GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / ipw2x00 / ipw2200.c
blob1597b521164f35396055e1a36a958d887c843b80
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include "ipw2200.h"
38 #ifndef KBUILD_EXTMOD
39 #define VK "k"
40 #else
41 #define VK
42 #endif
44 #ifdef CONFIG_IPW2200_DEBUG
45 #define VD "d"
46 #else
47 #define VD
48 #endif
50 #ifdef CONFIG_IPW2200_MONITOR
51 #define VM "m"
52 #else
53 #define VM
54 #endif
56 #ifdef CONFIG_IPW2200_PROMISCUOUS
57 #define VP "p"
58 #else
59 #define VP
60 #endif
62 #ifdef CONFIG_IPW2200_RADIOTAP
63 #define VR "r"
64 #else
65 #define VR
66 #endif
68 #ifdef CONFIG_IPW2200_QOS
69 #define VQ "q"
70 #else
71 #define VQ
72 #endif
74 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
75 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
76 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
77 #define DRV_VERSION IPW2200_VERSION
79 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
81 MODULE_DESCRIPTION(DRV_DESCRIPTION);
82 MODULE_VERSION(DRV_VERSION);
83 MODULE_AUTHOR(DRV_COPYRIGHT);
84 MODULE_LICENSE("GPL");
85 MODULE_FIRMWARE("ipw2200-ibss.fw");
86 #ifdef CONFIG_IPW2200_MONITOR
87 MODULE_FIRMWARE("ipw2200-sniffer.fw");
88 #endif
89 MODULE_FIRMWARE("ipw2200-bss.fw");
91 static int cmdlog = 0;
92 static int debug = 0;
93 static int default_channel = 0;
94 static int network_mode = 0;
96 static u32 ipw_debug_level;
97 static int associate;
98 static int auto_create = 1;
99 static int led_support = 1;
100 static int disable = 0;
101 static int bt_coexist = 0;
102 static int hwcrypto = 0;
103 static int roaming = 1;
104 static const char ipw_modes[] = {
105 'a', 'b', 'g', '?'
107 static int antenna = CFG_SYS_ANTENNA_BOTH;
109 #ifdef CONFIG_IPW2200_PROMISCUOUS
110 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
111 #endif
113 static struct ieee80211_rate ipw2200_rates[] = {
114 { .bitrate = 10 },
115 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 { .bitrate = 60 },
119 { .bitrate = 90 },
120 { .bitrate = 120 },
121 { .bitrate = 180 },
122 { .bitrate = 240 },
123 { .bitrate = 360 },
124 { .bitrate = 480 },
125 { .bitrate = 540 }
128 #define ipw2200_a_rates (ipw2200_rates + 4)
129 #define ipw2200_num_a_rates 8
130 #define ipw2200_bg_rates (ipw2200_rates + 0)
131 #define ipw2200_num_bg_rates 12
133 #ifdef CONFIG_IPW2200_QOS
134 static int qos_enable = 0;
135 static int qos_burst_enable = 0;
136 static int qos_no_ack_mask = 0;
137 static int burst_duration_CCK = 0;
138 static int burst_duration_OFDM = 0;
140 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
141 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
142 QOS_TX3_CW_MIN_OFDM},
143 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
144 QOS_TX3_CW_MAX_OFDM},
145 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
146 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
147 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
148 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
151 static struct libipw_qos_parameters def_qos_parameters_CCK = {
152 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
153 QOS_TX3_CW_MIN_CCK},
154 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
155 QOS_TX3_CW_MAX_CCK},
156 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
157 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
158 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
159 QOS_TX3_TXOP_LIMIT_CCK}
162 static struct libipw_qos_parameters def_parameters_OFDM = {
163 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
164 DEF_TX3_CW_MIN_OFDM},
165 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
166 DEF_TX3_CW_MAX_OFDM},
167 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
168 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
169 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
170 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
173 static struct libipw_qos_parameters def_parameters_CCK = {
174 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
175 DEF_TX3_CW_MIN_CCK},
176 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
177 DEF_TX3_CW_MAX_CCK},
178 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
179 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
180 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
181 DEF_TX3_TXOP_LIMIT_CCK}
184 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
186 static int from_priority_to_tx_queue[] = {
187 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
188 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
191 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
193 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
194 *qos_param);
195 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
196 *qos_param);
197 #endif /* CONFIG_IPW2200_QOS */
199 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
200 static void ipw_remove_current_network(struct ipw_priv *priv);
201 static void ipw_rx(struct ipw_priv *priv);
202 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
203 struct clx2_tx_queue *txq, int qindex);
204 static int ipw_queue_reset(struct ipw_priv *priv);
206 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
207 int len, int sync);
209 static void ipw_tx_queue_free(struct ipw_priv *);
211 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
212 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
213 static void ipw_rx_queue_replenish(void *);
214 static int ipw_up(struct ipw_priv *);
215 static void ipw_bg_up(struct work_struct *work);
216 static void ipw_down(struct ipw_priv *);
217 static void ipw_bg_down(struct work_struct *work);
218 static int ipw_config(struct ipw_priv *);
219 static int init_supported_rates(struct ipw_priv *priv,
220 struct ipw_supported_rates *prates);
221 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
222 static void ipw_send_wep_keys(struct ipw_priv *, int);
224 static int snprint_line(char *buf, size_t count,
225 const u8 * data, u32 len, u32 ofs)
227 int out, i, j, l;
228 char c;
230 out = snprintf(buf, count, "%08X", ofs);
232 for (l = 0, i = 0; i < 2; i++) {
233 out += snprintf(buf + out, count - out, " ");
234 for (j = 0; j < 8 && l < len; j++, l++)
235 out += snprintf(buf + out, count - out, "%02X ",
236 data[(i * 8 + j)]);
237 for (; j < 8; j++)
238 out += snprintf(buf + out, count - out, " ");
241 out += snprintf(buf + out, count - out, " ");
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++) {
245 c = data[(i * 8 + j)];
246 if (!isascii(c) || !isprint(c))
247 c = '.';
249 out += snprintf(buf + out, count - out, "%c", c);
252 for (; j < 8; j++)
253 out += snprintf(buf + out, count - out, " ");
256 return out;
259 static void printk_buf(int level, const u8 * data, u32 len)
261 char line[81];
262 u32 ofs = 0;
263 if (!(ipw_debug_level & level))
264 return;
266 while (len) {
267 snprint_line(line, sizeof(line), &data[ofs],
268 min(len, 16U), ofs);
269 printk(KERN_DEBUG "%s\n", line);
270 ofs += 16;
271 len -= min(len, 16U);
275 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
277 size_t out = size;
278 u32 ofs = 0;
279 int total = 0;
281 while (size && len) {
282 out = snprint_line(output, size, &data[ofs],
283 min_t(size_t, len, 16U), ofs);
285 ofs += 16;
286 output += out;
287 size -= out;
288 len -= min_t(size_t, len, 16U);
289 total += out;
291 return total;
294 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
296 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
298 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
299 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
300 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
302 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
303 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
304 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
306 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
307 __LINE__, (u32) (b), (u32) (c));
308 _ipw_write_reg8(a, b, c);
311 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
312 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
313 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
315 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
316 __LINE__, (u32) (b), (u32) (c));
317 _ipw_write_reg16(a, b, c);
320 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
321 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
322 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
324 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
325 __LINE__, (u32) (b), (u32) (c));
326 _ipw_write_reg32(a, b, c);
329 /* 8-bit direct write (low 4K) */
330 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
331 u8 val)
333 writeb(val, ipw->hw_base + ofs);
336 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
337 #define ipw_write8(ipw, ofs, val) do { \
338 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
339 __LINE__, (u32)(ofs), (u32)(val)); \
340 _ipw_write8(ipw, ofs, val); \
341 } while (0)
343 /* 16-bit direct write (low 4K) */
344 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
345 u16 val)
347 writew(val, ipw->hw_base + ofs);
350 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
351 #define ipw_write16(ipw, ofs, val) do { \
352 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
353 __LINE__, (u32)(ofs), (u32)(val)); \
354 _ipw_write16(ipw, ofs, val); \
355 } while (0)
357 /* 32-bit direct write (low 4K) */
358 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
359 u32 val)
361 writel(val, ipw->hw_base + ofs);
364 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_write32(ipw, ofs, val) do { \
366 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
367 __LINE__, (u32)(ofs), (u32)(val)); \
368 _ipw_write32(ipw, ofs, val); \
369 } while (0)
371 /* 8-bit direct read (low 4K) */
372 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
374 return readb(ipw->hw_base + ofs);
377 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read8(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
380 (u32)(ofs)); \
381 _ipw_read8(ipw, ofs); \
384 /* 16-bit direct read (low 4K) */
385 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
387 return readw(ipw->hw_base + ofs);
390 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
391 #define ipw_read16(ipw, ofs) ({ \
392 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
393 (u32)(ofs)); \
394 _ipw_read16(ipw, ofs); \
397 /* 32-bit direct read (low 4K) */
398 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
400 return readl(ipw->hw_base + ofs);
403 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
404 #define ipw_read32(ipw, ofs) ({ \
405 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
406 (u32)(ofs)); \
407 _ipw_read32(ipw, ofs); \
410 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
411 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
412 #define ipw_read_indirect(a, b, c, d) ({ \
413 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
414 __LINE__, (u32)(b), (u32)(d)); \
415 _ipw_read_indirect(a, b, c, d); \
418 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
419 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
420 int num);
421 #define ipw_write_indirect(a, b, c, d) do { \
422 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
423 __LINE__, (u32)(b), (u32)(d)); \
424 _ipw_write_indirect(a, b, c, d); \
425 } while (0)
427 /* 32-bit indirect write (above 4K) */
428 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
430 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
431 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
432 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
435 /* 8-bit indirect write (above 4K) */
436 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
438 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
439 u32 dif_len = reg - aligned_addr;
441 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
442 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
443 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
446 /* 16-bit indirect write (above 4K) */
447 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
449 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
450 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
452 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
453 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
454 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
457 /* 8-bit indirect read (above 4K) */
458 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
460 u32 word;
461 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
462 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
463 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
464 return (word >> ((reg & 0x3) * 8)) & 0xff;
467 /* 32-bit indirect read (above 4K) */
468 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
470 u32 value;
472 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
474 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
475 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
476 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
477 return value;
480 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
481 /* for area above 1st 4K of SRAM/reg space */
482 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
483 int num)
485 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
486 u32 dif_len = addr - aligned_addr;
487 u32 i;
489 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
491 if (num <= 0) {
492 return;
495 /* Read the first dword (or portion) byte by byte */
496 if (unlikely(dif_len)) {
497 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
498 /* Start reading at aligned_addr + dif_len */
499 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
500 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
501 aligned_addr += 4;
504 /* Read all of the middle dwords as dwords, with auto-increment */
505 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
506 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
507 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
509 /* Read the last dword (or portion) byte by byte */
510 if (unlikely(num)) {
511 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
512 for (i = 0; num > 0; i++, num--)
513 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
517 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
518 /* for area above 1st 4K of SRAM/reg space */
519 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
520 int num)
522 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
523 u32 dif_len = addr - aligned_addr;
524 u32 i;
526 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
528 if (num <= 0) {
529 return;
532 /* Write the first dword (or portion) byte by byte */
533 if (unlikely(dif_len)) {
534 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
535 /* Start writing at aligned_addr + dif_len */
536 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
537 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
538 aligned_addr += 4;
541 /* Write all of the middle dwords as dwords, with auto-increment */
542 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
543 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
544 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
546 /* Write the last dword (or portion) byte by byte */
547 if (unlikely(num)) {
548 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
549 for (i = 0; num > 0; i++, num--, buf++)
550 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
554 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
555 /* for 1st 4K of SRAM/regs space */
556 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
557 int num)
559 memcpy_toio((priv->hw_base + addr), buf, num);
562 /* Set bit(s) in low 4K of SRAM/regs */
563 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
565 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
568 /* Clear bit(s) in low 4K of SRAM/regs */
569 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
571 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
574 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
576 if (priv->status & STATUS_INT_ENABLED)
577 return;
578 priv->status |= STATUS_INT_ENABLED;
579 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
582 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
584 if (!(priv->status & STATUS_INT_ENABLED))
585 return;
586 priv->status &= ~STATUS_INT_ENABLED;
587 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
590 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
592 unsigned long flags;
594 spin_lock_irqsave(&priv->irq_lock, flags);
595 __ipw_enable_interrupts(priv);
596 spin_unlock_irqrestore(&priv->irq_lock, flags);
599 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
601 unsigned long flags;
603 spin_lock_irqsave(&priv->irq_lock, flags);
604 __ipw_disable_interrupts(priv);
605 spin_unlock_irqrestore(&priv->irq_lock, flags);
608 static char *ipw_error_desc(u32 val)
610 switch (val) {
611 case IPW_FW_ERROR_OK:
612 return "ERROR_OK";
613 case IPW_FW_ERROR_FAIL:
614 return "ERROR_FAIL";
615 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
616 return "MEMORY_UNDERFLOW";
617 case IPW_FW_ERROR_MEMORY_OVERFLOW:
618 return "MEMORY_OVERFLOW";
619 case IPW_FW_ERROR_BAD_PARAM:
620 return "BAD_PARAM";
621 case IPW_FW_ERROR_BAD_CHECKSUM:
622 return "BAD_CHECKSUM";
623 case IPW_FW_ERROR_NMI_INTERRUPT:
624 return "NMI_INTERRUPT";
625 case IPW_FW_ERROR_BAD_DATABASE:
626 return "BAD_DATABASE";
627 case IPW_FW_ERROR_ALLOC_FAIL:
628 return "ALLOC_FAIL";
629 case IPW_FW_ERROR_DMA_UNDERRUN:
630 return "DMA_UNDERRUN";
631 case IPW_FW_ERROR_DMA_STATUS:
632 return "DMA_STATUS";
633 case IPW_FW_ERROR_DINO_ERROR:
634 return "DINO_ERROR";
635 case IPW_FW_ERROR_EEPROM_ERROR:
636 return "EEPROM_ERROR";
637 case IPW_FW_ERROR_SYSASSERT:
638 return "SYSASSERT";
639 case IPW_FW_ERROR_FATAL_ERROR:
640 return "FATAL_ERROR";
641 default:
642 return "UNKNOWN_ERROR";
646 static void ipw_dump_error_log(struct ipw_priv *priv,
647 struct ipw_fw_error *error)
649 u32 i;
651 if (!error) {
652 IPW_ERROR("Error allocating and capturing error log. "
653 "Nothing to dump.\n");
654 return;
657 IPW_ERROR("Start IPW Error Log Dump:\n");
658 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
659 error->status, error->config);
661 for (i = 0; i < error->elem_len; i++)
662 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 ipw_error_desc(error->elem[i].desc),
664 error->elem[i].time,
665 error->elem[i].blink1,
666 error->elem[i].blink2,
667 error->elem[i].link1,
668 error->elem[i].link2, error->elem[i].data);
669 for (i = 0; i < error->log_len; i++)
670 IPW_ERROR("%i\t0x%08x\t%i\n",
671 error->log[i].time,
672 error->log[i].data, error->log[i].event);
675 static inline int ipw_is_init(struct ipw_priv *priv)
677 return (priv->status & STATUS_INIT) ? 1 : 0;
680 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
682 u32 addr, field_info, field_len, field_count, total_len;
684 IPW_DEBUG_ORD("ordinal = %i\n", ord);
686 if (!priv || !val || !len) {
687 IPW_DEBUG_ORD("Invalid argument\n");
688 return -EINVAL;
691 /* verify device ordinal tables have been initialized */
692 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
693 IPW_DEBUG_ORD("Access ordinals before initialization\n");
694 return -EINVAL;
697 switch (IPW_ORD_TABLE_ID_MASK & ord) {
698 case IPW_ORD_TABLE_0_MASK:
700 * TABLE 0: Direct access to a table of 32 bit values
702 * This is a very simple table with the data directly
703 * read from the table
706 /* remove the table id from the ordinal */
707 ord &= IPW_ORD_TABLE_VALUE_MASK;
709 /* boundary check */
710 if (ord > priv->table0_len) {
711 IPW_DEBUG_ORD("ordinal value (%i) longer then "
712 "max (%i)\n", ord, priv->table0_len);
713 return -EINVAL;
716 /* verify we have enough room to store the value */
717 if (*len < sizeof(u32)) {
718 IPW_DEBUG_ORD("ordinal buffer length too small, "
719 "need %zd\n", sizeof(u32));
720 return -EINVAL;
723 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
724 ord, priv->table0_addr + (ord << 2));
726 *len = sizeof(u32);
727 ord <<= 2;
728 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
729 break;
731 case IPW_ORD_TABLE_1_MASK:
733 * TABLE 1: Indirect access to a table of 32 bit values
735 * This is a fairly large table of u32 values each
736 * representing starting addr for the data (which is
737 * also a u32)
740 /* remove the table id from the ordinal */
741 ord &= IPW_ORD_TABLE_VALUE_MASK;
743 /* boundary check */
744 if (ord > priv->table1_len) {
745 IPW_DEBUG_ORD("ordinal value too long\n");
746 return -EINVAL;
749 /* verify we have enough room to store the value */
750 if (*len < sizeof(u32)) {
751 IPW_DEBUG_ORD("ordinal buffer length too small, "
752 "need %zd\n", sizeof(u32));
753 return -EINVAL;
756 *((u32 *) val) =
757 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
758 *len = sizeof(u32);
759 break;
761 case IPW_ORD_TABLE_2_MASK:
763 * TABLE 2: Indirect access to a table of variable sized values
765 * This table consist of six values, each containing
766 * - dword containing the starting offset of the data
767 * - dword containing the lengh in the first 16bits
768 * and the count in the second 16bits
771 /* remove the table id from the ordinal */
772 ord &= IPW_ORD_TABLE_VALUE_MASK;
774 /* boundary check */
775 if (ord > priv->table2_len) {
776 IPW_DEBUG_ORD("ordinal value too long\n");
777 return -EINVAL;
780 /* get the address of statistic */
781 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
783 /* get the second DW of statistics ;
784 * two 16-bit words - first is length, second is count */
785 field_info =
786 ipw_read_reg32(priv,
787 priv->table2_addr + (ord << 3) +
788 sizeof(u32));
790 /* get each entry length */
791 field_len = *((u16 *) & field_info);
793 /* get number of entries */
794 field_count = *(((u16 *) & field_info) + 1);
796 /* abort if not enough memory */
797 total_len = field_len * field_count;
798 if (total_len > *len) {
799 *len = total_len;
800 return -EINVAL;
803 *len = total_len;
804 if (!total_len)
805 return 0;
807 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
808 "field_info = 0x%08x\n",
809 addr, total_len, field_info);
810 ipw_read_indirect(priv, addr, val, total_len);
811 break;
813 default:
814 IPW_DEBUG_ORD("Invalid ordinal!\n");
815 return -EINVAL;
819 return 0;
822 static void ipw_init_ordinals(struct ipw_priv *priv)
824 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
825 priv->table0_len = ipw_read32(priv, priv->table0_addr);
827 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
828 priv->table0_addr, priv->table0_len);
830 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
831 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
833 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
834 priv->table1_addr, priv->table1_len);
836 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
837 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
838 priv->table2_len &= 0x0000ffff; /* use first two bytes */
840 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
841 priv->table2_addr, priv->table2_len);
845 static u32 ipw_register_toggle(u32 reg)
847 reg &= ~IPW_START_STANDBY;
848 if (reg & IPW_GATE_ODMA)
849 reg &= ~IPW_GATE_ODMA;
850 if (reg & IPW_GATE_IDMA)
851 reg &= ~IPW_GATE_IDMA;
852 if (reg & IPW_GATE_ADMA)
853 reg &= ~IPW_GATE_ADMA;
854 return reg;
858 * LED behavior:
859 * - On radio ON, turn on any LEDs that require to be on during start
860 * - On initialization, start unassociated blink
861 * - On association, disable unassociated blink
862 * - On disassociation, start unassociated blink
863 * - On radio OFF, turn off any LEDs started during radio on
866 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
867 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
868 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
870 static void ipw_led_link_on(struct ipw_priv *priv)
872 unsigned long flags;
873 u32 led;
875 /* If configured to not use LEDs, or nic_type is 1,
876 * then we don't toggle a LINK led */
877 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
878 return;
880 spin_lock_irqsave(&priv->lock, flags);
882 if (!(priv->status & STATUS_RF_KILL_MASK) &&
883 !(priv->status & STATUS_LED_LINK_ON)) {
884 IPW_DEBUG_LED("Link LED On\n");
885 led = ipw_read_reg32(priv, IPW_EVENT_REG);
886 led |= priv->led_association_on;
888 led = ipw_register_toggle(led);
890 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
891 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893 priv->status |= STATUS_LED_LINK_ON;
895 /* If we aren't associated, schedule turning the LED off */
896 if (!(priv->status & STATUS_ASSOCIATED))
897 queue_delayed_work(priv->workqueue,
898 &priv->led_link_off,
899 LD_TIME_LINK_ON);
902 spin_unlock_irqrestore(&priv->lock, flags);
905 static void ipw_bg_led_link_on(struct work_struct *work)
907 struct ipw_priv *priv =
908 container_of(work, struct ipw_priv, led_link_on.work);
909 mutex_lock(&priv->mutex);
910 ipw_led_link_on(priv);
911 mutex_unlock(&priv->mutex);
914 static void ipw_led_link_off(struct ipw_priv *priv)
916 unsigned long flags;
917 u32 led;
919 /* If configured not to use LEDs, or nic type is 1,
920 * then we don't goggle the LINK led. */
921 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
922 return;
924 spin_lock_irqsave(&priv->lock, flags);
926 if (priv->status & STATUS_LED_LINK_ON) {
927 led = ipw_read_reg32(priv, IPW_EVENT_REG);
928 led &= priv->led_association_off;
929 led = ipw_register_toggle(led);
931 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
932 ipw_write_reg32(priv, IPW_EVENT_REG, led);
934 IPW_DEBUG_LED("Link LED Off\n");
936 priv->status &= ~STATUS_LED_LINK_ON;
938 /* If we aren't associated and the radio is on, schedule
939 * turning the LED on (blink while unassociated) */
940 if (!(priv->status & STATUS_RF_KILL_MASK) &&
941 !(priv->status & STATUS_ASSOCIATED))
942 queue_delayed_work(priv->workqueue, &priv->led_link_on,
943 LD_TIME_LINK_OFF);
947 spin_unlock_irqrestore(&priv->lock, flags);
950 static void ipw_bg_led_link_off(struct work_struct *work)
952 struct ipw_priv *priv =
953 container_of(work, struct ipw_priv, led_link_off.work);
954 mutex_lock(&priv->mutex);
955 ipw_led_link_off(priv);
956 mutex_unlock(&priv->mutex);
959 static void __ipw_led_activity_on(struct ipw_priv *priv)
961 u32 led;
963 if (priv->config & CFG_NO_LED)
964 return;
966 if (priv->status & STATUS_RF_KILL_MASK)
967 return;
969 if (!(priv->status & STATUS_LED_ACT_ON)) {
970 led = ipw_read_reg32(priv, IPW_EVENT_REG);
971 led |= priv->led_activity_on;
973 led = ipw_register_toggle(led);
975 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
976 ipw_write_reg32(priv, IPW_EVENT_REG, led);
978 IPW_DEBUG_LED("Activity LED On\n");
980 priv->status |= STATUS_LED_ACT_ON;
982 cancel_delayed_work(&priv->led_act_off);
983 queue_delayed_work(priv->workqueue, &priv->led_act_off,
984 LD_TIME_ACT_ON);
985 } else {
986 /* Reschedule LED off for full time period */
987 cancel_delayed_work(&priv->led_act_off);
988 queue_delayed_work(priv->workqueue, &priv->led_act_off,
989 LD_TIME_ACT_ON);
994 static void ipw_led_activity_off(struct ipw_priv *priv)
996 unsigned long flags;
997 u32 led;
999 if (priv->config & CFG_NO_LED)
1000 return;
1002 spin_lock_irqsave(&priv->lock, flags);
1004 if (priv->status & STATUS_LED_ACT_ON) {
1005 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1006 led &= priv->led_activity_off;
1008 led = ipw_register_toggle(led);
1010 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1011 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1013 IPW_DEBUG_LED("Activity LED Off\n");
1015 priv->status &= ~STATUS_LED_ACT_ON;
1018 spin_unlock_irqrestore(&priv->lock, flags);
1021 static void ipw_bg_led_activity_off(struct work_struct *work)
1023 struct ipw_priv *priv =
1024 container_of(work, struct ipw_priv, led_act_off.work);
1025 mutex_lock(&priv->mutex);
1026 ipw_led_activity_off(priv);
1027 mutex_unlock(&priv->mutex);
1030 static void ipw_led_band_on(struct ipw_priv *priv)
1032 unsigned long flags;
1033 u32 led;
1035 /* Only nic type 1 supports mode LEDs */
1036 if (priv->config & CFG_NO_LED ||
1037 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1038 return;
1040 spin_lock_irqsave(&priv->lock, flags);
1042 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1043 if (priv->assoc_network->mode == IEEE_A) {
1044 led |= priv->led_ofdm_on;
1045 led &= priv->led_association_off;
1046 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1047 } else if (priv->assoc_network->mode == IEEE_G) {
1048 led |= priv->led_ofdm_on;
1049 led |= priv->led_association_on;
1050 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1051 } else {
1052 led &= priv->led_ofdm_off;
1053 led |= priv->led_association_on;
1054 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 led = ipw_register_toggle(led);
1059 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1060 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1062 spin_unlock_irqrestore(&priv->lock, flags);
1065 static void ipw_led_band_off(struct ipw_priv *priv)
1067 unsigned long flags;
1068 u32 led;
1070 /* Only nic type 1 supports mode LEDs */
1071 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1072 return;
1074 spin_lock_irqsave(&priv->lock, flags);
1076 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1077 led &= priv->led_ofdm_off;
1078 led &= priv->led_association_off;
1080 led = ipw_register_toggle(led);
1082 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1083 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1085 spin_unlock_irqrestore(&priv->lock, flags);
1088 static void ipw_led_radio_on(struct ipw_priv *priv)
1090 ipw_led_link_on(priv);
1093 static void ipw_led_radio_off(struct ipw_priv *priv)
1095 ipw_led_activity_off(priv);
1096 ipw_led_link_off(priv);
1099 static void ipw_led_link_up(struct ipw_priv *priv)
1101 /* Set the Link Led on for all nic types */
1102 ipw_led_link_on(priv);
1105 static void ipw_led_link_down(struct ipw_priv *priv)
1107 ipw_led_activity_off(priv);
1108 ipw_led_link_off(priv);
1110 if (priv->status & STATUS_RF_KILL_MASK)
1111 ipw_led_radio_off(priv);
1114 static void ipw_led_init(struct ipw_priv *priv)
1116 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1118 /* Set the default PINs for the link and activity leds */
1119 priv->led_activity_on = IPW_ACTIVITY_LED;
1120 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1122 priv->led_association_on = IPW_ASSOCIATED_LED;
1123 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1125 /* Set the default PINs for the OFDM leds */
1126 priv->led_ofdm_on = IPW_OFDM_LED;
1127 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1129 switch (priv->nic_type) {
1130 case EEPROM_NIC_TYPE_1:
1131 /* In this NIC type, the LEDs are reversed.... */
1132 priv->led_activity_on = IPW_ASSOCIATED_LED;
1133 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1134 priv->led_association_on = IPW_ACTIVITY_LED;
1135 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1137 if (!(priv->config & CFG_NO_LED))
1138 ipw_led_band_on(priv);
1140 /* And we don't blink link LEDs for this nic, so
1141 * just return here */
1142 return;
1144 case EEPROM_NIC_TYPE_3:
1145 case EEPROM_NIC_TYPE_2:
1146 case EEPROM_NIC_TYPE_4:
1147 case EEPROM_NIC_TYPE_0:
1148 break;
1150 default:
1151 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1152 priv->nic_type);
1153 priv->nic_type = EEPROM_NIC_TYPE_0;
1154 break;
1157 if (!(priv->config & CFG_NO_LED)) {
1158 if (priv->status & STATUS_ASSOCIATED)
1159 ipw_led_link_on(priv);
1160 else
1161 ipw_led_link_off(priv);
1165 static void ipw_led_shutdown(struct ipw_priv *priv)
1167 ipw_led_activity_off(priv);
1168 ipw_led_link_off(priv);
1169 ipw_led_band_off(priv);
1170 cancel_delayed_work(&priv->led_link_on);
1171 cancel_delayed_work(&priv->led_link_off);
1172 cancel_delayed_work(&priv->led_act_off);
1176 * The following adds a new attribute to the sysfs representation
1177 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1178 * used for controling the debug level.
1180 * See the level definitions in ipw for details.
