GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / rtc / rtc-cmos.c
bloba185b395995c7f0dd78b4456e83814f96a6aa5cf
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 #include <linux/pm.h>
41 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
42 #include <asm-generic/rtc.h>
44 struct cmos_rtc {
45 struct rtc_device *rtc;
46 struct device *dev;
47 int irq;
48 struct resource *iomem;
50 void (*wake_on)(struct device *);
51 void (*wake_off)(struct device *);
53 u8 enabled_wake;
54 u8 suspend_ctrl;
56 /* newer hardware extends the original register set */
57 u8 day_alrm;
58 u8 mon_alrm;
59 u8 century;
62 /* both platform and pnp busses use negative numbers for invalid irqs */
63 #define is_valid_irq(n) ((n) > 0)
65 static const char driver_name[] = "rtc_cmos";
67 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
68 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
69 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
71 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
73 static inline int is_intr(u8 rtc_intr)
75 if (!(rtc_intr & RTC_IRQF))
76 return 0;
77 return rtc_intr & RTC_IRQMASK;
80 /*----------------------------------------------------------------*/
82 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
83 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
84 * used in a broken "legacy replacement" mode. The breakage includes
85 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
86 * other (better) use.
88 * When that broken mode is in use, platform glue provides a partial
89 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
90 * want to use HPET for anything except those IRQs though...
92 #ifdef CONFIG_HPET_EMULATE_RTC
93 #include <asm/hpet.h>
94 #else
96 static inline int is_hpet_enabled(void)
98 return 0;
101 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
103 return 0;
106 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
108 return 0;
111 static inline int
112 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
114 return 0;
117 static inline int hpet_set_periodic_freq(unsigned long freq)
119 return 0;
122 static inline int hpet_rtc_dropped_irq(void)
124 return 0;
127 static inline int hpet_rtc_timer_init(void)
129 return 0;
132 extern irq_handler_t hpet_rtc_interrupt;
134 static inline int hpet_register_irq_handler(irq_handler_t handler)
136 return 0;
139 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
141 return 0;
144 #endif
146 /*----------------------------------------------------------------*/
148 #ifdef RTC_PORT
150 /* Most newer x86 systems have two register banks, the first used
151 * for RTC and NVRAM and the second only for NVRAM. Caller must
152 * own rtc_lock ... and we won't worry about access during NMI.
154 #define can_bank2 true
156 static inline unsigned char cmos_read_bank2(unsigned char addr)
158 outb(addr, RTC_PORT(2));
159 return inb(RTC_PORT(3));
162 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
164 outb(addr, RTC_PORT(2));
165 outb(val, RTC_PORT(2));
168 #else
170 #define can_bank2 false
172 static inline unsigned char cmos_read_bank2(unsigned char addr)
174 return 0;
177 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
181 #endif
183 /*----------------------------------------------------------------*/
185 static int cmos_read_time(struct device *dev, struct rtc_time *t)
187 /* REVISIT: if the clock has a "century" register, use
188 * that instead of the heuristic in get_rtc_time().
189 * That'll make Y3K compatility (year > 2070) easy!
191 get_rtc_time(t);
192 return 0;
195 static int cmos_set_time(struct device *dev, struct rtc_time *t)
197 /* REVISIT: set the "century" register if available
199 * NOTE: this ignores the issue whereby updating the seconds
200 * takes effect exactly 500ms after we write the register.
201 * (Also queueing and other delays before we get this far.)
203 return set_rtc_time(t);
206 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
208 struct cmos_rtc *cmos = dev_get_drvdata(dev);
209 unsigned char rtc_control;
211 if (!is_valid_irq(cmos->irq))
212 return -EIO;
214 /* Basic alarms only support hour, minute, and seconds fields.
215 * Some also support day and month, for alarms up to a year in
216 * the future.
