GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / scsi / aic94xx / aic94xx_hwi.c
blob10fc87115e0f99bc97b1b4d2f49aa6fb889841bd
1 /*
2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
33 #include "aic94xx.h"
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
39 u32 MBAR0_SWB_SIZE;
41 /* ---------- Initialization ---------- */
43 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
45 /* adapter came with a sas address */
46 if (asd_ha->hw_prof.sas_addr[0])
47 return 0;
49 return sas_request_addr(asd_ha->sas_ha.core.shost,
50 asd_ha->hw_prof.sas_addr);
53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
55 int i;
57 for (i = 0; i < ASD_MAX_PHYS; i++) {
58 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59 continue;
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63 SAS_ADDR(asd_ha->hw_prof.sas_addr));
64 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy *phy)
73 phy->identify_frame = phy->id_frm_tok->vaddr;
75 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
77 phy->identify_frame->dev_type = SAS_END_DEV;
78 if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79 phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80 if (phy->sas_phy.role & PHY_ROLE_TARGET)
81 phy->identify_frame->target_bits = phy->sas_phy.tproto;
82 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83 SAS_ADDR_SIZE);
84 phy->identify_frame->phy_id = phy->sas_phy.id;
87 static int asd_init_phy(struct asd_phy *phy)
89 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90 struct asd_sas_phy *sas_phy = &phy->sas_phy;
92 sas_phy->enabled = 1;
93 sas_phy->class = SAS;
94 sas_phy->iproto = SAS_PROTOCOL_ALL;
95 sas_phy->tproto = 0;
96 sas_phy->type = PHY_TYPE_PHYSICAL;
97 sas_phy->role = PHY_ROLE_INITIATOR;
98 sas_phy->oob_mode = OOB_NOT_CONNECTED;
99 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
101 phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102 sizeof(*phy->identify_frame),
103 GFP_KERNEL);
104 if (!phy->id_frm_tok) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106 return -ENOMEM;
107 } else
108 asd_init_phy_identify(phy);
110 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
112 return 0;
115 static void asd_init_ports(struct asd_ha_struct *asd_ha)
117 int i;
119 spin_lock_init(&asd_ha->asd_ports_lock);
120 for (i = 0; i < ASD_MAX_PHYS; i++) {
121 struct asd_port *asd_port = &asd_ha->asd_ports[i];
123 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
124 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
125 asd_port->phy_mask = 0;
126 asd_port->num_phys = 0;
130 static int asd_init_phys(struct asd_ha_struct *asd_ha)
132 u8 i;
133 u8 phy_mask = asd_ha->hw_prof.enabled_phys;
135 for (i = 0; i < ASD_MAX_PHYS; i++) {
136 struct asd_phy *phy = &asd_ha->phys[i];
138 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
139 phy->asd_port = NULL;
141 phy->sas_phy.enabled = 0;
142 phy->sas_phy.id = i;
143 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
144 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
145 phy->sas_phy.ha = &asd_ha->sas_ha;
146 phy->sas_phy.lldd_phy = phy;
149 /* Now enable and initialize only the enabled phys. */
150 for_each_phy(phy_mask, phy_mask, i) {
151 int err = asd_init_phy(&asd_ha->phys[i]);
152 if (err)
153 return err;
156 return 0;
159 /* ---------- Sliding windows ---------- */
161 static int asd_init_sw(struct asd_ha_struct *asd_ha)
163 struct pci_dev *pcidev = asd_ha->pcidev;
164 int err;
165 u32 v;
167 /* Unlock MBARs */
168 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
169 if (err) {
170 asd_printk("couldn't access conf. space of %s\n",
171 pci_name(pcidev));
172 goto Err;
174 if (v)
175 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
176 if (err) {
177 asd_printk("couldn't write to MBAR_KEY of %s\n",
178 pci_name(pcidev));
179 goto Err;
182 /* Set sliding windows A, B and C to point to proper internal
183 * memory regions.
