GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / rt2x00 / rt2500usb.c
blobed4de3f02d402d61d33bd41cfda0d8d20666edfb
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
40 * Allow hardware encryption to be disabled.
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2500usb_register_read and rt2500usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * If the csr_mutex is already held then the _lock variants must
59 * be used instead.
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62 const unsigned int offset,
63 u16 *value)
65 __le16 reg;
66 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67 USB_VENDOR_REQUEST_IN, offset,
68 &reg, sizeof(reg), REGISTER_TIMEOUT);
69 *value = le16_to_cpu(reg);
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73 const unsigned int offset,
74 u16 *value)
76 __le16 reg;
77 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78 USB_VENDOR_REQUEST_IN, offset,
79 &reg, sizeof(reg), REGISTER_TIMEOUT);
80 *value = le16_to_cpu(reg);
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84 const unsigned int offset,
85 void *value, const u16 length)
87 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88 USB_VENDOR_REQUEST_IN, offset,
89 value, length,
90 REGISTER_TIMEOUT16(length));
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94 const unsigned int offset,
95 u16 value)
97 __le16 reg = cpu_to_le16(value);
98 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99 USB_VENDOR_REQUEST_OUT, offset,
100 &reg, sizeof(reg), REGISTER_TIMEOUT);
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104 const unsigned int offset,
105 u16 value)
107 __le16 reg = cpu_to_le16(value);
108 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109 USB_VENDOR_REQUEST_OUT, offset,
110 &reg, sizeof(reg), REGISTER_TIMEOUT);
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114 const unsigned int offset,
115 void *value, const u16 length)
117 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118 USB_VENDOR_REQUEST_OUT, offset,
119 value, length,
120 REGISTER_TIMEOUT16(length));
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124 const unsigned int offset,
125 struct rt2x00_field16 field,
126 u16 *reg)
128 unsigned int i;
130 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132 if (!rt2x00_get_field16(*reg, field))
133 return 1;
134 udelay(REGISTER_BUSY_DELAY);
137 ERROR(rt2x00dev, "Indirect register access failed: "
138 "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139 *reg = ~0;
141 return 0;
144 #define WAIT_FOR_BBP(__dev, __reg) \
145 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150 const unsigned int word, const u8 value)
152 u16 reg;
154 mutex_lock(&rt2x00dev->csr_mutex);
157 * Wait until the BBP becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161 reg = 0;
162 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
166 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
169 mutex_unlock(&rt2x00dev->csr_mutex);
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173 const unsigned int word, u8 *value)
175 u16 reg;
177 mutex_lock(&rt2x00dev->csr_mutex);
180 * Wait until the BBP becomes available, afterwards we
181 * can safely write the read request into the register.
182 * After the data has been written, we wait until hardware
183 * returns the correct value, if at any time the register
184 * doesn't become available in time, reg will be 0xffffffff
185 * which means we return 0xff to the caller.
187 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188 reg = 0;
189 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
192 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
194 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
198 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
200 mutex_unlock(&rt2x00dev->csr_mutex);
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204 const unsigned int word, const u32 value)
206 u16 reg;
208 mutex_lock(&rt2x00dev->csr_mutex);
211 * Wait until the RF becomes available, afterwards we
212 * can safely write the new data into the register.
214 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215 reg = 0;
216 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
219 reg = 0;
220 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
225 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226 rt2x00_rf_write(rt2x00dev, word, value);
229 mutex_unlock(&rt2x00dev->csr_mutex);
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234 const unsigned int offset,
235 u32 *value)
237 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241 const unsigned int offset,
242 u32 value)
244 rt2500usb_register_write(rt2x00dev, offset, value);
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248 .owner = THIS_MODULE,
249 .csr = {
250 .read = _rt2500usb_register_read,
251 .write = _rt2500usb_register_write,
252 .flags = RT2X00DEBUGFS_OFFSET,
253 .word_base = CSR_REG_BASE,
254 .word_size = sizeof(u16),
255 .word_count = CSR_REG_SIZE / sizeof(u16),
257 .eeprom = {
258 .read = rt2x00_eeprom_read,
259 .write = rt2x00_eeprom_write,
260 .word_base = EEPROM_BASE,
261 .word_size = sizeof(u16),
262 .word_count = EEPROM_SIZE / sizeof(u16),
264 .bbp = {
265 .read = rt2500usb_bbp_read,
266 .write = rt2500usb_bbp_write,
267 .word_base = BBP_BASE,
268 .word_size = sizeof(u8),
269 .word_count = BBP_SIZE / sizeof(u8),
271 .rf = {
272 .read = rt2x00_rf_read,
273 .write = rt2500usb_rf_write,
274 .word_base = RF_BASE,
275 .word_size = sizeof(u32),
276 .word_count = RF_SIZE / sizeof(u32),
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
283 u16 reg;
285 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286 return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291 enum led_brightness brightness)
293 struct rt2x00_led *led =
294 container_of(led_cdev, struct rt2x00_led, led_dev);
295 unsigned int enabled = brightness != LED_OFF;
296 u16 reg;
298 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
300 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302 else if (led->type == LED_TYPE_ACTIVITY)
303 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
305 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309 unsigned long *delay_on,
310 unsigned long *delay_off)
312 struct rt2x00_led *led =
313 container_of(led_cdev, struct rt2x00_led, led_dev);
314 u16 reg;
316 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
321 return 0;
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325 struct rt2x00_led *led,
326 enum led_type type)
328 led->rt2x00dev = rt2x00dev;
329 led->type = type;
330 led->led_dev.brightness_set = rt2500usb_brightness_set;
331 led->led_dev.blink_set = rt2500usb_blink_set;
332 led->flags = LED_INITIALIZED;
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
337 * Configuration handlers.
