add it to the port to
1892 * forming the wide-port.
1894 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1896 struct expander_device *ex = &dev->ex_dev;
1897 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1898 int res = 0;
1899 int i;
1900 bool last = true; /* is this the last phy of the port */
1902 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1903 SAS_ADDR(dev->sas_addr), phy_id);
1905 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1906 for (i = 0; i < ex->num_phys; i++) {
1907 struct ex_phy *phy = &ex->ex_phy[i];
1909 if (i == phy_id)
1910 continue;
1911 if (SAS_ADDR(phy->attached_sas_addr) ==
1912 SAS_ADDR(changed_phy->attached_sas_addr)) {
1913 SAS_DPRINTK("phy%d part of wide port with "
1914 "phy%d\n", phy_id, i);
1915 last = false;
1916 break;
1919 res = sas_rediscover_dev(dev, phy_id, last);
1920 } else
1921 res = sas_discover_new(dev, phy_id);
1922 return res;
1926 * sas_revalidate_domain -- revalidate the domain
1927 * @port: port to the domain of interest
1929 * NOTE: this process _must_ quit (return) as soon as any connection
1930 * errors are encountered. Connection recovery is done elsewhere.
1931 * Discover process only interrogates devices in order to discover the
1932 * domain.
1934 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1936 int res;
1937 struct domain_device *dev = NULL;
1939 res = sas_find_bcast_dev(port_dev, &dev);
1940 if (res)
1941 goto out;
1942 if (dev) {
1943 struct expander_device *ex = &dev->ex_dev;
1944 int i = 0, phy_id;
1946 do {
1947 phy_id = -1;
1948 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1949 if (phy_id == -1)
1950 break;
1951 res = sas_rediscover(dev, phy_id);
1952 i = phy_id + 1;
1953 } while (i < ex->num_phys);
1955 out:
1956 return res;
1959 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1960 struct request *req)
1962 struct domain_device *dev;
1963 int ret, type;
1964 struct request *rsp = req->next_rq;
1966 if (!rsp) {
1967 printk("%s: space for a smp response is missing\n",
1968 __func__);
1969 return -EINVAL;
1972 /* no rphy means no smp target support (ie aic94xx host) */
1973 if (!rphy)
1974 return sas_smp_host_handler(shost, req, rsp);
1976 type = rphy->identify.device_type;
1978 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1979 type != SAS_FANOUT_EXPANDER_DEVICE) {
1980 printk("%s: can we send a smp request to a device?\n",
1981 __func__);
1982 return -EINVAL;
1985 dev = sas_find_dev_by_rphy(rphy);
1986 if (!dev) {
1987 printk("%s: fail to find a domain_device?\n", __func__);
1988 return -EINVAL;
1991 /* do we need to support multiple segments? */
1992 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1993 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1994 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1995 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1996 return -EINVAL;
1999 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2000 bio_data(rsp->bio), blk_rq_bytes(rsp));
2001 if (ret > 0) {
2002 /* positive number is the untransferred residual */
2003 rsp->resid_len = ret;
2004 req->resid_len = 0;
2005 ret = 0;
2006 } else if (ret == 0) {
2007 rsp->resid_len = 0;
2008 req->resid_len = 0;
2011 return ret;