185 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
186 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
187 REG_BASE_ADDR_CSEQCIO);
188 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
189 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
190 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
191 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
192 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
193 if (!asd_ha->iospace) {
194 /* MBAR1 will point to OCM (On Chip Memory) */
195 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
196 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
198 spin_lock_init(&asd_ha->iolock);
199 Err:
200 return err;
203 /* ---------- SCB initialization ---------- */
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution. Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
216 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
218 struct asd_seq_data *seq = &asd_ha->seq;
219 int bitmap_bytes;
221 /* allocate the index array and bitmap */
222 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
223 asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
224 sizeof(void *), GFP_KERNEL);
225 if (!asd_ha->seq.tc_index_array)
226 return -ENOMEM;
228 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
229 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
230 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
231 if (!asd_ha->seq.tc_index_bitmap)
232 return -ENOMEM;
234 spin_lock_init(&seq->tc_index_lock);
236 seq->next_scb.size = sizeof(struct scb);
237 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
238 &seq->next_scb.dma_handle);
239 if (!seq->next_scb.vaddr) {
240 kfree(asd_ha->seq.tc_index_bitmap);
241 kfree(asd_ha->seq.tc_index_array);
242 asd_ha->seq.tc_index_bitmap = NULL;
243 asd_ha->seq.tc_index_array = NULL;
244 return -ENOMEM;
247 seq->pending = 0;
248 spin_lock_init(&seq->pend_q_lock);
249 INIT_LIST_HEAD(&seq->pend_q);
251 return 0;
254 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
256 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
257 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
258 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
259 asd_ha->hw_prof.max_scbs,
260 asd_ha->hw_prof.max_ddbs);
263 /* ---------- Done List initialization ---------- */
265 static void asd_dl_tasklet_handler(unsigned long);
267 static int asd_init_dl(struct asd_ha_struct *asd_ha)
269 asd_ha->seq.actual_dl
270 = asd_alloc_coherent(asd_ha,
271 ASD_DL_SIZE * sizeof(struct done_list_struct),
272 GFP_KERNEL);
273 if (!asd_ha->seq.actual_dl)
274 return -ENOMEM;
275 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
276 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
277 asd_ha->seq.dl_next = 0;
278 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
279 (unsigned long) asd_ha);
281 return 0;
284 /* ---------- EDB and ESCB init ---------- */
286 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
288 struct asd_seq_data *seq = &asd_ha->seq;
289 int i;
291 seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
292 if (!seq->edb_arr)
293 return -ENOMEM;
295 for (i = 0; i < seq->num_edbs; i++) {
296 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
297 gfp_flags);
298 if (!seq->edb_arr[i])
299 goto Err_unroll;
300 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
303 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
305 return 0;
307 Err_unroll:
308 for (i-- ; i >= 0; i--)
309 asd_free_coherent(asd_ha, seq->edb_arr[i]);
310 kfree(seq->edb_arr);
311 seq->edb_arr = NULL;
313 return -ENOMEM;
316 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
317 gfp_t gfp_flags)
319 struct asd_seq_data *seq = &asd_ha->seq;
320 struct asd_ascb *escb;
321 int i, escbs;
323 seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
324 gfp_flags);
325 if (!seq->escb_arr)
326 return -ENOMEM;
328 escbs = seq->num_escbs;
329 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
330 if (!escb) {
331 asd_printk("couldn't allocate list of escbs\n");
332 goto Err;
334 seq->num_escbs -= escbs; /* subtract what was not allocated */
335 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
337 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
338 struct asd_ascb,
339 list)) {
340 seq->escb_arr[i] = escb;
341 escb->scb->header.opcode = EMPTY_SCB;
344 return 0;
345 Err:
346 kfree(seq->escb_arr);
347 seq->escb_arr = NULL;
348 return -ENOMEM;
352 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
354 struct asd_seq_data *seq = &asd_ha->seq;
355 int i, k, z = 0;
357 for (i = 0; i < seq->num_escbs; i++) {
358 struct asd_ascb *ascb = seq->escb_arr[i];
359 struct empty_scb *escb = &ascb->scb->escb;
361 ascb->edb_index = z;
363 escb->num_valid = ASD_EDBS_PER_SCB;
365 for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
366 struct sg_el *eb = &escb->eb[k];
367 struct asd_dma_tok *edb = seq->edb_arr[z++];
369 memset(eb, 0, sizeof(*eb));
370 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
371 eb->size = cpu_to_le32(((u32) edb->size));
377 * asd_init_escbs -- allocate and initialize empty scbs
378 * @asd_ha: pointer to host adapter structure
380 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
381 * They transport sense data, etc.
383 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
385 struct asd_seq_data *seq = &asd_ha->seq;
386 int err = 0;
388 /* Allocate two empty data buffers (edb) per sequencer. */
389 int edbs = 2*(1+asd_ha->hw_prof.num_phys);
391 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
392 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
394 err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
395 if (err) {
396 asd_printk("couldn't allocate edbs\n");
397 return err;
400 err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
401 if (err) {
402 asd_printk("couldn't allocate escbs\n");
403 return err;
406 asd_assign_edbs2escbs(asd_ha);
407 /* In order to insure that normal SCBs do not overfill sequencer
408 * memory and leave no space for escbs (halting condition),
409 * we increment pending here by the number of escbs. However,
410 * escbs are never pending.