1182 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1184 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1188 size_t count)
1190 char *p = (char *)buf;
1191 u32 val;
1193 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1194 p++;
1195 if (p[0] == 'x' || p[0] == 'X')
1196 p++;
1197 val = simple_strtoul(p, &p, 16);
1198 } else
1199 val = simple_strtoul(p, &p, 10);
1200 if (p == buf)
1201 printk(KERN_INFO DRV_NAME
1202 ": %s is not in hex or decimal form.\n", buf);
1203 else
1204 ipw_debug_level = val;
1206 return strnlen(buf, count);
1209 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1210 show_debug_level, store_debug_level);
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1214 /* length = 1st dword in log */
1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 u32 log_len, struct ipw_event *log)
1221 u32 base;
1223 if (log_len) {
1224 base = ipw_read32(priv, IPW_EVENT_LOG);
1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 (u8 *) log, sizeof(*log) * log_len);
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1232 struct ipw_fw_error *error;
1233 u32 log_len = ipw_get_event_log_len(priv);
1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 u32 elem_len = ipw_read_reg32(priv, base);
1237 error = kmalloc(sizeof(*error) +
1238 sizeof(*error->elem) * elem_len +
1239 sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 if (!error) {
1241 IPW_ERROR("Memory allocation for firmware error log "
1242 "failed.\n");
1243 return NULL;
1245 error->jiffies = jiffies;
1246 error->status = priv->status;
1247 error->config = priv->config;
1248 error->elem_len = elem_len;
1249 error->log_len = log_len;
1250 error->elem = (struct ipw_error_elem *)error->payload;
1251 error->log = (struct ipw_event *)(error->elem + elem_len);
1253 ipw_capture_event_log(priv, log_len, error->log);
1255 if (elem_len)
1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 sizeof(*error->elem) * elem_len);
1259 return error;
1262 static ssize_t show_event_log(struct device *d,
1263 struct device_attribute *attr, char *buf)
1265 struct ipw_priv *priv = dev_get_drvdata(d);
1266 u32 log_len = ipw_get_event_log_len(priv);
1267 u32 log_size;
1268 struct ipw_event *log;
1269 u32 len = 0, i;
1271 /* not using min() because of its strict type checking */
1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 sizeof(*log) * log_len : PAGE_SIZE;
1274 log = kzalloc(log_size, GFP_KERNEL);
1275 if (!log) {
1276 IPW_ERROR("Unable to allocate memory for log\n");
1277 return 0;
1279 log_len = log_size / sizeof(*log);
1280 ipw_capture_event_log(priv, log_len, log);
1282 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 for (i = 0; i < log_len; i++)
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "\n%08X%08X%08X",
1286 log[i].time, log[i].event, log[i].data);
1287 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288 kfree(log);
1289 return len;
1292 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1294 static ssize_t show_error(struct device *d,
1295 struct device_attribute *attr, char *buf)
1297 struct ipw_priv *priv = dev_get_drvdata(d);
1298 u32 len = 0, i;
1299 if (!priv->error)
1300 return 0;
1301 len += snprintf(buf + len, PAGE_SIZE - len,
1302 "%08lX%08X%08X%08X",
1303 priv->error->jiffies,
1304 priv->error->status,
1305 priv->error->config, priv->error->elem_len);
1306 for (i = 0; i < priv->error->elem_len; i++)
1307 len += snprintf(buf + len, PAGE_SIZE - len,
1308 "\n%08X%08X%08X%08X%08X%08X%08X",
1309 priv->error->elem[i].time,
1310 priv->error->elem[i].desc,
1311 priv->error->elem[i].blink1,
1312 priv->error->elem[i].blink2,
1313 priv->error->elem[i].link1,
1314 priv->error->elem[i].link2,
1315 priv->error->elem[i].data);
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "\n%08X", priv->error->log_len);
1319 for (i = 0; i < priv->error->log_len; i++)
1320 len += snprintf(buf + len, PAGE_SIZE - len,
1321 "\n%08X%08X%08X",
1322 priv->error->log[i].time,
1323 priv->error->log[i].event,
1324 priv->error->log[i].data);
1325 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326 return len;
1329 static ssize_t clear_error(struct device *d,
1330 struct device_attribute *attr,
1331 const char *buf, size_t count)
1333 struct ipw_priv *priv = dev_get_drvdata(d);
1335 kfree(priv->error);
1336 priv->error = NULL;
1337 return count;
1340 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1342 static ssize_t show_cmd_log(struct device *d,
1343 struct device_attribute *attr, char *buf)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 u32 len = 0, i;
1347 if (!priv->cmdlog)
1348 return 0;
1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1351 i = (i + 1) % priv->cmdlog_len) {
1352 len +=
1353 snprintf(buf + len, PAGE_SIZE - len,
1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 priv->cmdlog[i].cmd.len);
1357 len +=
1358 snprintk_buf(buf + len, PAGE_SIZE - len,
1359 (u8 *) priv->cmdlog[i].cmd.param,
1360 priv->cmdlog[i].cmd.len);
1361 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1363 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364 return len;
1367 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1376 struct ipw_priv *priv = dev_get_drvdata(d);
1377 int rc = 0;
1379 if (count < 1)
1380 return -EINVAL;
1382 switch (buf[0]) {
1383 case '0':
1384 if (!rtap_iface)
1385 return count;
1387 if (netif_running(priv->prom_net_dev)) {
1388 IPW_WARNING("Interface is up. Cannot unregister.\n");
1389 return count;
1392 ipw_prom_free(priv);
1393 rtap_iface = 0;
1394 break;
1396 case '1':
1397 if (rtap_iface)
1398 return count;
1400 rc = ipw_prom_alloc(priv);
1401 if (!rc)
1402 rtap_iface = 1;
1403 break;
1405 default:
1406 return -EINVAL;
1409 if (rc) {
1410 IPW_ERROR("Failed to register promiscuous network "
1411 "device (error %d).\n", rc);
1414 return count;
1417 static ssize_t show_rtap_iface(struct device *d,
1418 struct device_attribute *attr,
1419 char *buf)
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422 if (rtap_iface)
1423 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 else {
1425 buf[0] = '-';
1426 buf[1] = '1';
1427 buf[2] = '\0';
1428 return 3;
1432 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1433 store_rtap_iface);
1435 static ssize_t store_rtap_filter(struct device *d,
1436 struct device_attribute *attr,
1437 const char *buf, size_t count)
1439 struct ipw_priv *priv = dev_get_drvdata(d);
1441 if (!priv->prom_priv) {
1442 IPW_ERROR("Attempting to set filter without "
1443 "rtap_iface enabled.\n");
1444 return -EPERM;
1447 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1449 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1450 BIT_ARG16(priv->prom_priv->filter));
1452 return count;
1455 static ssize_t show_rtap_filter(struct device *d,
1456 struct device_attribute *attr,
1457 char *buf)
1459 struct ipw_priv *priv = dev_get_drvdata(d);
1460 return sprintf(buf, "0x%04X",
1461 priv->prom_priv ? priv->prom_priv->filter : 0);
1464 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1465 store_rtap_filter);
1466 #endif
1468 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1469 char *buf)
1471 struct ipw_priv *priv = dev_get_drvdata(d);
1472 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1475 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1476 const char *buf, size_t count)
1478 struct ipw_priv *priv = dev_get_drvdata(d);
1479 struct net_device *dev = priv->net_dev;
1480 char buffer[] = "00000000";
1481 unsigned long len =
1482 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1483 unsigned long val;
1484 char *p = buffer;
1486 IPW_DEBUG_INFO("enter\n");
1488 strncpy(buffer, buf, len);
1489 buffer[len] = 0;
1491 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1492 p++;
1493 if (p[0] == 'x' || p[0] == 'X')
1494 p++;
1495 val = simple_strtoul(p, &p, 16);
1496 } else
1497 val = simple_strtoul(p, &p, 10);
1498 if (p == buffer) {
1499 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1500 } else {
1501 priv->ieee->scan_age = val;
1502 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1505 IPW_DEBUG_INFO("exit\n");
1506 return len;
1509 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1511 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1512 char *buf)
1514 struct ipw_priv *priv = dev_get_drvdata(d);
1515 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1518 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1519 const char *buf, size_t count)
1521 struct ipw_priv *priv = dev_get_drvdata(d);
1523 IPW_DEBUG_INFO("enter\n");
1525 if (count == 0)
1526 return 0;
1528 if (*buf == 0) {
1529 IPW_DEBUG_LED("Disabling LED control.\n");
1530 priv->config |= CFG_NO_LED;
1531 ipw_led_shutdown(priv);
1532 } else {
1533 IPW_DEBUG_LED("Enabling LED control.\n");
1534 priv->config &= ~CFG_NO_LED;
1535 ipw_led_init(priv);
1538 IPW_DEBUG_INFO("exit\n");
1539 return count;
1542 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1544 static ssize_t show_status(struct device *d,
1545 struct device_attribute *attr, char *buf)
1547 struct ipw_priv *p = dev_get_drvdata(d);
1548 return sprintf(buf, "0x%08x\n", (int)p->status);
1551 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1553 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1554 char *buf)
1556 struct ipw_priv *p = dev_get_drvdata(d);
1557 return sprintf(buf, "0x%08x\n", (int)p->config);
1560 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1562 static ssize_t show_nic_type(struct device *d,
1563 struct device_attribute *attr, char *buf)
1565 struct ipw_priv *priv = dev_get_drvdata(d);
1566 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1569 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1571 static ssize_t show_ucode_version(struct device *d,
1572 struct device_attribute *attr, char *buf)
1574 u32 len = sizeof(u32), tmp = 0;
1575 struct ipw_priv *p = dev_get_drvdata(d);
1577 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1578 return 0;
1580 return sprintf(buf, "0x%08x\n", tmp);
1583 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1585 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1586 char *buf)
1588 u32 len = sizeof(u32), tmp = 0;
1589 struct ipw_priv *p = dev_get_drvdata(d);
1591 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1592 return 0;
1594 return sprintf(buf, "0x%08x\n", tmp);
1597 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1600 * Add a device attribute to view/control the delay between eeprom
1601 * operations.
1603 static ssize_t show_eeprom_delay(struct device *d,
1604 struct device_attribute *attr, char *buf)
1606 struct ipw_priv *p = dev_get_drvdata(d);
1607 int n = p->eeprom_delay;
1608 return sprintf(buf, "%i\n", n);
1610 static ssize_t store_eeprom_delay(struct device *d,
1611 struct device_attribute *attr,
1612 const char *buf, size_t count)
1614 struct ipw_priv *p = dev_get_drvdata(d);
1615 sscanf(buf, "%i", &p->eeprom_delay);
1616 return strnlen(buf, count);
1619 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1620 show_eeprom_delay, store_eeprom_delay);
1622 static ssize_t show_command_event_reg(struct device *d,
1623 struct device_attribute *attr, char *buf)
1625 u32 reg = 0;
1626 struct ipw_priv *p = dev_get_drvdata(d);
1628 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1629 return sprintf(buf, "0x%08x\n", reg);
1631 static ssize_t store_command_event_reg(struct device *d,
1632 struct device_attribute *attr,
1633 const char *buf, size_t count)
1635 u32 reg;
1636 struct ipw_priv *p = dev_get_drvdata(d);
1638 sscanf(buf, "%x", &reg);
1639 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1640 return strnlen(buf, count);
1643 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1644 show_command_event_reg, store_command_event_reg);
1646 static ssize_t show_mem_gpio_reg(struct device *d,
1647 struct device_attribute *attr, char *buf)
1649 u32 reg = 0;
1650 struct ipw_priv *p = dev_get_drvdata(d);
1652 reg = ipw_read_reg32(p, 0x301100);
1653 return sprintf(buf, "0x%08x\n", reg);
1655 static ssize_t store_mem_gpio_reg(struct device *d,
1656 struct device_attribute *attr,
1657 const char *buf, size_t count)
1659 u32 reg;
1660 struct ipw_priv *p = dev_get_drvdata(d);
1662 sscanf(buf, "%x", &reg);
1663 ipw_write_reg32(p, 0x301100, reg);
1664 return strnlen(buf, count);
1667 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1668 show_mem_gpio_reg, store_mem_gpio_reg);
1670 static ssize_t show_indirect_dword(struct device *d,
1671 struct device_attribute *attr, char *buf)
1673 u32 reg = 0;
1674 struct ipw_priv *priv = dev_get_drvdata(d);
1676 if (priv->status & STATUS_INDIRECT_DWORD)
1677 reg = ipw_read_reg32(priv, priv->indirect_dword);
1678 else
1679 reg = 0;
1681 return sprintf(buf, "0x%08x\n", reg);
1683 static ssize_t store_indirect_dword(struct device *d,
1684 struct device_attribute *attr,
1685 const char *buf, size_t count)
1687 struct ipw_priv *priv = dev_get_drvdata(d);
1689 sscanf(buf, "%x", &priv->indirect_dword);
1690 priv->status |= STATUS_INDIRECT_DWORD;
1691 return strnlen(buf, count);
1694 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1695 show_indirect_dword, store_indirect_dword);
1697 static ssize_t show_indirect_byte(struct device *d,
1698 struct device_attribute *attr, char *buf)
1700 u8 reg = 0;
1701 struct ipw_priv *priv = dev_get_drvdata(d);
1703 if (priv->status & STATUS_INDIRECT_BYTE)
1704 reg = ipw_read_reg8(priv, priv->indirect_byte);
1705 else
1706 reg = 0;
1708 return sprintf(buf, "0x%02x\n", reg);
1710 static ssize_t store_indirect_byte(struct device *d,
1711 struct device_attribute *attr,
1712 const char *buf, size_t count)
1714 struct ipw_priv *priv = dev_get_drvdata(d);
1716 sscanf(buf, "%x", &priv->indirect_byte);
1717 priv->status |= STATUS_INDIRECT_BYTE;
1718 return strnlen(buf, count);
1721 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1722 show_indirect_byte, store_indirect_byte);
1724 static ssize_t show_direct_dword(struct device *d,
1725 struct device_attribute *attr, char *buf)
1727 u32 reg = 0;
1728 struct ipw_priv *priv = dev_get_drvdata(d);
1730 if (priv->status & STATUS_DIRECT_DWORD)
1731 reg = ipw_read32(priv, priv->direct_dword);
1732 else
1733 reg = 0;
1735 return sprintf(buf, "0x%08x\n", reg);
1737 static ssize_t store_direct_dword(struct device *d,
1738 struct device_attribute *attr,
1739 const char *buf, size_t count)
1741 struct ipw_priv *priv = dev_get_drvdata(d);
1743 sscanf(buf, "%x", &priv->direct_dword);
1744 priv->status |= STATUS_DIRECT_DWORD;
1745 return strnlen(buf, count);
1748 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1749 show_direct_dword, store_direct_dword);
1751 static int rf_kill_active(struct ipw_priv *priv)
1753 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1754 priv->status |= STATUS_RF_KILL_HW;
1755 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1756 } else {
1757 priv->status &= ~STATUS_RF_KILL_HW;
1758 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1761 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1764 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1765 char *buf)
1767 /* 0 - RF kill not enabled
1768 1 - SW based RF kill active (sysfs)
1769 2 - HW based RF kill active
1770 3 - Both HW and SW baed RF kill active */
1771 struct ipw_priv *priv = dev_get_drvdata(d);
1772 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1773 (rf_kill_active(priv) ? 0x2 : 0x0);
1774 return sprintf(buf, "%i\n", val);
1777 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1779 if ((disable_radio ? 1 : 0) ==
1780 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1781 return 0;
1783 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1784 disable_radio ? "OFF" : "ON");
1786 if (disable_radio) {
1787 priv->status |= STATUS_RF_KILL_SW;
1789 if (priv->workqueue) {
1790 cancel_delayed_work(&priv->request_scan);
1791 cancel_delayed_work(&priv->request_direct_scan);
1792 cancel_delayed_work(&priv->request_passive_scan);
1793 cancel_delayed_work(&priv->scan_event);
1795 queue_work(priv->workqueue, &priv->down);
1796 } else {
1797 priv->status &= ~STATUS_RF_KILL_SW;
1798 if (rf_kill_active(priv)) {
1799 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1800 "disabled by HW switch\n");
1801 /* Make sure the RF_KILL check timer is running */
1802 cancel_delayed_work(&priv->rf_kill);
1803 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1804 round_jiffies_relative(2 * HZ));
1805 } else
1806 queue_work(priv->workqueue, &priv->up);
1809 return 1;
1812 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1813 const char *buf, size_t count)
1815 struct ipw_priv *priv = dev_get_drvdata(d);
1817 ipw_radio_kill_sw(priv, buf[0] == '1');
1819 return count;
1822 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1824 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1825 char *buf)
1827 struct ipw_priv *priv = dev_get_drvdata(d);
1828 int pos = 0, len = 0;
1829 if (priv->config & CFG_SPEED_SCAN) {
1830 while (priv->speed_scan[pos] != 0)
1831 len += sprintf(&buf[len], "%d ",
1832 priv->speed_scan[pos++]);
1833 return len + sprintf(&buf[len], "\n");
1836 return sprintf(buf, "0\n");
1839 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1840 const char *buf, size_t count)
1842 struct ipw_priv *priv = dev_get_drvdata(d);
1843 int channel, pos = 0;
1844 const char *p = buf;
1846 /* list of space separated channels to scan, optionally ending with 0 */
1847 while ((channel = simple_strtol(p, NULL, 0))) {
1848 if (pos == MAX_SPEED_SCAN - 1) {
1849 priv->speed_scan[pos] = 0;
1850 break;
1853 if (libipw_is_valid_channel(priv->ieee, channel))
1854 priv->speed_scan[pos++] = channel;
1855 else
1856 IPW_WARNING("Skipping invalid channel request: %d\n",
1857 channel);
1858 p = strchr(p, ' ');
1859 if (!p)
1860 break;
1861 while (*p == ' ' || *p == '\t')
1862 p++;
1865 if (pos == 0)
1866 priv->config &= ~CFG_SPEED_SCAN;
1867 else {
1868 priv->speed_scan_pos = 0;
1869 priv->config |= CFG_SPEED_SCAN;
1872 return count;
1875 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1876 store_speed_scan);
1878 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1879 char *buf)
1881 struct ipw_priv *priv = dev_get_drvdata(d);
1882 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1885 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1886 const char *buf, size_t count)
1888 struct ipw_priv *priv = dev_get_drvdata(d);
1889 if (buf[0] == '1')
1890 priv->config |= CFG_NET_STATS;
1891 else
1892 priv->config &= ~CFG_NET_STATS;
1894 return count;
1897 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1898 show_net_stats, store_net_stats);
1900 static ssize_t show_channels(struct device *d,
1901 struct device_attribute *attr,
1902 char *buf)
1904 struct ipw_priv *priv = dev_get_drvdata(d);
1905 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1906 int len = 0, i;
1908 len = sprintf(&buf[len],
1909 "Displaying %d channels in 2.4Ghz band "
1910 "(802.11bg):\n", geo->bg_channels);
1912 for (i = 0; i < geo->bg_channels; i++) {
1913 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1914 geo->bg[i].channel,
1915 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1916 " (radar spectrum)" : "",
1917 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1918 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1919 ? "" : ", IBSS",
1920 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1921 "passive only" : "active/passive",
1922 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1923 "B" : "B/G");
1926 len += sprintf(&buf[len],
1927 "Displaying %d channels in 5.2Ghz band "
1928 "(802.11a):\n", geo->a_channels);
1929 for (i = 0; i < geo->a_channels; i++) {
1930 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1931 geo->a[i].channel,
1932 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1933 " (radar spectrum)" : "",
1934 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1935 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1936 ? "" : ", IBSS",
1937 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1938 "passive only" : "active/passive");
1941 return len;
1944 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1946 static void notify_wx_assoc_event(struct ipw_priv *priv)
1948 union iwreq_data wrqu;
1949 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1950 if (priv->status & STATUS_ASSOCIATED)
1951 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1952 else
1953 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1954 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1957 static void ipw_irq_tasklet(struct ipw_priv *priv)
1959 u32 inta, inta_mask, handled = 0;
1960 unsigned long flags;
1961 int rc = 0;
1963 spin_lock_irqsave(&priv->irq_lock, flags);
1965 inta = ipw_read32(priv, IPW_INTA_RW);
1966 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1967 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1969 /* Add any cached INTA values that need to be handled */
1970 inta |= priv->isr_inta;
1972 spin_unlock_irqrestore(&priv->irq_lock, flags);
1974 spin_lock_irqsave(&priv->lock, flags);
1976 /* handle all the justifications for the interrupt */
1977 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1978 ipw_rx(priv);
1979 handled |= IPW_INTA_BIT_RX_TRANSFER;
1982 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1983 IPW_DEBUG_HC("Command completed.\n");
1984 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1985 priv->status &= ~STATUS_HCMD_ACTIVE;
1986 wake_up_interruptible(&priv->wait_command_queue);
1987 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1990 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1991 IPW_DEBUG_TX("TX_QUEUE_1\n");
1992 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1993 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1996 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1997 IPW_DEBUG_TX("TX_QUEUE_2\n");
1998 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1999 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2002 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2003 IPW_DEBUG_TX("TX_QUEUE_3\n");
2004 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2005 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2008 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2009 IPW_DEBUG_TX("TX_QUEUE_4\n");
2010 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2011 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2014 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2015 IPW_WARNING("STATUS_CHANGE\n");
2016 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2019 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2020 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2021 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2024 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2025 IPW_WARNING("HOST_CMD_DONE\n");
2026 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2029 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2030 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2031 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2034 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2035 IPW_WARNING("PHY_OFF_DONE\n");
2036 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2039 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2040 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2041 priv->status |= STATUS_RF_KILL_HW;
2042 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2043 wake_up_interruptible(&priv->wait_command_queue);
2044 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2045 cancel_delayed_work(&priv->request_scan);
2046 cancel_delayed_work(&priv->request_direct_scan);
2047 cancel_delayed_work(&priv->request_passive_scan);
2048 cancel_delayed_work(&priv->scan_event);
2049 schedule_work(&priv->link_down);
2050 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2051 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2054 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2055 IPW_WARNING("Firmware error detected. Restarting.\n");
2056 if (priv->error) {
2057 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2058 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2059 struct ipw_fw_error *error =
2060 ipw_alloc_error_log(priv);
2061 ipw_dump_error_log(priv, error);
2062 kfree(error);
2064 } else {
2065 priv->error = ipw_alloc_error_log(priv);
2066 if (priv->error)
2067 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2068 else
2069 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2070 "log.\n");
2071 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2072 ipw_dump_error_log(priv, priv->error);
2075 if (priv->ieee->sec.encrypt) {
2076 priv->status &= ~STATUS_ASSOCIATED;
2077 notify_wx_assoc_event(priv);
2080 /* Keep the restart process from trying to send host
2081 * commands by clearing the INIT status bit */
2082 priv->status &= ~STATUS_INIT;
2084 /* Cancel currently queued command. */
2085 priv->status &= ~STATUS_HCMD_ACTIVE;
2086 wake_up_interruptible(&priv->wait_command_queue);
2088 queue_work(priv->workqueue, &priv->adapter_restart);
2089 handled |= IPW_INTA_BIT_FATAL_ERROR;
2092 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093 IPW_ERROR("Parity error\n");
2094 handled |= IPW_INTA_BIT_PARITY_ERROR;
2097 if (handled != inta) {
2098 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2101 spin_unlock_irqrestore(&priv->lock, flags);
2103 /* enable all interrupts */
2104 ipw_enable_interrupts(priv);
2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2108 static char *get_cmd_string(u8 cmd)
2110 switch (cmd) {
2111 IPW_CMD(HOST_COMPLETE);
2112 IPW_CMD(POWER_DOWN);
2113 IPW_CMD(SYSTEM_CONFIG);
2114 IPW_CMD(MULTICAST_ADDRESS);
2115 IPW_CMD(SSID);
2116 IPW_CMD(ADAPTER_ADDRESS);
2117 IPW_CMD(PORT_TYPE);
2118 IPW_CMD(RTS_THRESHOLD);
2119 IPW_CMD(FRAG_THRESHOLD);
2120 IPW_CMD(POWER_MODE);
2121 IPW_CMD(WEP_KEY);
2122 IPW_CMD(TGI_TX_KEY);
2123 IPW_CMD(SCAN_REQUEST);
2124 IPW_CMD(SCAN_REQUEST_EXT);
2125 IPW_CMD(ASSOCIATE);
2126 IPW_CMD(SUPPORTED_RATES);
2127 IPW_CMD(SCAN_ABORT);
2128 IPW_CMD(TX_FLUSH);
2129 IPW_CMD(QOS_PARAMETERS);
2130 IPW_CMD(DINO_CONFIG);
2131 IPW_CMD(RSN_CAPABILITIES);
2132 IPW_CMD(RX_KEY);
2133 IPW_CMD(CARD_DISABLE);
2134 IPW_CMD(SEED_NUMBER);
2135 IPW_CMD(TX_POWER);
2136 IPW_CMD(COUNTRY_INFO);
2137 IPW_CMD(AIRONET_INFO);
2138 IPW_CMD(AP_TX_POWER);
2139 IPW_CMD(CCKM_INFO);
2140 IPW_CMD(CCX_VER_INFO);
2141 IPW_CMD(SET_CALIBRATION);
2142 IPW_CMD(SENSITIVITY_CALIB);
2143 IPW_CMD(RETRY_LIMIT);
2144 IPW_CMD(IPW_PRE_POWER_DOWN);
2145 IPW_CMD(VAP_BEACON_TEMPLATE);
2146 IPW_CMD(VAP_DTIM_PERIOD);
2147 IPW_CMD(EXT_SUPPORTED_RATES);
2148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149 IPW_CMD(VAP_QUIET_INTERVALS);
2150 IPW_CMD(VAP_CHANNEL_SWITCH);
2151 IPW_CMD(VAP_MANDATORY_CHANNELS);
2152 IPW_CMD(VAP_CELL_PWR_LIMIT);
2153 IPW_CMD(VAP_CF_PARAM_SET);
2154 IPW_CMD(VAP_SET_BEACONING_STATE);
2155 IPW_CMD(MEASUREMENT);
2156 IPW_CMD(POWER_CAPABILITY);
2157 IPW_CMD(SUPPORTED_CHANNELS);
2158 IPW_CMD(TPC_REPORT);
2159 IPW_CMD(WME_INFO);
2160 IPW_CMD(PRODUCTION_COMMAND);
2161 default:
2162 return "UNKNOWN";
2166 #define HOST_COMPLETE_TIMEOUT HZ
2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2170 int rc = 0;
2171 unsigned long flags;
2173 spin_lock_irqsave(&priv->lock, flags);
2174 if (priv->status & STATUS_HCMD_ACTIVE) {
2175 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2176 get_cmd_string(cmd->cmd));
2177 spin_unlock_irqrestore(&priv->lock, flags);
2178 return -EAGAIN;
2181 priv->status |= STATUS_HCMD_ACTIVE;
2183 if (priv->cmdlog) {
2184 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2185 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2186 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2187 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2188 cmd->len);
2189 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2192 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2193 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2194 priv->status);
2196 #ifndef DEBUG_CMD_WEP_KEY
2197 if (cmd->cmd == IPW_CMD_WEP_KEY)
2198 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2199 else
2200 #endif
2201 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2204 if (rc) {
2205 priv->status &= ~STATUS_HCMD_ACTIVE;
2206 IPW_ERROR("Failed to send %s: Reason %d\n",
2207 get_cmd_string(cmd->cmd), rc);
2208 spin_unlock_irqrestore(&priv->lock, flags);
2209 goto exit;
2211 spin_unlock_irqrestore(&priv->lock, flags);
2213 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2214 !(priv->
2215 status & STATUS_HCMD_ACTIVE),
2216 HOST_COMPLETE_TIMEOUT);
2217 if (rc == 0) {
2218 spin_lock_irqsave(&priv->lock, flags);
2219 if (priv->status & STATUS_HCMD_ACTIVE) {
2220 IPW_ERROR("Failed to send %s: Command timed out.\n",
2221 get_cmd_string(cmd->cmd));
2222 priv->status &= ~STATUS_HCMD_ACTIVE;
2223 spin_unlock_irqrestore(&priv->lock, flags);
2224 rc = -EIO;
2225 goto exit;
2227 spin_unlock_irqrestore(&priv->lock, flags);
2228 } else
2229 rc = 0;
2231 if (priv->status & STATUS_RF_KILL_HW) {
2232 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2233 get_cmd_string(cmd->cmd));
2234 rc = -EIO;
2235 goto exit;
2238 exit:
2239 if (priv->cmdlog) {
2240 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2241 priv->cmdlog_pos %= priv->cmdlog_len;
2243 return rc;
2246 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2248 struct host_cmd cmd = {
2249 .cmd = command,
2252 return __ipw_send_cmd(priv, &cmd);
2255 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2256 void *data)
2258 struct host_cmd cmd = {
2259 .cmd = command,
2260 .len = len,
2261 .param = data,
2264 return __ipw_send_cmd(priv, &cmd);
2267 static int ipw_send_host_complete(struct ipw_priv *priv)
2269 if (!priv) {
2270 IPW_ERROR("Invalid args\n");
2271 return -1;
2274 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2277 static int ipw_send_system_config(struct ipw_priv *priv)
2279 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2280 sizeof(priv->sys_config),
2281 &priv->sys_config);
2284 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2286 if (!priv || !ssid) {
2287 IPW_ERROR("Invalid args\n");
2288 return -1;
2291 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2292 ssid);
2295 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2297 if (!priv || !mac) {
2298 IPW_ERROR("Invalid args\n");
2299 return -1;
2302 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2303 priv->net_dev->name, mac);
2305 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2309 * NOTE: This must be executed from our workqueue as it results in udelay
2310 * being called which may corrupt the keyboard if executed on default
2311 * workqueue
2313 static void ipw_adapter_restart(void *adapter)
2315 struct ipw_priv *priv = adapter;
2317 if (priv->status & STATUS_RF_KILL_MASK)
2318 return;
2320 ipw_down(priv);
2322 if (priv->assoc_network &&
2323 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2324 ipw_remove_current_network(priv);
2326 if (ipw_up(priv)) {
2327 IPW_ERROR("Failed to up device\n");
2328 return;
2332 static void ipw_bg_adapter_restart(struct work_struct *work)
2334 struct ipw_priv *priv =
2335 container_of(work, struct ipw_priv, adapter_restart);
2336 mutex_lock(&priv->mutex);
2337 ipw_adapter_restart(priv);
2338 mutex_unlock(&priv->mutex);
2341 static void ipw_abort_scan(struct ipw_priv *priv);
2343 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2345 static void ipw_scan_check(void *data)
2347 struct ipw_priv *priv = data;
2349 if (priv->status & STATUS_SCAN_ABORTING) {
2350 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2351 "adapter after (%dms).\n",
2352 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2353 queue_work(priv->workqueue, &priv->adapter_restart);
2354 } else if (priv->status & STATUS_SCANNING) {
2355 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2356 "after (%dms).\n",
2357 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2358 ipw_abort_scan(priv);
2359 queue_delayed_work(priv->workqueue, &priv->scan_check, HZ);
2363 static void ipw_bg_scan_check(struct work_struct *work)
2365 struct ipw_priv *priv =
2366 container_of(work, struct ipw_priv, scan_check.work);
2367 mutex_lock(&priv->mutex);
2368 ipw_scan_check(priv);
2369 mutex_unlock(&priv->mutex);
2372 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2373 struct ipw_scan_request_ext *request)
2375 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2376 sizeof(*request), request);
2379 static int ipw_send_scan_abort(struct ipw_priv *priv)
2381 if (!priv) {
2382 IPW_ERROR("Invalid args\n");
2383 return -1;
2386 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2389 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2391 struct ipw_sensitivity_calib calib = {
2392 .beacon_rssi_raw = cpu_to_le16(sens),
2395 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2396 &calib);
2399 static int ipw_send_associate(struct ipw_priv *priv,
2400 struct ipw_associate *associate)
2402 if (!priv || !associate) {
2403 IPW_ERROR("Invalid args\n");
2404 return -1;
2407 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2408 associate);
2411 static int ipw_send_supported_rates(struct ipw_priv *priv,
2412 struct ipw_supported_rates *rates)
2414 if (!priv || !rates) {
2415 IPW_ERROR("Invalid args\n");
2416 return -1;
2419 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2420 rates);
2423 static int ipw_set_random_seed(struct ipw_priv *priv)
2425 u32 val;
2427 if (!priv) {
2428 IPW_ERROR("Invalid args\n");
2429 return -1;
2432 get_random_bytes(&val, sizeof(val));
2434 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2437 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2439 __le32 v = cpu_to_le32(phy_off);
2440 if (!priv) {
2441 IPW_ERROR("Invalid args\n");
2442 return -1;
2445 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2448 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2450 if (!priv || !power) {
2451 IPW_ERROR("Invalid args\n");
2452 return -1;
2455 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2458 static int ipw_set_tx_power(struct ipw_priv *priv)
2460 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2461 struct ipw_tx_power tx_power;
2462 s8 max_power;
2463 int i;
2465 memset(&tx_power, 0, sizeof(tx_power));
2467 /* configure device for 'G' band */
2468 tx_power.ieee_mode = IPW_G_MODE;
2469 tx_power.num_channels = geo->bg_channels;
2470 for (i = 0; i < geo->bg_channels; i++) {
2471 max_power = geo->bg[i].max_power;
2472 tx_power.channels_tx_power[i].channel_number =
2473 geo->bg[i].channel;
2474 tx_power.channels_tx_power[i].tx_power = max_power ?
