GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / rt2x00 / rt2x00queue.c
blobb5be35ceb62d170060b6724f7801df69c7d32a4b
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 queue specific routines.
27 #include <linux/slab.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/dma-mapping.h>
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
35 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
36 struct queue_entry *entry)
38 struct sk_buff *skb;
39 struct skb_frame_desc *skbdesc;
40 unsigned int frame_size;
41 unsigned int head_size = 0;
42 unsigned int tail_size = 0;
45 * The frame size includes descriptor size, because the
46 * hardware directly receive the frame into the skbuffer.
48 frame_size = entry->queue->data_size + entry->queue->desc_size;
51 * The payload should be aligned to a 4-byte boundary,
52 * this means we need at least 3 bytes for moving the frame
53 * into the correct offset.
55 head_size = 4;
58 * For IV/EIV/ICV assembly we must make sure there is
59 * at least 8 bytes bytes available in headroom for IV/EIV
60 * and 8 bytes for ICV data as tailroon.
62 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
63 head_size += 8;
64 tail_size += 8;
68 * Allocate skbuffer.
70 skb = dev_alloc_skb(frame_size + head_size + tail_size);
71 if (!skb)
72 return NULL;
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
78 skb_reserve(skb, head_size);
79 skb_put(skb, frame_size);
82 * Populate skbdesc.
84 skbdesc = get_skb_frame_desc(skb);
85 memset(skbdesc, 0, sizeof(*skbdesc));
86 skbdesc->entry = entry;
88 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
89 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
90 skb->data,
91 skb->len,
92 DMA_FROM_DEVICE);
93 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
96 return skb;
99 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
101 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
103 skbdesc->skb_dma =
104 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
105 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
107 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
111 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
113 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
114 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
115 DMA_FROM_DEVICE);
116 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
121 DMA_TO_DEVICE);
122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
129 if (!skb)
130 return;
132 rt2x00queue_unmap_skb(rt2x00dev, skb);
133 dev_kfree_skb_any(skb);
136 void rt2x00queue_align_frame(struct sk_buff *skb)
138 unsigned int frame_length = skb->len;
139 unsigned int align = ALIGN_SIZE(skb, 0);
141 if (!align)
142 return;
144 skb_push(skb, align);
145 memmove(skb->data, skb->data + align, frame_length);
146 skb_trim(skb, frame_length);
149 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
151 unsigned int frame_length = skb->len;
152 unsigned int align = ALIGN_SIZE(skb, header_length);
154 if (!align)
155 return;
157 skb_push(skb, align);
158 memmove(skb->data, skb->data + align, frame_length);
159 skb_trim(skb, frame_length);
162 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
164 unsigned int payload_length = skb->len - header_length;
165 unsigned int header_align = ALIGN_SIZE(skb, 0);
166 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
167 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
170 * Adjust the header alignment if the payload needs to be moved more
171 * than the header.
173 if (payload_align > header_align)
174 header_align += 4;
176 /* There is nothing to do if no alignment is needed */
177 if (!header_align)
178 return;
180 /* Reserve the amount of space needed in front of the frame */
181 skb_push(skb, header_align);
184 * Move the header.
186 memmove(skb->data, skb->data + header_align, header_length);
188 /* Move the payload, if present and if required */
189 if (payload_length && payload_align)
190 memmove(skb->data + header_length + l2pad,
191 skb->data + header_length + l2pad + payload_align,
192 payload_length);
194 /* Trim the skb to the correct size */
195 skb_trim(skb, header_length + l2pad + payload_length);
198 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
200 unsigned int l2pad = L2PAD_SIZE(header_length);
202 if (!l2pad)
203 return;
205 memmove(skb->data + l2pad, skb->data, header_length);
206 skb_pull(skb, l2pad);
209 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
210 struct txentry_desc *txdesc)
212 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
213 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
214 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
215 unsigned long irqflags;
217 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
218 unlikely(!tx_info->control.vif))
219 return;
221 spin_lock_irqsave(&intf->seqlock, irqflags);
223 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
224 intf->seqno += 0x10;
225 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
226 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
228 spin_unlock_irqrestore(&intf->seqlock, irqflags);
230 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
233 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
234 struct txentry_desc *txdesc,
235 const struct rt2x00_rate *hwrate)
237 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
238 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
239 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
240 unsigned int data_length;
241 unsigned int duration;
242 unsigned int residual;
244 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
245 data_length = entry->skb->len + 4;
246 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
249 * PLCP setup
250 * Length calculation depends on OFDM/CCK rate.