341 * rt2500usb does not differentiate between shared and pairwise
342 * keys, so we should use the same function for both key types.
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345 struct rt2x00lib_crypto *crypto,
346 struct ieee80211_key_conf *key)
348 u32 mask;
349 u16 reg;
350 enum cipher curr_cipher;
352 if (crypto->cmd == SET_KEY) {
354 * Disallow to set WEP key other than with index 0,
355 * it is known that not work at least on some hardware.
356 * SW crypto will be used in that case.
358 if (key->alg == ALG_WEP && key->keyidx != 0)
359 return -EOPNOTSUPP;
362 * Pairwise key will always be entry 0, but this
363 * could collide with a shared key on the same
364 * position...
366 mask = TXRX_CSR0_KEY_ID.bit_mask;
368 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370 reg &= mask;
372 if (reg && reg == mask)
373 return -ENOSPC;
375 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
377 key->hw_key_idx += reg ? ffz(reg) : 0;
379 * Hardware requires that all keys use the same cipher
380 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381 * If this is not the first key, compare the cipher with the
382 * first one and fall back to SW crypto if not the same.
384 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385 return -EOPNOTSUPP;
387 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388 crypto->key, sizeof(crypto->key));
391 * The driver does not support the IV/EIV generation
392 * in hardware. However it demands the data to be provided
393 * both separately as well as inside the frame.
394 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395 * to ensure rt2x00lib will not strip the data from the
396 * frame after the copy, now we must tell mac80211
397 * to generate the IV/EIV data.
399 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
404 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405 * a particular key is valid.
407 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
411 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412 if (crypto->cmd == SET_KEY)
413 mask |= 1 << key->hw_key_idx;
414 else if (crypto->cmd == DISABLE_KEY)
415 mask &= ~(1 << key->hw_key_idx);
416 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
419 return 0;
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423 const unsigned int filter_flags)
425 u16 reg;
428 * Start configuration steps.
429 * Note that the version error will always be dropped
430 * and broadcast frames will always be accepted since
431 * there is no filter for it at this time.
433 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435 !(filter_flags & FIF_FCSFAIL));
436 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437 !(filter_flags & FIF_PLCPFAIL));
438 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439 !(filter_flags & FIF_CONTROL));
440 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
441 !(filter_flags & FIF_PROMISC_IN_BSS));
442 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
443 !(filter_flags & FIF_PROMISC_IN_BSS) &&
444 !rt2x00dev->intf_ap_count);
445 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
446 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
447 !(filter_flags & FIF_ALLMULTI));
448 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
449 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
453 struct rt2x00_intf *intf,
454 struct rt2x00intf_conf *conf,
455 const unsigned int flags)
457 unsigned int bcn_preload;
458 u16 reg;
460 if (flags & CONFIG_UPDATE_TYPE) {
462 * Enable beacon config
464 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
465 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
466 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
467 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
468 2 * (conf->type != NL80211_IFTYPE_STATION));
469 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472 * Enable synchronisation.
474 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
475 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
476 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
478 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
479 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
480 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
481 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
482 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
485 if (flags & CONFIG_UPDATE_MAC)
486 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487 (3 * sizeof(__le16)));
489 if (flags & CONFIG_UPDATE_BSSID)
490 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491 (3 * sizeof(__le16)));
494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495 struct rt2x00lib_erp *erp)
497 u16 reg;
499 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501 !!erp->short_preamble);
502 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
504 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
506 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
507 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
508 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
510 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
511 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
512 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
515 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
516 struct antenna_setup *ant)
518 u8 r2;
519 u8 r14;
520 u16 csr5;
521 u16 csr6;
524 * We should never come here because rt2x00lib is supposed
525 * to catch this and send us the correct antenna explicitely.