218 t->time.tm_mday = -1;
219 t->time.tm_mon = -1;
221 spin_lock_irq(&rtc_lock);
222 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
223 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
224 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
226 if (cmos->day_alrm) {
227 /* ignore upper bits on readback per ACPI spec */
228 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
229 if (!t->time.tm_mday)
230 t->time.tm_mday = -1;
232 if (cmos->mon_alrm) {
233 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
234 if (!t->time.tm_mon)
235 t->time.tm_mon = -1;
239 rtc_control = CMOS_READ(RTC_CONTROL);
240 spin_unlock_irq(&rtc_lock);
242 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
243 if (((unsigned)t->time.tm_sec) < 0x60)
244 t->time.tm_sec = bcd2bin(t->time.tm_sec);
245 else
246 t->time.tm_sec = -1;
247 if (((unsigned)t->time.tm_min) < 0x60)
248 t->time.tm_min = bcd2bin(t->time.tm_min);
249 else
250 t->time.tm_min = -1;
251 if (((unsigned)t->time.tm_hour) < 0x24)
252 t->time.tm_hour = bcd2bin(t->time.tm_hour);
253 else
254 t->time.tm_hour = -1;
256 if (cmos->day_alrm) {
257 if (((unsigned)t->time.tm_mday) <= 0x31)
258 t->time.tm_mday = bcd2bin(t->time.tm_mday);
259 else
260 t->time.tm_mday = -1;
262 if (cmos->mon_alrm) {
263 if (((unsigned)t->time.tm_mon) <= 0x12)
264 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
265 else
266 t->time.tm_mon = -1;
270 t->time.tm_year = -1;
272 t->enabled = !!(rtc_control & RTC_AIE);
273 t->pending = 0;
275 return 0;
278 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
280 unsigned char rtc_intr;
282 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
283 * allegedly some older rtcs need that to handle irqs properly
285 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
287 if (is_hpet_enabled())
288 return;
290 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
291 if (is_intr(rtc_intr))
292 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
297 unsigned char rtc_control;
299 /* flush any pending IRQ status, notably for update irqs,
300 * before we enable new IRQs
302 rtc_control = CMOS_READ(RTC_CONTROL);
303 cmos_checkintr(cmos, rtc_control);
305 rtc_control |= mask;
306 CMOS_WRITE(rtc_control, RTC_CONTROL);
307 hpet_set_rtc_irq_bit(mask);
309 cmos_checkintr(cmos, rtc_control);
312 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
314 unsigned char rtc_control;
316 rtc_control = CMOS_READ(RTC_CONTROL);
317 rtc_control &= ~mask;
318 CMOS_WRITE(rtc_control, RTC_CONTROL);
319 hpet_mask_rtc_irq_bit(mask);
321 cmos_checkintr(cmos, rtc_control);
324 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
326 struct cmos_rtc *cmos = dev_get_drvdata(dev);
327 unsigned char mon, mday, hrs, min, sec, rtc_control;
329 if (!is_valid_irq(cmos->irq))
330 return -EIO;
332 mon = t->time.tm_mon + 1;
333 mday = t->time.tm_mday;
334 hrs = t->time.tm_hour;
335 min = t->time.tm_min;
336 sec = t->time.tm_sec;
338 rtc_control = CMOS_READ(RTC_CONTROL);
339 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
340 /* Writing 0xff means "don't care" or "match all". */
341 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
342 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
343 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
344 min = (min < 60) ? bin2bcd(min) : 0xff;
345 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 spin_lock_irq(&rtc_lock);
350 /* next rtc irq must not be from previous alarm setting */
351 cmos_irq_disable(cmos, RTC_AIE);
353 /* update alarm */
354 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
355 CMOS_WRITE(min, RTC_MINUTES_ALARM);
356 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
358 /* the system may support an "enhanced" alarm */
359 if (cmos->day_alrm) {
360 CMOS_WRITE(mday, cmos->day_alrm);