252 txdesc->signal = hwrate->plcp;
253 txdesc->service = 0x04;
255 if (hwrate->flags & DEV_RATE_OFDM) {
256 txdesc->length_high = (data_length >> 6) & 0x3f;
257 txdesc->length_low = data_length & 0x3f;
258 } else {
260 * Convert length to microseconds.
262 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
263 duration = GET_DURATION(data_length, hwrate->bitrate);
265 if (residual != 0) {
266 duration++;
269 * Check if we need to set the Length Extension
271 if (hwrate->bitrate == 110 && residual <= 30)
272 txdesc->service |= 0x80;
275 txdesc->length_high = (duration >> 8) & 0xff;
276 txdesc->length_low = duration & 0xff;
279 * When preamble is enabled we should set the
280 * preamble bit for the signal.
282 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
283 txdesc->signal |= 0x08;
287 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
288 struct txentry_desc *txdesc)
290 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
291 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
292 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
293 struct ieee80211_rate *rate =
294 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
295 const struct rt2x00_rate *hwrate;
297 memset(txdesc, 0, sizeof(*txdesc));
300 * Initialize information from queue
302 txdesc->queue = entry->queue->qid;
303 txdesc->cw_min = entry->queue->cw_min;
304 txdesc->cw_max = entry->queue->cw_max;
305 txdesc->aifs = entry->queue->aifs;
308 * Header and frame information.
310 txdesc->length = entry->skb->len;
311 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
314 * Check whether this frame is to be acked.
316 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
317 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
320 * Check if this is a RTS/CTS frame
322 if (ieee80211_is_rts(hdr->frame_control) ||
323 ieee80211_is_cts(hdr->frame_control)) {
324 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
325 if (ieee80211_is_rts(hdr->frame_control))
326 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
327 else
328 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
329 if (tx_info->control.rts_cts_rate_idx >= 0)
330 rate =
331 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
335 * Determine retry information.
337 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
338 if (txdesc->retry_limit >= rt2x00dev->long_retry)
339 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
342 * Check if more fragments are pending
344 if (ieee80211_has_morefrags(hdr->frame_control)) {
345 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
346 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
350 * Check if more frames (!= fragments) are pending
352 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
353 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
356 * Beacons and probe responses require the tsf timestamp
357 * to be inserted into the frame, except for a frame that has been injected
358 * through a monitor interface. This latter is needed for testing a
359 * monitor interface.
361 if ((ieee80211_is_beacon(hdr->frame_control) ||
362 ieee80211_is_probe_resp(hdr->frame_control)) &&
363 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
364 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
367 * Determine with what IFS priority this frame should be send.
368 * Set ifs to IFS_SIFS when the this is not the first fragment,
369 * or this fragment came after RTS/CTS.
371 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
372 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
373 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
374 txdesc->ifs = IFS_BACKOFF;
375 } else
376 txdesc->ifs = IFS_SIFS;
379 * Determine rate modulation.
381 hwrate = rt2x00_get_rate(rate->hw_value);
382 txdesc->rate_mode = RATE_MODE_CCK;
383 if (hwrate->flags & DEV_RATE_OFDM)
384 txdesc->rate_mode = RATE_MODE_OFDM;
387 * Apply TX descriptor handling by components
389 rt2x00crypto_create_tx_descriptor(entry, txdesc);
390 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
391 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
392 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
395 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
396 struct txentry_desc *txdesc)
398 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
401 * This should not happen, we already checked the entry
402 * was ours. When the hardware disagrees there has been
403 * a queue corruption!