2475 min(max_power, priv->tx_power) : priv->tx_power;
2477 if (ipw_send_tx_power(priv, &tx_power))
2478 return -EIO;
2480 /* configure device to also handle 'B' band */
2481 tx_power.ieee_mode = IPW_B_MODE;
2482 if (ipw_send_tx_power(priv, &tx_power))
2483 return -EIO;
2485 /* configure device to also handle 'A' band */
2486 if (priv->ieee->abg_true) {
2487 tx_power.ieee_mode = IPW_A_MODE;
2488 tx_power.num_channels = geo->a_channels;
2489 for (i = 0; i < tx_power.num_channels; i++) {
2490 max_power = geo->a[i].max_power;
2491 tx_power.channels_tx_power[i].channel_number =
2492 geo->a[i].channel;
2493 tx_power.channels_tx_power[i].tx_power = max_power ?
2494 min(max_power, priv->tx_power) : priv->tx_power;
2496 if (ipw_send_tx_power(priv, &tx_power))
2497 return -EIO;
2499 return 0;
2502 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2504 struct ipw_rts_threshold rts_threshold = {
2505 .rts_threshold = cpu_to_le16(rts),
2508 if (!priv) {
2509 IPW_ERROR("Invalid args\n");
2510 return -1;
2513 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2514 sizeof(rts_threshold), &rts_threshold);
2517 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2519 struct ipw_frag_threshold frag_threshold = {
2520 .frag_threshold = cpu_to_le16(frag),
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2529 sizeof(frag_threshold), &frag_threshold);
2532 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2534 __le32 param;
2536 if (!priv) {
2537 IPW_ERROR("Invalid args\n");
2538 return -1;
2541 /* If on battery, set to 3, if AC set to CAM, else user
2542 * level */
2543 switch (mode) {
2544 case IPW_POWER_BATTERY:
2545 param = cpu_to_le32(IPW_POWER_INDEX_3);
2546 break;
2547 case IPW_POWER_AC:
2548 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2549 break;
2550 default:
2551 param = cpu_to_le32(mode);
2552 break;
2555 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2556 &param);
2559 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2561 struct ipw_retry_limit retry_limit = {
2562 .short_retry_limit = slimit,
2563 .long_retry_limit = llimit
2566 if (!priv) {
2567 IPW_ERROR("Invalid args\n");
2568 return -1;
2571 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2572 &retry_limit);
2576 * The IPW device contains a Microwire compatible EEPROM that stores
2577 * various data like the MAC address. Usually the firmware has exclusive
2578 * access to the eeprom, but during device initialization (before the
2579 * device driver has sent the HostComplete command to the firmware) the
2580 * device driver has read access to the EEPROM by way of indirect addressing
2581 * through a couple of memory mapped registers.
2583 * The following is a simplified implementation for pulling data out of the
2584 * the eeprom, along with some helper functions to find information in
2585 * the per device private data's copy of the eeprom.
2587 * NOTE: To better understand how these functions work (i.e what is a chip
2588 * select and why do have to keep driving the eeprom clock?), read
2589 * just about any data sheet for a Microwire compatible EEPROM.
2592 /* write a 32 bit value into the indirect accessor register */
2593 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2595 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2597 /* the eeprom requires some time to complete the operation */
2598 udelay(p->eeprom_delay);
2601 /* perform a chip select operation */
2602 static void eeprom_cs(struct ipw_priv *priv)
2604 eeprom_write_reg(priv, 0);
2605 eeprom_write_reg(priv, EEPROM_BIT_CS);
2606 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2607 eeprom_write_reg(priv, EEPROM_BIT_CS);
2610 /* perform a chip select operation */
2611 static void eeprom_disable_cs(struct ipw_priv *priv)
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 eeprom_write_reg(priv, 0);
2615 eeprom_write_reg(priv, EEPROM_BIT_SK);
2618 /* push a single bit down to the eeprom */
2619 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2621 int d = (bit ? EEPROM_BIT_DI : 0);
2622 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2623 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2626 /* push an opcode followed by an address down to the eeprom */
2627 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2629 int i;
2631 eeprom_cs(priv);
2632 eeprom_write_bit(priv, 1);
2633 eeprom_write_bit(priv, op & 2);
2634 eeprom_write_bit(priv, op & 1);
2635 for (i = 7; i >= 0; i--) {
2636 eeprom_write_bit(priv, addr & (1 << i));
2640 /* pull 16 bits off the eeprom, one bit at a time */
2641 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2643 int i;
2644 u16 r = 0;
2646 /* Send READ Opcode */
2647 eeprom_op(priv, EEPROM_CMD_READ, addr);
2649 /* Send dummy bit */
2650 eeprom_write_reg(priv, EEPROM_BIT_CS);
2652 /* Read the byte off the eeprom one bit at a time */
2653 for (i = 0; i < 16; i++) {
2654 u32 data = 0;
2655 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2656 eeprom_write_reg(priv, EEPROM_BIT_CS);
2657 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2658 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2661 /* Send another dummy bit */
2662 eeprom_write_reg(priv, 0);
2663 eeprom_disable_cs(priv);
2665 return r;
2668 /* helper function for pulling the mac address out of the private */
2669 /* data's copy of the eeprom data */
2670 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2672 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2676 * Either the device driver (i.e. the host) or the firmware can
2677 * load eeprom data into the designated region in SRAM. If neither
2678 * happens then the FW will shutdown with a fatal error.
2680 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2681 * bit needs region of shared SRAM needs to be non-zero.
2683 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2685 int i;
2686 __le16 *eeprom = (__le16 *) priv->eeprom;
2688 IPW_DEBUG_TRACE(">>\n");
2690 /* read entire contents of eeprom into private buffer */
2691 for (i = 0; i < 128; i++)
2692 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2695 If the data looks correct, then copy it to our private
2696 copy. Otherwise let the firmware know to perform the operation
2697 on its own.
2699 if (priv->eeprom[EEPROM_VERSION] != 0) {
2700 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2702 /* write the eeprom data to sram */
2703 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2704 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2706 /* Do not load eeprom data on fatal error or suspend */
2707 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2708 } else {
2709 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2711 /* Load eeprom data on fatal error or suspend */
2712 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2715 IPW_DEBUG_TRACE("<<\n");
2718 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2720 count >>= 2;
2721 if (!count)
2722 return;
2723 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2724 while (count--)
2725 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2728 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2730 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2731 CB_NUMBER_OF_ELEMENTS_SMALL *
2732 sizeof(struct command_block));
2735 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2736 { /* start dma engine but no transfers yet */
2738 IPW_DEBUG_FW(">> :\n");
2740 /* Start the dma */
2741 ipw_fw_dma_reset_command_blocks(priv);
2743 /* Write CB base address */
2744 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2746 IPW_DEBUG_FW("<< :\n");
2747 return 0;
2750 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2752 u32 control = 0;
2754 IPW_DEBUG_FW(">> :\n");
2756 /* set the Stop and Abort bit */
2757 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2758 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759 priv->sram_desc.last_cb_index = 0;
2761 IPW_DEBUG_FW("<<\n");
2764 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2765 struct command_block *cb)
2767 u32 address =
2768 IPW_SHARED_SRAM_DMA_CONTROL +
2769 (sizeof(struct command_block) * index);
2770 IPW_DEBUG_FW(">> :\n");
2772 ipw_write_indirect(priv, address, (u8 *) cb,
2773 (int)sizeof(struct command_block));
2775 IPW_DEBUG_FW("<< :\n");
2776 return 0;
2780 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2782 u32 control = 0;
2783 u32 index = 0;
2785 IPW_DEBUG_FW(">> :\n");
2787 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2788 ipw_fw_dma_write_command_block(priv, index,
2789 &priv->sram_desc.cb_list[index]);
2791 /* Enable the DMA in the CSR register */
2792 ipw_clear_bit(priv, IPW_RESET_REG,
2793 IPW_RESET_REG_MASTER_DISABLED |
2794 IPW_RESET_REG_STOP_MASTER);
2796 /* Set the Start bit. */
2797 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2798 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2800 IPW_DEBUG_FW("<< :\n");
2801 return 0;
2804 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2806 u32 address;
2807 u32 register_value = 0;
2808 u32 cb_fields_address = 0;
2810 IPW_DEBUG_FW(">> :\n");
2811 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2812 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2814 /* Read the DMA Controlor register */
2815 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2816 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2818 /* Print the CB values */
2819 cb_fields_address = address;
2820 register_value = ipw_read_reg32(priv, cb_fields_address);
2821 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2823 cb_fields_address += sizeof(u32);
2824 register_value = ipw_read_reg32(priv, cb_fields_address);
2825 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2827 cb_fields_address += sizeof(u32);
2828 register_value = ipw_read_reg32(priv, cb_fields_address);
2829 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2830 register_value);
2832 cb_fields_address += sizeof(u32);
2833 register_value = ipw_read_reg32(priv, cb_fields_address);
2834 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2836 IPW_DEBUG_FW(">> :\n");
2839 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2841 u32 current_cb_address = 0;
2842 u32 current_cb_index = 0;
2844 IPW_DEBUG_FW("<< :\n");
2845 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2847 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2848 sizeof(struct command_block);
2850 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2851 current_cb_index, current_cb_address);
2853 IPW_DEBUG_FW(">> :\n");
2854 return current_cb_index;
2858 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2859 u32 src_address,
2860 u32 dest_address,
2861 u32 length,
2862 int interrupt_enabled, int is_last)
2865 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2866 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2867 CB_DEST_SIZE_LONG;
2868 struct command_block *cb;
2869 u32 last_cb_element = 0;
2871 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2872 src_address, dest_address, length);
2874 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2875 return -1;
2877 last_cb_element = priv->sram_desc.last_cb_index;
2878 cb = &priv->sram_desc.cb_list[last_cb_element];
2879 priv->sram_desc.last_cb_index++;
2881 /* Calculate the new CB control word */
2882 if (interrupt_enabled)
2883 control |= CB_INT_ENABLED;
2885 if (is_last)
2886 control |= CB_LAST_VALID;
2888 control |= length;
2890 /* Calculate the CB Element's checksum value */
2891 cb->status = control ^ src_address ^ dest_address;
2893 /* Copy the Source and Destination addresses */
2894 cb->dest_addr = dest_address;
2895 cb->source_addr = src_address;
2897 /* Copy the Control Word last */
2898 cb->control = control;
2900 return 0;
2903 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2904 int nr, u32 dest_address, u32 len)
2906 int ret, i;
2907 u32 size;
2909 IPW_DEBUG_FW(">>\n");
2910 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2911 nr, dest_address, len);
2913 for (i = 0; i < nr; i++) {
2914 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2915 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2916 dest_address +
2917 i * CB_MAX_LENGTH, size,
2918 0, 0);
2919 if (ret) {
2920 IPW_DEBUG_FW_INFO(": Failed\n");
2921 return -1;
2922 } else
2923 IPW_DEBUG_FW_INFO(": Added new cb\n");
2926 IPW_DEBUG_FW("<<\n");
2927 return 0;
2930 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2932 u32 current_index = 0, previous_index;
2933 u32 watchdog = 0;
2935 IPW_DEBUG_FW(">> :\n");
2937 current_index = ipw_fw_dma_command_block_index(priv);
2938 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2939 (int)priv->sram_desc.last_cb_index);
2941 while (current_index < priv->sram_desc.last_cb_index) {
2942 udelay(50);
2943 previous_index = current_index;
2944 current_index = ipw_fw_dma_command_block_index(priv);
2946 if (previous_index < current_index) {
2947 watchdog = 0;
2948 continue;
2950 if (++watchdog > 400) {
2951 IPW_DEBUG_FW_INFO("Timeout\n");
2952 ipw_fw_dma_dump_command_block(priv);
2953 ipw_fw_dma_abort(priv);
2954 return -1;
2958 ipw_fw_dma_abort(priv);
2960 /*Disable the DMA in the CSR register */
2961 ipw_set_bit(priv, IPW_RESET_REG,
2962 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2964 IPW_DEBUG_FW("<< dmaWaitSync\n");
2965 return 0;
2968 static void ipw_remove_current_network(struct ipw_priv *priv)
2970 struct list_head *element, *safe;
2971 struct libipw_network *network = NULL;
2972 unsigned long flags;
2974 spin_lock_irqsave(&priv->ieee->lock, flags);
2975 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2976 network = list_entry(element, struct libipw_network, list);
2977 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2978 list_del(element);
2979 list_add_tail(&network->list,
2980 &priv->ieee->network_free_list);
2983 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2987 * Check that card is still alive.
2988 * Reads debug register from domain0.
2989 * If card is present, pre-defined value should
2990 * be found there.
2992 * @param priv
2993 * @return 1 if card is present, 0 otherwise
2995 static inline int ipw_alive(struct ipw_priv *priv)
2997 return ipw_read32(priv, 0x90) == 0xd55555d5;
3000 /* timeout in msec, attempted in 10-msec quanta */
3001 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3002 int timeout)
3004 int i = 0;
3006 do {
3007 if ((ipw_read32(priv, addr) & mask) == mask)
3008 return i;
3009 mdelay(10);
3010 i += 10;
3011 } while (i < timeout);
3013 return -ETIME;
3016 /* These functions load the firmware and micro code for the operation of
3017 * the ipw hardware. It assumes the buffer has all the bits for the
3018 * image and the caller is handling the memory allocation and clean up.
3021 static int ipw_stop_master(struct ipw_priv *priv)
3023 int rc;
3025 IPW_DEBUG_TRACE(">>\n");
3026 /* stop master. typical delay - 0 */
3027 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3029 /* timeout is in msec, polled in 10-msec quanta */
3030 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3031 IPW_RESET_REG_MASTER_DISABLED, 100);
3032 if (rc < 0) {
3033 IPW_ERROR("wait for stop master failed after 100ms\n");
3034 return -1;
3037 IPW_DEBUG_INFO("stop master %dms\n", rc);
3039 return rc;
3042 static void ipw_arc_release(struct ipw_priv *priv)
3044 IPW_DEBUG_TRACE(">>\n");
3045 mdelay(5);
3047 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3049 /* no one knows timing, for safety add some delay */
3050 mdelay(5);
3053 struct fw_chunk {
3054 __le32 address;
3055 __le32 length;
3058 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3060 int rc = 0, i, addr;
3061 u8 cr = 0;
3062 __le16 *image;
3064 image = (__le16 *) data;
3066 IPW_DEBUG_TRACE(">>\n");
3068 rc = ipw_stop_master(priv);
3070 if (rc < 0)
3071 return rc;
3073 for (addr = IPW_SHARED_LOWER_BOUND;
3074 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3075 ipw_write32(priv, addr, 0);
3078 /* no ucode (yet) */
3079 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3080 /* destroy DMA queues */
3081 /* reset sequence */
3083 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3084 ipw_arc_release(priv);
3085 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3086 mdelay(1);
3088 /* reset PHY */
3089 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3090 mdelay(1);
3092 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3093 mdelay(1);
3095 /* enable ucode store */
3096 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3097 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3098 mdelay(1);
3100 /* write ucode */
3102 * @bug
3103 * Do NOT set indirect address register once and then
3104 * store data to indirect data register in the loop.
3105 * It seems very reasonable, but in this case DINO do not
3106 * accept ucode. It is essential to set address each time.
3108 /* load new ipw uCode */
3109 for (i = 0; i < len / 2; i++)
3110 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3111 le16_to_cpu(image[i]));
3113 /* enable DINO */
3114 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3115 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3117 /* this is where the igx / win driver deveates from the VAP driver. */
3119 /* wait for alive response */
3120 for (i = 0; i < 100; i++) {
3121 /* poll for incoming data */
3122 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3123 if (cr & DINO_RXFIFO_DATA)
3124 break;
3125 mdelay(1);
3128 if (cr & DINO_RXFIFO_DATA) {
3129 /* alive_command_responce size is NOT multiple of 4 */
3130 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3132 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3133 response_buffer[i] =
3134 cpu_to_le32(ipw_read_reg32(priv,
3135 IPW_BASEBAND_RX_FIFO_READ));
3136 memcpy(&priv->dino_alive, response_buffer,
3137 sizeof(priv->dino_alive));
3138 if (priv->dino_alive.alive_command == 1
3139 && priv->dino_alive.ucode_valid == 1) {
3140 rc = 0;
3141 IPW_DEBUG_INFO
3142 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3143 "of %02d/%02d/%02d %02d:%02d\n",
3144 priv->dino_alive.software_revision,
3145 priv->dino_alive.software_revision,
3146 priv->dino_alive.device_identifier,
3147 priv->dino_alive.device_identifier,
3148 priv->dino_alive.time_stamp[0],
3149 priv->dino_alive.time_stamp[1],
3150 priv->dino_alive.time_stamp[2],
3151 priv->dino_alive.time_stamp[3],
3152 priv->dino_alive.time_stamp[4]);
3153 } else {
3154 IPW_DEBUG_INFO("Microcode is not alive\n");
3155 rc = -EINVAL;
3157 } else {
3158 IPW_DEBUG_INFO("No alive response from DINO\n");
3159 rc = -ETIME;
3162 /* disable DINO, otherwise for some reason
3163 firmware have problem getting alive resp. */
3164 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3166 return rc;
3169 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3171 int ret = -1;
3172 int offset = 0;
3173 struct fw_chunk *chunk;
3174 int total_nr = 0;
3175 int i;
3176 struct pci_pool *pool;
3177 void **virts;
3178 dma_addr_t *phys;
3180 IPW_DEBUG_TRACE("<< :\n");
3182 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3183 GFP_KERNEL);
3184 if (!virts)
3185 return -ENOMEM;
3187 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3188 GFP_KERNEL);
3189 if (!phys) {
3190 kfree(virts);
3191 return -ENOMEM;
3193 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3194 if (!pool) {
3195 IPW_ERROR("pci_pool_create failed\n");
3196 kfree(phys);
3197 kfree(virts);
3198 return -ENOMEM;
3201 /* Start the Dma */
3202 ret = ipw_fw_dma_enable(priv);
3204 /* the DMA is already ready this would be a bug. */
3205 BUG_ON(priv->sram_desc.last_cb_index > 0);
3207 do {
3208 u32 chunk_len;
3209 u8 *start;
3210 int size;
3211 int nr = 0;
3213 chunk = (struct fw_chunk *)(data + offset);
3214 offset += sizeof(struct fw_chunk);
3215 chunk_len = le32_to_cpu(chunk->length);
3216 start = data + offset;
3218 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3219 for (i = 0; i < nr; i++) {
3220 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3221 &phys[total_nr]);
3222 if (!virts[total_nr]) {
3223 ret = -ENOMEM;
3224 goto out;
3226 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3227 CB_MAX_LENGTH);
3228 memcpy(virts[total_nr], start, size);
3229 start += size;
3230 total_nr++;
3231 /* We don't support fw chunk larger than 64*8K */
3232 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3235 /* build DMA packet and queue up for sending */
3236 /* dma to chunk->address, the chunk->length bytes from data +
3237 * offeset*/
3238 /* Dma loading */
3239 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3240 nr, le32_to_cpu(chunk->address),
3241 chunk_len);
3242 if (ret) {
3243 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3244 goto out;
3247 offset += chunk_len;
3248 } while (offset < len);
3250 /* Run the DMA and wait for the answer */
3251 ret = ipw_fw_dma_kick(priv);
3252 if (ret) {
3253 IPW_ERROR("dmaKick Failed\n");
3254 goto out;
3257 ret = ipw_fw_dma_wait(priv);
3258 if (ret) {
3259 IPW_ERROR("dmaWaitSync Failed\n");
3260 goto out;
3262 out:
3263 for (i = 0; i < total_nr; i++)
3264 pci_pool_free(pool, virts[i], phys[i]);
3266 pci_pool_destroy(pool);
3267 kfree(phys);
3268 kfree(virts);
3270 return ret;
3273 /* stop nic */
3274 static int ipw_stop_nic(struct ipw_priv *priv)
3276 int rc = 0;
3278 /* stop */
3279 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3281 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3282 IPW_RESET_REG_MASTER_DISABLED, 500);
3283 if (rc < 0) {
3284 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3285 return rc;
3288 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3290 return rc;
3293 static void ipw_start_nic(struct ipw_priv *priv)
3295 IPW_DEBUG_TRACE(">>\n");
3297 /* prvHwStartNic release ARC */
3298 ipw_clear_bit(priv, IPW_RESET_REG,
3299 IPW_RESET_REG_MASTER_DISABLED |
3300 IPW_RESET_REG_STOP_MASTER |
3301 CBD_RESET_REG_PRINCETON_RESET);
3303 /* enable power management */
3304 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3305 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3307 IPW_DEBUG_TRACE("<<\n");
3310 static int ipw_init_nic(struct ipw_priv *priv)
3312 int rc;
3314 IPW_DEBUG_TRACE(">>\n");
3315 /* reset */
3316 /*prvHwInitNic */
3317 /* set "initialization complete" bit to move adapter to D0 state */
3318 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3320 /* low-level PLL activation */
3321 ipw_write32(priv, IPW_READ_INT_REGISTER,
3322 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3324 /* wait for clock stabilization */
3325 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3326 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3327 if (rc < 0)
3328 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3330 /* assert SW reset */
3331 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3333 udelay(10);
3335 /* set "initialization complete" bit to move adapter to D0 state */
3336 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3338 IPW_DEBUG_TRACE(">>\n");
3339 return 0;
3342 /* Call this function from process context, it will sleep in request_firmware.
3343 * Probe is an ok place to call this from.
3345 static int ipw_reset_nic(struct ipw_priv *priv)
3347 int rc = 0;
3348 unsigned long flags;
3350 IPW_DEBUG_TRACE(">>\n");
3352 rc = ipw_init_nic(priv);
3354 spin_lock_irqsave(&priv->lock, flags);
3355 /* Clear the 'host command active' bit... */
3356 priv->status &= ~STATUS_HCMD_ACTIVE;
3357 wake_up_interruptible(&priv->wait_command_queue);
3358 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3359 wake_up_interruptible(&priv->wait_state);
3360 spin_unlock_irqrestore(&priv->lock, flags);
3362 IPW_DEBUG_TRACE("<<\n");
3363 return rc;
3367 struct ipw_fw {
3368 __le32 ver;
3369 __le32 boot_size;
3370 __le32 ucode_size;
3371 __le32 fw_size;
3372 u8 data[0];
3375 static int ipw_get_fw(struct ipw_priv *priv,
3376 const struct firmware **raw, const char *name)
3378 struct ipw_fw *fw;
3379 int rc;
3381 /* ask firmware_class module to get the boot firmware off disk */
3382 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3383 if (rc < 0) {
3384 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3385 return rc;
3388 if ((*raw)->size < sizeof(*fw)) {
3389 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3390 return -EINVAL;
3393 fw = (void *)(*raw)->data;
3395 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3396 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3397 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3398 name, (*raw)->size);
3399 return -EINVAL;
3402 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3403 name,
3404 le32_to_cpu(fw->ver) >> 16,
3405 le32_to_cpu(fw->ver) & 0xff,
3406 (*raw)->size - sizeof(*fw));
3407 return 0;
3410 #define IPW_RX_BUF_SIZE (3000)
3412 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3413 struct ipw_rx_queue *rxq)
3415 unsigned long flags;
3416 int i;
3418 spin_lock_irqsave(&rxq->lock, flags);
3420 INIT_LIST_HEAD(&rxq->rx_free);
3421 INIT_LIST_HEAD(&rxq->rx_used);
3423 /* Fill the rx_used queue with _all_ of the Rx buffers */
3424 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3425 /* In the reset function, these buffers may have been allocated
3426 * to an SKB, so we need to unmap and free potential storage */
3427 if (rxq->pool[i].skb != NULL) {
3428 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3429 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3430 dev_kfree_skb(rxq->pool[i].skb);
3431 rxq->pool[i].skb = NULL;
3433 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3436 /* Set us so that we have processed and used all buffers, but have
3437 * not restocked the Rx queue with fresh buffers */
3438 rxq->read = rxq->write = 0;
3439 rxq->free_count = 0;
3440 spin_unlock_irqrestore(&rxq->lock, flags);
3443 #ifdef CONFIG_PM
3444 static int fw_loaded = 0;
3445 static const struct firmware *raw = NULL;
3447 static void free_firmware(void)
3449 if (fw_loaded) {
3450 release_firmware(raw);
3451 raw = NULL;
3452 fw_loaded = 0;
3455 #else
3456 #define free_firmware() do {} while (0)
3457 #endif
3459 static int ipw_load(struct ipw_priv *priv)
3461 #ifndef CONFIG_PM
3462 const struct firmware *raw = NULL;
3463 #endif
3464 struct ipw_fw *fw;
3465 u8 *boot_img, *ucode_img, *fw_img;
3466 u8 *name = NULL;
3467 int rc = 0, retries = 3;
3469 switch (priv->ieee->iw_mode) {
3470 case IW_MODE_ADHOC:
3471 name = "ipw2200-ibss.fw";
3472 break;
3473 #ifdef CONFIG_IPW2200_MONITOR
3474 case IW_MODE_MONITOR:
3475 name = "ipw2200-sniffer.fw";
3476 break;
3477 #endif
3478 case IW_MODE_INFRA:
3479 name = "ipw2200-bss.fw";
3480 break;
3483 if (!name) {
3484 rc = -EINVAL;
3485 goto error;
3488 #ifdef CONFIG_PM
3489 if (!fw_loaded) {
3490 #endif
3491 rc = ipw_get_fw(priv, &raw, name);
3492 if (rc < 0)
3493 goto error;
3494 #ifdef CONFIG_PM
3496 #endif
3498 fw = (void *)raw->data;
3499 boot_img = &fw->data[0];
3500 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3501 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3502 le32_to_cpu(fw->ucode_size)];
3504 if (rc < 0)
3505 goto error;
3507 if (!priv->rxq)
3508 priv->rxq = ipw_rx_queue_alloc(priv);
3509 else
3510 ipw_rx_queue_reset(priv, priv->rxq);
3511 if (!priv->rxq) {
3512 IPW_ERROR("Unable to initialize Rx queue\n");
3513 goto error;
3516 retry:
3517 /* Ensure interrupts are disabled */
3518 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519 priv->status &= ~STATUS_INT_ENABLED;
3521 /* ack pending interrupts */
3522 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3524 ipw_stop_nic(priv);
3526 rc = ipw_reset_nic(priv);
3527 if (rc < 0) {
3528 IPW_ERROR("Unable to reset NIC\n");
3529 goto error;
3532 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3533 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3535 /* DMA the initial boot firmware into the device */
3536 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3537 if (rc < 0) {
3538 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3539 goto error;
3542 /* kick start the device */
3543 ipw_start_nic(priv);
3545 /* wait for the device to finish its initial startup sequence */
3546 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3547 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3548 if (rc < 0) {
3549 IPW_ERROR("device failed to boot initial fw image\n");
3550 goto error;
3552 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3554 /* ack fw init done interrupt */
3555 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3557 /* DMA the ucode into the device */
3558 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3559 if (rc < 0) {
3560 IPW_ERROR("Unable to load ucode: %d\n", rc);
3561 goto error;
3564 /* stop nic */
3565 ipw_stop_nic(priv);
3567 /* DMA bss firmware into the device */
3568 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3569 if (rc < 0) {
3570 IPW_ERROR("Unable to load firmware: %d\n", rc);
3571 goto error;
3573 #ifdef CONFIG_PM
3574 fw_loaded = 1;
3575 #endif
3577 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3579 rc = ipw_queue_reset(priv);
3580 if (rc < 0) {
3581 IPW_ERROR("Unable to initialize queues\n");
3582 goto error;
3585 /* Ensure interrupts are disabled */
3586 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3587 /* ack pending interrupts */
3588 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3590 /* kick start the device */
3591 ipw_start_nic(priv);
3593 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3594 if (retries > 0) {
3595 IPW_WARNING("Parity error. Retrying init.\n");
3596 retries--;
3597 goto retry;
3600 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3601 rc = -EIO;
3602 goto error;
3605 /* wait for the device */
3606 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3607 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3608 if (rc < 0) {
3609 IPW_ERROR("device failed to start within 500ms\n");
3610 goto error;
3612 IPW_DEBUG_INFO("device response after %dms\n", rc);
3614 /* ack fw init done interrupt */
3615 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3617 /* read eeprom data and initialize the eeprom region of sram */
3618 priv->eeprom_delay = 1;
3619 ipw_eeprom_init_sram(priv);
3621 /* enable interrupts */
3622 ipw_enable_interrupts(priv);
3624 /* Ensure our queue has valid packets */
3625 ipw_rx_queue_replenish(priv);
3627 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3629 /* ack pending interrupts */
3630 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3632 #ifndef CONFIG_PM
3633 release_firmware(raw);
3634 #endif
3635 return 0;
3637 error:
3638 if (priv->rxq) {
3639 ipw_rx_queue_free(priv, priv->rxq);
3640 priv->rxq = NULL;
3642 ipw_tx_queue_free(priv);
3643 if (raw)
3644 release_firmware(raw);
3645 #ifdef CONFIG_PM
3646 fw_loaded = 0;
3647 raw = NULL;
3648 #endif
3650 return rc;
3654 * DMA services
3656 * Theory of operation
3658 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3659 * 2 empty entries always kept in the buffer to protect from overflow.
3661 * For Tx queue, there are low mark and high mark limits. If, after queuing
3662 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3663 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3664 * Tx queue resumed.
3666 * The IPW operates with six queues, one receive queue in the device's
3667 * sram, one transmit queue for sending commands to the device firmware,
3668 * and four transmit queues for data.
3670 * The four transmit queues allow for performing quality of service (qos)
3671 * transmissions as per the 802.11 protocol. Currently Linux does not
3672 * provide a mechanism to the user for utilizing prioritized queues, so
3673 * we only utilize the first data transmit queue (queue1).
3677 * Driver allocates buffers of this size for Rx
3681 * ipw_rx_queue_space - Return number of free slots available in queue.