412 seq->pending = seq->num_escbs;
413 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
415 return 0;
418 /* ---------- HW initialization ---------- */
421 * asd_chip_hardrst -- hard reset the chip
422 * @asd_ha: pointer to host adapter structure
424 * This takes 16 cycles and is synchronous to CFCLK, which runs
425 * at 200 MHz, so this should take at most 80 nanoseconds.
427 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
429 int i;
430 int count = 100;
431 u32 reg;
433 for (i = 0 ; i < 4 ; i++) {
434 asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
437 do {
438 udelay(1);
439 reg = asd_read_reg_dword(asd_ha, CHIMINT);
440 if (reg & HARDRSTDET) {
441 asd_write_reg_dword(asd_ha, CHIMINT,
442 HARDRSTDET|PORRSTDET);
443 return 0;
445 } while (--count > 0);
447 return -ENODEV;
451 * asd_init_chip -- initialize the chip
452 * @asd_ha: pointer to host adapter structure
454 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
455 * microcode and starts the sequencers. The caller has to explicitly
456 * enable HA interrupts with asd_enable_ints(asd_ha).
458 static int asd_init_chip(struct asd_ha_struct *asd_ha)
460 int err;
462 err = asd_chip_hardrst(asd_ha);
463 if (err) {
464 asd_printk("couldn't hard reset %s\n",
465 pci_name(asd_ha->pcidev));
466 goto out;
469 asd_disable_ints(asd_ha);
471 err = asd_init_seqs(asd_ha);
472 if (err) {
473 asd_printk("couldn't init seqs for %s\n",
474 pci_name(asd_ha->pcidev));
475 goto out;
478 err = asd_start_seqs(asd_ha);
479 if (err) {
480 asd_printk("coudln't start seqs for %s\n",
481 pci_name(asd_ha->pcidev));
482 goto out;
484 out:
485 return err;
488 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
490 static int max_devs = 0;
491 module_param_named(max_devs, max_devs, int, S_IRUGO);
492 MODULE_PARM_DESC(max_devs, "\n"
493 "\tMaximum number of SAS devices to support (not LUs).\n"
494 "\tDefault: 2176, Maximum: 65663.\n");
496 static int max_cmnds = 0;
497 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
498 MODULE_PARM_DESC(max_cmnds, "\n"
499 "\tMaximum number of commands queuable.\n"
500 "\tDefault: 512, Maximum: 66047.\n");
502 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
504 unsigned long dma_addr = OCM_BASE_ADDR;
505 u32 d;
507 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
508 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
509 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
510 d |= 4;
511 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
512 asd_ha->hw_prof.max_ddbs += MAX_DEVS;
515 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
517 dma_addr_t dma_handle;
518 unsigned long dma_addr;
519 u32 d;
520 int size;
522 asd_extend_devctx_ocm(asd_ha);
524 asd_ha->hw_prof.ddb_ext = NULL;
525 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
526 max_devs = asd_ha->hw_prof.max_ddbs;
527 return 0;
530 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
532 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
533 if (!asd_ha->hw_prof.ddb_ext) {
534 asd_printk("couldn't allocate memory for %d devices\n",
535 max_devs);
536 max_devs = asd_ha->hw_prof.max_ddbs;
537 return -ENOMEM;
539 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
540 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
541 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
542 dma_handle = (dma_addr_t) dma_addr;
543 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
544 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
545 d &= ~4;
546 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
548 asd_ha->hw_prof.max_ddbs = max_devs;
550 return 0;
553 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
555 dma_addr_t dma_handle;
556 unsigned long dma_addr;
557 u32 d;
558 int size;
560 asd_ha->hw_prof.scb_ext = NULL;
561 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
562 max_cmnds = asd_ha->hw_prof.max_scbs;
563 return 0;
566 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
568 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
569 if (!asd_ha->hw_prof.scb_ext) {
570 asd_printk("couldn't allocate memory for %d commands\n",
571 max_cmnds);
572 max_cmnds = asd_ha->hw_prof.max_scbs;
573 return -ENOMEM;
575 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
576 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
577 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
578 dma_handle = (dma_addr_t) dma_addr;
579 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
580 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
581 d &= ~1;
582 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
584 asd_ha->hw_prof.max_scbs = max_cmnds;
586 return 0;
590 * asd_init_ctxmem -- initialize context memory
591 * asd_ha: pointer to host adapter structure
593 * This function sets the maximum number of SCBs and
594 * DDBs which can be used by the sequencer. This is normally
595 * 512 and 128 respectively. If support for more SCBs or more DDBs
596 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
597 * initialized here to extend context memory to point to host memory,
598 * thus allowing unlimited support for SCBs and DDBs -- only limited
599 * by host memory.