405 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
406 rt2x00dev->ops->lib->get_entry_state(entry))) {
407 ERROR(rt2x00dev,
408 "Corrupt queue %d, accessing entry which is not ours.\n"
409 "Please file bug report to %s.\n",
410 entry->queue->qid, DRV_PROJECT);
411 return -EINVAL;
415 * Add the requested extra tx headroom in front of the skb.
417 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
418 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
421 * Call the driver's write_tx_data function, if it exists.
423 if (rt2x00dev->ops->lib->write_tx_data)
424 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
427 * Map the skb to DMA.
429 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
430 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
432 return 0;
435 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
436 struct txentry_desc *txdesc)
438 struct data_queue *queue = entry->queue;
439 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
441 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
444 * All processing on the frame has been completed, this means
445 * it is now ready to be dumped to userspace through debugfs.
447 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
450 static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
451 struct txentry_desc *txdesc)
453 struct data_queue *queue = entry->queue;
454 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
457 * Check if we need to kick the queue, there are however a few rules
458 * 1) Don't kick unless this is the last in frame in a burst.
459 * When the burst flag is set, this frame is always followed
460 * by another frame which in some way are related to eachother.
461 * This is true for fragments, RTS or CTS-to-self frames.
462 * 2) Rule 1 can be broken when the available entries
463 * in the queue are less then a certain threshold.
465 if (rt2x00queue_threshold(queue) ||
466 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
467 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
470 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
471 bool local)
473 struct ieee80211_tx_info *tx_info;
474 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
475 struct txentry_desc txdesc;
476 struct skb_frame_desc *skbdesc;
477 u8 rate_idx, rate_flags;
479 if (unlikely(rt2x00queue_full(queue)))
480 return -ENOBUFS;
482 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
483 ERROR(queue->rt2x00dev,
484 "Arrived at non-free entry in the non-full queue %d.\n"
485 "Please file bug report to %s.\n",
486 queue->qid, DRV_PROJECT);
487 return -EINVAL;
491 * Copy all TX descriptor information into txdesc,
492 * after that we are free to use the skb->cb array
493 * for our information.
495 entry->skb = skb;
496 rt2x00queue_create_tx_descriptor(entry, &txdesc);
499 * All information is retrieved from the skb->cb array,
500 * now we should claim ownership of the driver part of that
501 * array, preserving the bitrate index and flags.
503 tx_info = IEEE80211_SKB_CB(skb);
504 rate_idx = tx_info->control.rates[0].idx;
505 rate_flags = tx_info->control.rates[0].flags;
506 skbdesc = get_skb_frame_desc(skb);
507 memset(skbdesc, 0, sizeof(*skbdesc));
508 skbdesc->entry = entry;
509 skbdesc->tx_rate_idx = rate_idx;
510 skbdesc->tx_rate_flags = rate_flags;
512 if (local)
513 skbdesc->flags |= SKBDESC_NOT_MAC80211;
516 * When hardware encryption is supported, and this frame
517 * is to be encrypted, we should strip the IV/EIV data from
518 * the frame so we can provide it to the driver separately.
520 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
521 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
522 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
523 rt2x00crypto_tx_copy_iv(skb, &txdesc);
524 else
525 rt2x00crypto_tx_remove_iv(skb, &txdesc);
529 * When DMA allocation is required we should guarentee to the
530 * driver that the DMA is aligned to a 4-byte boundary.
531 * However some drivers require L2 padding to pad the payload
532 * rather then the header. This could be a requirement for
533 * PCI and USB devices, while header alignment only is valid
534 * for PCI devices.
536 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
537 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
538 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
539 rt2x00queue_align_frame(entry->skb);
542 * It could be possible that the queue was corrupted and this
543 * call failed. Since we always return NETDEV_TX_OK to mac80211,
544 * this frame will simply be dropped.