361 if (cmos->mon_alrm)
362 CMOS_WRITE(mon, cmos->mon_alrm);
365 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
367 if (t->enabled)
368 cmos_irq_enable(cmos, RTC_AIE);
370 spin_unlock_irq(&rtc_lock);
372 return 0;
375 static int cmos_irq_set_freq(struct device *dev, int freq)
377 struct cmos_rtc *cmos = dev_get_drvdata(dev);
378 int f;
379 unsigned long flags;
381 if (!is_valid_irq(cmos->irq))
382 return -ENXIO;
384 if (!is_power_of_2(freq))
385 return -EINVAL;
386 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
387 f = ffs(freq);
388 if (f-- > 16)
389 return -EINVAL;
390 f = 16 - f;
392 spin_lock_irqsave(&rtc_lock, flags);
393 hpet_set_periodic_freq(freq);
394 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
395 spin_unlock_irqrestore(&rtc_lock, flags);
397 return 0;
400 static int cmos_irq_set_state(struct device *dev, int enabled)
402 struct cmos_rtc *cmos = dev_get_drvdata(dev);
403 unsigned long flags;
405 if (!is_valid_irq(cmos->irq))
406 return -ENXIO;
408 spin_lock_irqsave(&rtc_lock, flags);
410 if (enabled)
411 cmos_irq_enable(cmos, RTC_PIE);
412 else
413 cmos_irq_disable(cmos, RTC_PIE);
415 spin_unlock_irqrestore(&rtc_lock, flags);
416 return 0;
419 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
421 struct cmos_rtc *cmos = dev_get_drvdata(dev);
422 unsigned long flags;
424 if (!is_valid_irq(cmos->irq))
425 return -EINVAL;
427 spin_lock_irqsave(&rtc_lock, flags);
429 if (enabled)
430 cmos_irq_enable(cmos, RTC_AIE);
431 else
432 cmos_irq_disable(cmos, RTC_AIE);
434 spin_unlock_irqrestore(&rtc_lock, flags);
435 return 0;
438 static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
440 struct cmos_rtc *cmos = dev_get_drvdata(dev);
441 unsigned long flags;
443 if (!is_valid_irq(cmos->irq))
444 return -EINVAL;
446 spin_lock_irqsave(&rtc_lock, flags);
448 if (enabled)
449 cmos_irq_enable(cmos, RTC_UIE);
450 else
451 cmos_irq_disable(cmos, RTC_UIE);
453 spin_unlock_irqrestore(&rtc_lock, flags);
454 return 0;
457 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
459 static int cmos_procfs(struct device *dev, struct seq_file *seq)
461 struct cmos_rtc *cmos = dev_get_drvdata(dev);
462 unsigned char rtc_control, valid;
464 spin_lock_irq(&rtc_lock);
465 rtc_control = CMOS_READ(RTC_CONTROL);
466 valid = CMOS_READ(RTC_VALID);
467 spin_unlock_irq(&rtc_lock);
469 /* NOTE: at least ICH6 reports battery status using a different
470 * (non-RTC) bit; and SQWE is ignored on many current systems.
472 return seq_printf(seq,
473 "periodic_IRQ\t: %s\n"
474 "update_IRQ\t: %s\n"
475 "HPET_emulated\t: %s\n"
476 // "square_wave\t: %s\n"
477 "BCD\t\t: %s\n"
478 "DST_enable\t: %s\n"
479 "periodic_freq\t: %d\n"
480 "batt_status\t: %s\n",
481 (rtc_control & RTC_PIE) ? "yes" : "no",
482 (rtc_control & RTC_UIE) ? "yes" : "no",
483 is_hpet_enabled() ? "yes" : "no",
484 // (rtc_control & RTC_SQWE) ? "yes" : "no",
485 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
486 (rtc_control & RTC_DST_EN) ? "yes" : "no",
487 cmos->rtc->irq_freq,
488 (valid & RTC_VRT) ? "okay" : "dead");
491 #else
492 #define cmos_procfs NULL
493 #endif
495 static const struct rtc_class_ops cmos_rtc_ops = {
496 .read_time = cmos_read_time,
497 .set_time = cmos_set_time,
498 .read_alarm = cmos_read_alarm,
499 .set_alarm = cmos_set_alarm,
500 .proc = cmos_procfs,
501 .irq_set_freq = cmos_irq_set_freq,
502 .irq_set_state = cmos_irq_set_state,
503 .alarm_irq_enable = cmos_alarm_irq_enable,
504 .update_irq_enable = cmos_update_irq_enable,
507 /*----------------------------------------------------------------*/
510 * All these chips have at least 64 bytes of address space, shared by
511 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
512 * by boot firmware. Modern chips have 128 or 256 bytes.