3683 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3685 int s = q->read - q->write;
3686 if (s <= 0)
3687 s += RX_QUEUE_SIZE;
3688 /* keep some buffer to not confuse full and empty queue */
3689 s -= 2;
3690 if (s < 0)
3691 s = 0;
3692 return s;
3695 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3697 int s = q->last_used - q->first_empty;
3698 if (s <= 0)
3699 s += q->n_bd;
3700 s -= 2; /* keep some reserve to not confuse empty and full situations */
3701 if (s < 0)
3702 s = 0;
3703 return s;
3706 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3708 return (++index == n_bd) ? 0 : index;
3712 * Initialize common DMA queue structure
3714 * @param q queue to init
3715 * @param count Number of BD's to allocate. Should be power of 2
3716 * @param read_register Address for 'read' register
3717 * (not offset within BAR, full address)
3718 * @param write_register Address for 'write' register
3719 * (not offset within BAR, full address)
3720 * @param base_register Address for 'base' register
3721 * (not offset within BAR, full address)
3722 * @param size Address for 'size' register
3723 * (not offset within BAR, full address)
3725 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3726 int count, u32 read, u32 write, u32 base, u32 size)
3728 q->n_bd = count;
3730 q->low_mark = q->n_bd / 4;
3731 if (q->low_mark < 4)
3732 q->low_mark = 4;
3734 q->high_mark = q->n_bd / 8;
3735 if (q->high_mark < 2)
3736 q->high_mark = 2;
3738 q->first_empty = q->last_used = 0;
3739 q->reg_r = read;
3740 q->reg_w = write;
3742 ipw_write32(priv, base, q->dma_addr);
3743 ipw_write32(priv, size, count);
3744 ipw_write32(priv, read, 0);
3745 ipw_write32(priv, write, 0);
3747 _ipw_read32(priv, 0x90);
3750 static int ipw_queue_tx_init(struct ipw_priv *priv,
3751 struct clx2_tx_queue *q,
3752 int count, u32 read, u32 write, u32 base, u32 size)
3754 struct pci_dev *dev = priv->pci_dev;
3756 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3757 if (!q->txb) {
3758 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3759 return -ENOMEM;
3762 q->bd =
3763 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3764 if (!q->bd) {
3765 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3766 sizeof(q->bd[0]) * count);
3767 kfree(q->txb);
3768 q->txb = NULL;
3769 return -ENOMEM;
3772 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3773 return 0;
3777 * Free one TFD, those at index [txq->q.last_used].
3778 * Do NOT advance any indexes
3780 * @param dev
3781 * @param txq
3783 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3784 struct clx2_tx_queue *txq)
3786 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3787 struct pci_dev *dev = priv->pci_dev;
3788 int i;
3790 /* classify bd */
3791 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3792 /* nothing to cleanup after for host commands */
3793 return;
3795 /* sanity check */
3796 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3797 IPW_ERROR("Too many chunks: %i\n",
3798 le32_to_cpu(bd->u.data.num_chunks));
3799 /** @todo issue fatal error, it is quite serious situation */
3800 return;
3803 /* unmap chunks if any */
3804 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3805 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3806 le16_to_cpu(bd->u.data.chunk_len[i]),
3807 PCI_DMA_TODEVICE);
3808 if (txq->txb[txq->q.last_used]) {
3809 libipw_txb_free(txq->txb[txq->q.last_used]);
3810 txq->txb[txq->q.last_used] = NULL;
3816 * Deallocate DMA queue.
3818 * Empty queue by removing and destroying all BD's.
3819 * Free all buffers.
3821 * @param dev
3822 * @param q
3824 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3826 struct clx2_queue *q = &txq->q;
3827 struct pci_dev *dev = priv->pci_dev;
3829 if (q->n_bd == 0)
3830 return;
3832 /* first, empty all BD's */
3833 for (; q->first_empty != q->last_used;
3834 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3835 ipw_queue_tx_free_tfd(priv, txq);
3838 /* free buffers belonging to queue itself */
3839 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3840 q->dma_addr);
3841 kfree(txq->txb);
3843 /* 0 fill whole structure */
3844 memset(txq, 0, sizeof(*txq));
3848 * Destroy all DMA queues and structures
3850 * @param priv
3852 static void ipw_tx_queue_free(struct ipw_priv *priv)
3854 /* Tx CMD queue */
3855 ipw_queue_tx_free(priv, &priv->txq_cmd);
3857 /* Tx queues */
3858 ipw_queue_tx_free(priv, &priv->txq[0]);
3859 ipw_queue_tx_free(priv, &priv->txq[1]);
3860 ipw_queue_tx_free(priv, &priv->txq[2]);
3861 ipw_queue_tx_free(priv, &priv->txq[3]);
3864 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3866 /* First 3 bytes are manufacturer */
3867 bssid[0] = priv->mac_addr[0];
3868 bssid[1] = priv->mac_addr[1];
3869 bssid[2] = priv->mac_addr[2];
3871 /* Last bytes are random */
3872 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3874 bssid[0] &= 0xfe; /* clear multicast bit */
3875 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3878 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3880 struct ipw_station_entry entry;
3881 int i;
3883 for (i = 0; i < priv->num_stations; i++) {
3884 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3885 /* Another node is active in network */
3886 priv->missed_adhoc_beacons = 0;
3887 if (!(priv->config & CFG_STATIC_CHANNEL))
3888 /* when other nodes drop out, we drop out */
3889 priv->config &= ~CFG_ADHOC_PERSIST;
3891 return i;
3895 if (i == MAX_STATIONS)
3896 return IPW_INVALID_STATION;
3898 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3900 entry.reserved = 0;
3901 entry.support_mode = 0;
3902 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3903 memcpy(priv->stations[i], bssid, ETH_ALEN);
3904 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3905 &entry, sizeof(entry));
3906 priv->num_stations++;
3908 return i;
3911 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3913 int i;
3915 for (i = 0; i < priv->num_stations; i++)
3916 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3917 return i;
3919 return IPW_INVALID_STATION;
3922 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3924 int err;
3926 if (priv->status & STATUS_ASSOCIATING) {
3927 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3928 queue_work(priv->workqueue, &priv->disassociate);
3929 return;
3932 if (!(priv->status & STATUS_ASSOCIATED)) {
3933 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3934 return;
3937 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3938 "on channel %d.\n",
3939 priv->assoc_request.bssid,
3940 priv->assoc_request.channel);
3942 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3943 priv->status |= STATUS_DISASSOCIATING;
3945 if (quiet)
3946 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3947 else
3948 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3950 err = ipw_send_associate(priv, &priv->assoc_request);
3951 if (err) {
3952 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3953 "failed.\n");
3954 return;
3959 static int ipw_disassociate(void *data)
3961 struct ipw_priv *priv = data;
3962 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3963 return 0;
3964 ipw_send_disassociate(data, 0);
3965 netif_carrier_off(priv->net_dev);
3966 return 1;
3969 static void ipw_bg_disassociate(struct work_struct *work)
3971 struct ipw_priv *priv =
3972 container_of(work, struct ipw_priv, disassociate);
3973 mutex_lock(&priv->mutex);
3974 ipw_disassociate(priv);
3975 mutex_unlock(&priv->mutex);
3978 static void ipw_system_config(struct work_struct *work)
3980 struct ipw_priv *priv =
3981 container_of(work, struct ipw_priv, system_config);
3983 #ifdef CONFIG_IPW2200_PROMISCUOUS
3984 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3985 priv->sys_config.accept_all_data_frames = 1;
3986 priv->sys_config.accept_non_directed_frames = 1;
3987 priv->sys_config.accept_all_mgmt_bcpr = 1;
3988 priv->sys_config.accept_all_mgmt_frames = 1;
3990 #endif
3992 ipw_send_system_config(priv);
3995 struct ipw_status_code {
3996 u16 status;
3997 const char *reason;
4000 static const struct ipw_status_code ipw_status_codes[] = {
4001 {0x00, "Successful"},
4002 {0x01, "Unspecified failure"},
4003 {0x0A, "Cannot support all requested capabilities in the "
4004 "Capability information field"},
4005 {0x0B, "Reassociation denied due to inability to confirm that "
4006 "association exists"},
4007 {0x0C, "Association denied due to reason outside the scope of this "
4008 "standard"},
4009 {0x0D,
4010 "Responding station does not support the specified authentication "
4011 "algorithm"},
4012 {0x0E,
4013 "Received an Authentication frame with authentication sequence "
4014 "transaction sequence number out of expected sequence"},
4015 {0x0F, "Authentication rejected because of challenge failure"},
4016 {0x10, "Authentication rejected due to timeout waiting for next "
4017 "frame in sequence"},
4018 {0x11, "Association denied because AP is unable to handle additional "
4019 "associated stations"},
4020 {0x12,
4021 "Association denied due to requesting station not supporting all "
4022 "of the datarates in the BSSBasicServiceSet Parameter"},
4023 {0x13,
4024 "Association denied due to requesting station not supporting "
4025 "short preamble operation"},
4026 {0x14,
4027 "Association denied due to requesting station not supporting "
4028 "PBCC encoding"},
4029 {0x15,
4030 "Association denied due to requesting station not supporting "
4031 "channel agility"},
4032 {0x19,
4033 "Association denied due to requesting station not supporting "
4034 "short slot operation"},
4035 {0x1A,
4036 "Association denied due to requesting station not supporting "
4037 "DSSS-OFDM operation"},
4038 {0x28, "Invalid Information Element"},
4039 {0x29, "Group Cipher is not valid"},
4040 {0x2A, "Pairwise Cipher is not valid"},
4041 {0x2B, "AKMP is not valid"},
4042 {0x2C, "Unsupported RSN IE version"},
4043 {0x2D, "Invalid RSN IE Capabilities"},
4044 {0x2E, "Cipher suite is rejected per security policy"},
4047 static const char *ipw_get_status_code(u16 status)
4049 int i;
4050 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4051 if (ipw_status_codes[i].status == (status & 0xff))
4052 return ipw_status_codes[i].reason;
4053 return "Unknown status value.";
4056 static void inline average_init(struct average *avg)
4058 memset(avg, 0, sizeof(*avg));
4061 #define DEPTH_RSSI 8
4062 #define DEPTH_NOISE 16
4063 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4065 return ((depth-1)*prev_avg + val)/depth;
4068 static void average_add(struct average *avg, s16 val)
4070 avg->sum -= avg->entries[avg->pos];
4071 avg->sum += val;
4072 avg->entries[avg->pos++] = val;
4073 if (unlikely(avg->pos == AVG_ENTRIES)) {
4074 avg->init = 1;
4075 avg->pos = 0;
4079 static s16 average_value(struct average *avg)
4081 if (!unlikely(avg->init)) {
4082 if (avg->pos)
4083 return avg->sum / avg->pos;
4084 return 0;
4087 return avg->sum / AVG_ENTRIES;
4090 static void ipw_reset_stats(struct ipw_priv *priv)
4092 u32 len = sizeof(u32);
4094 priv->quality = 0;
4096 average_init(&priv->average_missed_beacons);
4097 priv->exp_avg_rssi = -60;
4098 priv->exp_avg_noise = -85 + 0x100;
4100 priv->last_rate = 0;
4101 priv->last_missed_beacons = 0;
4102 priv->last_rx_packets = 0;
4103 priv->last_tx_packets = 0;
4104 priv->last_tx_failures = 0;
4106 /* Firmware managed, reset only when NIC is restarted, so we have to
4107 * normalize on the current value */
4108 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4109 &priv->last_rx_err, &len);
4110 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4111 &priv->last_tx_failures, &len);
4113 /* Driver managed, reset with each association */
4114 priv->missed_adhoc_beacons = 0;
4115 priv->missed_beacons = 0;
4116 priv->tx_packets = 0;
4117 priv->rx_packets = 0;
4121 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4123 u32 i = 0x80000000;
4124 u32 mask = priv->rates_mask;
4125 /* If currently associated in B mode, restrict the maximum
4126 * rate match to B rates */
4127 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4128 mask &= LIBIPW_CCK_RATES_MASK;
4130 /* TODO: Verify that the rate is supported by the current rates
4131 * list. */
4133 while (i && !(mask & i))
4134 i >>= 1;
4135 switch (i) {
4136 case LIBIPW_CCK_RATE_1MB_MASK:
4137 return 1000000;
4138 case LIBIPW_CCK_RATE_2MB_MASK:
4139 return 2000000;
4140 case LIBIPW_CCK_RATE_5MB_MASK:
4141 return 5500000;
4142 case LIBIPW_OFDM_RATE_6MB_MASK:
4143 return 6000000;
4144 case LIBIPW_OFDM_RATE_9MB_MASK:
4145 return 9000000;
4146 case LIBIPW_CCK_RATE_11MB_MASK:
4147 return 11000000;
4148 case LIBIPW_OFDM_RATE_12MB_MASK:
4149 return 12000000;
4150 case LIBIPW_OFDM_RATE_18MB_MASK:
4151 return 18000000;
4152 case LIBIPW_OFDM_RATE_24MB_MASK:
4153 return 24000000;
4154 case LIBIPW_OFDM_RATE_36MB_MASK:
4155 return 36000000;
4156 case LIBIPW_OFDM_RATE_48MB_MASK:
4157 return 48000000;
4158 case LIBIPW_OFDM_RATE_54MB_MASK:
4159 return 54000000;
4162 if (priv->ieee->mode == IEEE_B)
4163 return 11000000;
4164 else
4165 return 54000000;
4168 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4170 u32 rate, len = sizeof(rate);
4171 int err;
4173 if (!(priv->status & STATUS_ASSOCIATED))
4174 return 0;
4176 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4177 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4178 &len);
4179 if (err) {
4180 IPW_DEBUG_INFO("failed querying ordinals.\n");
4181 return 0;
4183 } else
4184 return ipw_get_max_rate(priv);
4186 switch (rate) {
4187 case IPW_TX_RATE_1MB:
4188 return 1000000;
4189 case IPW_TX_RATE_2MB:
4190 return 2000000;
4191 case IPW_TX_RATE_5MB:
4192 return 5500000;
4193 case IPW_TX_RATE_6MB:
4194 return 6000000;
4195 case IPW_TX_RATE_9MB:
4196 return 9000000;
4197 case IPW_TX_RATE_11MB:
4198 return 11000000;
4199 case IPW_TX_RATE_12MB:
4200 return 12000000;
4201 case IPW_TX_RATE_18MB:
4202 return 18000000;
4203 case IPW_TX_RATE_24MB:
4204 return 24000000;
4205 case IPW_TX_RATE_36MB:
4206 return 36000000;
4207 case IPW_TX_RATE_48MB:
4208 return 48000000;
4209 case IPW_TX_RATE_54MB:
4210 return 54000000;
4213 return 0;
4216 #define IPW_STATS_INTERVAL (2 * HZ)
4217 static void ipw_gather_stats(struct ipw_priv *priv)
4219 u32 rx_err, rx_err_delta, rx_packets_delta;
4220 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4221 u32 missed_beacons_percent, missed_beacons_delta;
4222 u32 quality = 0;
4223 u32 len = sizeof(u32);
4224 s16 rssi;
4225 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4226 rate_quality;
4227 u32 max_rate;
4229 if (!(priv->status & STATUS_ASSOCIATED)) {
4230 priv->quality = 0;
4231 return;
4234 /* Update the statistics */
4235 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4236 &priv->missed_beacons, &len);
4237 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4238 priv->last_missed_beacons = priv->missed_beacons;
4239 if (priv->assoc_request.beacon_interval) {
4240 missed_beacons_percent = missed_beacons_delta *
4241 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4242 (IPW_STATS_INTERVAL * 10);
4243 } else {
4244 missed_beacons_percent = 0;
4246 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4248 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4249 rx_err_delta = rx_err - priv->last_rx_err;
4250 priv->last_rx_err = rx_err;
4252 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4253 tx_failures_delta = tx_failures - priv->last_tx_failures;
4254 priv->last_tx_failures = tx_failures;
4256 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4257 priv->last_rx_packets = priv->rx_packets;
4259 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4260 priv->last_tx_packets = priv->tx_packets;
4262 /* Calculate quality based on the following:
4264 * Missed beacon: 100% = 0, 0% = 70% missed
4265 * Rate: 60% = 1Mbs, 100% = Max
4266 * Rx and Tx errors represent a straight % of total Rx/Tx
4267 * RSSI: 100% = > -50, 0% = < -80
4268 * Rx errors: 100% = 0, 0% = 50% missed
4270 * The lowest computed quality is used.
4273 #define BEACON_THRESHOLD 5
4274 beacon_quality = 100 - missed_beacons_percent;
4275 if (beacon_quality < BEACON_THRESHOLD)
4276 beacon_quality = 0;
4277 else
4278 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4279 (100 - BEACON_THRESHOLD);
4280 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4281 beacon_quality, missed_beacons_percent);
4283 priv->last_rate = ipw_get_current_rate(priv);
4284 max_rate = ipw_get_max_rate(priv);
4285 rate_quality = priv->last_rate * 40 / max_rate + 60;
4286 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4287 rate_quality, priv->last_rate / 1000000);
4289 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4290 rx_quality = 100 - (rx_err_delta * 100) /
4291 (rx_packets_delta + rx_err_delta);
4292 else
4293 rx_quality = 100;
4294 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4295 rx_quality, rx_err_delta, rx_packets_delta);
4297 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4298 tx_quality = 100 - (tx_failures_delta * 100) /
4299 (tx_packets_delta + tx_failures_delta);
4300 else
4301 tx_quality = 100;
4302 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4303 tx_quality, tx_failures_delta, tx_packets_delta);
4305 rssi = priv->exp_avg_rssi;
4306 signal_quality =
4307 (100 *
4308 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4309 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4310 (priv->ieee->perfect_rssi - rssi) *
4311 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4312 62 * (priv->ieee->perfect_rssi - rssi))) /
4313 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4314 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4315 if (signal_quality > 100)
4316 signal_quality = 100;
4317 else if (signal_quality < 1)
4318 signal_quality = 0;
4320 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4321 signal_quality, rssi);
4323 quality = min(rx_quality, signal_quality);
4324 quality = min(tx_quality, quality);
4325 quality = min(rate_quality, quality);
4326 quality = min(beacon_quality, quality);
4327 if (quality == beacon_quality)
4328 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4329 quality);
4330 if (quality == rate_quality)
4331 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4332 quality);
4333 if (quality == tx_quality)
4334 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4335 quality);
4336 if (quality == rx_quality)
4337 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4338 quality);
4339 if (quality == signal_quality)
4340 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4341 quality);
4343 priv->quality = quality;
4345 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4346 IPW_STATS_INTERVAL);
4349 static void ipw_bg_gather_stats(struct work_struct *work)
4351 struct ipw_priv *priv =
4352 container_of(work, struct ipw_priv, gather_stats.work);
4353 mutex_lock(&priv->mutex);
4354 ipw_gather_stats(priv);
4355 mutex_unlock(&priv->mutex);
4358 /* Missed beacon behavior:
4359 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4360 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4361 * Above disassociate threshold, give up and stop scanning.
4362 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4363 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4364 int missed_count)
4366 priv->notif_missed_beacons = missed_count;
4368 if (missed_count > priv->disassociate_threshold &&
4369 priv->status & STATUS_ASSOCIATED) {
4370 /* If associated and we've hit the missed
4371 * beacon threshold, disassociate, turn
4372 * off roaming, and abort any active scans */
4373 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4374 IPW_DL_STATE | IPW_DL_ASSOC,
4375 "Missed beacon: %d - disassociate\n", missed_count);
4376 priv->status &= ~STATUS_ROAMING;
4377 if (priv->status & STATUS_SCANNING) {
4378 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4379 IPW_DL_STATE,
4380 "Aborting scan with missed beacon.\n");
4381 queue_work(priv->workqueue, &priv->abort_scan);
4384 queue_work(priv->workqueue, &priv->disassociate);
4385 return;
4388 if (priv->status & STATUS_ROAMING) {
4389 /* If we are currently roaming, then just
4390 * print a debug statement... */
4391 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4392 "Missed beacon: %d - roam in progress\n",
4393 missed_count);
4394 return;
4397 if (roaming &&
4398 (missed_count > priv->roaming_threshold &&
4399 missed_count <= priv->disassociate_threshold)) {
4400 /* If we are not already roaming, set the ROAM
4401 * bit in the status and kick off a scan.
4402 * This can happen several times before we reach
4403 * disassociate_threshold. */
4404 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4405 "Missed beacon: %d - initiate "
4406 "roaming\n", missed_count);
4407 if (!(priv->status & STATUS_ROAMING)) {
4408 priv->status |= STATUS_ROAMING;
4409 if (!(priv->status & STATUS_SCANNING))
4410 queue_delayed_work(priv->workqueue,
4411 &priv->request_scan, 0);
4413 return;
4416 if (priv->status & STATUS_SCANNING &&
4417 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4418 /* Stop scan to keep fw from getting
4419 * stuck (only if we aren't roaming --
4420 * otherwise we'll never scan more than 2 or 3
4421 * channels..) */
4422 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4423 "Aborting scan with missed beacon.\n");
4424 queue_work(priv->workqueue, &priv->abort_scan);
4427 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4430 static void ipw_scan_event(struct work_struct *work)
4432 union iwreq_data wrqu;
4434 struct ipw_priv *priv =
4435 container_of(work, struct ipw_priv, scan_event.work);
4437 wrqu.data.length = 0;
4438 wrqu.data.flags = 0;
4439 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4442 static void handle_scan_event(struct ipw_priv *priv)
4444 /* Only userspace-requested scan completion events go out immediately */
4445 if (!priv->user_requested_scan) {
4446 if (!delayed_work_pending(&priv->scan_event))
4447 queue_delayed_work(priv->workqueue, &priv->scan_event,
4448 round_jiffies_relative(msecs_to_jiffies(4000)));
4449 } else {
4450 union iwreq_data wrqu;
4452 priv->user_requested_scan = 0;
4453 cancel_delayed_work(&priv->scan_event);
4455 wrqu.data.length = 0;
4456 wrqu.data.flags = 0;
4457 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4462 * Handle host notification packet.
4463 * Called from interrupt routine
4465 static void ipw_rx_notification(struct ipw_priv *priv,
4466 struct ipw_rx_notification *notif)
4468 DECLARE_SSID_BUF(ssid);
4469 u16 size = le16_to_cpu(notif->size);
4471 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4473 switch (notif->subtype) {
4474 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4475 struct notif_association *assoc = &notif->u.assoc;
4477 switch (assoc->state) {
4478 case CMAS_ASSOCIATED:{
4479 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4480 IPW_DL_ASSOC,
4481 "associated: '%s' %pM\n",
4482 print_ssid(ssid, priv->essid,
4483 priv->essid_len),
4484 priv->bssid);
4486 switch (priv->ieee->iw_mode) {
4487 case IW_MODE_INFRA:
4488 memcpy(priv->ieee->bssid,
4489 priv->bssid, ETH_ALEN);
4490 break;
4492 case IW_MODE_ADHOC:
4493 memcpy(priv->ieee->bssid,
4494 priv->bssid, ETH_ALEN);
4496 /* clear out the station table */
4497 priv->num_stations = 0;
4499 IPW_DEBUG_ASSOC
4500 ("queueing adhoc check\n");
4501 queue_delayed_work(priv->
4502 workqueue,
4503 &priv->
4504 adhoc_check,
4505 le16_to_cpu(priv->
4506 assoc_request.
4507 beacon_interval));
4508 break;
4511 priv->status &= ~STATUS_ASSOCIATING;
4512 priv->status |= STATUS_ASSOCIATED;
4513 queue_work(priv->workqueue,
4514 &priv->system_config);
4516 #ifdef CONFIG_IPW2200_QOS
4517 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4518 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4519 if ((priv->status & STATUS_AUTH) &&
4520 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4521 == IEEE80211_STYPE_ASSOC_RESP)) {
4522 if ((sizeof
4523 (struct
4524 libipw_assoc_response)
4525 <= size)
4526 && (size <= 2314)) {
4527 struct
4528 libipw_rx_stats
4529 stats = {
4530 .len = size - 1,
4533 IPW_DEBUG_QOS
4534 ("QoS Associate "
4535 "size %d\n", size);
4536 libipw_rx_mgt(priv->
4537 ieee,
4538 (struct
4539 libipw_hdr_4addr
4541 &notif->u.raw, &stats);
4544 #endif
4546 schedule_work(&priv->link_up);
4548 break;
4551 case CMAS_AUTHENTICATED:{
4552 if (priv->
4553 status & (STATUS_ASSOCIATED |
4554 STATUS_AUTH)) {
4555 struct notif_authenticate *auth
4556 = &notif->u.auth;
4557 IPW_DEBUG(IPW_DL_NOTIF |
4558 IPW_DL_STATE |
4559 IPW_DL_ASSOC,
4560 "deauthenticated: '%s' "
4561 "%pM"
4562 ": (0x%04X) - %s\n",
4563 print_ssid(ssid,
4564 priv->
4565 essid,
4566 priv->
4567 essid_len),
4568 priv->bssid,
4569 le16_to_cpu(auth->status),
4570 ipw_get_status_code
4571 (le16_to_cpu
4572 (auth->status)));
4574 priv->status &=
4575 ~(STATUS_ASSOCIATING |
4576 STATUS_AUTH |
4577 STATUS_ASSOCIATED);
4579 schedule_work(&priv->link_down);
4580 break;
4583 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4584 IPW_DL_ASSOC,
4585 "authenticated: '%s' %pM\n",
4586 print_ssid(ssid, priv->essid,
4587 priv->essid_len),
4588 priv->bssid);
4589 break;
4592 case CMAS_INIT:{
4593 if (priv->status & STATUS_AUTH) {
4594 struct
4595 libipw_assoc_response
4596 *resp;
4597 resp =
4598 (struct
4599 libipw_assoc_response
4600 *)&notif->u.raw;
4601 IPW_DEBUG(IPW_DL_NOTIF |
4602 IPW_DL_STATE |
4603 IPW_DL_ASSOC,
4604 "association failed (0x%04X): %s\n",
4605 le16_to_cpu(resp->status),
4606 ipw_get_status_code
4607 (le16_to_cpu
4608 (resp->status)));
4611 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612 IPW_DL_ASSOC,
4613 "disassociated: '%s' %pM\n",
4614 print_ssid(ssid, priv->essid,
4615 priv->essid_len),
4616 priv->bssid);
4618 priv->status &=
4619 ~(STATUS_DISASSOCIATING |
4620 STATUS_ASSOCIATING |
4621 STATUS_ASSOCIATED | STATUS_AUTH);
4622 if (priv->assoc_network
4623 && (priv->assoc_network->
4624 capability &
4625 WLAN_CAPABILITY_IBSS))
4626 ipw_remove_current_network
4627 (priv);
4629 schedule_work(&priv->link_down);
4631 break;
4634 case CMAS_RX_ASSOC_RESP:
4635 break;
4637 default:
4638 IPW_ERROR("assoc: unknown (%d)\n",
4639 assoc->state);
4640 break;
4643 break;
4646 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4647 struct notif_authenticate *auth = &notif->u.auth;
4648 switch (auth->state) {
4649 case CMAS_AUTHENTICATED:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4651 "authenticated: '%s' %pM\n",
4652 print_ssid(ssid, priv->essid,
4653 priv->essid_len),
4654 priv->bssid);
4655 priv->status |= STATUS_AUTH;
4656 break;
4658 case CMAS_INIT:
4659 if (priv->status & STATUS_AUTH) {
4660 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661 IPW_DL_ASSOC,
4662 "authentication failed (0x%04X): %s\n",
4663 le16_to_cpu(auth->status),
4664 ipw_get_status_code(le16_to_cpu
4665 (auth->
4666 status)));
4668 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4669 IPW_DL_ASSOC,
4670 "deauthenticated: '%s' %pM\n",
4671 print_ssid(ssid, priv->essid,
4672 priv->essid_len),
4673 priv->bssid);
4675 priv->status &= ~(STATUS_ASSOCIATING |
4676 STATUS_AUTH |
4677 STATUS_ASSOCIATED);
4679 schedule_work(&priv->link_down);
4680 break;
4682 case CMAS_TX_AUTH_SEQ_1:
4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4685 break;
4686 case CMAS_RX_AUTH_SEQ_2:
4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4689 break;
4690 case CMAS_AUTH_SEQ_1_PASS:
4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4693 break;
4694 case CMAS_AUTH_SEQ_1_FAIL:
4695 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4697 break;
4698 case CMAS_TX_AUTH_SEQ_3:
4699 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4700 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4701 break;
4702 case CMAS_RX_AUTH_SEQ_4:
4703 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4704 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4705 break;
4706 case CMAS_AUTH_SEQ_2_PASS:
4707 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4709 break;
4710 case CMAS_AUTH_SEQ_2_FAIL:
4711 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4713 break;
4714 case CMAS_TX_ASSOC:
4715 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4716 IPW_DL_ASSOC, "TX_ASSOC\n");
4717 break;
4718 case CMAS_RX_ASSOC_RESP:
4719 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4720 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4722 break;
4723 case CMAS_ASSOCIATED:
4724 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4725 IPW_DL_ASSOC, "ASSOCIATED\n");
4726 break;
4727 default:
4728 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4729 auth->state);
4730 break;
4732 break;
4735 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4736 struct notif_channel_result *x =
4737 &notif->u.channel_result;
4739 if (size == sizeof(*x)) {
4740 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4741 x->channel_num);
4742 } else {
4743 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4744 "(should be %zd)\n",
4745 size, sizeof(*x));
4747 break;
4750 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4751 struct notif_scan_complete *x = &notif->u.scan_complete;
4752 if (size == sizeof(*x)) {
4753 IPW_DEBUG_SCAN
4754 ("Scan completed: type %d, %d channels, "
4755 "%d status\n", x->scan_type,
4756 x->num_channels, x->status);
4757 } else {
4758 IPW_ERROR("Scan completed of wrong size %d "
4759 "(should be %zd)\n",
4760 size, sizeof(*x));
4763 priv->status &=
4764 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4766 wake_up_interruptible(&priv->wait_state);
4767 cancel_delayed_work(&priv->scan_check);
4769 if (priv->status & STATUS_EXIT_PENDING)
4770 break;
4772 priv->ieee->scans++;
4774 #ifdef CONFIG_IPW2200_MONITOR
4775 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4776 priv->status |= STATUS_SCAN_FORCED;
4777 queue_delayed_work(priv->workqueue,
4778 &priv->request_scan, 0);
4779 break;
4781 priv->status &= ~STATUS_SCAN_FORCED;
4782 #endif /* CONFIG_IPW2200_MONITOR */
4784 /* Do queued direct scans first */
4785 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4786 queue_delayed_work(priv->workqueue,
4787 &priv->request_direct_scan, 0);
4790 if (!(priv->status & (STATUS_ASSOCIATED |
4791 STATUS_ASSOCIATING |
4792 STATUS_ROAMING |
4793 STATUS_DISASSOCIATING)))
4794 queue_work(priv->workqueue, &priv->associate);
4795 else if (priv->status & STATUS_ROAMING) {
4796 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4797 /* If a scan completed and we are in roam mode, then
4798 * the scan that completed was the one requested as a
4799 * result of entering roam... so, schedule the
4800 * roam work */
4801 queue_work(priv->workqueue,
4802 &priv->roam);
4803 else
4804 /* Don't schedule if we aborted the scan */
4805 priv->status &= ~STATUS_ROAMING;
4806 } else if (priv->status & STATUS_SCAN_PENDING)
4807 queue_delayed_work(priv->workqueue,
4808 &priv->request_scan, 0);
4809 else if (priv->config & CFG_BACKGROUND_SCAN
4810 && priv->status & STATUS_ASSOCIATED)
4811 queue_delayed_work(priv->workqueue,
4812 &priv->request_scan,
4813 round_jiffies_relative(HZ));
4815 /* Send an empty event to user space.
4816 * We don't send the received data on the event because
4817 * it would require us to do complex transcoding, and
4818 * we want to minimise the work done in the irq handler
4819 * Use a request to extract the data.
4820 * Also, we generate this even for any scan, regardless
4821 * on how the scan was initiated. User space can just
4822 * sync on periodic scan to get fresh data...