546 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
547 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
548 entry->skb = NULL;
549 return -EIO;
552 set_bit(ENTRY_DATA_PENDING, &entry->flags);
554 rt2x00queue_index_inc(queue, Q_INDEX);
555 rt2x00queue_write_tx_descriptor(entry, &txdesc);
556 rt2x00queue_kick_tx_queue(entry, &txdesc);
558 return 0;
561 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
562 struct ieee80211_vif *vif,
563 const bool enable_beacon)
565 struct rt2x00_intf *intf = vif_to_intf(vif);
566 struct skb_frame_desc *skbdesc;
567 struct txentry_desc txdesc;
569 if (unlikely(!intf->beacon))
570 return -ENOBUFS;
572 mutex_lock(&intf->beacon_skb_mutex);
575 * Clean up the beacon skb.
577 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
578 intf->beacon->skb = NULL;
580 if (!enable_beacon) {
581 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
582 mutex_unlock(&intf->beacon_skb_mutex);
583 return 0;
586 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
587 if (!intf->beacon->skb) {
588 mutex_unlock(&intf->beacon_skb_mutex);
589 return -ENOMEM;
593 * Copy all TX descriptor information into txdesc,
594 * after that we are free to use the skb->cb array
595 * for our information.
597 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
600 * Fill in skb descriptor
602 skbdesc = get_skb_frame_desc(intf->beacon->skb);
603 memset(skbdesc, 0, sizeof(*skbdesc));
604 skbdesc->entry = intf->beacon;
607 * Send beacon to hardware and enable beacon genaration..
609 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
611 mutex_unlock(&intf->beacon_skb_mutex);
613 return 0;
616 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
617 const enum data_queue_qid queue)
619 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
621 if (queue == QID_RX)
622 return rt2x00dev->rx;
624 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
625 return &rt2x00dev->tx[queue];
627 if (!rt2x00dev->bcn)
628 return NULL;
630 if (queue == QID_BEACON)
631 return &rt2x00dev->bcn[0];
632 else if (queue == QID_ATIM && atim)
633 return &rt2x00dev->bcn[1];
635 return NULL;
637 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
639 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
640 enum queue_index index)
642 struct queue_entry *entry;
643 unsigned long irqflags;
645 if (unlikely(index >= Q_INDEX_MAX)) {
646 ERROR(queue->rt2x00dev,
647 "Entry requested from invalid index type (%d)\n", index);
648 return NULL;
651 spin_lock_irqsave(&queue->lock, irqflags);
653 entry = &queue->entries[queue->index[index]];
655 spin_unlock_irqrestore(&queue->lock, irqflags);
657 return entry;
659 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
661 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
663 unsigned long irqflags;
665 if (unlikely(index >= Q_INDEX_MAX)) {
666 ERROR(queue->rt2x00dev,
667 "Index change on invalid index type (%d)\n", index);
668 return;
671 spin_lock_irqsave(&queue->lock, irqflags);
673 queue->index[index]++;
674 if (queue->index[index] >= queue->limit)
675 queue->index[index] = 0;
677 if (index == Q_INDEX) {
678 queue->length++;
679 queue->last_index = jiffies;
680 } else if (index == Q_INDEX_DONE) {
681 queue->length--;
682 queue->count++;
683 queue->last_index_done = jiffies;
686 spin_unlock_irqrestore(&queue->lock, irqflags);
689 static void rt2x00queue_reset(struct data_queue *queue)
691 unsigned long irqflags;
693 spin_lock_irqsave(&queue->lock, irqflags);
695 queue->count = 0;
696 queue->length = 0;
697 queue->last_index = jiffies;
698 queue->last_index_done = jiffies;
699 memset(queue->index, 0, sizeof(queue->index));
701 spin_unlock_irqrestore(&queue->lock, irqflags);
704 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
706 struct data_queue *queue;
708 txall_queue_for_each(rt2x00dev, queue)
709 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
712 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
714 struct data_queue *queue;
715 unsigned int i;
717 queue_for_each(rt2x00dev, queue) {
718 rt2x00queue_reset(queue);
720 for (i = 0; i < queue->limit; i++) {
721 queue->entries[i].flags = 0;
723 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
728 static int rt2x00queue_alloc_entries(struct data_queue *queue,
729 const struct data_queue_desc *qdesc)
731 struct queue_entry *entries;
732 unsigned int entry_size;
733 unsigned int i;
735 rt2x00queue_reset(queue);
737 queue->limit = qdesc->entry_num;
738 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
739 queue->data_size = qdesc->data_size;
740 queue->desc_size = qdesc->desc_size;
743 * Allocate all queue entries.