515 #define NVRAM_OFFSET (RTC_REG_D + 1)
517 static ssize_t
518 cmos_nvram_read(struct file *filp, struct kobject *kobj,
519 struct bin_attribute *attr,
520 char *buf, loff_t off, size_t count)
522 int retval;
524 if (unlikely(off >= attr->size))
525 return 0;
526 if (unlikely(off < 0))
527 return -EINVAL;
528 if ((off + count) > attr->size)
529 count = attr->size - off;
531 off += NVRAM_OFFSET;
532 spin_lock_irq(&rtc_lock);
533 for (retval = 0; count; count--, off++, retval++) {
534 if (off < 128)
535 *buf++ = CMOS_READ(off);
536 else if (can_bank2)
537 *buf++ = cmos_read_bank2(off);
538 else
539 break;
541 spin_unlock_irq(&rtc_lock);
543 return retval;
546 static ssize_t
547 cmos_nvram_write(struct file *filp, struct kobject *kobj,
548 struct bin_attribute *attr,
549 char *buf, loff_t off, size_t count)
551 struct cmos_rtc *cmos;
552 int retval;
554 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
555 if (unlikely(off >= attr->size))
556 return -EFBIG;
557 if (unlikely(off < 0))
558 return -EINVAL;
559 if ((off + count) > attr->size)
560 count = attr->size - off;
562 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
563 * checksum on part of the NVRAM data. That's currently ignored
564 * here. If userspace is smart enough to know what fields of
565 * NVRAM to update, updating checksums is also part of its job.
567 off += NVRAM_OFFSET;
568 spin_lock_irq(&rtc_lock);
569 for (retval = 0; count; count--, off++, retval++) {
570 /* don't trash RTC registers */
571 if (off == cmos->day_alrm
572 || off == cmos->mon_alrm
573 || off == cmos->century)
574 buf++;
575 else if (off < 128)
576 CMOS_WRITE(*buf++, off);
577 else if (can_bank2)
578 cmos_write_bank2(*buf++, off);
579 else
580 break;
582 spin_unlock_irq(&rtc_lock);
584 return retval;
587 static struct bin_attribute nvram = {
588 .attr = {
589 .name = "nvram",
590 .mode = S_IRUGO | S_IWUSR,
593 .read = cmos_nvram_read,
594 .write = cmos_nvram_write,
595 /* size gets set up later */
598 /*----------------------------------------------------------------*/
600 static struct cmos_rtc cmos_rtc;
602 static irqreturn_t cmos_interrupt(int irq, void *p)
604 u8 irqstat;
605 u8 rtc_control;
607 spin_lock(&rtc_lock);
609 /* When the HPET interrupt handler calls us, the interrupt
610 * status is passed as arg1 instead of the irq number. But
611 * always clear irq status, even when HPET is in the way.
613 * Note that HPET and RTC are almost certainly out of phase,
614 * giving different IRQ status ...
616 irqstat = CMOS_READ(RTC_INTR_FLAGS);
617 rtc_control = CMOS_READ(RTC_CONTROL);
618 if (is_hpet_enabled())
619 irqstat = (unsigned long)irq & 0xF0;
620 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
622 /* All Linux RTC alarms should be treated as if they were oneshot.
623 * Similar code may be needed in system wakeup paths, in case the
624 * alarm woke the system.