4823 * Jean II */
4824 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4825 handle_scan_event(priv);
4826 break;
4829 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4830 struct notif_frag_length *x = &notif->u.frag_len;
4832 if (size == sizeof(*x))
4833 IPW_ERROR("Frag length: %d\n",
4834 le16_to_cpu(x->frag_length));
4835 else
4836 IPW_ERROR("Frag length of wrong size %d "
4837 "(should be %zd)\n",
4838 size, sizeof(*x));
4839 break;
4842 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4843 struct notif_link_deterioration *x =
4844 &notif->u.link_deterioration;
4846 if (size == sizeof(*x)) {
4847 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4848 "link deterioration: type %d, cnt %d\n",
4849 x->silence_notification_type,
4850 x->silence_count);
4851 memcpy(&priv->last_link_deterioration, x,
4852 sizeof(*x));
4853 } else {
4854 IPW_ERROR("Link Deterioration of wrong size %d "
4855 "(should be %zd)\n",
4856 size, sizeof(*x));
4858 break;
4861 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4862 IPW_ERROR("Dino config\n");
4863 if (priv->hcmd
4864 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4865 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4867 break;
4870 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4871 struct notif_beacon_state *x = &notif->u.beacon_state;
4872 if (size != sizeof(*x)) {
4873 IPW_ERROR
4874 ("Beacon state of wrong size %d (should "
4875 "be %zd)\n", size, sizeof(*x));
4876 break;
4879 if (le32_to_cpu(x->state) ==
4880 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4881 ipw_handle_missed_beacon(priv,
4882 le32_to_cpu(x->
4883 number));
4885 break;
4888 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4889 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4890 if (size == sizeof(*x)) {
4891 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4892 "0x%02x station %d\n",
4893 x->key_state, x->security_type,
4894 x->station_index);
4895 break;
4898 IPW_ERROR
4899 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4900 size, sizeof(*x));
4901 break;
4904 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4905 struct notif_calibration *x = &notif->u.calibration;
4907 if (size == sizeof(*x)) {
4908 memcpy(&priv->calib, x, sizeof(*x));
4909 IPW_DEBUG_INFO("TODO: Calibration\n");
4910 break;
4913 IPW_ERROR
4914 ("Calibration of wrong size %d (should be %zd)\n",
4915 size, sizeof(*x));
4916 break;
4919 case HOST_NOTIFICATION_NOISE_STATS:{
4920 if (size == sizeof(u32)) {
4921 priv->exp_avg_noise =
4922 exponential_average(priv->exp_avg_noise,
4923 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4924 DEPTH_NOISE);
4925 break;
4928 IPW_ERROR
4929 ("Noise stat is wrong size %d (should be %zd)\n",
4930 size, sizeof(u32));
4931 break;
4934 default:
4935 IPW_DEBUG_NOTIF("Unknown notification: "
4936 "subtype=%d,flags=0x%2x,size=%d\n",
4937 notif->subtype, notif->flags, size);
4942 * Destroys all DMA structures and initialise them again
4944 * @param priv
4945 * @return error code
4947 static int ipw_queue_reset(struct ipw_priv *priv)
4949 int rc = 0;
4950 /** @todo customize queue sizes */
4951 int nTx = 64, nTxCmd = 8;
4952 ipw_tx_queue_free(priv);
4953 /* Tx CMD queue */
4954 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4955 IPW_TX_CMD_QUEUE_READ_INDEX,
4956 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4957 IPW_TX_CMD_QUEUE_BD_BASE,
4958 IPW_TX_CMD_QUEUE_BD_SIZE);
4959 if (rc) {
4960 IPW_ERROR("Tx Cmd queue init failed\n");
4961 goto error;
4963 /* Tx queue(s) */
4964 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4965 IPW_TX_QUEUE_0_READ_INDEX,
4966 IPW_TX_QUEUE_0_WRITE_INDEX,
4967 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4968 if (rc) {
4969 IPW_ERROR("Tx 0 queue init failed\n");
4970 goto error;
4972 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4973 IPW_TX_QUEUE_1_READ_INDEX,
4974 IPW_TX_QUEUE_1_WRITE_INDEX,
4975 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4976 if (rc) {
4977 IPW_ERROR("Tx 1 queue init failed\n");
4978 goto error;
4980 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4981 IPW_TX_QUEUE_2_READ_INDEX,
4982 IPW_TX_QUEUE_2_WRITE_INDEX,
4983 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4984 if (rc) {
4985 IPW_ERROR("Tx 2 queue init failed\n");
4986 goto error;
4988 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4989 IPW_TX_QUEUE_3_READ_INDEX,
4990 IPW_TX_QUEUE_3_WRITE_INDEX,
4991 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4992 if (rc) {
4993 IPW_ERROR("Tx 3 queue init failed\n");
4994 goto error;
4996 /* statistics */
4997 priv->rx_bufs_min = 0;
4998 priv->rx_pend_max = 0;
4999 return rc;
5001 error:
5002 ipw_tx_queue_free(priv);
5003 return rc;
5007 * Reclaim Tx queue entries no more used by NIC.
5009 * When FW advances 'R' index, all entries between old and
5010 * new 'R' index need to be reclaimed. As result, some free space
5011 * forms. If there is enough free space (> low mark), wake Tx queue.
5013 * @note Need to protect against garbage in 'R' index
5014 * @param priv
5015 * @param txq
5016 * @param qindex
5017 * @return Number of used entries remains in the queue
5019 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5020 struct clx2_tx_queue *txq, int qindex)
5022 u32 hw_tail;
5023 int used;
5024 struct clx2_queue *q = &txq->q;
5026 hw_tail = ipw_read32(priv, q->reg_r);
5027 if (hw_tail >= q->n_bd) {
5028 IPW_ERROR
5029 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5030 hw_tail, q->n_bd);
5031 goto done;
5033 for (; q->last_used != hw_tail;
5034 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5035 ipw_queue_tx_free_tfd(priv, txq);
5036 priv->tx_packets++;
5038 done:
5039 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5040 (qindex >= 0))
5041 netif_wake_queue(priv->net_dev);
5042 used = q->first_empty - q->last_used;
5043 if (used < 0)
5044 used += q->n_bd;
5046 return used;
5049 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5050 int len, int sync)
5052 struct clx2_tx_queue *txq = &priv->txq_cmd;
5053 struct clx2_queue *q = &txq->q;
5054 struct tfd_frame *tfd;
5056 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5057 IPW_ERROR("No space for Tx\n");
5058 return -EBUSY;
5061 tfd = &txq->bd[q->first_empty];
5062 txq->txb[q->first_empty] = NULL;
5064 memset(tfd, 0, sizeof(*tfd));
5065 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5066 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5067 priv->hcmd_seq++;
5068 tfd->u.cmd.index = hcmd;
5069 tfd->u.cmd.length = len;
5070 memcpy(tfd->u.cmd.payload, buf, len);
5071 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5072 ipw_write32(priv, q->reg_w, q->first_empty);
5073 _ipw_read32(priv, 0x90);
5075 return 0;
5079 * Rx theory of operation
5081 * The host allocates 32 DMA target addresses and passes the host address
5082 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5083 * 0 to 31
5085 * Rx Queue Indexes
5086 * The host/firmware share two index registers for managing the Rx buffers.
5088 * The READ index maps to the first position that the firmware may be writing
5089 * to -- the driver can read up to (but not including) this position and get
5090 * good data.
5091 * The READ index is managed by the firmware once the card is enabled.
5093 * The WRITE index maps to the last position the driver has read from -- the
5094 * position preceding WRITE is the last slot the firmware can place a packet.
5096 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5097 * WRITE = READ.
5099 * During initialization the host sets up the READ queue position to the first
5100 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5102 * When the firmware places a packet in a buffer it will advance the READ index
5103 * and fire the RX interrupt. The driver can then query the READ index and
5104 * process as many packets as possible, moving the WRITE index forward as it
5105 * resets the Rx queue buffers with new memory.
5107 * The management in the driver is as follows:
5108 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5109 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5110 * to replensish the ipw->rxq->rx_free.
5111 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5112 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5113 * 'processed' and 'read' driver indexes as well)
5114 * + A received packet is processed and handed to the kernel network stack,
5115 * detached from the ipw->rxq. The driver 'processed' index is updated.
5116 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5117 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5118 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5119 * were enough free buffers and RX_STALLED is set it is cleared.
5122 * Driver sequence:
5124 * ipw_rx_queue_alloc() Allocates rx_free
5125 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5126 * ipw_rx_queue_restock
5127 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5128 * queue, updates firmware pointers, and updates
5129 * the WRITE index. If insufficient rx_free buffers
5130 * are available, schedules ipw_rx_queue_replenish
5132 * -- enable interrupts --
5133 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5134 * READ INDEX, detaching the SKB from the pool.
5135 * Moves the packet buffer from queue to rx_used.
5136 * Calls ipw_rx_queue_restock to refill any empty
5137 * slots.
5138 * ...
5143 * If there are slots in the RX queue that need to be restocked,
5144 * and we have free pre-allocated buffers, fill the ranks as much
5145 * as we can pulling from rx_free.
5147 * This moves the 'write' index forward to catch up with 'processed', and
5148 * also updates the memory address in the firmware to reference the new
5149 * target buffer.
5151 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5153 struct ipw_rx_queue *rxq = priv->rxq;
5154 struct list_head *element;
5155 struct ipw_rx_mem_buffer *rxb;
5156 unsigned long flags;
5157 int write;
5159 spin_lock_irqsave(&rxq->lock, flags);
5160 write = rxq->write;
5161 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5162 element = rxq->rx_free.next;
5163 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5164 list_del(element);
5166 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5167 rxb->dma_addr);
5168 rxq->queue[rxq->write] = rxb;
5169 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5170 rxq->free_count--;
5172 spin_unlock_irqrestore(&rxq->lock, flags);
5174 /* If the pre-allocated buffer pool is dropping low, schedule to
5175 * refill it */
5176 if (rxq->free_count <= RX_LOW_WATERMARK)
5177 queue_work(priv->workqueue, &priv->rx_replenish);
5179 /* If we've added more space for the firmware to place data, tell it */
5180 if (write != rxq->write)
5181 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5185 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5186 * Also restock the Rx queue via ipw_rx_queue_restock.
5188 * This is called as a scheduled work item (except for during intialization)
5190 static void ipw_rx_queue_replenish(void *data)
5192 struct ipw_priv *priv = data;
5193 struct ipw_rx_queue *rxq = priv->rxq;
5194 struct list_head *element;
5195 struct ipw_rx_mem_buffer *rxb;
5196 unsigned long flags;
5198 spin_lock_irqsave(&rxq->lock, flags);
5199 while (!list_empty(&rxq->rx_used)) {
5200 element = rxq->rx_used.next;
5201 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5202 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5203 if (!rxb->skb) {
5204 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5205 priv->net_dev->name);
5206 /* We don't reschedule replenish work here -- we will
5207 * call the restock method and if it still needs
5208 * more buffers it will schedule replenish */
5209 break;
5211 list_del(element);
5213 rxb->dma_addr =
5214 pci_map_single(priv->pci_dev, rxb->skb->data,
5215 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5217 list_add_tail(&rxb->list, &rxq->rx_free);
5218 rxq->free_count++;
5220 spin_unlock_irqrestore(&rxq->lock, flags);
5222 ipw_rx_queue_restock(priv);
5225 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5227 struct ipw_priv *priv =
5228 container_of(work, struct ipw_priv, rx_replenish);
5229 mutex_lock(&priv->mutex);
5230 ipw_rx_queue_replenish(priv);
5231 mutex_unlock(&priv->mutex);
5234 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5235 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5236 * This free routine walks the list of POOL entries and if SKB is set to
5237 * non NULL it is unmapped and freed
5239 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5241 int i;
5243 if (!rxq)
5244 return;
5246 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5247 if (rxq->pool[i].skb != NULL) {
5248 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5249 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5250 dev_kfree_skb(rxq->pool[i].skb);
5254 kfree(rxq);
5257 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5259 struct ipw_rx_queue *rxq;
5260 int i;
5262 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5263 if (unlikely(!rxq)) {
5264 IPW_ERROR("memory allocation failed\n");
5265 return NULL;
5267 spin_lock_init(&rxq->lock);
5268 INIT_LIST_HEAD(&rxq->rx_free);
5269 INIT_LIST_HEAD(&rxq->rx_used);
5271 /* Fill the rx_used queue with _all_ of the Rx buffers */
5272 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5273 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5275 /* Set us so that we have processed and used all buffers, but have
5276 * not restocked the Rx queue with fresh buffers */
5277 rxq->read = rxq->write = 0;
5278 rxq->free_count = 0;
5280 return rxq;
5283 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5285 rate &= ~LIBIPW_BASIC_RATE_MASK;
5286 if (ieee_mode == IEEE_A) {
5287 switch (rate) {
5288 case LIBIPW_OFDM_RATE_6MB:
5289 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5290 1 : 0;
5291 case LIBIPW_OFDM_RATE_9MB:
5292 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5293 1 : 0;
5294 case LIBIPW_OFDM_RATE_12MB:
5295 return priv->
5296 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5297 case LIBIPW_OFDM_RATE_18MB:
5298 return priv->
5299 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5300 case LIBIPW_OFDM_RATE_24MB:
5301 return priv->
5302 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5303 case LIBIPW_OFDM_RATE_36MB:
5304 return priv->
5305 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5306 case LIBIPW_OFDM_RATE_48MB:
5307 return priv->
5308 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5309 case LIBIPW_OFDM_RATE_54MB:
5310 return priv->
5311 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5312 default:
5313 return 0;
5317 /* B and G mixed */
5318 switch (rate) {
5319 case LIBIPW_CCK_RATE_1MB:
5320 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5321 case LIBIPW_CCK_RATE_2MB:
5322 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5323 case LIBIPW_CCK_RATE_5MB:
5324 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5325 case LIBIPW_CCK_RATE_11MB:
5326 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5329 /* If we are limited to B modulations, bail at this point */
5330 if (ieee_mode == IEEE_B)
5331 return 0;
5333 /* G */
5334 switch (rate) {
5335 case LIBIPW_OFDM_RATE_6MB:
5336 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5337 case LIBIPW_OFDM_RATE_9MB:
5338 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5339 case LIBIPW_OFDM_RATE_12MB:
5340 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5341 case LIBIPW_OFDM_RATE_18MB:
5342 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5343 case LIBIPW_OFDM_RATE_24MB:
5344 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5345 case LIBIPW_OFDM_RATE_36MB:
5346 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5347 case LIBIPW_OFDM_RATE_48MB:
5348 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5349 case LIBIPW_OFDM_RATE_54MB:
5350 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5353 return 0;
5356 static int ipw_compatible_rates(struct ipw_priv *priv,
5357 const struct libipw_network *network,
5358 struct ipw_supported_rates *rates)
5360 int num_rates, i;
5362 memset(rates, 0, sizeof(*rates));
5363 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5364 rates->num_rates = 0;
5365 for (i = 0; i < num_rates; i++) {
5366 if (!ipw_is_rate_in_mask(priv, network->mode,
5367 network->rates[i])) {
5369 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5370 IPW_DEBUG_SCAN("Adding masked mandatory "
5371 "rate %02X\n",
5372 network->rates[i]);
5373 rates->supported_rates[rates->num_rates++] =
5374 network->rates[i];
5375 continue;
5378 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5379 network->rates[i], priv->rates_mask);
5380 continue;
5383 rates->supported_rates[rates->num_rates++] = network->rates[i];
5386 num_rates = min(network->rates_ex_len,
5387 (u8) (IPW_MAX_RATES - num_rates));
5388 for (i = 0; i < num_rates; i++) {
5389 if (!ipw_is_rate_in_mask(priv, network->mode,
5390 network->rates_ex[i])) {
5391 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5392 IPW_DEBUG_SCAN("Adding masked mandatory "
5393 "rate %02X\n",
5394 network->rates_ex[i]);
5395 rates->supported_rates[rates->num_rates++] =
5396 network->rates[i];
5397 continue;
5400 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5401 network->rates_ex[i], priv->rates_mask);
5402 continue;
5405 rates->supported_rates[rates->num_rates++] =
5406 network->rates_ex[i];
5409 return 1;
5412 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5413 const struct ipw_supported_rates *src)
5415 u8 i;
5416 for (i = 0; i < src->num_rates; i++)
5417 dest->supported_rates[i] = src->supported_rates[i];
5418 dest->num_rates = src->num_rates;
5421 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5422 * mask should ever be used -- right now all callers to add the scan rates are
5423 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5424 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5425 u8 modulation, u32 rate_mask)
5427 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5428 LIBIPW_BASIC_RATE_MASK : 0;
5430 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5431 rates->supported_rates[rates->num_rates++] =
5432 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5434 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5435 rates->supported_rates[rates->num_rates++] =
5436 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5438 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5439 rates->supported_rates[rates->num_rates++] = basic_mask |
5440 LIBIPW_CCK_RATE_5MB;
5442 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5443 rates->supported_rates[rates->num_rates++] = basic_mask |
5444 LIBIPW_CCK_RATE_11MB;
5447 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5448 u8 modulation, u32 rate_mask)
5450 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5451 LIBIPW_BASIC_RATE_MASK : 0;
5453 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5454 rates->supported_rates[rates->num_rates++] = basic_mask |
5455 LIBIPW_OFDM_RATE_6MB;
5457 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5458 rates->supported_rates[rates->num_rates++] =
5459 LIBIPW_OFDM_RATE_9MB;
5461 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5462 rates->supported_rates[rates->num_rates++] = basic_mask |
5463 LIBIPW_OFDM_RATE_12MB;
5465 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5466 rates->supported_rates[rates->num_rates++] =
5467 LIBIPW_OFDM_RATE_18MB;
5469 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5470 rates->supported_rates[rates->num_rates++] = basic_mask |
5471 LIBIPW_OFDM_RATE_24MB;
5473 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5474 rates->supported_rates[rates->num_rates++] =
5475 LIBIPW_OFDM_RATE_36MB;
5477 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5478 rates->supported_rates[rates->num_rates++] =
5479 LIBIPW_OFDM_RATE_48MB;
5481 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5482 rates->supported_rates[rates->num_rates++] =
5483 LIBIPW_OFDM_RATE_54MB;
5486 struct ipw_network_match {
5487 struct libipw_network *network;
5488 struct ipw_supported_rates rates;
5491 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5492 struct ipw_network_match *match,
5493 struct libipw_network *network,
5494 int roaming)
5496 struct ipw_supported_rates rates;
5497 DECLARE_SSID_BUF(ssid);
5499 /* Verify that this network's capability is compatible with the
5500 * current mode (AdHoc or Infrastructure) */
5501 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5502 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5503 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5504 "capability mismatch.\n",
5505 print_ssid(ssid, network->ssid,
5506 network->ssid_len),
5507 network->bssid);
5508 return 0;
5511 if (unlikely(roaming)) {
5512 /* If we are roaming, then ensure check if this is a valid
5513 * network to try and roam to */
5514 if ((network->ssid_len != match->network->ssid_len) ||
5515 memcmp(network->ssid, match->network->ssid,
5516 network->ssid_len)) {
5517 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5518 "because of non-network ESSID.\n",
5519 print_ssid(ssid, network->ssid,
5520 network->ssid_len),
5521 network->bssid);
5522 return 0;
5524 } else {
5525 /* If an ESSID has been configured then compare the broadcast
5526 * ESSID to ours */
5527 if ((priv->config & CFG_STATIC_ESSID) &&
5528 ((network->ssid_len != priv->essid_len) ||
5529 memcmp(network->ssid, priv->essid,
5530 min(network->ssid_len, priv->essid_len)))) {
5531 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5533 strncpy(escaped,
5534 print_ssid(ssid, network->ssid,
5535 network->ssid_len),
5536 sizeof(escaped));
5537 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538 "because of ESSID mismatch: '%s'.\n",
5539 escaped, network->bssid,
5540 print_ssid(ssid, priv->essid,
5541 priv->essid_len));
5542 return 0;
5546 /* If the old network rate is better than this one, don't bother
5547 * testing everything else. */
5549 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5550 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5551 "current network.\n",
5552 print_ssid(ssid, match->network->ssid,
5553 match->network->ssid_len));
5554 return 0;
5555 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5556 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5557 "current network.\n",
5558 print_ssid(ssid, match->network->ssid,
5559 match->network->ssid_len));
5560 return 0;
5563 /* Now go through and see if the requested network is valid... */
5564 if (priv->ieee->scan_age != 0 &&
5565 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5566 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5567 "because of age: %ums.\n",
5568 print_ssid(ssid, network->ssid,
5569 network->ssid_len),
5570 network->bssid,
5571 jiffies_to_msecs(jiffies -
5572 network->last_scanned));
5573 return 0;
5576 if ((priv->config & CFG_STATIC_CHANNEL) &&
5577 (network->channel != priv->channel)) {
5578 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5579 "because of channel mismatch: %d != %d.\n",
5580 print_ssid(ssid, network->ssid,
5581 network->ssid_len),
5582 network->bssid,
5583 network->channel, priv->channel);
5584 return 0;
5587 /* Verify privacy compatability */
5588 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5589 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5590 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5591 "because of privacy mismatch: %s != %s.\n",
5592 print_ssid(ssid, network->ssid,
5593 network->ssid_len),
5594 network->bssid,
5595 priv->
5596 capability & CAP_PRIVACY_ON ? "on" : "off",
5597 network->
5598 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5599 "off");
5600 return 0;
5603 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5604 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5605 "because of the same BSSID match: %pM"
5606 ".\n", print_ssid(ssid, network->ssid,
5607 network->ssid_len),
5608 network->bssid,
5609 priv->bssid);
5610 return 0;
5613 /* Filter out any incompatible freq / mode combinations */
5614 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5615 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5616 "because of invalid frequency/mode "
5617 "combination.\n",
5618 print_ssid(ssid, network->ssid,
5619 network->ssid_len),
5620 network->bssid);
5621 return 0;
5624 /* Ensure that the rates supported by the driver are compatible with
5625 * this AP, including verification of basic rates (mandatory) */
5626 if (!ipw_compatible_rates(priv, network, &rates)) {
5627 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5628 "because configured rate mask excludes "
5629 "AP mandatory rate.\n",
5630 print_ssid(ssid, network->ssid,
5631 network->ssid_len),
5632 network->bssid);
5633 return 0;
5636 if (rates.num_rates == 0) {
5637 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5638 "because of no compatible rates.\n",
5639 print_ssid(ssid, network->ssid,
5640 network->ssid_len),
5641 network->bssid);
5642 return 0;
5645 /* TODO: Perform any further minimal comparititive tests. We do not
5646 * want to put too much policy logic here; intelligent scan selection
5647 * should occur within a generic IEEE 802.11 user space tool. */
5649 /* Set up 'new' AP to this network */
5650 ipw_copy_rates(&match->rates, &rates);
5651 match->network = network;
5652 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5653 print_ssid(ssid, network->ssid, network->ssid_len),
5654 network->bssid);
5656 return 1;
5659 static void ipw_merge_adhoc_network(struct work_struct *work)
5661 DECLARE_SSID_BUF(ssid);
5662 struct ipw_priv *priv =
5663 container_of(work, struct ipw_priv, merge_networks);
5664 struct libipw_network *network = NULL;
5665 struct ipw_network_match match = {
5666 .network = priv->assoc_network
5669 if ((priv->status & STATUS_ASSOCIATED) &&
5670 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5671 /* First pass through ROAM process -- look for a better
5672 * network */
5673 unsigned long flags;
5675 spin_lock_irqsave(&priv->ieee->lock, flags);
5676 list_for_each_entry(network, &priv->ieee->network_list, list) {
5677 if (network != priv->assoc_network)
5678 ipw_find_adhoc_network(priv, &match, network,
5681 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5683 if (match.network == priv->assoc_network) {
5684 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5685 "merge to.\n");
5686 return;
5689 mutex_lock(&priv->mutex);
5690 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5691 IPW_DEBUG_MERGE("remove network %s\n",
5692 print_ssid(ssid, priv->essid,
5693 priv->essid_len));
5694 ipw_remove_current_network(priv);
5697 ipw_disassociate(priv);
5698 priv->assoc_network = match.network;
5699 mutex_unlock(&priv->mutex);
5700 return;
5704 static int ipw_best_network(struct ipw_priv *priv,
5705 struct ipw_network_match *match,
5706 struct libipw_network *network, int roaming)
5708 struct ipw_supported_rates rates;
5709 DECLARE_SSID_BUF(ssid);
5711 /* Verify that this network's capability is compatible with the
5712 * current mode (AdHoc or Infrastructure) */
5713 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5714 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5715 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5716 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5717 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5718 "capability mismatch.\n",
5719 print_ssid(ssid, network->ssid,
5720 network->ssid_len),
5721 network->bssid);
5722 return 0;
5725 if (unlikely(roaming)) {
5726 /* If we are roaming, then ensure check if this is a valid
5727 * network to try and roam to */
5728 if ((network->ssid_len != match->network->ssid_len) ||
5729 memcmp(network->ssid, match->network->ssid,
5730 network->ssid_len)) {
5731 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5732 "because of non-network ESSID.\n",
5733 print_ssid(ssid, network->ssid,
5734 network->ssid_len),
5735 network->bssid);
5736 return 0;
5738 } else {
5739 /* If an ESSID has been configured then compare the broadcast
5740 * ESSID to ours */
5741 if ((priv->config & CFG_STATIC_ESSID) &&
5742 ((network->ssid_len != priv->essid_len) ||
5743 memcmp(network->ssid, priv->essid,
5744 min(network->ssid_len, priv->essid_len)))) {
5745 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5746 strncpy(escaped,
5747 print_ssid(ssid, network->ssid,
5748 network->ssid_len),
5749 sizeof(escaped));
5750 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751 "because of ESSID mismatch: '%s'.\n",
5752 escaped, network->bssid,
5753 print_ssid(ssid, priv->essid,
5754 priv->essid_len));
5755 return 0;
5759 /* If the old network rate is better than this one, don't bother
5760 * testing everything else. */
5761 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5762 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5763 strncpy(escaped,
5764 print_ssid(ssid, network->ssid, network->ssid_len),
5765 sizeof(escaped));
5766 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5767 "'%s (%pM)' has a stronger signal.\n",
5768 escaped, network->bssid,
5769 print_ssid(ssid, match->network->ssid,
5770 match->network->ssid_len),
5771 match->network->bssid);
5772 return 0;
5775 /* If this network has already had an association attempt within the
5776 * last 3 seconds, do not try and associate again... */
5777 if (network->last_associate &&
5778 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5779 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5780 "because of storming (%ums since last "
5781 "assoc attempt).\n",
5782 print_ssid(ssid, network->ssid,
5783 network->ssid_len),
5784 network->bssid,
5785 jiffies_to_msecs(jiffies -
5786 network->last_associate));
5787 return 0;
5790 /* Now go through and see if the requested network is valid... */
5791 if (priv->ieee->scan_age != 0 &&
5792 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5793 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5794 "because of age: %ums.\n",
5795 print_ssid(ssid, network->ssid,
5796 network->ssid_len),
5797 network->bssid,
5798 jiffies_to_msecs(jiffies -
5799 network->last_scanned));
5800 return 0;
5803 if ((priv->config & CFG_STATIC_CHANNEL) &&
5804 (network->channel != priv->channel)) {
5805 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5806 "because of channel mismatch: %d != %d.\n",
5807 print_ssid(ssid, network->ssid,
5808 network->ssid_len),
5809 network->bssid,
5810 network->channel, priv->channel);
5811 return 0;
5814 /* Verify privacy compatability */
5815 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5816 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5817 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5818 "because of privacy mismatch: %s != %s.\n",
5819 print_ssid(ssid, network->ssid,
5820 network->ssid_len),
5821 network->bssid,
5822 priv->capability & CAP_PRIVACY_ON ? "on" :
5823 "off",
5824 network->capability &
5825 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5826 return 0;
5829 if ((priv->config & CFG_STATIC_BSSID) &&
5830 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5831 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5832 "because of BSSID mismatch: %pM.\n",
5833 print_ssid(ssid, network->ssid,
5834 network->ssid_len),
5835 network->bssid, priv->bssid);
5836 return 0;
5839 /* Filter out any incompatible freq / mode combinations */
5840 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5841 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5842 "because of invalid frequency/mode "
5843 "combination.\n",
5844 print_ssid(ssid, network->ssid,
5845 network->ssid_len),
5846 network->bssid);
5847 return 0;
5850 /* Filter out invalid channel in current GEO */
5851 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5852 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5853 "because of invalid channel in current GEO\n",
5854 print_ssid(ssid, network->ssid,
5855 network->ssid_len),
5856 network->bssid);
5857 return 0;
5860 /* Ensure that the rates supported by the driver are compatible with
5861 * this AP, including verification of basic rates (mandatory) */
5862 if (!ipw_compatible_rates(priv, network, &rates)) {
5863 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5864 "because configured rate mask excludes "
5865 "AP mandatory rate.\n",
5866 print_ssid(ssid, network->ssid,
5867 network->ssid_len),
5868 network->bssid);
5869 return 0;
5872 if (rates.num_rates == 0) {
5873 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5874 "because of no compatible rates.\n",
5875 print_ssid(ssid, network->ssid,
5876 network->ssid_len),
5877 network->bssid);
5878 return 0;
5881 /* TODO: Perform any further minimal comparititive tests. We do not
5882 * want to put too much policy logic here; intelligent scan selection
5883 * should occur within a generic IEEE 802.11 user space tool. */
5885 /* Set up 'new' AP to this network */
5886 ipw_copy_rates(&match->rates, &rates);
5887 match->network = network;
5889 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5890 print_ssid(ssid, network->ssid, network->ssid_len),
5891 network->bssid);
5893 return 1;
5896 static void ipw_adhoc_create(struct ipw_priv *priv,
5897 struct libipw_network *network)
5899 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5900 int i;
5903 * For the purposes of scanning, we can set our wireless mode
5904 * to trigger scans across combinations of bands, but when it
5905 * comes to creating a new ad-hoc network, we have tell the FW
5906 * exactly which band to use.
5908 * We also have the possibility of an invalid channel for the
5909 * chossen band. Attempting to create a new ad-hoc network
5910 * with an invalid channel for wireless mode will trigger a
5911 * FW fatal error.