601 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
603 int bitmap_bytes;
605 asd_get_max_scb_ddb(asd_ha);
606 asd_extend_devctx(asd_ha);
607 asd_extend_cmdctx(asd_ha);
609 /* The kernel wants bitmaps to be unsigned long sized. */
610 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
611 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
612 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
613 if (!asd_ha->hw_prof.ddb_bitmap)
614 return -ENOMEM;
615 spin_lock_init(&asd_ha->hw_prof.ddb_lock);
617 return 0;
620 int asd_init_hw(struct asd_ha_struct *asd_ha)
622 int err;
623 u32 v;
625 err = asd_init_sw(asd_ha);
626 if (err)
627 return err;
629 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
630 if (err) {
631 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
632 pci_name(asd_ha->pcidev));
633 return err;
635 pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
636 v | SC_TMR_DIS);
637 if (err) {
638 asd_printk("couldn't disable split completion timer of %s\n",
639 pci_name(asd_ha->pcidev));
640 return err;
643 err = asd_read_ocm(asd_ha);
644 if (err) {
645 asd_printk("couldn't read ocm(%d)\n", err);
646 /* While suspicios, it is not an error that we
647 * couldn't read the OCM. */
650 err = asd_read_flash(asd_ha);
651 if (err) {
652 asd_printk("couldn't read flash(%d)\n", err);
653 /* While suspicios, it is not an error that we
654 * couldn't read FLASH memory.
658 asd_init_ctxmem(asd_ha);
660 if (asd_get_user_sas_addr(asd_ha)) {
661 asd_printk("No SAS Address provided for %s\n",
662 pci_name(asd_ha->pcidev));
663 err = -ENODEV;
664 goto Out;
667 asd_propagate_sas_addr(asd_ha);
669 err = asd_init_phys(asd_ha);
670 if (err) {
671 asd_printk("couldn't initialize phys for %s\n",
672 pci_name(asd_ha->pcidev));
673 goto Out;
676 asd_init_ports(asd_ha);
678 err = asd_init_scbs(asd_ha);
679 if (err) {
680 asd_printk("couldn't initialize scbs for %s\n",
681 pci_name(asd_ha->pcidev));
682 goto Out;
685 err = asd_init_dl(asd_ha);
686 if (err) {
687 asd_printk("couldn't initialize the done list:%d\n",
688 err);
689 goto Out;
692 err = asd_init_escbs(asd_ha);
693 if (err) {
694 asd_printk("couldn't initialize escbs\n");
695 goto Out;
698 err = asd_init_chip(asd_ha);
699 if (err) {
700 asd_printk("couldn't init the chip\n");
701 goto Out;
703 Out:
704 return err;
707 /* ---------- Chip reset ---------- */
709 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
711 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
713 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
714 asd_chip_hardrst(asd_ha);
715 sas_ha->notify_ha_event(sas_ha, HAE_RESET);
718 /* ---------- Done List Routines ---------- */
720 static void asd_dl_tasklet_handler(unsigned long data)
722 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
723 struct asd_seq_data *seq = &asd_ha->seq;
724 unsigned long flags;
726 while (1) {
727 struct done_list_struct *dl = &seq->dl[seq->dl_next];
728 struct asd_ascb *ascb;
730 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
731 break;
733 /* find the aSCB */
734 spin_lock_irqsave(&seq->tc_index_lock, flags);
735 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
736 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
737 if (unlikely(!ascb)) {
738 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
739 goto next_1;
740 } else if (ascb->scb->header.opcode == EMPTY_SCB) {
741 goto out;
742 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
743 goto next_1;
745 spin_lock_irqsave(&seq->pend_q_lock, flags);
746 list_del_init(&ascb->list);
747 seq->pending--;
748 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
749 out:
750 ascb->tasklet_complete(ascb, dl);
752 next_1:
753 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
754 if (!seq->dl_next)
755 seq->dl_toggle ^= DL_TOGGLE_MASK;
759 /* ---------- Interrupt Service Routines ---------- */
762 * asd_process_donelist_isr -- schedule processing of done list entries
763 * @asd_ha: pointer to host adapter structure
765 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
767 tasklet_schedule(&asd_ha->seq.dl_tasklet);
771 * asd_com_sas_isr -- process device communication interrupt (COMINT)
772 * @asd_ha: pointer to host adapter structure
774 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
776 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
778 /* clear COMSTAT int */
779 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