626 if (irqstat & RTC_AIE) {
627 rtc_control &= ~RTC_AIE;
628 CMOS_WRITE(rtc_control, RTC_CONTROL);
629 hpet_mask_rtc_irq_bit(RTC_AIE);
631 CMOS_READ(RTC_INTR_FLAGS);
633 spin_unlock(&rtc_lock);
635 if (is_intr(irqstat)) {
636 rtc_update_irq(p, 1, irqstat);
637 return IRQ_HANDLED;
638 } else
639 return IRQ_NONE;
642 #ifdef CONFIG_PNP
643 #define INITSECTION
645 #else
646 #define INITSECTION __init
647 #endif
649 static int INITSECTION
650 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
652 struct cmos_rtc_board_info *info = dev->platform_data;
653 int retval = 0;
654 unsigned char rtc_control;
655 unsigned address_space;
657 /* there can be only one ... */
658 if (cmos_rtc.dev)
659 return -EBUSY;
661 if (!ports)
662 return -ENODEV;
664 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
666 * REVISIT non-x86 systems may instead use memory space resources
667 * (needing ioremap etc), not i/o space resources like this ...
669 ports = request_region(ports->start,
670 ports->end + 1 - ports->start,
671 driver_name);
672 if (!ports) {
673 dev_dbg(dev, "i/o registers already in use\n");
674 return -EBUSY;
677 cmos_rtc.irq = rtc_irq;
678 cmos_rtc.iomem = ports;
680 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
681 * driver did, but don't reject unknown configs. Old hardware
682 * won't address 128 bytes. Newer chips have multiple banks,
683 * though they may not be listed in one I/O resource.
685 #if defined(CONFIG_ATARI)
686 address_space = 64;
687 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
688 || defined(__sparc__) || defined(__mips__)
689 address_space = 128;
690 #else
691 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
692 address_space = 128;
693 #endif
694 if (can_bank2 && ports->end > (ports->start + 1))
695 address_space = 256;
697 /* For ACPI systems extension info comes from the FADT. On others,
698 * board specific setup provides it as appropriate. Systems where
699 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
700 * some almost-clones) can provide hooks to make that behave.
702 * Note that ACPI doesn't preclude putting these registers into
703 * "extended" areas of the chip, including some that we won't yet
704 * expect CMOS_READ and friends to handle.
706 if (info) {
707 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
708 cmos_rtc.day_alrm = info->rtc_day_alarm;
709 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
710 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
711 if (info->rtc_century && info->rtc_century < 128)
712 cmos_rtc.century = info->rtc_century;
714 if (info->wake_on && info->wake_off) {
715 cmos_rtc.wake_on = info->wake_on;
716 cmos_rtc.wake_off = info->wake_off;
720 cmos_rtc.dev = dev;
721 dev_set_drvdata(dev, &cmos_rtc);
723 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
724 &cmos_rtc_ops, THIS_MODULE);
725 if (IS_ERR(cmos_rtc.rtc)) {
726 retval = PTR_ERR(cmos_rtc.rtc);
727 goto cleanup0;
730 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
732 spin_lock_irq(&rtc_lock);
734 /* force periodic irq to CMOS reset default of 1024Hz;
736 * REVISIT it's been reported that at least one x86_64 ALI mobo
737 * doesn't use 32KHz here ... for portability we might need to
738 * do something about other clock frequencies.