5914 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5915 case LIBIPW_52GHZ_BAND:
5916 network->mode = IEEE_A;
5917 i = libipw_channel_to_index(priv->ieee, priv->channel);
5918 BUG_ON(i == -1);
5919 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5920 IPW_WARNING("Overriding invalid channel\n");
5921 priv->channel = geo->a[0].channel;
5923 break;
5925 case LIBIPW_24GHZ_BAND:
5926 if (priv->ieee->mode & IEEE_G)
5927 network->mode = IEEE_G;
5928 else
5929 network->mode = IEEE_B;
5930 i = libipw_channel_to_index(priv->ieee, priv->channel);
5931 BUG_ON(i == -1);
5932 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5933 IPW_WARNING("Overriding invalid channel\n");
5934 priv->channel = geo->bg[0].channel;
5936 break;
5938 default:
5939 IPW_WARNING("Overriding invalid channel\n");
5940 if (priv->ieee->mode & IEEE_A) {
5941 network->mode = IEEE_A;
5942 priv->channel = geo->a[0].channel;
5943 } else if (priv->ieee->mode & IEEE_G) {
5944 network->mode = IEEE_G;
5945 priv->channel = geo->bg[0].channel;
5946 } else {
5947 network->mode = IEEE_B;
5948 priv->channel = geo->bg[0].channel;
5950 break;
5953 network->channel = priv->channel;
5954 priv->config |= CFG_ADHOC_PERSIST;
5955 ipw_create_bssid(priv, network->bssid);
5956 network->ssid_len = priv->essid_len;
5957 memcpy(network->ssid, priv->essid, priv->essid_len);
5958 memset(&network->stats, 0, sizeof(network->stats));
5959 network->capability = WLAN_CAPABILITY_IBSS;
5960 if (!(priv->config & CFG_PREAMBLE_LONG))
5961 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5962 if (priv->capability & CAP_PRIVACY_ON)
5963 network->capability |= WLAN_CAPABILITY_PRIVACY;
5964 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5965 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5966 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5967 memcpy(network->rates_ex,
5968 &priv->rates.supported_rates[network->rates_len],
5969 network->rates_ex_len);
5970 network->last_scanned = 0;
5971 network->flags = 0;
5972 network->last_associate = 0;
5973 network->time_stamp[0] = 0;
5974 network->time_stamp[1] = 0;
5975 network->beacon_interval = 100; /* Default */
5976 network->listen_interval = 10; /* Default */
5977 network->atim_window = 0; /* Default */
5978 network->wpa_ie_len = 0;
5979 network->rsn_ie_len = 0;
5982 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5984 struct ipw_tgi_tx_key key;
5986 if (!(priv->ieee->sec.flags & (1 << index)))
5987 return;
5989 key.key_id = index;
5990 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5991 key.security_type = type;
5992 key.station_index = 0; /* always 0 for BSS */
5993 key.flags = 0;
5994 /* 0 for new key; previous value of counter (after fatal error) */
5995 key.tx_counter[0] = cpu_to_le32(0);
5996 key.tx_counter[1] = cpu_to_le32(0);
5998 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6001 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6003 struct ipw_wep_key key;
6004 int i;
6006 key.cmd_id = DINO_CMD_WEP_KEY;
6007 key.seq_num = 0;
6009 /* Note: AES keys cannot be set for multiple times.
6010 * Only set it at the first time. */
6011 for (i = 0; i < 4; i++) {
6012 key.key_index = i | type;
6013 if (!(priv->ieee->sec.flags & (1 << i))) {
6014 key.key_size = 0;
6015 continue;
6018 key.key_size = priv->ieee->sec.key_sizes[i];
6019 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6021 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6025 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6027 if (priv->ieee->host_encrypt)
6028 return;
6030 switch (level) {
6031 case SEC_LEVEL_3:
6032 priv->sys_config.disable_unicast_decryption = 0;
6033 priv->ieee->host_decrypt = 0;
6034 break;
6035 case SEC_LEVEL_2:
6036 priv->sys_config.disable_unicast_decryption = 1;
6037 priv->ieee->host_decrypt = 1;
6038 break;
6039 case SEC_LEVEL_1:
6040 priv->sys_config.disable_unicast_decryption = 0;
6041 priv->ieee->host_decrypt = 0;
6042 break;
6043 case SEC_LEVEL_0:
6044 priv->sys_config.disable_unicast_decryption = 1;
6045 break;
6046 default:
6047 break;
6051 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6053 if (priv->ieee->host_encrypt)
6054 return;
6056 switch (level) {
6057 case SEC_LEVEL_3:
6058 priv->sys_config.disable_multicast_decryption = 0;
6059 break;
6060 case SEC_LEVEL_2:
6061 priv->sys_config.disable_multicast_decryption = 1;
6062 break;
6063 case SEC_LEVEL_1:
6064 priv->sys_config.disable_multicast_decryption = 0;
6065 break;
6066 case SEC_LEVEL_0:
6067 priv->sys_config.disable_multicast_decryption = 1;
6068 break;
6069 default:
6070 break;
6074 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6076 switch (priv->ieee->sec.level) {
6077 case SEC_LEVEL_3:
6078 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6079 ipw_send_tgi_tx_key(priv,
6080 DCT_FLAG_EXT_SECURITY_CCM,
6081 priv->ieee->sec.active_key);
6083 if (!priv->ieee->host_mc_decrypt)
6084 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6085 break;
6086 case SEC_LEVEL_2:
6087 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6088 ipw_send_tgi_tx_key(priv,
6089 DCT_FLAG_EXT_SECURITY_TKIP,
6090 priv->ieee->sec.active_key);
6091 break;
6092 case SEC_LEVEL_1:
6093 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6094 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6095 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6096 break;
6097 case SEC_LEVEL_0:
6098 default:
6099 break;
6103 static void ipw_adhoc_check(void *data)
6105 struct ipw_priv *priv = data;
6107 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6108 !(priv->config & CFG_ADHOC_PERSIST)) {
6109 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6110 IPW_DL_STATE | IPW_DL_ASSOC,
6111 "Missed beacon: %d - disassociate\n",
6112 priv->missed_adhoc_beacons);
6113 ipw_remove_current_network(priv);
6114 ipw_disassociate(priv);
6115 return;
6118 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6119 le16_to_cpu(priv->assoc_request.beacon_interval));
6122 static void ipw_bg_adhoc_check(struct work_struct *work)
6124 struct ipw_priv *priv =
6125 container_of(work, struct ipw_priv, adhoc_check.work);
6126 mutex_lock(&priv->mutex);
6127 ipw_adhoc_check(priv);
6128 mutex_unlock(&priv->mutex);
6131 static void ipw_debug_config(struct ipw_priv *priv)
6133 DECLARE_SSID_BUF(ssid);
6134 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6135 "[CFG 0x%08X]\n", priv->config);
6136 if (priv->config & CFG_STATIC_CHANNEL)
6137 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6138 else
6139 IPW_DEBUG_INFO("Channel unlocked.\n");
6140 if (priv->config & CFG_STATIC_ESSID)
6141 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6142 print_ssid(ssid, priv->essid, priv->essid_len));
6143 else
6144 IPW_DEBUG_INFO("ESSID unlocked.\n");
6145 if (priv->config & CFG_STATIC_BSSID)
6146 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6147 else
6148 IPW_DEBUG_INFO("BSSID unlocked.\n");
6149 if (priv->capability & CAP_PRIVACY_ON)
6150 IPW_DEBUG_INFO("PRIVACY on\n");
6151 else
6152 IPW_DEBUG_INFO("PRIVACY off\n");
6153 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6156 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6158 /* TODO: Verify that this works... */
6159 struct ipw_fixed_rate fr;
6160 u32 reg;
6161 u16 mask = 0;
6162 u16 new_tx_rates = priv->rates_mask;
6164 /* Identify 'current FW band' and match it with the fixed
6165 * Tx rates */
6167 switch (priv->ieee->freq_band) {
6168 case LIBIPW_52GHZ_BAND: /* A only */
6169 /* IEEE_A */
6170 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6171 /* Invalid fixed rate mask */
6172 IPW_DEBUG_WX
6173 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6174 new_tx_rates = 0;
6175 break;
6178 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6179 break;
6181 default: /* 2.4Ghz or Mixed */
6182 /* IEEE_B */
6183 if (mode == IEEE_B) {
6184 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6185 /* Invalid fixed rate mask */
6186 IPW_DEBUG_WX
6187 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6188 new_tx_rates = 0;
6190 break;
6193 /* IEEE_G */
6194 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6195 LIBIPW_OFDM_RATES_MASK)) {
6196 /* Invalid fixed rate mask */
6197 IPW_DEBUG_WX
6198 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6199 new_tx_rates = 0;
6200 break;
6203 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6204 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6205 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6208 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6209 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6210 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6213 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6214 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6215 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6218 new_tx_rates |= mask;
6219 break;
6222 fr.tx_rates = cpu_to_le16(new_tx_rates);
6224 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6225 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6228 static void ipw_abort_scan(struct ipw_priv *priv)
6230 int err;
6232 if (priv->status & STATUS_SCAN_ABORTING) {
6233 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6234 return;
6236 priv->status |= STATUS_SCAN_ABORTING;
6238 err = ipw_send_scan_abort(priv);
6239 if (err)
6240 IPW_DEBUG_HC("Request to abort scan failed.\n");
6243 static void ipw_add_scan_channels(struct ipw_priv *priv,
6244 struct ipw_scan_request_ext *scan,
6245 int scan_type)
6247 int channel_index = 0;
6248 const struct libipw_geo *geo;
6249 int i;
6251 geo = libipw_get_geo(priv->ieee);
6253 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6254 int start = channel_index;
6255 for (i = 0; i < geo->a_channels; i++) {
6256 if ((priv->status & STATUS_ASSOCIATED) &&
6257 geo->a[i].channel == priv->channel)
6258 continue;
6259 channel_index++;
6260 scan->channels_list[channel_index] = geo->a[i].channel;
6261 ipw_set_scan_type(scan, channel_index,
6262 geo->a[i].
6263 flags & LIBIPW_CH_PASSIVE_ONLY ?
6264 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6265 scan_type);
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6270 (channel_index - start);
6271 channel_index++;
6275 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6276 int start = channel_index;
6277 if (priv->config & CFG_SPEED_SCAN) {
6278 int index;
6279 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6280 /* nop out the list */
6281 [0] = 0
6284 u8 channel;
6285 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6286 channel =
6287 priv->speed_scan[priv->speed_scan_pos];
6288 if (channel == 0) {
6289 priv->speed_scan_pos = 0;
6290 channel = priv->speed_scan[0];
6292 if ((priv->status & STATUS_ASSOCIATED) &&
6293 channel == priv->channel) {
6294 priv->speed_scan_pos++;
6295 continue;
6298 /* If this channel has already been
6299 * added in scan, break from loop
6300 * and this will be the first channel
6301 * in the next scan.
6303 if (channels[channel - 1] != 0)
6304 break;
6306 channels[channel - 1] = 1;
6307 priv->speed_scan_pos++;
6308 channel_index++;
6309 scan->channels_list[channel_index] = channel;
6310 index =
6311 libipw_channel_to_index(priv->ieee, channel);
6312 ipw_set_scan_type(scan, channel_index,
6313 geo->bg[index].
6314 flags &
6315 LIBIPW_CH_PASSIVE_ONLY ?
6316 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6317 : scan_type);
6319 } else {
6320 for (i = 0; i < geo->bg_channels; i++) {
6321 if ((priv->status & STATUS_ASSOCIATED) &&
6322 geo->bg[i].channel == priv->channel)
6323 continue;
6324 channel_index++;
6325 scan->channels_list[channel_index] =
6326 geo->bg[i].channel;
6327 ipw_set_scan_type(scan, channel_index,
6328 geo->bg[i].
6329 flags &
6330 LIBIPW_CH_PASSIVE_ONLY ?
6331 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6332 : scan_type);
6336 if (start != channel_index) {
6337 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6338 (channel_index - start);
6343 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6345 /* staying on passive channels longer than the DTIM interval during a
6346 * scan, while associated, causes the firmware to cancel the scan
6347 * without notification. Hence, don't stay on passive channels longer
6348 * than the beacon interval.
6350 if (priv->status & STATUS_ASSOCIATED
6351 && priv->assoc_network->beacon_interval > 10)
6352 return priv->assoc_network->beacon_interval - 10;
6353 else
6354 return 120;
6357 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6359 struct ipw_scan_request_ext scan;
6360 int err = 0, scan_type;
6362 if (!(priv->status & STATUS_INIT) ||
6363 (priv->status & STATUS_EXIT_PENDING))
6364 return 0;
6366 mutex_lock(&priv->mutex);
6368 if (direct && (priv->direct_scan_ssid_len == 0)) {
6369 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6370 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6371 goto done;
6374 if (priv->status & STATUS_SCANNING) {
6375 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6376 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6377 STATUS_SCAN_PENDING;
6378 goto done;
6381 if (!(priv->status & STATUS_SCAN_FORCED) &&
6382 priv->status & STATUS_SCAN_ABORTING) {
6383 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6384 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6385 STATUS_SCAN_PENDING;
6386 goto done;
6389 if (priv->status & STATUS_RF_KILL_MASK) {
6390 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6391 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6392 STATUS_SCAN_PENDING;
6393 goto done;
6396 memset(&scan, 0, sizeof(scan));
6397 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6399 if (type == IW_SCAN_TYPE_PASSIVE) {
6400 IPW_DEBUG_WX("use passive scanning\n");
6401 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6402 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6403 cpu_to_le16(ipw_passive_dwell_time(priv));
6404 ipw_add_scan_channels(priv, &scan, scan_type);
6405 goto send_request;
6408 /* Use active scan by default. */
6409 if (priv->config & CFG_SPEED_SCAN)
6410 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6411 cpu_to_le16(30);
6412 else
6413 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6414 cpu_to_le16(20);
6416 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6417 cpu_to_le16(20);
6419 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6420 cpu_to_le16(ipw_passive_dwell_time(priv));
6421 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6423 #ifdef CONFIG_IPW2200_MONITOR
6424 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6425 u8 channel;
6426 u8 band = 0;
6428 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6429 case LIBIPW_52GHZ_BAND:
6430 band = (u8) (IPW_A_MODE << 6) | 1;
6431 channel = priv->channel;
6432 break;
6434 case LIBIPW_24GHZ_BAND:
6435 band = (u8) (IPW_B_MODE << 6) | 1;
6436 channel = priv->channel;
6437 break;
6439 default:
6440 band = (u8) (IPW_B_MODE << 6) | 1;
6441 channel = 9;
6442 break;
6445 scan.channels_list[0] = band;
6446 scan.channels_list[1] = channel;
6447 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6449 /* NOTE: The card will sit on this channel for this time
6450 * period. Scan aborts are timing sensitive and frequently
6451 * result in firmware restarts. As such, it is best to
6452 * set a small dwell_time here and just keep re-issuing
6453 * scans. Otherwise fast channel hopping will not actually
6454 * hop channels.
6456 * TODO: Move SPEED SCAN support to all modes and bands */
6457 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6458 cpu_to_le16(2000);
6459 } else {
6460 #endif /* CONFIG_IPW2200_MONITOR */
6461 /* Honor direct scans first, otherwise if we are roaming make
6462 * this a direct scan for the current network. Finally,
6463 * ensure that every other scan is a fast channel hop scan */
6464 if (direct) {
6465 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6466 priv->direct_scan_ssid_len);
6467 if (err) {
6468 IPW_DEBUG_HC("Attempt to send SSID command "
6469 "failed\n");
6470 goto done;
6473 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6474 } else if ((priv->status & STATUS_ROAMING)
6475 || (!(priv->status & STATUS_ASSOCIATED)
6476 && (priv->config & CFG_STATIC_ESSID)
6477 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6478 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6479 if (err) {
6480 IPW_DEBUG_HC("Attempt to send SSID command "
6481 "failed.\n");
6482 goto done;
6485 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6486 } else
6487 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6489 ipw_add_scan_channels(priv, &scan, scan_type);
6490 #ifdef CONFIG_IPW2200_MONITOR
6492 #endif
6494 send_request:
6495 err = ipw_send_scan_request_ext(priv, &scan);
6496 if (err) {
6497 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6498 goto done;
6501 priv->status |= STATUS_SCANNING;
6502 if (direct) {
6503 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6504 priv->direct_scan_ssid_len = 0;
6505 } else
6506 priv->status &= ~STATUS_SCAN_PENDING;
6508 queue_delayed_work(priv->workqueue, &priv->scan_check,
6509 IPW_SCAN_CHECK_WATCHDOG);
6510 done:
6511 mutex_unlock(&priv->mutex);
6512 return err;
6515 static void ipw_request_passive_scan(struct work_struct *work)
6517 struct ipw_priv *priv =
6518 container_of(work, struct ipw_priv, request_passive_scan.work);
6519 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6522 static void ipw_request_scan(struct work_struct *work)
6524 struct ipw_priv *priv =
6525 container_of(work, struct ipw_priv, request_scan.work);
6526 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6529 static void ipw_request_direct_scan(struct work_struct *work)
6531 struct ipw_priv *priv =
6532 container_of(work, struct ipw_priv, request_direct_scan.work);
6533 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6536 static void ipw_bg_abort_scan(struct work_struct *work)
6538 struct ipw_priv *priv =
6539 container_of(work, struct ipw_priv, abort_scan);
6540 mutex_lock(&priv->mutex);
6541 ipw_abort_scan(priv);
6542 mutex_unlock(&priv->mutex);
6545 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6547 /* This is called when wpa_supplicant loads and closes the driver
6548 * interface. */
6549 priv->ieee->wpa_enabled = value;
6550 return 0;
6553 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6555 struct libipw_device *ieee = priv->ieee;
6556 struct libipw_security sec = {
6557 .flags = SEC_AUTH_MODE,
6559 int ret = 0;
6561 if (value & IW_AUTH_ALG_SHARED_KEY) {
6562 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6563 ieee->open_wep = 0;
6564 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6565 sec.auth_mode = WLAN_AUTH_OPEN;
6566 ieee->open_wep = 1;
6567 } else if (value & IW_AUTH_ALG_LEAP) {
6568 sec.auth_mode = WLAN_AUTH_LEAP;
6569 ieee->open_wep = 1;
6570 } else
6571 return -EINVAL;
6573 if (ieee->set_security)
6574 ieee->set_security(ieee->dev, &sec);
6575 else
6576 ret = -EOPNOTSUPP;
6578 return ret;
6581 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6582 int wpa_ie_len)
6584 /* make sure WPA is enabled */
6585 ipw_wpa_enable(priv, 1);
6588 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6589 char *capabilities, int length)
6591 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6593 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6594 capabilities);
6598 * WE-18 support
6601 /* SIOCSIWGENIE */
6602 static int ipw_wx_set_genie(struct net_device *dev,
6603 struct iw_request_info *info,
6604 union iwreq_data *wrqu, char *extra)
6606 struct ipw_priv *priv = libipw_priv(dev);
6607 struct libipw_device *ieee = priv->ieee;
6608 u8 *buf;
6609 int err = 0;
6611 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6612 (wrqu->data.length && extra == NULL))
6613 return -EINVAL;
6615 if (wrqu->data.length) {
6616 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6617 if (buf == NULL) {
6618 err = -ENOMEM;
6619 goto out;
6622 kfree(ieee->wpa_ie);
6623 ieee->wpa_ie = buf;
6624 ieee->wpa_ie_len = wrqu->data.length;
6625 } else {
6626 kfree(ieee->wpa_ie);
6627 ieee->wpa_ie = NULL;
6628 ieee->wpa_ie_len = 0;
6631 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6632 out:
6633 return err;
6636 /* SIOCGIWGENIE */
6637 static int ipw_wx_get_genie(struct net_device *dev,
6638 struct iw_request_info *info,
6639 union iwreq_data *wrqu, char *extra)
6641 struct ipw_priv *priv = libipw_priv(dev);
6642 struct libipw_device *ieee = priv->ieee;
6643 int err = 0;
6645 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6646 wrqu->data.length = 0;
6647 goto out;
6650 if (wrqu->data.length < ieee->wpa_ie_len) {
6651 err = -E2BIG;
6652 goto out;
6655 wrqu->data.length = ieee->wpa_ie_len;
6656 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6658 out:
6659 return err;
6662 static int wext_cipher2level(int cipher)
6664 switch (cipher) {
6665 case IW_AUTH_CIPHER_NONE:
6666 return SEC_LEVEL_0;
6667 case IW_AUTH_CIPHER_WEP40:
6668 case IW_AUTH_CIPHER_WEP104:
6669 return SEC_LEVEL_1;
6670 case IW_AUTH_CIPHER_TKIP:
6671 return SEC_LEVEL_2;
6672 case IW_AUTH_CIPHER_CCMP:
6673 return SEC_LEVEL_3;
6674 default:
6675 return -1;
6679 /* SIOCSIWAUTH */
6680 static int ipw_wx_set_auth(struct net_device *dev,
6681 struct iw_request_info *info,
6682 union iwreq_data *wrqu, char *extra)
6684 struct ipw_priv *priv = libipw_priv(dev);
6685 struct libipw_device *ieee = priv->ieee;
6686 struct iw_param *param = &wrqu->param;
6687 struct lib80211_crypt_data *crypt;
6688 unsigned long flags;
6689 int ret = 0;
6691 switch (param->flags & IW_AUTH_INDEX) {
6692 case IW_AUTH_WPA_VERSION:
6693 break;
6694 case IW_AUTH_CIPHER_PAIRWISE:
6695 ipw_set_hw_decrypt_unicast(priv,
6696 wext_cipher2level(param->value));
6697 break;
6698 case IW_AUTH_CIPHER_GROUP:
6699 ipw_set_hw_decrypt_multicast(priv,
6700 wext_cipher2level(param->value));
6701 break;
6702 case IW_AUTH_KEY_MGMT:
6704 * ipw2200 does not use these parameters
6706 break;
6708 case IW_AUTH_TKIP_COUNTERMEASURES:
6709 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6710 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6711 break;
6713 flags = crypt->ops->get_flags(crypt->priv);
6715 if (param->value)
6716 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6717 else
6718 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6720 crypt->ops->set_flags(flags, crypt->priv);
6722 break;
6724 case IW_AUTH_DROP_UNENCRYPTED:{
6725 /* HACK:
6727 * wpa_supplicant calls set_wpa_enabled when the driver
6728 * is loaded and unloaded, regardless of if WPA is being
6729 * used. No other calls are made which can be used to
6730 * determine if encryption will be used or not prior to
6731 * association being expected. If encryption is not being
6732 * used, drop_unencrypted is set to false, else true -- we
6733 * can use this to determine if the CAP_PRIVACY_ON bit should
6734 * be set.
6736 struct libipw_security sec = {
6737 .flags = SEC_ENABLED,
6738 .enabled = param->value,
6740 priv->ieee->drop_unencrypted = param->value;
6741 /* We only change SEC_LEVEL for open mode. Others
6742 * are set by ipw_wpa_set_encryption.
6744 if (!param->value) {
6745 sec.flags |= SEC_LEVEL;
6746 sec.level = SEC_LEVEL_0;
6747 } else {
6748 sec.flags |= SEC_LEVEL;
6749 sec.level = SEC_LEVEL_1;
6751 if (priv->ieee->set_security)
6752 priv->ieee->set_security(priv->ieee->dev, &sec);
6753 break;
6756 case IW_AUTH_80211_AUTH_ALG:
6757 ret = ipw_wpa_set_auth_algs(priv, param->value);
6758 break;
6760 case IW_AUTH_WPA_ENABLED:
6761 ret = ipw_wpa_enable(priv, param->value);
6762 ipw_disassociate(priv);
6763 break;
6765 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6766 ieee->ieee802_1x = param->value;
6767 break;
6769 case IW_AUTH_PRIVACY_INVOKED:
6770 ieee->privacy_invoked = param->value;
6771 break;
6773 default:
6774 return -EOPNOTSUPP;
6776 return ret;
6779 /* SIOCGIWAUTH */
6780 static int ipw_wx_get_auth(struct net_device *dev,
6781 struct iw_request_info *info,
6782 union iwreq_data *wrqu, char *extra)
6784 struct ipw_priv *priv = libipw_priv(dev);
6785 struct libipw_device *ieee = priv->ieee;
6786 struct lib80211_crypt_data *crypt;
6787 struct iw_param *param = &wrqu->param;
6788 int ret = 0;
6790 switch (param->flags & IW_AUTH_INDEX) {
6791 case IW_AUTH_WPA_VERSION:
6792 case IW_AUTH_CIPHER_PAIRWISE:
6793 case IW_AUTH_CIPHER_GROUP:
6794 case IW_AUTH_KEY_MGMT:
6796 * wpa_supplicant will control these internally
6798 ret = -EOPNOTSUPP;
6799 break;
6801 case IW_AUTH_TKIP_COUNTERMEASURES:
6802 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6803 if (!crypt || !crypt->ops->get_flags)
6804 break;
6806 param->value = (crypt->ops->get_flags(crypt->priv) &
6807 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6809 break;
6811 case IW_AUTH_DROP_UNENCRYPTED:
6812 param->value = ieee->drop_unencrypted;
6813 break;
6815 case IW_AUTH_80211_AUTH_ALG:
6816 param->value = ieee->sec.auth_mode;
6817 break;
6819 case IW_AUTH_WPA_ENABLED:
6820 param->value = ieee->wpa_enabled;
6821 break;
6823 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6824 param->value = ieee->ieee802_1x;
6825 break;
6827 case IW_AUTH_ROAMING_CONTROL:
6828 case IW_AUTH_PRIVACY_INVOKED:
6829 param->value = ieee->privacy_invoked;
6830 break;
6832 default:
6833 return -EOPNOTSUPP;
6835 return 0;
6838 /* SIOCSIWENCODEEXT */
6839 static int ipw_wx_set_encodeext(struct net_device *dev,
6840 struct iw_request_info *info,
6841 union iwreq_data *wrqu, char *extra)
6843 struct ipw_priv *priv = libipw_priv(dev);
6844 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6846 if (hwcrypto) {
6847 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6848 /* IPW HW can't build TKIP MIC,
6849 host decryption still needed */
6850 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6851 priv->ieee->host_mc_decrypt = 1;
6852 else {
6853 priv->ieee->host_encrypt = 0;
6854 priv->ieee->host_encrypt_msdu = 1;
6855 priv->ieee->host_decrypt = 1;
6857 } else {
6858 priv->ieee->host_encrypt = 0;
6859 priv->ieee->host_encrypt_msdu = 0;
6860 priv->ieee->host_decrypt = 0;
6861 priv->ieee->host_mc_decrypt = 0;
6865 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6868 /* SIOCGIWENCODEEXT */
6869 static int ipw_wx_get_encodeext(struct net_device *dev,
6870 struct iw_request_info *info,
6871 union iwreq_data *wrqu, char *extra)
6873 struct ipw_priv *priv = libipw_priv(dev);
6874 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6877 /* SIOCSIWMLME */
6878 static int ipw_wx_set_mlme(struct net_device *dev,
6879 struct iw_request_info *info,
6880 union iwreq_data *wrqu, char *extra)
6882 struct ipw_priv *priv = libipw_priv(dev);
6883 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6884 __le16 reason;
6886 reason = cpu_to_le16(mlme->reason_code);
6888 switch (mlme->cmd) {
6889 case IW_MLME_DEAUTH:
6890 /* silently ignore */
6891 break;
6893 case IW_MLME_DISASSOC:
6894 ipw_disassociate(priv);
6895 break;
6897 default:
6898 return -EOPNOTSUPP;
6900 return 0;
6903 #ifdef CONFIG_IPW2200_QOS
6905 /* QoS */
6907 * get the modulation type of the current network or
6908 * the card current mode
6910 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6912 u8 mode = 0;
6914 if (priv->status & STATUS_ASSOCIATED) {
6915 unsigned long flags;
6917 spin_lock_irqsave(&priv->ieee->lock, flags);
6918 mode = priv->assoc_network->mode;
6919 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6920 } else {
6921 mode = priv->ieee->mode;
6923 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6924 return mode;
6928 * Handle management frame beacon and probe response
6930 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6931 int active_network,
6932 struct libipw_network *network)
6934 u32 size = sizeof(struct libipw_qos_parameters);
6936 if (network->capability & WLAN_CAPABILITY_IBSS)
6937 network->qos_data.active = network->qos_data.supported;
6939 if (network->flags & NETWORK_HAS_QOS_MASK) {
6940 if (active_network &&
6941 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6942 network->qos_data.active = network->qos_data.supported;
6944 if ((network->qos_data.active == 1) && (active_network == 1) &&
6945 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6946 (network->qos_data.old_param_count !=
6947 network->qos_data.param_count)) {
6948 network->qos_data.old_param_count =
6949 network->qos_data.param_count;
6950 schedule_work(&priv->qos_activate);
6951 IPW_DEBUG_QOS("QoS parameters change call "
6952 "qos_activate\n");
6954 } else {
6955 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6956 memcpy(&network->qos_data.parameters,
6957 &def_parameters_CCK, size);
6958 else
6959 memcpy(&network->qos_data.parameters,
6960 &def_parameters_OFDM, size);
6962 if ((network->qos_data.active == 1) && (active_network == 1)) {
6963 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6964 schedule_work(&priv->qos_activate);
6967 network->qos_data.active = 0;
6968 network->qos_data.supported = 0;
6970 if ((priv->status & STATUS_ASSOCIATED) &&
6971 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6972 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6973 if (network->capability & WLAN_CAPABILITY_IBSS)
6974 if ((network->ssid_len ==
6975 priv->assoc_network->ssid_len) &&
6976 !memcmp(network->ssid,
6977 priv->assoc_network->ssid,
6978 network->ssid_len)) {
6979 queue_work(priv->workqueue,
6980 &priv->merge_networks);
6984 return 0;
6988 * This function set up the firmware to support QoS. It sends
6989 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6991 static int ipw_qos_activate(struct ipw_priv *priv,
6992 struct libipw_qos_data *qos_network_data)
6994 int err;
6995 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6996 struct libipw_qos_parameters *active_one = NULL;
6997 u32 size = sizeof(struct libipw_qos_parameters);
6998 u32 burst_duration;
6999 int i;
7000 u8 type;
7002 type = ipw_qos_current_mode(priv);
7004 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7005 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7006 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7007 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7009 if (qos_network_data == NULL) {
7010 if (type == IEEE_B) {
7011 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7012 active_one = &def_parameters_CCK;
7013 } else
7014 active_one = &def_parameters_OFDM;
7016 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7017 burst_duration = ipw_qos_get_burst_duration(priv);
7018 for (i = 0; i < QOS_QUEUE_NUM; i++)
7019 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7020 cpu_to_le16(burst_duration);
7021 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7022 if (type == IEEE_B) {
7023 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7024 type);
7025 if (priv->qos_data.qos_enable == 0)
7026 active_one = &def_parameters_CCK;
7027 else
7028 active_one = priv->qos_data.def_qos_parm_CCK;
7029 } else {
7030 if (priv->qos_data.qos_enable == 0)
7031 active_one = &def_parameters_OFDM;
7032 else
7033 active_one = priv->qos_data.def_qos_parm_OFDM;
7035 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7036 } else {
7037 unsigned long flags;
7038 int active;
7040 spin_lock_irqsave(&priv->ieee->lock, flags);
7041 active_one = &(qos_network_data->parameters);
7042 qos_network_data->old_param_count =
7043 qos_network_data->param_count;
7044 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7045 active = qos_network_data->supported;
7046 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7048 if (active == 0) {
7049 burst_duration = ipw_qos_get_burst_duration(priv);
7050 for (i = 0; i < QOS_QUEUE_NUM; i++)
7051 qos_parameters[QOS_PARAM_SET_ACTIVE].