781 if (comstat & CSBUFPERR) {
782 asd_printk("%s: command/status buffer dma parity error\n",
783 pci_name(asd_ha->pcidev));
784 } else if (comstat & CSERR) {
785 int i;
786 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
787 dmaerr &= 0xFF;
788 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
789 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
790 pci_name(asd_ha->pcidev),
791 dmaerr,
792 asd_read_reg_dword(asd_ha, CSDMAADR),
793 asd_read_reg_dword(asd_ha, CSDMAADR+4));
794 asd_printk("CSBUFFER:\n");
795 for (i = 0; i < 8; i++) {
796 asd_printk("%08x %08x %08x %08x\n",
797 asd_read_reg_dword(asd_ha, CSBUFFER),
798 asd_read_reg_dword(asd_ha, CSBUFFER+4),
799 asd_read_reg_dword(asd_ha, CSBUFFER+8),
800 asd_read_reg_dword(asd_ha, CSBUFFER+12));
802 asd_dump_seq_state(asd_ha, 0);
803 } else if (comstat & OVLYERR) {
804 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
805 dmaerr = (dmaerr >> 8) & 0xFF;
806 asd_printk("%s: overlay dma error:0x%x\n",
807 pci_name(asd_ha->pcidev),
808 dmaerr);
810 asd_chip_reset(asd_ha);
813 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
815 static const char *halt_code[256] = {
816 "UNEXPECTED_INTERRUPT0",
817 "UNEXPECTED_INTERRUPT1",
818 "UNEXPECTED_INTERRUPT2",
819 "UNEXPECTED_INTERRUPT3",
820 "UNEXPECTED_INTERRUPT4",
821 "UNEXPECTED_INTERRUPT5",
822 "UNEXPECTED_INTERRUPT6",
823 "UNEXPECTED_INTERRUPT7",
824 "UNEXPECTED_INTERRUPT8",
825 "UNEXPECTED_INTERRUPT9",
826 "UNEXPECTED_INTERRUPT10",
827 [11 ... 19] = "unknown[11,19]",
828 "NO_FREE_SCB_AVAILABLE",
829 "INVALID_SCB_OPCODE",
830 "INVALID_MBX_OPCODE",
831 "INVALID_ATA_STATE",
832 "ATA_QUEUE_FULL",
833 "ATA_TAG_TABLE_FAULT",
834 "ATA_TAG_MASK_FAULT",
835 "BAD_LINK_QUEUE_STATE",
836 "DMA2CHIM_QUEUE_ERROR",
837 "EMPTY_SCB_LIST_FULL",
838 "unknown[30]",
839 "IN_USE_SCB_ON_FREE_LIST",
840 "BAD_OPEN_WAIT_STATE",
841 "INVALID_STP_AFFILIATION",
842 "unknown[34]",
843 "EXEC_QUEUE_ERROR",
844 "TOO_MANY_EMPTIES_NEEDED",
845 "EMPTY_REQ_QUEUE_ERROR",
846 "Q_MONIRTT_MGMT_ERROR",
847 "TARGET_MODE_FLOW_ERROR",
848 "DEVICE_QUEUE_NOT_FOUND",
849 "START_IRTT_TIMER_ERROR",
850 "ABORT_TASK_ILLEGAL_REQ",
851 [43 ... 255] = "unknown[43,255]"
854 if (dchstatus & CSEQINT) {
855 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
857 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
858 asd_printk("%s: CSEQ arp2int:0x%x\n",
859 pci_name(asd_ha->pcidev),
860 arp2int);
861 } else if (arp2int & ARP2HALTC)
862 asd_printk("%s: CSEQ halted: %s\n",
863 pci_name(asd_ha->pcidev),
864 halt_code[(arp2int>>16)&0xFF]);
865 else
866 asd_printk("%s: CARP2INT:0x%x\n",
867 pci_name(asd_ha->pcidev),
868 arp2int);
870 if (dchstatus & LSEQINT_MASK) {
871 int lseq;
872 u8 lseq_mask = dchstatus & LSEQINT_MASK;
874 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
875 u32 arp2int = asd_read_reg_dword(asd_ha,
876 LmARP2INT(lseq));
877 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
878 | ARP2CIOPERR)) {
879 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
880 pci_name(asd_ha->pcidev),
881 lseq, arp2int);
882 } else if (arp2int & ARP2HALTC)
883 asd_printk("%s: LSEQ%d halted: %s\n",
884 pci_name(asd_ha->pcidev),
885 lseq,halt_code[(arp2int>>16)&0xFF]);
886 else
887 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
888 pci_name(asd_ha->pcidev), lseq,
889 arp2int);
892 asd_chip_reset(asd_ha);
896 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
897 * @asd_ha: pointer to host adapter structure
899 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
901 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
903 if (dchstatus & CFIFTOERR) {
904 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
905 asd_chip_reset(asd_ha);
906 } else
907 asd_arp2_err(asd_ha, dchstatus);
911 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
912 * @asd_ha: pointer to host adapter structure
914 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
916 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
918 if (!(stat0r & ASIERR)) {
919 asd_printk("hmm, EXSI interrupted but no error?\n");
920 return;
923 if (stat0r & ASIFMTERR) {
924 asd_printk("ASI SEEPROM format error for %s\n",
925 pci_name(asd_ha->pcidev));
926 } else if (stat0r & ASISEECHKERR) {
927 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
928 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
929 stat1r & CHECKSUM_MASK,
930 pci_name(asd_ha->pcidev));
931 } else {
932 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