527 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
528 ant->tx == ANTENNA_SW_DIVERSITY);
530 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
531 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
532 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
533 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
536 * Configure the TX antenna.
538 switch (ant->tx) {
539 case ANTENNA_HW_DIVERSITY:
540 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
541 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
542 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
543 break;
544 case ANTENNA_A:
545 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
546 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
547 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
548 break;
549 case ANTENNA_B:
550 default:
551 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
552 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
553 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
554 break;
558 * Configure the RX antenna.
560 switch (ant->rx) {
561 case ANTENNA_HW_DIVERSITY:
562 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
563 break;
564 case ANTENNA_A:
565 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
566 break;
567 case ANTENNA_B:
568 default:
569 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
570 break;
574 * RT2525E and RT5222 need to flip TX I/Q
576 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
577 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
578 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
579 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
582 * RT2525E does not need RX I/Q Flip.
584 if (rt2x00_rf(rt2x00dev, RF2525E))
585 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
586 } else {
587 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
588 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
591 rt2500usb_bbp_write(rt2x00dev, 2, r2);
592 rt2500usb_bbp_write(rt2x00dev, 14, r14);
593 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
594 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
597 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
598 struct rf_channel *rf, const int txpower)
601 * Set TXpower.
603 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
606 * For RT2525E we should first set the channel to half band higher.
608 if (rt2x00_rf(rt2x00dev, RF2525E)) {
609 static const u32 vals[] = {
610 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
611 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
612 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
613 0x00000902, 0x00000906
616 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
617 if (rf->rf4)
618 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
621 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
622 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
623 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
624 if (rf->rf4)
625 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
628 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
629 const int txpower)
631 u32 rf3;
633 rt2x00_rf_read(rt2x00dev, 3, &rf3);
634 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
635 rt2500usb_rf_write(rt2x00dev, 3, rf3);
638 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
639 struct rt2x00lib_conf *libconf)
641 enum dev_state state =
642 (libconf->conf->flags & IEEE80211_CONF_PS) ?
643 STATE_SLEEP : STATE_AWAKE;
644 u16 reg;
646 if (state == STATE_SLEEP) {
647 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
648 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
649 rt2x00dev->beacon_int - 20);
650 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
651 libconf->conf->listen_interval - 1);
653 /* We must first disable autowake before it can be enabled */
654 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
655 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
657 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
658 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659 } else {
660 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
661 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
665 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
668 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
669 struct rt2x00lib_conf *libconf,
670 const unsigned int flags)
672 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
673 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
674 libconf->conf->power_level);
675 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
676 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
677 rt2500usb_config_txpower(rt2x00dev,
678 libconf->conf->power_level);
679 if (flags & IEEE80211_CONF_CHANGE_PS)
680 rt2500usb_config_ps(rt2x00dev, libconf);
684 * Link tuning
686 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
687 struct link_qual *qual)
689 u16 reg;
692 * Update FCS error count from register.
694 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
695 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
698 * Update False CCA count from register.
700 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
701 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
704 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
705 struct link_qual *qual)
707 u16 eeprom;
708 u16 value;
710 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
711 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
712 rt2500usb_bbp_write(rt2x00dev, 24, value);
714 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
715 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
716 rt2500usb_bbp_write(rt2x00dev, 25, value);
718 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
719 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
720 rt2500usb_bbp_write(rt2x00dev, 61, value);
722 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
723 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
724 rt2500usb_bbp_write(rt2x00dev, 17, value);
726 qual->vgc_level = value;
730 * Initialization functions.