740 cmos_rtc.rtc->irq_freq = 1024;
741 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
742 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
744 /* disable irqs */
745 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
747 rtc_control = CMOS_READ(RTC_CONTROL);
749 spin_unlock_irq(&rtc_lock);
751 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
752 dev_warn(dev, "only 24-hr supported\n");
753 retval = -ENXIO;
754 goto cleanup1;
757 if (is_valid_irq(rtc_irq)) {
758 irq_handler_t rtc_cmos_int_handler;
760 if (is_hpet_enabled()) {
761 int err;
763 rtc_cmos_int_handler = hpet_rtc_interrupt;
764 err = hpet_register_irq_handler(cmos_interrupt);
765 if (err != 0) {
766 printk(KERN_WARNING "hpet_register_irq_handler "
767 " failed in rtc_init().");
768 goto cleanup1;
770 } else
771 rtc_cmos_int_handler = cmos_interrupt;
773 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
774 IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
775 cmos_rtc.rtc);
776 if (retval < 0) {
777 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
778 goto cleanup1;
781 hpet_rtc_timer_init();
783 /* export at least the first block of NVRAM */
784 nvram.size = address_space - NVRAM_OFFSET;
785 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
786 if (retval < 0) {
787 dev_dbg(dev, "can't create nvram file? %d\n", retval);
788 goto cleanup2;
791 pr_info("%s: %s%s, %zd bytes nvram%s\n",
792 dev_name(&cmos_rtc.rtc->dev),
793 !is_valid_irq(rtc_irq) ? "no alarms" :
794 cmos_rtc.mon_alrm ? "alarms up to one year" :
795 cmos_rtc.day_alrm ? "alarms up to one month" :
796 "alarms up to one day",
797 cmos_rtc.century ? ", y3k" : "",
798 nvram.size,
799 is_hpet_enabled() ? ", hpet irqs" : "");
801 return 0;
803 cleanup2:
804 if (is_valid_irq(rtc_irq))
805 free_irq(rtc_irq, cmos_rtc.rtc);
806 cleanup1:
807 cmos_rtc.dev = NULL;
808 rtc_device_unregister(cmos_rtc.rtc);
809 cleanup0:
810 release_region(ports->start, ports->end + 1 - ports->start);
811 return retval;
814 static void cmos_do_shutdown(void)
816 spin_lock_irq(&rtc_lock);
817 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
818 spin_unlock_irq(&rtc_lock);
821 static void __exit cmos_do_remove(struct device *dev)
823 struct cmos_rtc *cmos = dev_get_drvdata(dev);
824 struct resource *ports;
826 cmos_do_shutdown();
828 sysfs_remove_bin_file(&dev->kobj, &nvram);
830 if (is_valid_irq(cmos->irq)) {
831 free_irq(cmos->irq, cmos->rtc);
832 hpet_unregister_irq_handler(cmos_interrupt);
835 rtc_device_unregister(cmos->rtc);
836 cmos->rtc = NULL;
838 ports = cmos->iomem;
839 release_region(ports->start, ports->end + 1 - ports->start);
840 cmos->iomem = NULL;
842 cmos->dev = NULL;
843 dev_set_drvdata(dev, NULL);
846 #ifdef CONFIG_PM
848 static int cmos_suspend(struct device *dev)
850 struct cmos_rtc *cmos = dev_get_drvdata(dev);
851 unsigned char tmp;
853 /* only the alarm might be a wakeup event source */
854 spin_lock_irq(&rtc_lock);
855 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
856 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
857 unsigned char mask;
859 if (device_may_wakeup(dev))
860 mask = RTC_IRQMASK & ~RTC_AIE;
861 else
862 mask = RTC_IRQMASK;
863 tmp &= ~mask;
864 CMOS_WRITE(tmp, RTC_CONTROL);
866 /* shut down hpet emulation - we don't need it for alarm */
867 hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
868 cmos_checkintr(cmos, tmp);
870 spin_unlock_irq(&rtc_lock);
872 if (tmp & RTC_AIE) {
873 cmos->enabled_wake = 1;
874 if (cmos->wake_on)
875 cmos->wake_on(dev);
876 else
877 enable_irq_wake(cmos->irq);
880 pr_debug("%s: suspend%s, ctrl %02x\n",
881 dev_name(&cmos_rtc.rtc->dev),
882 (tmp & RTC_AIE) ? ", alarm may wake" : "",
883 tmp);
885 return 0;
888 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
889 * after a detour through G3 "mechanical off", although the ACPI spec
890 * says wakeup should only work from G1/S4 "hibernate". To most users,
891 * distinctions between S4 and S5 are pointless. So when the hardware
892 * allows, don't draw that distinction.