934 if (!(statr & CPI2ASIMSTERR_MASK)) {
935 ASD_DPRINTK("hmm, ASIERR?\n");
936 return;
937 } else {
938 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
939 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
941 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
942 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
943 "master id: 0x%x, master err: 0x%x\n",
944 pci_name(asd_ha->pcidev),
945 addr, data,
946 (statr & CPI2ASIBYTECNT_MASK) >> 16,
947 (statr & CPI2ASIBYTEEN_MASK) >> 12,
948 (statr & CPI2ASITARGERR_MASK) >> 8,
949 (statr & CPI2ASITARGMID_MASK) >> 4,
950 (statr & CPI2ASIMSTERR_MASK));
953 asd_chip_reset(asd_ha);
957 * asd_hst_pcix_isr -- process host interface interrupts
958 * @asd_ha: pointer to host adapter structure
960 * Asserted on PCIX errors: target abort, etc.
962 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
964 u16 status;
965 u32 pcix_status;
966 u32 ecc_status;
968 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
969 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
970 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
972 if (status & PCI_STATUS_DETECTED_PARITY)
973 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
974 else if (status & PCI_STATUS_REC_MASTER_ABORT)
975 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
976 else if (status & PCI_STATUS_REC_TARGET_ABORT)
977 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
978 else if (status & PCI_STATUS_PARITY)
979 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
980 else if (pcix_status & RCV_SCE) {
981 asd_printk("received split completion error for %s\n",
982 pci_name(asd_ha->pcidev));
983 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
984 return;
985 } else if (pcix_status & UNEXP_SC) {
986 asd_printk("unexpected split completion for %s\n",
987 pci_name(asd_ha->pcidev));
988 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
989 /* ignore */
990 return;
991 } else if (pcix_status & SC_DISCARD)
992 asd_printk("split completion discarded for %s\n",
993 pci_name(asd_ha->pcidev));
994 else if (ecc_status & UNCOR_ECCERR)
995 asd_printk("uncorrectable ECC error for %s\n",
996 pci_name(asd_ha->pcidev));
997 asd_chip_reset(asd_ha);
1001 * asd_hw_isr -- host adapter interrupt service routine
1002 * @irq: ignored
1003 * @dev_id: pointer to host adapter structure
1005 * The ISR processes done list entries and level 3 error handling.
1007 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1009 struct asd_ha_struct *asd_ha = dev_id;
1010 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1012 if (!chimint)
1013 return IRQ_NONE;
1015 asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1016 (void) asd_read_reg_dword(asd_ha, CHIMINT);
1018 if (chimint & DLAVAIL)
1019 asd_process_donelist_isr(asd_ha);
1020 if (chimint & COMINT)
1021 asd_com_sas_isr(asd_ha);
1022 if (chimint & DEVINT)
1023 asd_dch_sas_isr(asd_ha);
1024 if (chimint & INITERR)
1025 asd_rbi_exsi_isr(asd_ha);
1026 if (chimint & HOSTERR)
1027 asd_hst_pcix_isr(asd_ha);
1029 return IRQ_HANDLED;
1032 /* ---------- SCB handling ---------- */
1034 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1035 gfp_t gfp_flags)
1037 extern struct kmem_cache *asd_ascb_cache;
1038 struct asd_seq_data *seq = &asd_ha->seq;
1039 struct asd_ascb *ascb;
1040 unsigned long flags;
1042 ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1044 if (ascb) {
1045 ascb->dma_scb.size = sizeof(struct scb);
1046 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1047 gfp_flags,
1048 &ascb->dma_scb.dma_handle);
1049 if (!ascb->dma_scb.vaddr) {
1050 kmem_cache_free(asd_ascb_cache, ascb);
1051 return NULL;
1053 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1054 asd_init_ascb(asd_ha, ascb);
1056 spin_lock_irqsave(&seq->tc_index_lock, flags);
1057 ascb->tc_index = asd_tc_index_get(seq, ascb);
1058 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1059 if (ascb->tc_index == -1)
1060 goto undo;
1062 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1065 return ascb;
1066 undo:
1067 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1068 ascb->dma_scb.dma_handle);
1069 kmem_cache_free(asd_ascb_cache, ascb);
1070 ASD_DPRINTK("no index for ascb\n");
1071 return NULL;
1075 * asd_ascb_alloc_list -- allocate a list of aSCBs
1076 * @asd_ha: pointer to host adapter structure
1077 * @num: pointer to integer number of aSCBs
1078 * @gfp_flags: GFP_ flags.