732 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
734 u16 reg;
736 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
737 USB_MODE_TEST, REGISTER_TIMEOUT);
738 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
739 0x00f0, REGISTER_TIMEOUT);
741 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
742 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
743 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
745 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
746 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
748 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
749 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
750 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
751 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
752 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
754 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
755 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
756 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
757 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
758 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
760 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
761 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
762 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
763 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
764 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
765 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
767 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
768 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
769 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
770 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
771 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
772 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
774 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
775 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
776 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
777 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
778 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
779 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
781 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
782 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
783 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
784 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
785 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
786 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
788 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
789 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
790 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
791 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
792 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
793 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
795 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
796 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
798 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
799 return -EBUSY;
801 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
802 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
803 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
804 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
805 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
807 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
808 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
809 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
810 } else {
811 reg = 0;
812 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
813 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
815 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
817 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
818 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
819 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
820 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
822 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
823 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
824 rt2x00dev->rx->data_size);
825 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
827 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
828 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
829 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
830 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
831 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
833 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
834 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
835 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
837 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
838 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
839 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
841 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
842 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
843 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
845 return 0;
848 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
850 unsigned int i;
851 u8 value;
853 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
854 rt2500usb_bbp_read(rt2x00dev, 0, &value);
855 if ((value != 0xff) && (value != 0x00))
856 return 0;
857 udelay(REGISTER_BUSY_DELAY);
860 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
861 return -EACCES;
864 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
866 unsigned int i;
867 u16 eeprom;
868 u8 value;
869 u8 reg_id;
871 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
872 return -EACCES;
874 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
875 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
876 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
877 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
878 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
879 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
880 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
881 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
882 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
883 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
884 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
885 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
886 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
887 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
888 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
889 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
890 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
891 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
892 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
893 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
894 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
895 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
896 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
897 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
898 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
899 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
900 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
901 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
902 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
903 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
904 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
906 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
907 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
909 if (eeprom != 0xffff && eeprom != 0x0000) {
910 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
911 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
912 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
916 return 0;
920 * Device state switch handlers.
922 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
923 enum dev_state state)
925 u16 reg;
927 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
928 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
929 (state == STATE_RADIO_RX_OFF) ||
930 (state == STATE_RADIO_RX_OFF_LINK));
931 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
934 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
937 * Initialize all registers.
939 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
940 rt2500usb_init_bbp(rt2x00dev)))
941 return -EIO;
943 return 0;
946 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
948 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
949 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
952 * Disable synchronisation.
954 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
956 rt2x00usb_disable_radio(rt2x00dev);
959 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
960 enum dev_state state)
962 u16 reg;
963 u16 reg2;
964 unsigned int i;
965 char put_to_sleep;
966 char bbp_state;
967 char rf_state;
969 put_to_sleep = (state != STATE_AWAKE);
971 reg = 0;
972 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
973 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
974 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
975 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
976 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
977 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
980 * Device is not guaranteed to be in the requested state yet.
981 * We must wait until the register indicates that the
982 * device has entered the correct state.
984 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
985 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
986 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
987 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
988 if (bbp_state == state && rf_state == state)
989 return 0;
990 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
991 msleep(30);
994 return -EBUSY;
997 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
998 enum dev_state state)
1000 int retval = 0;
1002 switch (state) {
1003 case STATE_RADIO_ON:
1004 retval = rt2500usb_enable_radio(rt2x00dev);
1005 break;
1006 case STATE_RADIO_OFF:
1007 rt2500usb_disable_radio(rt2x00dev);
1008 break;
1009 case STATE_RADIO_RX_ON:
1010 case STATE_RADIO_RX_ON_LINK:
1011 case STATE_RADIO_RX_OFF:
1012 case STATE_RADIO_RX_OFF_LINK:
1013 rt2500usb_toggle_rx(rt2x00dev, state);
1014 break;
1015 case STATE_RADIO_IRQ_ON:
1016 case STATE_RADIO_IRQ_ON_ISR:
1017 case STATE_RADIO_IRQ_OFF:
1018 case STATE_RADIO_IRQ_OFF_ISR:
1019 /* No support, but no error either */
1020 break;
1021 case STATE_DEEP_SLEEP:
1022 case STATE_SLEEP:
1023 case STATE_STANDBY:
1024 case STATE_AWAKE:
1025 retval = rt2500usb_set_state(rt2x00dev, state);
1026 break;
1027 default:
1028 retval = -ENOTSUPP;
1029 break;
1032 if (unlikely(retval))
1033 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1034 state, retval);
1036 return retval;
1040 * TX descriptor initialization
1042 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1043 struct sk_buff *skb,
1044 struct txentry_desc *txdesc)
1046 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1047 __le32 *txd = (__le32 *) skb->data;
1048 u32 word;
1051 * Start writing the descriptor words.
1053 rt2x00_desc_read(txd, 0, &word);
1054 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1055 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1056 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1057 rt2x00_set_field32(&word, TXD_W0_ACK,
1058 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1059 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1060 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1061 rt2x00_set_field32(&word, TXD_W0_OFDM,
1062 (txdesc->rate_mode == RATE_MODE_OFDM));
1063 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1064 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1065 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1066 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1067 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1068 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1069 rt2x00_desc_write(txd, 0, word);
1071 rt2x00_desc_read(txd, 1, &word);
1072 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1073 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1074 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1075 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1076 rt2x00_desc_write(txd, 1, word);
1078 rt2x00_desc_read(txd, 2, &word);
1079 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1080 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1081 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1082 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1083 rt2x00_desc_write(txd, 2, word);
1085 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1086 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1087 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1091 * Register descriptor details in skb frame descriptor.