745 entry_size = sizeof(*entries) + qdesc->priv_size;
746 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
747 if (!entries)
748 return -ENOMEM;
750 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
751 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
752 ((__index) * (__psize)) )
754 for (i = 0; i < queue->limit; i++) {
755 entries[i].flags = 0;
756 entries[i].queue = queue;
757 entries[i].skb = NULL;
758 entries[i].entry_idx = i;
759 entries[i].priv_data =
760 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
761 sizeof(*entries), qdesc->priv_size);
764 #undef QUEUE_ENTRY_PRIV_OFFSET
766 queue->entries = entries;
768 return 0;
771 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
772 struct data_queue *queue)
774 unsigned int i;
776 if (!queue->entries)
777 return;
779 for (i = 0; i < queue->limit; i++) {
780 if (queue->entries[i].skb)
781 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
785 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
786 struct data_queue *queue)
788 unsigned int i;
789 struct sk_buff *skb;
791 for (i = 0; i < queue->limit; i++) {
792 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
793 if (!skb)
794 return -ENOMEM;
795 queue->entries[i].skb = skb;
798 return 0;
801 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
803 struct data_queue *queue;
804 int status;
806 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
807 if (status)
808 goto exit;
810 tx_queue_for_each(rt2x00dev, queue) {
811 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
812 if (status)
813 goto exit;
816 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
817 if (status)
818 goto exit;
820 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
821 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
822 rt2x00dev->ops->atim);
823 if (status)
824 goto exit;
827 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
828 if (status)
829 goto exit;
831 return 0;
833 exit:
834 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
836 rt2x00queue_uninitialize(rt2x00dev);
838 return status;
841 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
843 struct data_queue *queue;
845 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
847 queue_for_each(rt2x00dev, queue) {
848 kfree(queue->entries);
849 queue->entries = NULL;
853 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
854 struct data_queue *queue, enum data_queue_qid qid)
856 spin_lock_init(&queue->lock);
858 queue->rt2x00dev = rt2x00dev;
859 queue->qid = qid;
860 queue->txop = 0;
861 queue->aifs = 2;
862 queue->cw_min = 5;
863 queue->cw_max = 10;
866 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
868 struct data_queue *queue;
869 enum data_queue_qid qid;
870 unsigned int req_atim =
871 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
874 * We need the following queues:
875 * RX: 1
876 * TX: ops->tx_queues
877 * Beacon: 1
878 * Atim: 1 (if required)
880 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
882 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
883 if (!queue) {
884 ERROR(rt2x00dev, "Queue allocation failed.\n");
885 return -ENOMEM;
889 * Initialize pointers
891 rt2x00dev->rx = queue;
892 rt2x00dev->tx = &queue[1];
893 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
896 * Initialize queue parameters.
897 * RX: qid = QID_RX
898 * TX: qid = QID_AC_BE + index
899 * TX: cw_min: 2^5 = 32.
900 * TX: cw_max: 2^10 = 1024.
901 * BCN: qid = QID_BEACON
902 * ATIM: qid = QID_ATIM
904 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
906 qid = QID_AC_BE;
907 tx_queue_for_each(rt2x00dev, queue)
908 rt2x00queue_init(rt2x00dev, queue, qid++);
910 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
911 if (req_atim)
912 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
914 return 0;
917 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
919 kfree(rt2x00dev->rx);
920 rt2x00dev->rx = NULL;
921 rt2x00dev->tx = NULL;
922 rt2x00dev->bcn = NULL;