1080 * This is the only function which is used to allocate aSCBs.
1081 * It can allocate one or many. If more than one, then they form
1082 * a linked list in two ways: by their list field of the ascb struct
1083 * and by the next_scb field of the scb_header.
1085 * Returns NULL if no memory was available, else pointer to a list
1086 * of ascbs. When this function returns, @num would be the number
1087 * of SCBs which were not able to be allocated, 0 if all requested
1088 * were able to be allocated.
1090 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1091 *asd_ha, int *num,
1092 gfp_t gfp_flags)
1094 struct asd_ascb *first = NULL;
1096 for ( ; *num > 0; --*num) {
1097 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1099 if (!ascb)
1100 break;
1101 else if (!first)
1102 first = ascb;
1103 else {
1104 struct asd_ascb *last = list_entry(first->list.prev,
1105 struct asd_ascb,
1106 list);
1107 list_add_tail(&ascb->list, &first->list);
1108 last->scb->header.next_scb =
1109 cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1113 return first;
1117 * asd_swap_head_scb -- swap the head scb
1118 * @asd_ha: pointer to host adapter structure
1119 * @ascb: pointer to the head of an ascb list
1121 * The sequencer knows the DMA address of the next SCB to be DMAed to
1122 * the host adapter, from initialization or from the last list DMAed.
1123 * seq->next_scb keeps the address of this SCB. The sequencer will
1124 * DMA to the host adapter this list of SCBs. But the head (first
1125 * element) of this list is not known to the sequencer. Here we swap
1126 * the head of the list with the known SCB (memcpy()).
1127 * Only one memcpy() is required per list so it is in our interest
1128 * to keep the list of SCB as long as possible so that the ratio
1129 * of number of memcpy calls to the number of SCB DMA-ed is as small
1130 * as possible.
1132 * LOCKING: called with the pending list lock held.
1134 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1135 struct asd_ascb *ascb)
1137 struct asd_seq_data *seq = &asd_ha->seq;
1138 struct asd_ascb *last = list_entry(ascb->list.prev,
1139 struct asd_ascb,
1140 list);
1141 struct asd_dma_tok t = ascb->dma_scb;
1143 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1144 ascb->dma_scb = seq->next_scb;
1145 ascb->scb = ascb->dma_scb.vaddr;
1146 seq->next_scb = t;
1147 last->scb->header.next_scb =
1148 cpu_to_le64(((u64)seq->next_scb.dma_handle));
1152 * asd_start_timers -- (add and) start timers of SCBs
1153 * @list: pointer to struct list_head of the scbs
1154 * @to: timeout in jiffies
1156 * If an SCB in the @list has no timer function, assign the default
1157 * one, then start the timer of the SCB. This function is
1158 * intended to be called from asd_post_ascb_list(), just prior to
1159 * posting the SCBs to the sequencer.
1161 static void asd_start_scb_timers(struct list_head *list)
1163 struct asd_ascb *ascb;
1164 list_for_each_entry(ascb, list, list) {
1165 if (!ascb->uldd_timer) {
1166 ascb->timer.data = (unsigned long) ascb;
1167 ascb->timer.function = asd_ascb_timedout;
1168 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1169 add_timer(&ascb->timer);
1175 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1176 * @asd_ha: pointer to a host adapter structure
1177 * @ascb: pointer to the first aSCB in the list
1178 * @num: number of aSCBs in the list (to be posted)
1180 * See queueing comment in asd_post_escb_list().
1182 * Additional note on queuing: In order to minimize the ratio of memcpy()
1183 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1184 * in one go.
1185 * Two cases are possible:
1186 * A) can_queue >= num,
1187 * B) can_queue < num.
1188 * Case A: we can send the whole batch at once. Increment "pending"
1189 * in the beginning of this function, when it is checked, in order to
1190 * eliminate races when this function is called by multiple processes.
1191 * Case B: should never happen if the managing layer considers
1192 * lldd_queue_size.