1093 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1094 skbdesc->desc = txd;
1095 skbdesc->desc_len = TXD_DESC_SIZE;
1099 * TX data initialization
1101 static void rt2500usb_beacondone(struct urb *urb);
1103 static void rt2500usb_write_beacon(struct queue_entry *entry,
1104 struct txentry_desc *txdesc)
1106 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1107 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1108 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1109 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1110 int length;
1111 u16 reg, reg0;
1114 * Disable beaconing while we are reloading the beacon data,
1115 * otherwise we might be sending out invalid data.
1117 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1118 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1119 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1122 * Add space for the descriptor in front of the skb.
1124 skb_push(entry->skb, TXD_DESC_SIZE);
1125 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1128 * Write the TX descriptor for the beacon.
1130 rt2500usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1133 * Dump beacon to userspace through debugfs.
1135 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1138 * USB devices cannot blindly pass the skb->len as the
1139 * length of the data to usb_fill_bulk_urb. Pass the skb
1140 * to the driver to determine what the length should be.
1142 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1144 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1145 entry->skb->data, length, rt2500usb_beacondone,
1146 entry);
1149 * Second we need to create the guardian byte.
1150 * We only need a single byte, so lets recycle
1151 * the 'flags' field we are not using for beacons.
1153 bcn_priv->guardian_data = 0;
1154 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1155 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1156 entry);
1159 * Send out the guardian byte.
1161 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1164 * Enable beaconing again.
1166 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1167 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1168 reg0 = reg;
1169 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1171 * Beacon generation will fail initially.
1172 * To prevent this we need to change the TXRX_CSR19
1173 * register several times (reg0 is the same as reg
1174 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1175 * and 1 in reg).
1177 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1178 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1179 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1180 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1181 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1184 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1186 int length;
1189 * The length _must_ be a multiple of 2,
1190 * but it must _not_ be a multiple of the USB packet size.
1192 length = roundup(entry->skb->len, 2);
1193 length += (2 * !(length % entry->queue->usb_maxpacket));
1195 return length;
1199 * RX control handlers
1201 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1202 struct rxdone_entry_desc *rxdesc)
1204 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1205 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1206 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1207 __le32 *rxd =
1208 (__le32 *)(entry->skb->data +
1209 (entry_priv->urb->actual_length -
1210 entry->queue->desc_size));
1211 u32 word0;
1212 u32 word1;
1215 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1216 * frame data in rt2x00usb.
1218 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1219 rxd = (__le32 *)skbdesc->desc;
1222 * It is now safe to read the descriptor on all architectures.
1224 rt2x00_desc_read(rxd, 0, &word0);
1225 rt2x00_desc_read(rxd, 1, &word1);
1227 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1228 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1229 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1230 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1232 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1233 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1234 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1236 if (rxdesc->cipher != CIPHER_NONE) {
1237 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1238 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1239 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1241 /* ICV is located at the end of frame */
1243 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1244 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1245 rxdesc->flags |= RX_FLAG_DECRYPTED;
1246 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1247 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1251 * Obtain the status about this packet.
1252 * When frame was received with an OFDM bitrate,
1253 * the signal is the PLCP value. If it was received with
1254 * a CCK bitrate the signal is the rate in 100kbit/s.
1256 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1257 rxdesc->rssi =
1258 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1259 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1261 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1262 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1263 else
1264 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1265 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1266 rxdesc->dev_flags |= RXDONE_MY_BSS;
1269 * Adjust the skb memory window to the frame boundaries.
1271 skb_trim(entry->skb, rxdesc->size);
1275 * Interrupt functions.
1277 static void rt2500usb_beacondone(struct urb *urb)
1279 struct queue_entry *entry = (struct queue_entry *)urb->context;
1280 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1282 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1283 return;
1286 * Check if this was the guardian beacon,
1287 * if that was the case we need to send the real beacon now.
1288 * Otherwise we should free the sk_buffer, the device
1289 * should be doing the rest of the work now.
1291 if (bcn_priv->guardian_urb == urb) {
1292 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1293 } else if (bcn_priv->urb == urb) {
1294 dev_kfree_skb(entry->skb);
1295 entry->skb = NULL;
1300 * Device probe functions.
1302 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1304 u16 word;
1305 u8 *mac;
1306 u8 bbp;
1308 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1311 * Start validation of the data that has been read.