894 static inline int cmos_poweroff(struct device *dev)
896 return cmos_suspend(dev);
899 static int cmos_resume(struct device *dev)
901 struct cmos_rtc *cmos = dev_get_drvdata(dev);
902 unsigned char tmp = cmos->suspend_ctrl;
904 /* re-enable any irqs previously active */
905 if (tmp & RTC_IRQMASK) {
906 unsigned char mask;
908 if (cmos->enabled_wake) {
909 if (cmos->wake_off)
910 cmos->wake_off(dev);
911 else
912 disable_irq_wake(cmos->irq);
913 cmos->enabled_wake = 0;
916 spin_lock_irq(&rtc_lock);
917 do {
918 CMOS_WRITE(tmp, RTC_CONTROL);
919 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
921 mask = CMOS_READ(RTC_INTR_FLAGS);
922 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
923 if (!is_hpet_enabled() || !is_intr(mask))
924 break;
926 /* force one-shot behavior if HPET blocked
927 * the wake alarm's irq
929 rtc_update_irq(cmos->rtc, 1, mask);
930 tmp &= ~RTC_AIE;
931 hpet_mask_rtc_irq_bit(RTC_AIE);
932 } while (mask & RTC_AIE);
933 spin_unlock_irq(&rtc_lock);
936 pr_debug("%s: resume, ctrl %02x\n",
937 dev_name(&cmos_rtc.rtc->dev),
938 tmp);
940 return 0;
943 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
945 #else
947 static inline int cmos_poweroff(struct device *dev)
949 return -ENOSYS;
952 #endif
954 /*----------------------------------------------------------------*/
956 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
957 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
958 * probably list them in similar PNPBIOS tables; so PNP is more common.
960 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
961 * predate even PNPBIOS should set up platform_bus devices.
964 #ifdef CONFIG_ACPI
966 #include <linux/acpi.h>
968 static u32 rtc_handler(void *context)
970 acpi_clear_event(ACPI_EVENT_RTC);
971 acpi_disable_event(ACPI_EVENT_RTC, 0);
972 return ACPI_INTERRUPT_HANDLED;
975 static inline void rtc_wake_setup(void)
977 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
979 * After the RTC handler is installed, the Fixed_RTC event should
980 * be disabled. Only when the RTC alarm is set will it be enabled.
982 acpi_clear_event(ACPI_EVENT_RTC);
983 acpi_disable_event(ACPI_EVENT_RTC, 0);
986 static void rtc_wake_on(struct device *dev)
988 acpi_clear_event(ACPI_EVENT_RTC);
989 acpi_enable_event(ACPI_EVENT_RTC, 0);
992 static void rtc_wake_off(struct device *dev)
994 acpi_disable_event(ACPI_EVENT_RTC, 0);
997 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
998 * its device node and pass extra config data. This helps its driver use
999 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1000 * that this board's RTC is wakeup-capable (per ACPI spec).
1002 static struct cmos_rtc_board_info acpi_rtc_info;
1004 static void __devinit
1005 cmos_wake_setup(struct device *dev)
1007 if (acpi_disabled)
1008 return;
1010 rtc_wake_setup();
1011 acpi_rtc_info.wake_on = rtc_wake_on;
1012 acpi_rtc_info.wake_off = rtc_wake_off;
1014 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1015 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1016 acpi_gbl_FADT.month_alarm);
1017 acpi_gbl_FADT.month_alarm = 0;
1020 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1021 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1022 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1024 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1025 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1026 dev_info(dev, "RTC can wake from S4\n");
1028 dev->platform_data = &acpi_rtc_info;
1030 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1031 device_init_wakeup(dev, 1);
1034 #else
1036 static void __devinit
1037 cmos_wake_setup(struct device *dev)
1041 #endif
1043 #ifdef CONFIG_PNP
1045 #include <linux/pnp.h>
1047 static int __devinit
1048 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1050 cmos_wake_setup(&pnp->dev);