1194 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1195 int num)
1197 unsigned long flags;
1198 LIST_HEAD(list);
1199 int can_queue;
1201 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1202 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1203 if (can_queue >= num)
1204 asd_ha->seq.pending += num;
1205 else
1206 can_queue = 0;
1208 if (!can_queue) {
1209 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1210 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1211 return -SAS_QUEUE_FULL;
1214 asd_swap_head_scb(asd_ha, ascb);
1216 __list_add(&list, ascb->list.prev, &ascb->list);
1218 asd_start_scb_timers(&list);
1220 asd_ha->seq.scbpro += num;
1221 list_splice_init(&list, asd_ha->seq.pend_q.prev);
1222 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1223 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1225 return 0;
1229 * asd_post_escb_list -- post a list of 1 or more empty scb
1230 * @asd_ha: pointer to a host adapter structure
1231 * @ascb: pointer to the first empty SCB in the list
1232 * @num: number of aSCBs in the list (to be posted)
1234 * This is essentially the same as asd_post_ascb_list, but we do not
1235 * increment pending, add those to the pending list or get indexes.
1236 * See asd_init_escbs() and asd_init_post_escbs().
1238 * Since sending a list of ascbs is a superset of sending a single
1239 * ascb, this function exists to generalize this. More specifically,
1240 * when sending a list of those, we want to do only a _single_
1241 * memcpy() at swap head, as opposed to for each ascb sent (in the
1242 * case of sending them one by one). That is, we want to minimize the
1243 * ratio of memcpy() operations to the number of ascbs sent. The same
1244 * logic applies to asd_post_ascb_list().
1246 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1247 int num)
1249 unsigned long flags;
1251 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1252 asd_swap_head_scb(asd_ha, ascb);
1253 asd_ha->seq.scbpro += num;
1254 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1255 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1257 return 0;
1260 /* ---------- LED ---------- */
1263 * asd_turn_led -- turn on/off an LED
1264 * @asd_ha: pointer to host adapter structure
1265 * @phy_id: the PHY id whose LED we want to manupulate
1266 * @op: 1 to turn on, 0 to turn off
1268 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1270 if (phy_id < ASD_MAX_PHYS) {
1271 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1272 if (op)
1273 v |= LEDPOL;
1274 else
1275 v &= ~LEDPOL;
1276 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1281 * asd_control_led -- enable/disable an LED on the board
1282 * @asd_ha: pointer to host adapter structure
1283 * @phy_id: integer, the phy id
1284 * @op: integer, 1 to enable, 0 to disable the LED
1286 * First we output enable the LED, then we set the source
1287 * to be an external module.
1289 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1291 if (phy_id < ASD_MAX_PHYS) {
1292 u32 v;
1294 v = asd_read_reg_dword(asd_ha, GPIOOER);
1295 if (op)
1296 v |= (1 << phy_id);
1297 else
1298 v &= ~(1 << phy_id);
1299 asd_write_reg_dword(asd_ha, GPIOOER, v);
1301 v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1302 if (op)
1303 v |= (1 << phy_id);
1304 else
1305 v &= ~(1 << phy_id);
1306 asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1310 /* ---------- PHY enable ---------- */
1312 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1314 struct asd_phy *phy = &asd_ha->phys[phy_id];
1316 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1317 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1318 HOTPLUG_DELAY_TIMEOUT);
1320 /* Get defaults from manuf. sector */
1321 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1322 phy->phy_desc->phy_control_0);
1323 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1324 phy->phy_desc->phy_control_1);
1325 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1326 phy->phy_desc->phy_control_2);
1327 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1328 phy->phy_desc->phy_control_3);
1330 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1331 ASD_COMINIT_TIMEOUT);
1333 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1334 phy->id_frm_tok->dma_handle);
1336 asd_control_led(asd_ha, phy_id, 1);
1338 return 0;
1341 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1343 u8 phy_m;
1344 u8 i;
1345 int num = 0, k;
1346 struct asd_ascb *ascb;
1347 struct asd_ascb *ascb_list;
1349 if (!phy_mask) {
1350 asd_printk("%s called with phy_mask of 0!?\n", __func__);
1351 return 0;
1354 for_each_phy(phy_mask, phy_m, i) {
1355 num++;
1356 asd_enable_phy(asd_ha, i);
1359 k = num;
1360 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1361 if (!ascb_list) {
1362 asd_printk("no memory for control phy ascb list\n");
1363 return -ENOMEM;
1365 num -= k;
1367 ascb = ascb_list;
1368 for_each_phy(phy_mask, phy_m, i) {
1369 asd_build_control_phy(ascb, i, ENABLE_PHY);
1370 ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1372 ASD_DPRINTK("posting %d control phy scbs\n", num);
1373 k = asd_post_ascb_list(asd_ha, ascb_list, num);
1374 if (k)
1375 asd_ascb_free_list(ascb_list);
1377 return k;