1313 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1314 if (!is_valid_ether_addr(mac)) {
1315 random_ether_addr(mac);
1316 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1319 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1320 if (word == 0xffff) {
1321 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1322 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1323 ANTENNA_SW_DIVERSITY);
1324 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1325 ANTENNA_SW_DIVERSITY);
1326 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1327 LED_MODE_DEFAULT);
1328 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1329 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1330 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1331 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1332 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1335 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1336 if (word == 0xffff) {
1337 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1338 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1339 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1340 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1341 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1344 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1345 if (word == 0xffff) {
1346 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1347 DEFAULT_RSSI_OFFSET);
1348 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1349 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1352 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1353 if (word == 0xffff) {
1354 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1355 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1356 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1360 * Switch lower vgc bound to current BBP R17 value,
1361 * lower the value a bit for better quality.
1363 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1364 bbp -= 6;
1366 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1367 if (word == 0xffff) {
1368 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1369 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1370 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1371 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1372 } else {
1373 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1374 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1377 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1378 if (word == 0xffff) {
1379 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1380 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1381 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1382 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1385 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1386 if (word == 0xffff) {
1387 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1388 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1389 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1390 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1393 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1394 if (word == 0xffff) {
1395 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1396 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1397 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1398 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1401 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1402 if (word == 0xffff) {
1403 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1404 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1405 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1406 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1409 return 0;
1412 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1414 u16 reg;
1415 u16 value;
1416 u16 eeprom;
1419 * Read EEPROM word for configuration.
1421 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1424 * Identify RF chipset.
1426 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1427 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1428 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1430 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1431 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1432 return -ENODEV;
1435 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1436 !rt2x00_rf(rt2x00dev, RF2523) &&
1437 !rt2x00_rf(rt2x00dev, RF2524) &&
1438 !rt2x00_rf(rt2x00dev, RF2525) &&
1439 !rt2x00_rf(rt2x00dev, RF2525E) &&
1440 !rt2x00_rf(rt2x00dev, RF5222)) {
1441 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1442 return -ENODEV;
1446 * Identify default antenna configuration.
1448 rt2x00dev->default_ant.tx =
1449 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1450 rt2x00dev->default_ant.rx =
1451 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1454 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1455 * I am not 100% sure about this, but the legacy drivers do not
1456 * indicate antenna swapping in software is required when
1457 * diversity is enabled.
1459 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1460 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1461 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1462 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1465 * Store led mode, for correct led behaviour.
1467 #ifdef CONFIG_RT2X00_LIB_LEDS
1468 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1470 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1471 if (value == LED_MODE_TXRX_ACTIVITY ||
1472 value == LED_MODE_DEFAULT ||
1473 value == LED_MODE_ASUS)
1474 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1475 LED_TYPE_ACTIVITY);
1476 #endif /* CONFIG_RT2X00_LIB_LEDS */
1479 * Detect if this device has an hardware controlled radio.
1481 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1482 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1485 * Read the RSSI <-> dBm offset information.
1487 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1488 rt2x00dev->rssi_offset =
1489 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1491 return 0;
1495 * RF value list for RF2522
1496 * Supports: 2.4 GHz
1498 static const struct rf_channel rf_vals_bg_2522[] = {
1499 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1500 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1501 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1502 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1503 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1504 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1505 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1506 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1507 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1508 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1509 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1510 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1511 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1512 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1516 * RF value list for RF2523
1517 * Supports: 2.4 GHz
1519 static const struct rf_channel rf_vals_bg_2523[] = {
1520 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1521 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1522 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1523 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1524 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1525 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1526 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1527 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1528 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1529 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1530 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1531 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1532 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1533 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1537 * RF value list for RF2524
1538 * Supports: 2.4 GHz
1540 static const struct rf_channel rf_vals_bg_2524[] = {
1541 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1542 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1543 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1544 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1545 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1546 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1547 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1548 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1549 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1550 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1551 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1552 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1553 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1554 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1558 * RF value list for RF2525
1559 * Supports: 2.4 GHz
1561 static const struct rf_channel rf_vals_bg_2525[] = {
1562 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1563 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1564 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1565 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1566 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1567 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1568 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1569 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1570 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1571 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1572 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1573 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1574 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1575 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1579 * RF value list for RF2525e
1580 * Supports: 2.4 GHz
1582 static const struct rf_channel rf_vals_bg_2525e[] = {
1583 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1584 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1585 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1586 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1587 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1588 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1589 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1590 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1591 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1592 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1593 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1594 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1595 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1596 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1600 * RF value list for RF5222
1601 * Supports: 2.4 GHz & 5.2 GHz
1603 static const struct rf_channel rf_vals_5222[] = {
1604 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1605 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1606 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1607 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1608 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1609 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1610 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1611 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1612 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1613 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1614 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1615 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1616 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1617 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1619 /* 802.11 UNI / HyperLan 2 */
1620 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1621 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1622 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1623 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1624 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1625 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1626 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1627 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1629 /* 802.11 HyperLan 2 */
1630 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1631 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1632 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1633 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1634 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1635 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1636 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1637 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1638 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1639 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1641 /* 802.11 UNII */
1642 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1643 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1644 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1645 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1646 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1649 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1651 struct hw_mode_spec *spec = &rt2x00dev->spec;
1652 struct channel_info *info;
1653 char *tx_power;
1654 unsigned int i;
1657 * Initialize all hw fields.