1052 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1053 /* Some machines contain a PNP entry for the RTC, but
1054 * don't define the IRQ. It should always be safe to
1055 * hardcode it in these cases
1057 return cmos_do_probe(&pnp->dev,
1058 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1059 else
1060 return cmos_do_probe(&pnp->dev,
1061 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1062 pnp_irq(pnp, 0));
1065 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1067 cmos_do_remove(&pnp->dev);
1070 #ifdef CONFIG_PM
1072 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1074 return cmos_suspend(&pnp->dev);
1077 static int cmos_pnp_resume(struct pnp_dev *pnp)
1079 return cmos_resume(&pnp->dev);
1082 #else
1083 #define cmos_pnp_suspend NULL
1084 #define cmos_pnp_resume NULL
1085 #endif
1087 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1089 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1090 return;
1092 cmos_do_shutdown();
1095 static const struct pnp_device_id rtc_ids[] = {
1096 { .id = "PNP0b00", },
1097 { .id = "PNP0b01", },
1098 { .id = "PNP0b02", },
1099 { },
1101 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1103 static struct pnp_driver cmos_pnp_driver = {
1104 .name = (char *) driver_name,
1105 .id_table = rtc_ids,
1106 .probe = cmos_pnp_probe,
1107 .remove = __exit_p(cmos_pnp_remove),
1108 .shutdown = cmos_pnp_shutdown,
1110 /* flag ensures resume() gets called, and stops syslog spam */
1111 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1112 .suspend = cmos_pnp_suspend,
1113 .resume = cmos_pnp_resume,
1116 #endif /* CONFIG_PNP */
1118 /*----------------------------------------------------------------*/
1120 /* Platform setup should have set up an RTC device, when PNP is
1121 * unavailable ... this could happen even on (older) PCs.
1124 static int __init cmos_platform_probe(struct platform_device *pdev)
1126 cmos_wake_setup(&pdev->dev);
1127 return cmos_do_probe(&pdev->dev,
1128 platform_get_resource(pdev, IORESOURCE_IO, 0),
1129 platform_get_irq(pdev, 0));
1132 static int __exit cmos_platform_remove(struct platform_device *pdev)
1134 cmos_do_remove(&pdev->dev);
1135 return 0;
1138 static void cmos_platform_shutdown(struct platform_device *pdev)
1140 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1141 return;
1143 cmos_do_shutdown();
1146 /* work with hotplug and coldplug */
1147 MODULE_ALIAS("platform:rtc_cmos");
1149 static struct platform_driver cmos_platform_driver = {
1150 .remove = __exit_p(cmos_platform_remove),
1151 .shutdown = cmos_platform_shutdown,
1152 .driver = {
1153 .name = (char *) driver_name,
1154 #ifdef CONFIG_PM
1155 .pm = &cmos_pm_ops,
1156 #endif
1160 #ifdef CONFIG_PNP
1161 static bool pnp_driver_registered;
1162 #endif
1163 static bool platform_driver_registered;
1165 static int __init cmos_init(void)
1167 int retval = 0;
1169 #ifdef CONFIG_PNP
1170 retval = pnp_register_driver(&cmos_pnp_driver);
1171 if (retval == 0)
1172 pnp_driver_registered = true;
1173 #endif
1175 if (!cmos_rtc.dev) {
1176 retval = platform_driver_probe(&cmos_platform_driver,
1177 cmos_platform_probe);
1178 if (retval == 0)
1179 platform_driver_registered = true;
1182 if (retval == 0)
1183 return 0;
1185 #ifdef CONFIG_PNP
1186 if (pnp_driver_registered)
1187 pnp_unregister_driver(&cmos_pnp_driver);
1188 #endif
1189 return retval;
1191 module_init(cmos_init);
1193 static void __exit cmos_exit(void)
1195 #ifdef CONFIG_PNP
1196 if (pnp_driver_registered)
1197 pnp_unregister_driver(&cmos_pnp_driver);
1198 #endif
1199 if (platform_driver_registered)
1200 platform_driver_unregister(&cmos_platform_driver);
1202 module_exit(cmos_exit);
1205 MODULE_AUTHOR("David Brownell");
1206 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1207 MODULE_LICENSE("GPL");