7052 tx_op_limit[i] = cpu_to_le16(burst_duration);
7056 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7057 err = ipw_send_qos_params_command(priv,
7058 (struct libipw_qos_parameters *)
7059 &(qos_parameters[0]));
7060 if (err)
7061 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7063 return err;
7067 * send IPW_CMD_WME_INFO to the firmware
7069 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7071 int ret = 0;
7072 struct libipw_qos_information_element qos_info;
7074 if (priv == NULL)
7075 return -1;
7077 qos_info.elementID = QOS_ELEMENT_ID;
7078 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7080 qos_info.version = QOS_VERSION_1;
7081 qos_info.ac_info = 0;
7083 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7084 qos_info.qui_type = QOS_OUI_TYPE;
7085 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7087 ret = ipw_send_qos_info_command(priv, &qos_info);
7088 if (ret != 0) {
7089 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7091 return ret;
7095 * Set the QoS parameter with the association request structure
7097 static int ipw_qos_association(struct ipw_priv *priv,
7098 struct libipw_network *network)
7100 int err = 0;
7101 struct libipw_qos_data *qos_data = NULL;
7102 struct libipw_qos_data ibss_data = {
7103 .supported = 1,
7104 .active = 1,
7107 switch (priv->ieee->iw_mode) {
7108 case IW_MODE_ADHOC:
7109 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7111 qos_data = &ibss_data;
7112 break;
7114 case IW_MODE_INFRA:
7115 qos_data = &network->qos_data;
7116 break;
7118 default:
7119 BUG();
7120 break;
7123 err = ipw_qos_activate(priv, qos_data);
7124 if (err) {
7125 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7126 return err;
7129 if (priv->qos_data.qos_enable && qos_data->supported) {
7130 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7131 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7132 return ipw_qos_set_info_element(priv);
7135 return 0;
7139 * handling the beaconing responses. if we get different QoS setting
7140 * off the network from the associated setting, adjust the QoS
7141 * setting
7143 static int ipw_qos_association_resp(struct ipw_priv *priv,
7144 struct libipw_network *network)
7146 int ret = 0;
7147 unsigned long flags;
7148 u32 size = sizeof(struct libipw_qos_parameters);
7149 int set_qos_param = 0;
7151 if ((priv == NULL) || (network == NULL) ||
7152 (priv->assoc_network == NULL))
7153 return ret;
7155 if (!(priv->status & STATUS_ASSOCIATED))
7156 return ret;
7158 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7159 return ret;
7161 spin_lock_irqsave(&priv->ieee->lock, flags);
7162 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7163 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7164 sizeof(struct libipw_qos_data));
7165 priv->assoc_network->qos_data.active = 1;
7166 if ((network->qos_data.old_param_count !=
7167 network->qos_data.param_count)) {
7168 set_qos_param = 1;
7169 network->qos_data.old_param_count =
7170 network->qos_data.param_count;
7173 } else {
7174 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7175 memcpy(&priv->assoc_network->qos_data.parameters,
7176 &def_parameters_CCK, size);
7177 else
7178 memcpy(&priv->assoc_network->qos_data.parameters,
7179 &def_parameters_OFDM, size);
7180 priv->assoc_network->qos_data.active = 0;
7181 priv->assoc_network->qos_data.supported = 0;
7182 set_qos_param = 1;
7185 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7187 if (set_qos_param == 1)
7188 schedule_work(&priv->qos_activate);
7190 return ret;
7193 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7195 u32 ret = 0;
7197 if ((priv == NULL))
7198 return 0;
7200 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7201 ret = priv->qos_data.burst_duration_CCK;
7202 else
7203 ret = priv->qos_data.burst_duration_OFDM;
7205 return ret;
7209 * Initialize the setting of QoS global
7211 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7212 int burst_enable, u32 burst_duration_CCK,
7213 u32 burst_duration_OFDM)
7215 priv->qos_data.qos_enable = enable;
7217 if (priv->qos_data.qos_enable) {
7218 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7219 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7220 IPW_DEBUG_QOS("QoS is enabled\n");
7221 } else {
7222 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7223 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7224 IPW_DEBUG_QOS("QoS is not enabled\n");
7227 priv->qos_data.burst_enable = burst_enable;
7229 if (burst_enable) {
7230 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7231 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7232 } else {
7233 priv->qos_data.burst_duration_CCK = 0;
7234 priv->qos_data.burst_duration_OFDM = 0;
7239 * map the packet priority to the right TX Queue
7241 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7243 if (priority > 7 || !priv->qos_data.qos_enable)
7244 priority = 0;
7246 return from_priority_to_tx_queue[priority] - 1;
7249 static int ipw_is_qos_active(struct net_device *dev,
7250 struct sk_buff *skb)
7252 struct ipw_priv *priv = libipw_priv(dev);
7253 struct libipw_qos_data *qos_data = NULL;
7254 int active, supported;
7255 u8 *daddr = skb->data + ETH_ALEN;
7256 int unicast = !is_multicast_ether_addr(daddr);
7258 if (!(priv->status & STATUS_ASSOCIATED))
7259 return 0;
7261 qos_data = &priv->assoc_network->qos_data;
7263 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7264 if (unicast == 0)
7265 qos_data->active = 0;
7266 else
7267 qos_data->active = qos_data->supported;
7269 active = qos_data->active;
7270 supported = qos_data->supported;
7271 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7272 "unicast %d\n",
7273 priv->qos_data.qos_enable, active, supported, unicast);
7274 if (active && priv->qos_data.qos_enable)
7275 return 1;
7277 return 0;
7281 * add QoS parameter to the TX command
7283 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7284 u16 priority,
7285 struct tfd_data *tfd)
7287 int tx_queue_id = 0;
7290 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7291 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7293 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7294 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7295 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7297 return 0;
7301 * background support to run QoS activate functionality
7303 static void ipw_bg_qos_activate(struct work_struct *work)
7305 struct ipw_priv *priv =
7306 container_of(work, struct ipw_priv, qos_activate);
7308 mutex_lock(&priv->mutex);
7310 if (priv->status & STATUS_ASSOCIATED)
7311 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7313 mutex_unlock(&priv->mutex);
7316 static int ipw_handle_probe_response(struct net_device *dev,
7317 struct libipw_probe_response *resp,
7318 struct libipw_network *network)
7320 struct ipw_priv *priv = libipw_priv(dev);
7321 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7322 (network == priv->assoc_network));
7324 ipw_qos_handle_probe_response(priv, active_network, network);
7326 return 0;
7329 static int ipw_handle_beacon(struct net_device *dev,
7330 struct libipw_beacon *resp,
7331 struct libipw_network *network)
7333 struct ipw_priv *priv = libipw_priv(dev);
7334 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7335 (network == priv->assoc_network));
7337 ipw_qos_handle_probe_response(priv, active_network, network);
7339 return 0;
7342 static int ipw_handle_assoc_response(struct net_device *dev,
7343 struct libipw_assoc_response *resp,
7344 struct libipw_network *network)
7346 struct ipw_priv *priv = libipw_priv(dev);
7347 ipw_qos_association_resp(priv, network);
7348 return 0;
7351 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7352 *qos_param)
7354 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7355 sizeof(*qos_param) * 3, qos_param);
7358 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7359 *qos_param)
7361 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7362 qos_param);
7365 #endif /* CONFIG_IPW2200_QOS */
7367 static int ipw_associate_network(struct ipw_priv *priv,
7368 struct libipw_network *network,
7369 struct ipw_supported_rates *rates, int roaming)
7371 int err;
7372 DECLARE_SSID_BUF(ssid);
7374 if (priv->config & CFG_FIXED_RATE)
7375 ipw_set_fixed_rate(priv, network->mode);
7377 if (!(priv->config & CFG_STATIC_ESSID)) {
7378 priv->essid_len = min(network->ssid_len,
7379 (u8) IW_ESSID_MAX_SIZE);
7380 memcpy(priv->essid, network->ssid, priv->essid_len);
7383 network->last_associate = jiffies;
7385 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7386 priv->assoc_request.channel = network->channel;
7387 priv->assoc_request.auth_key = 0;
7389 if ((priv->capability & CAP_PRIVACY_ON) &&
7390 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7391 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7392 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7394 if (priv->ieee->sec.level == SEC_LEVEL_1)
7395 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7397 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7398 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7399 priv->assoc_request.auth_type = AUTH_LEAP;
7400 else
7401 priv->assoc_request.auth_type = AUTH_OPEN;
7403 if (priv->ieee->wpa_ie_len) {
7404 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7405 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7406 priv->ieee->wpa_ie_len);
7410 * It is valid for our ieee device to support multiple modes, but
7411 * when it comes to associating to a given network we have to choose
7412 * just one mode.
7414 if (network->mode & priv->ieee->mode & IEEE_A)
7415 priv->assoc_request.ieee_mode = IPW_A_MODE;
7416 else if (network->mode & priv->ieee->mode & IEEE_G)
7417 priv->assoc_request.ieee_mode = IPW_G_MODE;
7418 else if (network->mode & priv->ieee->mode & IEEE_B)
7419 priv->assoc_request.ieee_mode = IPW_B_MODE;
7421 priv->assoc_request.capability = cpu_to_le16(network->capability);
7422 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7423 && !(priv->config & CFG_PREAMBLE_LONG)) {
7424 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7425 } else {
7426 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7428 /* Clear the short preamble if we won't be supporting it */
7429 priv->assoc_request.capability &=
7430 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7433 /* Clear capability bits that aren't used in Ad Hoc */
7434 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7435 priv->assoc_request.capability &=
7436 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7438 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7439 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7440 roaming ? "Rea" : "A",
7441 print_ssid(ssid, priv->essid, priv->essid_len),
7442 network->channel,
7443 ipw_modes[priv->assoc_request.ieee_mode],
7444 rates->num_rates,
7445 (priv->assoc_request.preamble_length ==
7446 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7447 network->capability &
7448 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7449 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7450 priv->capability & CAP_PRIVACY_ON ?
7451 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7452 "(open)") : "",
7453 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7454 priv->capability & CAP_PRIVACY_ON ?
7455 '1' + priv->ieee->sec.active_key : '.',
7456 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7458 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7459 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7460 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7461 priv->assoc_request.assoc_type = HC_IBSS_START;
7462 priv->assoc_request.assoc_tsf_msw = 0;
7463 priv->assoc_request.assoc_tsf_lsw = 0;
7464 } else {
7465 if (unlikely(roaming))
7466 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7467 else
7468 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7469 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7470 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7473 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7475 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7476 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7477 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7478 } else {
7479 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7480 priv->assoc_request.atim_window = 0;
7483 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7485 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7486 if (err) {
7487 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7488 return err;
7491 rates->ieee_mode = priv->assoc_request.ieee_mode;
7492 rates->purpose = IPW_RATE_CONNECT;
7493 ipw_send_supported_rates(priv, rates);
7495 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7496 priv->sys_config.dot11g_auto_detection = 1;
7497 else
7498 priv->sys_config.dot11g_auto_detection = 0;
7500 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7501 priv->sys_config.answer_broadcast_ssid_probe = 1;
7502 else
7503 priv->sys_config.answer_broadcast_ssid_probe = 0;
7505 err = ipw_send_system_config(priv);
7506 if (err) {
7507 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7508 return err;
7511 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7512 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7513 if (err) {
7514 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7515 return err;
7519 * If preemption is enabled, it is possible for the association
7520 * to complete before we return from ipw_send_associate. Therefore
7521 * we have to be sure and update our priviate data first.
7523 priv->channel = network->channel;
7524 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7525 priv->status |= STATUS_ASSOCIATING;
7526 priv->status &= ~STATUS_SECURITY_UPDATED;
7528 priv->assoc_network = network;
7530 #ifdef CONFIG_IPW2200_QOS
7531 ipw_qos_association(priv, network);
7532 #endif
7534 err = ipw_send_associate(priv, &priv->assoc_request);
7535 if (err) {
7536 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7537 return err;
7540 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7541 print_ssid(ssid, priv->essid, priv->essid_len),
7542 priv->bssid);
7544 return 0;
7547 static void ipw_roam(void *data)
7549 struct ipw_priv *priv = data;
7550 struct libipw_network *network = NULL;
7551 struct ipw_network_match match = {
7552 .network = priv->assoc_network
7555 /* The roaming process is as follows:
7557 * 1. Missed beacon threshold triggers the roaming process by
7558 * setting the status ROAM bit and requesting a scan.
7559 * 2. When the scan completes, it schedules the ROAM work
7560 * 3. The ROAM work looks at all of the known networks for one that
7561 * is a better network than the currently associated. If none
7562 * found, the ROAM process is over (ROAM bit cleared)
7563 * 4. If a better network is found, a disassociation request is
7564 * sent.
7565 * 5. When the disassociation completes, the roam work is again
7566 * scheduled. The second time through, the driver is no longer
7567 * associated, and the newly selected network is sent an
7568 * association request.
7569 * 6. At this point ,the roaming process is complete and the ROAM
7570 * status bit is cleared.
7573 /* If we are no longer associated, and the roaming bit is no longer
7574 * set, then we are not actively roaming, so just return */
7575 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7576 return;
7578 if (priv->status & STATUS_ASSOCIATED) {
7579 /* First pass through ROAM process -- look for a better
7580 * network */
7581 unsigned long flags;
7582 u8 rssi = priv->assoc_network->stats.rssi;
7583 priv->assoc_network->stats.rssi = -128;
7584 spin_lock_irqsave(&priv->ieee->lock, flags);
7585 list_for_each_entry(network, &priv->ieee->network_list, list) {
7586 if (network != priv->assoc_network)
7587 ipw_best_network(priv, &match, network, 1);
7589 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7590 priv->assoc_network->stats.rssi = rssi;
7592 if (match.network == priv->assoc_network) {
7593 IPW_DEBUG_ASSOC("No better APs in this network to "
7594 "roam to.\n");
7595 priv->status &= ~STATUS_ROAMING;
7596 ipw_debug_config(priv);
7597 return;
7600 ipw_send_disassociate(priv, 1);
7601 priv->assoc_network = match.network;
7603 return;
7606 /* Second pass through ROAM process -- request association */
7607 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7608 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7609 priv->status &= ~STATUS_ROAMING;
7612 static void ipw_bg_roam(struct work_struct *work)
7614 struct ipw_priv *priv =
7615 container_of(work, struct ipw_priv, roam);
7616 mutex_lock(&priv->mutex);
7617 ipw_roam(priv);
7618 mutex_unlock(&priv->mutex);
7621 static int ipw_associate(void *data)
7623 struct ipw_priv *priv = data;
7625 struct libipw_network *network = NULL;
7626 struct ipw_network_match match = {
7627 .network = NULL
7629 struct ipw_supported_rates *rates;
7630 struct list_head *element;
7631 unsigned long flags;
7632 DECLARE_SSID_BUF(ssid);
7634 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7635 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7636 return 0;
7639 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7640 IPW_DEBUG_ASSOC("Not attempting association (already in "
7641 "progress)\n");
7642 return 0;
7645 if (priv->status & STATUS_DISASSOCIATING) {
7646 IPW_DEBUG_ASSOC("Not attempting association (in "
7647 "disassociating)\n ");
7648 queue_work(priv->workqueue, &priv->associate);
7649 return 0;
7652 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7653 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7654 "initialized)\n");
7655 return 0;
7658 if (!(priv->config & CFG_ASSOCIATE) &&
7659 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7660 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7661 return 0;
7664 /* Protect our use of the network_list */
7665 spin_lock_irqsave(&priv->ieee->lock, flags);
7666 list_for_each_entry(network, &priv->ieee->network_list, list)
7667 ipw_best_network(priv, &match, network, 0);
7669 network = match.network;
7670 rates = &match.rates;
7672 if (network == NULL &&
7673 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7674 priv->config & CFG_ADHOC_CREATE &&
7675 priv->config & CFG_STATIC_ESSID &&
7676 priv->config & CFG_STATIC_CHANNEL) {
7677 /* Use oldest network if the free list is empty */
7678 if (list_empty(&priv->ieee->network_free_list)) {
7679 struct libipw_network *oldest = NULL;
7680 struct libipw_network *target;
7682 list_for_each_entry(target, &priv->ieee->network_list, list) {
7683 if ((oldest == NULL) ||
7684 (target->last_scanned < oldest->last_scanned))
7685 oldest = target;
7688 /* If there are no more slots, expire the oldest */
7689 list_del(&oldest->list);
7690 target = oldest;
7691 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7692 "network list.\n",
7693 print_ssid(ssid, target->ssid,
7694 target->ssid_len),
7695 target->bssid);
7696 list_add_tail(&target->list,
7697 &priv->ieee->network_free_list);
7700 element = priv->ieee->network_free_list.next;
7701 network = list_entry(element, struct libipw_network, list);
7702 ipw_adhoc_create(priv, network);
7703 rates = &priv->rates;
7704 list_del(element);
7705 list_add_tail(&network->list, &priv->ieee->network_list);
7707 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7709 /* If we reached the end of the list, then we don't have any valid
7710 * matching APs */
7711 if (!network) {
7712 ipw_debug_config(priv);
7714 if (!(priv->status & STATUS_SCANNING)) {
7715 if (!(priv->config & CFG_SPEED_SCAN))
7716 queue_delayed_work(priv->workqueue,
7717 &priv->request_scan,
7718 SCAN_INTERVAL);
7719 else
7720 queue_delayed_work(priv->workqueue,
7721 &priv->request_scan, 0);
7724 return 0;
7727 ipw_associate_network(priv, network, rates, 0);
7729 return 1;
7732 static void ipw_bg_associate(struct work_struct *work)
7734 struct ipw_priv *priv =
7735 container_of(work, struct ipw_priv, associate);
7736 mutex_lock(&priv->mutex);
7737 ipw_associate(priv);
7738 mutex_unlock(&priv->mutex);
7741 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7742 struct sk_buff *skb)
7744 struct ieee80211_hdr *hdr;
7745 u16 fc;
7747 hdr = (struct ieee80211_hdr *)skb->data;
7748 fc = le16_to_cpu(hdr->frame_control);
7749 if (!(fc & IEEE80211_FCTL_PROTECTED))
7750 return;
7752 fc &= ~IEEE80211_FCTL_PROTECTED;
7753 hdr->frame_control = cpu_to_le16(fc);
7754 switch (priv->ieee->sec.level) {
7755 case SEC_LEVEL_3:
7756 /* Remove CCMP HDR */
7757 memmove(skb->data + LIBIPW_3ADDR_LEN,
7758 skb->data + LIBIPW_3ADDR_LEN + 8,
7759 skb->len - LIBIPW_3ADDR_LEN - 8);
7760 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7761 break;
7762 case SEC_LEVEL_2:
7763 break;
7764 case SEC_LEVEL_1:
7765 /* Remove IV */
7766 memmove(skb->data + LIBIPW_3ADDR_LEN,
7767 skb->data + LIBIPW_3ADDR_LEN + 4,
7768 skb->len - LIBIPW_3ADDR_LEN - 4);
7769 skb_trim(skb, skb->len - 8); /* IV + ICV */
7770 break;
7771 case SEC_LEVEL_0:
7772 break;
7773 default:
7774 printk(KERN_ERR "Unknown security level %d\n",
7775 priv->ieee->sec.level);
7776 break;
7780 static void ipw_handle_data_packet(struct ipw_priv *priv,
7781 struct ipw_rx_mem_buffer *rxb,
7782 struct libipw_rx_stats *stats)
7784 struct net_device *dev = priv->net_dev;
7785 struct libipw_hdr_4addr *hdr;
7786 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7788 /* We received data from the HW, so stop the watchdog */
7789 dev->trans_start = jiffies;
7791 /* We only process data packets if the
7792 * interface is open */
7793 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7794 skb_tailroom(rxb->skb))) {
7795 dev->stats.rx_errors++;
7796 priv->wstats.discard.misc++;
7797 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7798 return;
7799 } else if (unlikely(!netif_running(priv->net_dev))) {
7800 dev->stats.rx_dropped++;
7801 priv->wstats.discard.misc++;
7802 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7803 return;
7806 /* Advance skb->data to the start of the actual payload */
7807 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7809 /* Set the size of the skb to the size of the frame */
7810 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7812 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7814 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7815 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7816 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7817 (is_multicast_ether_addr(hdr->addr1) ?
7818 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7819 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7821 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7822 dev->stats.rx_errors++;
7823 else { /* libipw_rx succeeded, so it now owns the SKB */
7824 rxb->skb = NULL;
7825 __ipw_led_activity_on(priv);
7829 #ifdef CONFIG_IPW2200_RADIOTAP
7830 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7831 struct ipw_rx_mem_buffer *rxb,
7832 struct libipw_rx_stats *stats)
7834 struct net_device *dev = priv->net_dev;
7835 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7836 struct ipw_rx_frame *frame = &pkt->u.frame;
7838 /* initial pull of some data */
7839 u16 received_channel = frame->received_channel;
7840 u8 antennaAndPhy = frame->antennaAndPhy;
7841 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7842 u16 pktrate = frame->rate;
7844 /* Magic struct that slots into the radiotap header -- no reason
7845 * to build this manually element by element, we can write it much
7846 * more efficiently than we can parse it. ORDER MATTERS HERE */
7847 struct ipw_rt_hdr *ipw_rt;
7849 short len = le16_to_cpu(pkt->u.frame.length);
7851 /* We received data from the HW, so stop the watchdog */
7852 dev->trans_start = jiffies;
7854 /* We only process data packets if the
7855 * interface is open */
7856 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7857 skb_tailroom(rxb->skb))) {
7858 dev->stats.rx_errors++;
7859 priv->wstats.discard.misc++;
7860 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7861 return;
7862 } else if (unlikely(!netif_running(priv->net_dev))) {
7863 dev->stats.rx_dropped++;
7864 priv->wstats.discard.misc++;
7865 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7866 return;
7869 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7870 * that now */
7871 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7872 dev->stats.rx_dropped++;
7873 priv->wstats.discard.misc++;
7874 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7875 return;
7878 /* copy the frame itself */
7879 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7880 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7882 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7884 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7885 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7886 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7888 /* Big bitfield of all the fields we provide in radiotap */
7889 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7890 (1 << IEEE80211_RADIOTAP_TSFT) |
7891 (1 << IEEE80211_RADIOTAP_FLAGS) |
7892 (1 << IEEE80211_RADIOTAP_RATE) |
7893 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7894 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7895 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7896 (1 << IEEE80211_RADIOTAP_ANTENNA));
7898 /* Zero the flags, we'll add to them as we go */
7899 ipw_rt->rt_flags = 0;
7900 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7901 frame->parent_tsf[2] << 16 |
7902 frame->parent_tsf[1] << 8 |
7903 frame->parent_tsf[0]);
7905 /* Convert signal to DBM */
7906 ipw_rt->rt_dbmsignal = antsignal;
7907 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7909 /* Convert the channel data and set the flags */
7910 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7911 if (received_channel > 14) { /* 802.11a */
7912 ipw_rt->rt_chbitmask =
7913 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7914 } else if (antennaAndPhy & 32) { /* 802.11b */
7915 ipw_rt->rt_chbitmask =
7916 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7917 } else { /* 802.11g */
7918 ipw_rt->rt_chbitmask =
7919 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7922 /* set the rate in multiples of 500k/s */
7923 switch (pktrate) {
7924 case IPW_TX_RATE_1MB:
7925 ipw_rt->rt_rate = 2;
7926 break;
7927 case IPW_TX_RATE_2MB:
7928 ipw_rt->rt_rate = 4;
7929 break;
7930 case IPW_TX_RATE_5MB:
7931 ipw_rt->rt_rate = 10;
7932 break;
7933 case IPW_TX_RATE_6MB:
7934 ipw_rt->rt_rate = 12;
7935 break;
7936 case IPW_TX_RATE_9MB:
7937 ipw_rt->rt_rate = 18;
7938 break;
7939 case IPW_TX_RATE_11MB:
7940 ipw_rt->rt_rate = 22;
7941 break;
7942 case IPW_TX_RATE_12MB:
7943 ipw_rt->rt_rate = 24;
7944 break;
7945 case IPW_TX_RATE_18MB:
7946 ipw_rt->rt_rate = 36;
7947 break;
7948 case IPW_TX_RATE_24MB:
7949 ipw_rt->rt_rate = 48;
7950 break;
7951 case IPW_TX_RATE_36MB:
7952 ipw_rt->rt_rate = 72;
7953 break;
7954 case IPW_TX_RATE_48MB:
7955 ipw_rt->rt_rate = 96;
7956 break;
7957 case IPW_TX_RATE_54MB:
7958 ipw_rt->rt_rate = 108;
7959 break;
7960 default:
7961 ipw_rt->rt_rate = 0;
7962 break;
7965 /* antenna number */
7966 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7968 /* set the preamble flag if we have it */
7969 if ((antennaAndPhy & 64))
7970 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7972 /* Set the size of the skb to the size of the frame */
7973 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7975 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7977 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7978 dev->stats.rx_errors++;
7979 else { /* libipw_rx succeeded, so it now owns the SKB */
7980 rxb->skb = NULL;
7981 /* no LED during capture */
7984 #endif
7986 #ifdef CONFIG_IPW2200_PROMISCUOUS
7987 #define libipw_is_probe_response(fc) \
7988 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7989 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7991 #define libipw_is_management(fc) \
7992 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7994 #define libipw_is_control(fc) \
7995 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7997 #define libipw_is_data(fc) \
7998 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8000 #define libipw_is_assoc_request(fc) \
8001 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8003 #define libipw_is_reassoc_request(fc) \
8004 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8006 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8007 struct ipw_rx_mem_buffer *rxb,
8008 struct libipw_rx_stats *stats)
8010 struct net_device *dev = priv->prom_net_dev;
8011 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8012 struct ipw_rx_frame *frame = &pkt->u.frame;
8013 struct ipw_rt_hdr *ipw_rt;
8015 /* First cache any information we need before we overwrite
8016 * the information provided in the skb from the hardware */
8017 struct ieee80211_hdr *hdr;
8018 u16 channel = frame->received_channel;
8019 u8 phy_flags = frame->antennaAndPhy;
8020 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8021 s8 noise = (s8) le16_to_cpu(frame->noise);
8022 u8 rate = frame->rate;
8023 short len = le16_to_cpu(pkt->u.frame.length);
8024 struct sk_buff *skb;
8025 int hdr_only = 0;
8026 u16 filter = priv->prom_priv->filter;
8028 /* If the filter is set to not include Rx frames then return */
8029 if (filter & IPW_PROM_NO_RX)
8030 return;
8032 /* We received data from the HW, so stop the watchdog */
8033 dev->trans_start = jiffies;
8035 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8036 dev->stats.rx_errors++;
8037 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8038 return;
8041 /* We only process data packets if the interface is open */
8042 if (unlikely(!netif_running(dev))) {
8043 dev->stats.rx_dropped++;
8044 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8045 return;
8048 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8049 * that now */
8050 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8051 dev->stats.rx_dropped++;
8052 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8053 return;
8056 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8057 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8058 if (filter & IPW_PROM_NO_MGMT)
8059 return;
8060 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8061 hdr_only = 1;
8062 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8063 if (filter & IPW_PROM_NO_CTL)
8064 return;
8065 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8066 hdr_only = 1;
8067 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8068 if (filter & IPW_PROM_NO_DATA)
8069 return;
8070 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8071 hdr_only = 1;
8074 /* Copy the SKB since this is for the promiscuous side */
8075 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8076 if (skb == NULL) {
8077 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8078 return;
8081 /* copy the frame data to write after where the radiotap header goes */
8082 ipw_rt = (void *)skb->data;
8084 if (hdr_only)
8085 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8087 memcpy(ipw_rt->payload, hdr, len);
8089 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8090 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8091 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8093 /* Set the size of the skb to the size of the frame */
8094 skb_put(skb, sizeof(*ipw_rt) + len);
8096 /* Big bitfield of all the fields we provide in radiotap */
8097 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8098 (1 << IEEE80211_RADIOTAP_TSFT) |
8099 (1 << IEEE80211_RADIOTAP_FLAGS) |
8100 (1 << IEEE80211_RADIOTAP_RATE) |
8101 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8102 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8103 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8104 (1 << IEEE80211_RADIOTAP_ANTENNA));
8106 /* Zero the flags, we'll add to them as we go */
8107 ipw_rt->rt_flags = 0;
8108 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8109 frame->parent_tsf[2] << 16 |
8110 frame->parent_tsf[1] << 8 |
8111 frame->parent_tsf[0]);
8113 /* Convert to DBM */
8114 ipw_rt->rt_dbmsignal = signal;
8115 ipw_rt->rt_dbmnoise = noise;
8117 /* Convert the channel data and set the flags */
8118 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8119 if (channel > 14) { /* 802.11a */
8120 ipw_rt->rt_chbitmask =
8121 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8122 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8123 ipw_rt->rt_chbitmask =
8124 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8125 } else { /* 802.11g */
8126 ipw_rt->rt_chbitmask =
8127 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8130 /* set the rate in multiples of 500k/s */
8131 switch (rate) {
8132 case IPW_TX_RATE_1MB:
8133 ipw_rt->rt_rate = 2;
8134 break;
8135 case IPW_TX_RATE_2MB:
8136 ipw_rt->rt_rate = 4;
8137 break;
8138 case IPW_TX_RATE_5MB:
8139 ipw_rt->rt_rate = 10;
8140 break;
8141 case IPW_TX_RATE_6MB:
8142 ipw_rt->rt_rate = 12;
8143 break;
8144 case IPW_TX_RATE_9MB:
8145 ipw_rt->rt_rate = 18;
8146 break;
8147 case IPW_TX_RATE_11MB:
8148 ipw_rt->rt_rate = 22;
8149 break;
8150 case IPW_TX_RATE_12MB:
8151 ipw_rt->rt_rate = 24;
8152 break;
8153 case IPW_TX_RATE_18MB:
8154 ipw_rt->rt_rate = 36;
8155 break;
8156 case IPW_TX_RATE_24MB:
8157 ipw_rt->rt_rate = 48;
8158 break;
8159 case IPW_TX_RATE_36MB:
8160 ipw_rt->rt_rate = 72;
8161 break;
8162 case IPW_TX_RATE_48MB:
8163 ipw_rt->rt_rate = 96;
8164 break;
8165 case IPW_TX_RATE_54MB:
8166 ipw_rt->rt_rate = 108;
8167 break;
8168 default:
8169 ipw_rt->rt_rate = 0;
8170 break;
8173 /* antenna number */
8174 ipw_rt->rt_antenna = (phy_flags & 3);
8176 /* set the preamble flag if we have it */
8177 if (phy_flags & (1 << 6))
8178 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8180 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8182 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8183 dev->stats.rx_errors++;
8184 dev_kfree_skb_any(skb);
8187 #endif
8189 static int is_network_packet(struct ipw_priv *priv,
8190 struct libipw_hdr_4addr *header)
8192 /* Filter incoming packets to determine if they are targetted toward
8193 * this network, discarding packets coming from ourselves */
8194 switch (priv->ieee->iw_mode) {
8195 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8196 /* packets from our adapter are dropped (echo) */
8197 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8198 return 0;
8200 /* {broad,multi}cast packets to our BSSID go through */
8201 if (is_multicast_ether_addr(header->addr1))
8202 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8204 /* packets to our adapter go through */
8205 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8206 ETH_ALEN);
8208 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8209 /* packets from our adapter are dropped (echo) */
8210 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8211 return 0;
8213 /* {broad,multi}cast packets to our BSS go through */
8214 if (is_multicast_ether_addr(header->addr1))
8215 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8217 /* packets to our adapter go through */
8218 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8219 ETH_ALEN);
8222 return 1;
8225 #define IPW_PACKET_RETRY_TIME HZ
8227 static int is_duplicate_packet(struct ipw_priv *priv,
8228 struct libipw_hdr_4addr *header)
8230 u16 sc = le16_to_cpu(header->seq_ctl);
8231 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8232 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8233 u16 *last_seq, *last_frag;
8234 unsigned long *last_time;
8236 switch (priv->ieee->iw_mode) {
8237 case IW_MODE_ADHOC:
8239 struct list_head *p;
8240 struct ipw_ibss_seq *entry = NULL;
8241 u8 *mac = header->addr2;
8242 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8244 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8245 entry =
8246 list_entry(p, struct ipw_ibss_seq, list);
8247 if (!memcmp(entry->mac, mac, ETH_ALEN))
8248 break;
8250 if (p == &priv->ibss_mac_hash[index]) {
8251 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8252 if (!entry) {
8253 IPW_ERROR
8254 ("Cannot malloc new mac entry\n");
8255 return 0;
8257 memcpy(entry->mac, mac, ETH_ALEN);
8258 entry->seq_num = seq;
8259 entry->frag_num = frag;
8260 entry->packet_time = jiffies;
8261 list_add(&entry->list,
8262 &priv->ibss_mac_hash[index]);
8263 return 0;
8265 last_seq = &entry->seq_num;
8266 last_frag = &entry->frag_num;
8267 last_time = &entry->packet_time;
8268 break;
8270 case IW_MODE_INFRA:
8271 last_seq = &priv->last_seq_num;
8272 last_frag = &priv->last_frag_num;
8273 last_time = &priv->last_packet_time;
8274 break;
8275 default:
8276 return 0;
8278 if ((*last_seq == seq) &&
8279 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8280 if (*last_frag == frag)
8281 goto drop;
8282 if (*last_frag + 1 != frag)
8283 /* out-of-order fragment */
8284 goto drop;
8285 } else
8286 *last_seq = seq;
8288 *last_frag = frag;
8289 *last_time = jiffies;
8290 return 0;
8292 drop:
8293 /* Comment this line now since we observed the card receives
8294 * duplicate packets but the FCTL_RETRY bit is not set in the
8295 * IBSS mode with fragmentation enabled.