1659 rt2x00dev->hw->flags =
1660 IEEE80211_HW_RX_INCLUDES_FCS |
1661 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1662 IEEE80211_HW_SIGNAL_DBM |
1663 IEEE80211_HW_SUPPORTS_PS |
1664 IEEE80211_HW_PS_NULLFUNC_STACK;
1666 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1667 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1668 rt2x00_eeprom_addr(rt2x00dev,
1669 EEPROM_MAC_ADDR_0));
1672 * Initialize hw_mode information.
1674 spec->supported_bands = SUPPORT_BAND_2GHZ;
1675 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1677 if (rt2x00_rf(rt2x00dev, RF2522)) {
1678 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1679 spec->channels = rf_vals_bg_2522;
1680 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1681 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1682 spec->channels = rf_vals_bg_2523;
1683 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1684 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1685 spec->channels = rf_vals_bg_2524;
1686 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1687 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1688 spec->channels = rf_vals_bg_2525;
1689 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1690 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1691 spec->channels = rf_vals_bg_2525e;
1692 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1693 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1694 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1695 spec->channels = rf_vals_5222;
1699 * Create channel information array
1701 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1702 if (!info)
1703 return -ENOMEM;
1705 spec->channels_info = info;
1707 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1708 for (i = 0; i < 14; i++) {
1709 info[i].max_power = MAX_TXPOWER;
1710 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1713 if (spec->num_channels > 14) {
1714 for (i = 14; i < spec->num_channels; i++) {
1715 info[i].max_power = MAX_TXPOWER;
1716 info[i].default_power1 = DEFAULT_TXPOWER;
1720 return 0;
1723 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1725 int retval;
1728 * Allocate eeprom data.
1730 retval = rt2500usb_validate_eeprom(rt2x00dev);
1731 if (retval)
1732 return retval;
1734 retval = rt2500usb_init_eeprom(rt2x00dev);
1735 if (retval)
1736 return retval;
1739 * Initialize hw specifications.
1741 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1742 if (retval)
1743 return retval;
1746 * This device requires the atim queue
1748 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1749 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1750 if (!modparam_nohwcrypt) {
1751 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1752 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1754 __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1757 * Set the rssi offset.
1759 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1761 return 0;
1764 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1765 .tx = rt2x00mac_tx,
1766 .start = rt2x00mac_start,
1767 .stop = rt2x00mac_stop,
1768 .add_interface = rt2x00mac_add_interface,
1769 .remove_interface = rt2x00mac_remove_interface,
1770 .config = rt2x00mac_config,
1771 .configure_filter = rt2x00mac_configure_filter,
1772 .set_tim = rt2x00mac_set_tim,
1773 .set_key = rt2x00mac_set_key,
1774 .sw_scan_start = rt2x00mac_sw_scan_start,
1775 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1776 .get_stats = rt2x00mac_get_stats,
1777 .bss_info_changed = rt2x00mac_bss_info_changed,
1778 .conf_tx = rt2x00mac_conf_tx,
1779 .rfkill_poll = rt2x00mac_rfkill_poll,
1782 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1783 .probe_hw = rt2500usb_probe_hw,
1784 .initialize = rt2x00usb_initialize,
1785 .uninitialize = rt2x00usb_uninitialize,
1786 .clear_entry = rt2x00usb_clear_entry,
1787 .set_device_state = rt2500usb_set_device_state,
1788 .rfkill_poll = rt2500usb_rfkill_poll,
1789 .link_stats = rt2500usb_link_stats,
1790 .reset_tuner = rt2500usb_reset_tuner,
1791 .watchdog = rt2x00usb_watchdog,
1792 .write_tx_desc = rt2500usb_write_tx_desc,
1793 .write_beacon = rt2500usb_write_beacon,
1794 .get_tx_data_len = rt2500usb_get_tx_data_len,
1795 .kick_tx_queue = rt2x00usb_kick_tx_queue,
1796 .kill_tx_queue = rt2x00usb_kill_tx_queue,
1797 .fill_rxdone = rt2500usb_fill_rxdone,
1798 .config_shared_key = rt2500usb_config_key,
1799 .config_pairwise_key = rt2500usb_config_key,
1800 .config_filter = rt2500usb_config_filter,
1801 .config_intf = rt2500usb_config_intf,
1802 .config_erp = rt2500usb_config_erp,
1803 .config_ant = rt2500usb_config_ant,
1804 .config = rt2500usb_config,
1807 static const struct data_queue_desc rt2500usb_queue_rx = {
1808 .entry_num = RX_ENTRIES,
1809 .data_size = DATA_FRAME_SIZE,
1810 .desc_size = RXD_DESC_SIZE,
1811 .priv_size = sizeof(struct queue_entry_priv_usb),
1814 static const struct data_queue_desc rt2500usb_queue_tx = {
1815 .entry_num = TX_ENTRIES,
1816 .data_size = DATA_FRAME_SIZE,
1817 .desc_size = TXD_DESC_SIZE,
1818 .priv_size = sizeof(struct queue_entry_priv_usb),
1821 static const struct data_queue_desc rt2500usb_queue_bcn = {
1822 .entry_num = BEACON_ENTRIES,
1823 .data_size = MGMT_FRAME_SIZE,
1824 .desc_size = TXD_DESC_SIZE,
1825 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1828 static const struct data_queue_desc rt2500usb_queue_atim = {
1829 .entry_num = ATIM_ENTRIES,
1830 .data_size = DATA_FRAME_SIZE,
1831 .desc_size = TXD_DESC_SIZE,
1832 .priv_size = sizeof(struct queue_entry_priv_usb),
1835 static const struct rt2x00_ops rt2500usb_ops = {
1836 .name = KBUILD_MODNAME,
1837 .max_sta_intf = 1,
1838 .max_ap_intf = 1,
1839 .eeprom_size = EEPROM_SIZE,
1840 .rf_size = RF_SIZE,
1841 .tx_queues = NUM_TX_QUEUES,
1842 .extra_tx_headroom = TXD_DESC_SIZE,
1843 .rx = &rt2500usb_queue_rx,
1844 .tx = &rt2500usb_queue_tx,
1845 .bcn = &rt2500usb_queue_bcn,
1846 .atim = &rt2500usb_queue_atim,
1847 .lib = &rt2500usb_rt2x00_ops,
1848 .hw = &rt2500usb_mac80211_ops,
1849 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1850 .debugfs = &rt2500usb_rt2x00debug,
1851 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1855 * rt2500usb module information.
1857 static struct usb_device_id rt2500usb_device_table[] = {
1858 /* ASUS */
1859 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1860 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1861 /* Belkin */
1862 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1863 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1864 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1865 /* Cisco Systems */
1866 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1867 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1868 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 /* CNet */
1870 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1871 /* Conceptronic */
1872 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1873 /* D-LINK */
1874 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1875 /* Gigabyte */
1876 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1877 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1878 /* Hercules */
1879 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1880 /* Melco */
1881 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1882 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1883 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1884 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1885 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1886 /* MSI */
1887 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1888 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1889 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1890 /* Ralink */
1891 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1892 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1893 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1894 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1895 /* Sagem */
1896 { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1897 /* Siemens */
1898 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1899 /* SMC */
1900 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1901 /* Spairon */
1902 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1903 /* SURECOM */
1904 { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1905 /* Trust */
1906 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1907 /* VTech */
1908 { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1909 /* Zinwell */
1910 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1911 { 0, }
1914 MODULE_AUTHOR(DRV_PROJECT);
1915 MODULE_VERSION(DRV_VERSION);
1916 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1917 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1918 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1919 MODULE_LICENSE("GPL");
1921 static struct usb_driver rt2500usb_driver = {
1922 .name = KBUILD_MODNAME,
1923 .id_table = rt2500usb_device_table,
1924 .probe = rt2x00usb_probe,
1925 .disconnect = rt2x00usb_disconnect,
1926 .suspend = rt2x00usb_suspend,
1927 .resume = rt2x00usb_resume,
1930 static int __init rt2500usb_init(void)
1932 return usb_register(&rt2500usb_driver);
1935 static void __exit rt2500usb_exit(void)
1937 usb_deregister(&rt2500usb_driver);
1940 module_init(rt2500usb_init);
1941 module_exit(rt2500usb_exit);