8296 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8297 return 1;
8300 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8301 struct ipw_rx_mem_buffer *rxb,
8302 struct libipw_rx_stats *stats)
8304 struct sk_buff *skb = rxb->skb;
8305 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8306 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8307 (skb->data + IPW_RX_FRAME_SIZE);
8309 libipw_rx_mgt(priv->ieee, header, stats);
8311 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8312 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8313 IEEE80211_STYPE_PROBE_RESP) ||
8314 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8315 IEEE80211_STYPE_BEACON))) {
8316 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8317 ipw_add_station(priv, header->addr2);
8320 if (priv->config & CFG_NET_STATS) {
8321 IPW_DEBUG_HC("sending stat packet\n");
8323 /* Set the size of the skb to the size of the full
8324 * ipw header and 802.11 frame */
8325 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8326 IPW_RX_FRAME_SIZE);
8328 /* Advance past the ipw packet header to the 802.11 frame */
8329 skb_pull(skb, IPW_RX_FRAME_SIZE);
8331 /* Push the libipw_rx_stats before the 802.11 frame */
8332 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8334 skb->dev = priv->ieee->dev;
8336 /* Point raw at the libipw_stats */
8337 skb_reset_mac_header(skb);
8339 skb->pkt_type = PACKET_OTHERHOST;
8340 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8341 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8342 netif_rx(skb);
8343 rxb->skb = NULL;
8348 * Main entry function for recieving a packet with 80211 headers. This
8349 * should be called when ever the FW has notified us that there is a new
8350 * skb in the recieve queue.
8352 static void ipw_rx(struct ipw_priv *priv)
8354 struct ipw_rx_mem_buffer *rxb;
8355 struct ipw_rx_packet *pkt;
8356 struct libipw_hdr_4addr *header;
8357 u32 r, w, i;
8358 u8 network_packet;
8359 u8 fill_rx = 0;
8361 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8362 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8363 i = priv->rxq->read;
8365 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8366 fill_rx = 1;
8368 while (i != r) {
8369 rxb = priv->rxq->queue[i];
8370 if (unlikely(rxb == NULL)) {
8371 printk(KERN_CRIT "Queue not allocated!\n");
8372 break;
8374 priv->rxq->queue[i] = NULL;
8376 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8377 IPW_RX_BUF_SIZE,
8378 PCI_DMA_FROMDEVICE);
8380 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8381 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8382 pkt->header.message_type,
8383 pkt->header.rx_seq_num, pkt->header.control_bits);
8385 switch (pkt->header.message_type) {
8386 case RX_FRAME_TYPE: /* 802.11 frame */ {
8387 struct libipw_rx_stats stats = {
8388 .rssi = pkt->u.frame.rssi_dbm -
8389 IPW_RSSI_TO_DBM,
8390 .signal =
8391 pkt->u.frame.rssi_dbm -
8392 IPW_RSSI_TO_DBM + 0x100,
8393 .noise =
8394 le16_to_cpu(pkt->u.frame.noise),
8395 .rate = pkt->u.frame.rate,
8396 .mac_time = jiffies,
8397 .received_channel =
8398 pkt->u.frame.received_channel,
8399 .freq =
8400 (pkt->u.frame.
8401 control & (1 << 0)) ?
8402 LIBIPW_24GHZ_BAND :
8403 LIBIPW_52GHZ_BAND,
8404 .len = le16_to_cpu(pkt->u.frame.length),
8407 if (stats.rssi != 0)
8408 stats.mask |= LIBIPW_STATMASK_RSSI;
8409 if (stats.signal != 0)
8410 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8411 if (stats.noise != 0)
8412 stats.mask |= LIBIPW_STATMASK_NOISE;
8413 if (stats.rate != 0)
8414 stats.mask |= LIBIPW_STATMASK_RATE;
8416 priv->rx_packets++;
8418 #ifdef CONFIG_IPW2200_PROMISCUOUS
8419 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8420 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8421 #endif
8423 #ifdef CONFIG_IPW2200_MONITOR
8424 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8425 #ifdef CONFIG_IPW2200_RADIOTAP
8427 ipw_handle_data_packet_monitor(priv,
8428 rxb,
8429 &stats);
8430 #else
8431 ipw_handle_data_packet(priv, rxb,
8432 &stats);
8433 #endif
8434 break;
8436 #endif
8438 header =
8439 (struct libipw_hdr_4addr *)(rxb->skb->
8440 data +
8441 IPW_RX_FRAME_SIZE);
8442 /* TODO: Check Ad-Hoc dest/source and make sure
8443 * that we are actually parsing these packets
8444 * correctly -- we should probably use the
8445 * frame control of the packet and disregard
8446 * the current iw_mode */
8448 network_packet =
8449 is_network_packet(priv, header);
8450 if (network_packet && priv->assoc_network) {
8451 priv->assoc_network->stats.rssi =
8452 stats.rssi;
8453 priv->exp_avg_rssi =
8454 exponential_average(priv->exp_avg_rssi,
8455 stats.rssi, DEPTH_RSSI);
8458 IPW_DEBUG_RX("Frame: len=%u\n",
8459 le16_to_cpu(pkt->u.frame.length));
8461 if (le16_to_cpu(pkt->u.frame.length) <
8462 libipw_get_hdrlen(le16_to_cpu(
8463 header->frame_ctl))) {
8464 IPW_DEBUG_DROP
8465 ("Received packet is too small. "
8466 "Dropping.\n");
8467 priv->net_dev->stats.rx_errors++;
8468 priv->wstats.discard.misc++;
8469 break;
8472 switch (WLAN_FC_GET_TYPE
8473 (le16_to_cpu(header->frame_ctl))) {
8475 case IEEE80211_FTYPE_MGMT:
8476 ipw_handle_mgmt_packet(priv, rxb,
8477 &stats);
8478 break;
8480 case IEEE80211_FTYPE_CTL:
8481 break;
8483 case IEEE80211_FTYPE_DATA:
8484 if (unlikely(!network_packet ||
8485 is_duplicate_packet(priv,
8486 header)))
8488 IPW_DEBUG_DROP("Dropping: "
8489 "%pM, "
8490 "%pM, "
8491 "%pM\n",
8492 header->addr1,
8493 header->addr2,
8494 header->addr3);
8495 break;
8498 ipw_handle_data_packet(priv, rxb,
8499 &stats);
8501 break;
8503 break;
8506 case RX_HOST_NOTIFICATION_TYPE:{
8507 IPW_DEBUG_RX
8508 ("Notification: subtype=%02X flags=%02X size=%d\n",
8509 pkt->u.notification.subtype,
8510 pkt->u.notification.flags,
8511 le16_to_cpu(pkt->u.notification.size));
8512 ipw_rx_notification(priv, &pkt->u.notification);
8513 break;
8516 default:
8517 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8518 pkt->header.message_type);
8519 break;
8522 /* For now we just don't re-use anything. We can tweak this
8523 * later to try and re-use notification packets and SKBs that
8524 * fail to Rx correctly */
8525 if (rxb->skb != NULL) {
8526 dev_kfree_skb_any(rxb->skb);
8527 rxb->skb = NULL;
8530 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8531 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8532 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8534 i = (i + 1) % RX_QUEUE_SIZE;
8536 /* If there are a lot of unsued frames, restock the Rx queue
8537 * so the ucode won't assert */
8538 if (fill_rx) {
8539 priv->rxq->read = i;
8540 ipw_rx_queue_replenish(priv);
8544 /* Backtrack one entry */
8545 priv->rxq->read = i;
8546 ipw_rx_queue_restock(priv);
8549 #define DEFAULT_RTS_THRESHOLD 2304U
8550 #define MIN_RTS_THRESHOLD 1U
8551 #define MAX_RTS_THRESHOLD 2304U
8552 #define DEFAULT_BEACON_INTERVAL 100U
8553 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8554 #define DEFAULT_LONG_RETRY_LIMIT 4U
8557 * ipw_sw_reset
8558 * @option: options to control different reset behaviour
8559 * 0 = reset everything except the 'disable' module_param
8560 * 1 = reset everything and print out driver info (for probe only)
8561 * 2 = reset everything
8563 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8565 int band, modulation;
8566 int old_mode = priv->ieee->iw_mode;
8568 /* Initialize module parameter values here */
8569 priv->config = 0;
8571 /* We default to disabling the LED code as right now it causes
8572 * too many systems to lock up... */
8573 if (!led_support)
8574 priv->config |= CFG_NO_LED;
8576 if (associate)
8577 priv->config |= CFG_ASSOCIATE;
8578 else
8579 IPW_DEBUG_INFO("Auto associate disabled.\n");
8581 if (auto_create)
8582 priv->config |= CFG_ADHOC_CREATE;
8583 else
8584 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8586 priv->config &= ~CFG_STATIC_ESSID;
8587 priv->essid_len = 0;
8588 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8590 if (disable && option) {
8591 priv->status |= STATUS_RF_KILL_SW;
8592 IPW_DEBUG_INFO("Radio disabled.\n");
8595 if (default_channel != 0) {
8596 priv->config |= CFG_STATIC_CHANNEL;
8597 priv->channel = default_channel;
8598 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8599 /* TODO: Validate that provided channel is in range */
8601 #ifdef CONFIG_IPW2200_QOS
8602 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8603 burst_duration_CCK, burst_duration_OFDM);
8604 #endif /* CONFIG_IPW2200_QOS */
8606 switch (network_mode) {
8607 case 1:
8608 priv->ieee->iw_mode = IW_MODE_ADHOC;
8609 priv->net_dev->type = ARPHRD_ETHER;
8611 break;
8612 #ifdef CONFIG_IPW2200_MONITOR
8613 case 2:
8614 priv->ieee->iw_mode = IW_MODE_MONITOR;
8615 #ifdef CONFIG_IPW2200_RADIOTAP
8616 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8617 #else
8618 priv->net_dev->type = ARPHRD_IEEE80211;
8619 #endif
8620 break;
8621 #endif
8622 default:
8623 case 0:
8624 priv->net_dev->type = ARPHRD_ETHER;
8625 priv->ieee->iw_mode = IW_MODE_INFRA;
8626 break;
8629 if (hwcrypto) {
8630 priv->ieee->host_encrypt = 0;
8631 priv->ieee->host_encrypt_msdu = 0;
8632 priv->ieee->host_decrypt = 0;
8633 priv->ieee->host_mc_decrypt = 0;
8635 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8637 /* IPW2200/2915 is abled to do hardware fragmentation. */
8638 priv->ieee->host_open_frag = 0;
8640 if ((priv->pci_dev->device == 0x4223) ||
8641 (priv->pci_dev->device == 0x4224)) {
8642 if (option == 1)
8643 printk(KERN_INFO DRV_NAME
8644 ": Detected Intel PRO/Wireless 2915ABG Network "
8645 "Connection\n");
8646 priv->ieee->abg_true = 1;
8647 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8648 modulation = LIBIPW_OFDM_MODULATION |
8649 LIBIPW_CCK_MODULATION;
8650 priv->adapter = IPW_2915ABG;
8651 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8652 } else {
8653 if (option == 1)
8654 printk(KERN_INFO DRV_NAME
8655 ": Detected Intel PRO/Wireless 2200BG Network "
8656 "Connection\n");
8658 priv->ieee->abg_true = 0;
8659 band = LIBIPW_24GHZ_BAND;
8660 modulation = LIBIPW_OFDM_MODULATION |
8661 LIBIPW_CCK_MODULATION;
8662 priv->adapter = IPW_2200BG;
8663 priv->ieee->mode = IEEE_G | IEEE_B;
8666 priv->ieee->freq_band = band;
8667 priv->ieee->modulation = modulation;
8669 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8671 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8672 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8674 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8675 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8676 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8678 /* If power management is turned on, default to AC mode */
8679 priv->power_mode = IPW_POWER_AC;
8680 priv->tx_power = IPW_TX_POWER_DEFAULT;
8682 return old_mode == priv->ieee->iw_mode;
8686 * This file defines the Wireless Extension handlers. It does not
8687 * define any methods of hardware manipulation and relies on the
8688 * functions defined in ipw_main to provide the HW interaction.
8690 * The exception to this is the use of the ipw_get_ordinal()
8691 * function used to poll the hardware vs. making unecessary calls.
8695 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8697 if (channel == 0) {
8698 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8699 priv->config &= ~CFG_STATIC_CHANNEL;
8700 IPW_DEBUG_ASSOC("Attempting to associate with new "
8701 "parameters.\n");
8702 ipw_associate(priv);
8703 return 0;
8706 priv->config |= CFG_STATIC_CHANNEL;
8708 if (priv->channel == channel) {
8709 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8710 channel);
8711 return 0;
8714 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8715 priv->channel = channel;
8717 #ifdef CONFIG_IPW2200_MONITOR
8718 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8719 int i;
8720 if (priv->status & STATUS_SCANNING) {
8721 IPW_DEBUG_SCAN("Scan abort triggered due to "
8722 "channel change.\n");
8723 ipw_abort_scan(priv);
8726 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8727 udelay(10);
8729 if (priv->status & STATUS_SCANNING)
8730 IPW_DEBUG_SCAN("Still scanning...\n");
8731 else
8732 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8733 1000 - i);
8735 return 0;
8737 #endif /* CONFIG_IPW2200_MONITOR */
8739 /* Network configuration changed -- force [re]association */
8740 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8741 if (!ipw_disassociate(priv))
8742 ipw_associate(priv);
8744 return 0;
8747 static int ipw_wx_set_freq(struct net_device *dev,
8748 struct iw_request_info *info,
8749 union iwreq_data *wrqu, char *extra)
8751 struct ipw_priv *priv = libipw_priv(dev);
8752 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8753 struct iw_freq *fwrq = &wrqu->freq;
8754 int ret = 0, i;
8755 u8 channel, flags;
8756 int band;
8758 if (fwrq->m == 0) {
8759 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8760 mutex_lock(&priv->mutex);
8761 ret = ipw_set_channel(priv, 0);
8762 mutex_unlock(&priv->mutex);
8763 return ret;
8765 /* if setting by freq convert to channel */
8766 if (fwrq->e == 1) {
8767 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8768 if (channel == 0)
8769 return -EINVAL;
8770 } else
8771 channel = fwrq->m;
8773 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8774 return -EINVAL;
8776 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8777 i = libipw_channel_to_index(priv->ieee, channel);
8778 if (i == -1)
8779 return -EINVAL;
8781 flags = (band == LIBIPW_24GHZ_BAND) ?
8782 geo->bg[i].flags : geo->a[i].flags;
8783 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8784 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8785 return -EINVAL;
8789 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8790 mutex_lock(&priv->mutex);
8791 ret = ipw_set_channel(priv, channel);
8792 mutex_unlock(&priv->mutex);
8793 return ret;
8796 static int ipw_wx_get_freq(struct net_device *dev,
8797 struct iw_request_info *info,
8798 union iwreq_data *wrqu, char *extra)
8800 struct ipw_priv *priv = libipw_priv(dev);
8802 wrqu->freq.e = 0;
8804 /* If we are associated, trying to associate, or have a statically
8805 * configured CHANNEL then return that; otherwise return ANY */
8806 mutex_lock(&priv->mutex);
8807 if (priv->config & CFG_STATIC_CHANNEL ||
8808 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8809 int i;
8811 i = libipw_channel_to_index(priv->ieee, priv->channel);
8812 BUG_ON(i == -1);
8813 wrqu->freq.e = 1;
8815 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8816 case LIBIPW_52GHZ_BAND:
8817 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8818 break;
8820 case LIBIPW_24GHZ_BAND:
8821 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8822 break;
8824 default:
8825 BUG();
8827 } else
8828 wrqu->freq.m = 0;
8830 mutex_unlock(&priv->mutex);
8831 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8832 return 0;
8835 static int ipw_wx_set_mode(struct net_device *dev,
8836 struct iw_request_info *info,
8837 union iwreq_data *wrqu, char *extra)
8839 struct ipw_priv *priv = libipw_priv(dev);
8840 int err = 0;
8842 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8844 switch (wrqu->mode) {
8845 #ifdef CONFIG_IPW2200_MONITOR
8846 case IW_MODE_MONITOR:
8847 #endif
8848 case IW_MODE_ADHOC:
8849 case IW_MODE_INFRA:
8850 break;
8851 case IW_MODE_AUTO:
8852 wrqu->mode = IW_MODE_INFRA;
8853 break;
8854 default:
8855 return -EINVAL;
8857 if (wrqu->mode == priv->ieee->iw_mode)
8858 return 0;
8860 mutex_lock(&priv->mutex);
8862 ipw_sw_reset(priv, 0);
8864 #ifdef CONFIG_IPW2200_MONITOR
8865 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8866 priv->net_dev->type = ARPHRD_ETHER;
8868 if (wrqu->mode == IW_MODE_MONITOR)
8869 #ifdef CONFIG_IPW2200_RADIOTAP
8870 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8871 #else
8872 priv->net_dev->type = ARPHRD_IEEE80211;
8873 #endif
8874 #endif /* CONFIG_IPW2200_MONITOR */
8876 /* Free the existing firmware and reset the fw_loaded
8877 * flag so ipw_load() will bring in the new firmware */
8878 free_firmware();
8880 priv->ieee->iw_mode = wrqu->mode;
8882 queue_work(priv->workqueue, &priv->adapter_restart);
8883 mutex_unlock(&priv->mutex);
8884 return err;
8887 static int ipw_wx_get_mode(struct net_device *dev,
8888 struct iw_request_info *info,
8889 union iwreq_data *wrqu, char *extra)
8891 struct ipw_priv *priv = libipw_priv(dev);
8892 mutex_lock(&priv->mutex);
8893 wrqu->mode = priv->ieee->iw_mode;
8894 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8895 mutex_unlock(&priv->mutex);
8896 return 0;
8899 /* Values are in microsecond */
8900 static const s32 timeout_duration[] = {
8901 350000,
8902 250000,
8903 75000,
8904 37000,
8905 25000,
8908 static const s32 period_duration[] = {
8909 400000,
8910 700000,
8911 1000000,
8912 1000000,
8913 1000000
8916 static int ipw_wx_get_range(struct net_device *dev,
8917 struct iw_request_info *info,
8918 union iwreq_data *wrqu, char *extra)
8920 struct ipw_priv *priv = libipw_priv(dev);
8921 struct iw_range *range = (struct iw_range *)extra;
8922 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8923 int i = 0, j;
8925 wrqu->data.length = sizeof(*range);
8926 memset(range, 0, sizeof(*range));
8928 /* 54Mbs == ~27 Mb/s real (802.11g) */
8929 range->throughput = 27 * 1000 * 1000;
8931 range->max_qual.qual = 100;
8932 /* TODO: Find real max RSSI and stick here */
8933 range->max_qual.level = 0;
8934 range->max_qual.noise = 0;
8935 range->max_qual.updated = 7; /* Updated all three */
8937 range->avg_qual.qual = 70;
8938 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8939 range->avg_qual.level = 0;
8940 range->avg_qual.noise = 0;
8941 range->avg_qual.updated = 7; /* Updated all three */
8942 mutex_lock(&priv->mutex);
8943 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8945 for (i = 0; i < range->num_bitrates; i++)
8946 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8947 500000;
8949 range->max_rts = DEFAULT_RTS_THRESHOLD;
8950 range->min_frag = MIN_FRAG_THRESHOLD;
8951 range->max_frag = MAX_FRAG_THRESHOLD;
8953 range->encoding_size[0] = 5;
8954 range->encoding_size[1] = 13;
8955 range->num_encoding_sizes = 2;
8956 range->max_encoding_tokens = WEP_KEYS;
8958 /* Set the Wireless Extension versions */
8959 range->we_version_compiled = WIRELESS_EXT;
8960 range->we_version_source = 18;
8962 i = 0;
8963 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8964 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8965 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8966 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8967 continue;
8969 range->freq[i].i = geo->bg[j].channel;
8970 range->freq[i].m = geo->bg[j].freq * 100000;
8971 range->freq[i].e = 1;
8972 i++;
8976 if (priv->ieee->mode & IEEE_A) {
8977 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8978 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8979 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8980 continue;
8982 range->freq[i].i = geo->a[j].channel;
8983 range->freq[i].m = geo->a[j].freq * 100000;
8984 range->freq[i].e = 1;
8985 i++;
8989 range->num_channels = i;
8990 range->num_frequency = i;
8992 mutex_unlock(&priv->mutex);
8994 /* Event capability (kernel + driver) */
8995 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8996 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8997 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8998 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8999 range->event_capa[1] = IW_EVENT_CAPA_K_1;
9001 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9002 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9004 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9006 IPW_DEBUG_WX("GET Range\n");
9007 return 0;
9010 static int ipw_wx_set_wap(struct net_device *dev,
9011 struct iw_request_info *info,
9012 union iwreq_data *wrqu, char *extra)
9014 struct ipw_priv *priv = libipw_priv(dev);
9016 static const unsigned char any[] = {
9017 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9019 static const unsigned char off[] = {
9020 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9023 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9024 return -EINVAL;
9025 mutex_lock(&priv->mutex);
9026 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9027 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9028 /* we disable mandatory BSSID association */
9029 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9030 priv->config &= ~CFG_STATIC_BSSID;
9031 IPW_DEBUG_ASSOC("Attempting to associate with new "
9032 "parameters.\n");
9033 ipw_associate(priv);
9034 mutex_unlock(&priv->mutex);
9035 return 0;
9038 priv->config |= CFG_STATIC_BSSID;
9039 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9040 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9041 mutex_unlock(&priv->mutex);
9042 return 0;
9045 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9046 wrqu->ap_addr.sa_data);
9048 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9050 /* Network configuration changed -- force [re]association */
9051 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9052 if (!ipw_disassociate(priv))
9053 ipw_associate(priv);
9055 mutex_unlock(&priv->mutex);
9056 return 0;
9059 static int ipw_wx_get_wap(struct net_device *dev,
9060 struct iw_request_info *info,
9061 union iwreq_data *wrqu, char *extra)
9063 struct ipw_priv *priv = libipw_priv(dev);
9065 /* If we are associated, trying to associate, or have a statically
9066 * configured BSSID then return that; otherwise return ANY */
9067 mutex_lock(&priv->mutex);
9068 if (priv->config & CFG_STATIC_BSSID ||
9069 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9070 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9071 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9072 } else
9073 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9075 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9076 wrqu->ap_addr.sa_data);
9077 mutex_unlock(&priv->mutex);
9078 return 0;
9081 static int ipw_wx_set_essid(struct net_device *dev,
9082 struct iw_request_info *info,
9083 union iwreq_data *wrqu, char *extra)
9085 struct ipw_priv *priv = libipw_priv(dev);
9086 int length;
9087 DECLARE_SSID_BUF(ssid);
9089 mutex_lock(&priv->mutex);
9091 if (!wrqu->essid.flags)
9093 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9094 ipw_disassociate(priv);
9095 priv->config &= ~CFG_STATIC_ESSID;
9096 ipw_associate(priv);
9097 mutex_unlock(&priv->mutex);
9098 return 0;
9101 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9103 priv->config |= CFG_STATIC_ESSID;
9105 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9106 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9107 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9108 mutex_unlock(&priv->mutex);
9109 return 0;
9112 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9113 print_ssid(ssid, extra, length), length);
9115 priv->essid_len = length;
9116 memcpy(priv->essid, extra, priv->essid_len);
9118 /* Network configuration changed -- force [re]association */
9119 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9120 if (!ipw_disassociate(priv))
9121 ipw_associate(priv);
9123 mutex_unlock(&priv->mutex);
9124 return 0;
9127 static int ipw_wx_get_essid(struct net_device *dev,
9128 struct iw_request_info *info,
9129 union iwreq_data *wrqu, char *extra)
9131 struct ipw_priv *priv = libipw_priv(dev);
9132 DECLARE_SSID_BUF(ssid);
9134 /* If we are associated, trying to associate, or have a statically
9135 * configured ESSID then return that; otherwise return ANY */
9136 mutex_lock(&priv->mutex);
9137 if (priv->config & CFG_STATIC_ESSID ||
9138 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9139 IPW_DEBUG_WX("Getting essid: '%s'\n",
9140 print_ssid(ssid, priv->essid, priv->essid_len));
9141 memcpy(extra, priv->essid, priv->essid_len);
9142 wrqu->essid.length = priv->essid_len;
9143 wrqu->essid.flags = 1; /* active */
9144 } else {
9145 IPW_DEBUG_WX("Getting essid: ANY\n");
9146 wrqu->essid.length = 0;
9147 wrqu->essid.flags = 0; /* active */
9149 mutex_unlock(&priv->mutex);
9150 return 0;
9153 static int ipw_wx_set_nick(struct net_device *dev,
9154 struct iw_request_info *info,
9155 union iwreq_data *wrqu, char *extra)
9157 struct ipw_priv *priv = libipw_priv(dev);
9159 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9160 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9161 return -E2BIG;
9162 mutex_lock(&priv->mutex);
9163 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9164 memset(priv->nick, 0, sizeof(priv->nick));
9165 memcpy(priv->nick, extra, wrqu->data.length);
9166 IPW_DEBUG_TRACE("<<\n");
9167 mutex_unlock(&priv->mutex);
9168 return 0;
9172 static int ipw_wx_get_nick(struct net_device *dev,
9173 struct iw_request_info *info,
9174 union iwreq_data *wrqu, char *extra)
9176 struct ipw_priv *priv = libipw_priv(dev);
9177 IPW_DEBUG_WX("Getting nick\n");
9178 mutex_lock(&priv->mutex);
9179 wrqu->data.length = strlen(priv->nick);
9180 memcpy(extra, priv->nick, wrqu->data.length);
9181 wrqu->data.flags = 1; /* active */
9182 mutex_unlock(&priv->mutex);
9183 return 0;
9186 static int ipw_wx_set_sens(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9190 struct ipw_priv *priv = libipw_priv(dev);
9191 int err = 0;
9193 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9194 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9195 mutex_lock(&priv->mutex);
9197 if (wrqu->sens.fixed == 0)
9199 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9200 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9201 goto out;
9203 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9204 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9205 err = -EINVAL;
9206 goto out;
9209 priv->roaming_threshold = wrqu->sens.value;
9210 priv->disassociate_threshold = 3*wrqu->sens.value;
9211 out:
9212 mutex_unlock(&priv->mutex);
9213 return err;
9216 static int ipw_wx_get_sens(struct net_device *dev,
9217 struct iw_request_info *info,
9218 union iwreq_data *wrqu, char *extra)
9220 struct ipw_priv *priv = libipw_priv(dev);
9221 mutex_lock(&priv->mutex);
9222 wrqu->sens.fixed = 1;
9223 wrqu->sens.value = priv->roaming_threshold;
9224 mutex_unlock(&priv->mutex);
9226 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9227 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9229 return 0;
9232 static int ipw_wx_set_rate(struct net_device *dev,
9233 struct iw_request_info *info,
9234 union iwreq_data *wrqu, char *extra)
9236 /* TODO: We should use semaphores or locks for access to priv */
9237 struct ipw_priv *priv = libipw_priv(dev);
9238 u32 target_rate = wrqu->bitrate.value;
9239 u32 fixed, mask;
9241 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9242 /* value = X, fixed = 1 means only rate X */
9243 /* value = X, fixed = 0 means all rates lower equal X */
9245 if (target_rate == -1) {
9246 fixed = 0;
9247 mask = LIBIPW_DEFAULT_RATES_MASK;
9248 /* Now we should reassociate */
9249 goto apply;
9252 mask = 0;
9253 fixed = wrqu->bitrate.fixed;
9255 if (target_rate == 1000000 || !fixed)
9256 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9257 if (target_rate == 1000000)
9258 goto apply;
9260 if (target_rate == 2000000 || !fixed)
9261 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9262 if (target_rate == 2000000)
9263 goto apply;
9265 if (target_rate == 5500000 || !fixed)
9266 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9267 if (target_rate == 5500000)
9268 goto apply;
9270 if (target_rate == 6000000 || !fixed)
9271 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9272 if (target_rate == 6000000)
9273 goto apply;
9275 if (target_rate == 9000000 || !fixed)
9276 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9277 if (target_rate == 9000000)
9278 goto apply;
9280 if (target_rate == 11000000 || !fixed)
9281 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9282 if (target_rate == 11000000)
9283 goto apply;
9285 if (target_rate == 12000000 || !fixed)
9286 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9287 if (target_rate == 12000000)
9288 goto apply;
9290 if (target_rate == 18000000 || !fixed)
9291 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9292 if (target_rate == 18000000)
9293 goto apply;
9295 if (target_rate == 24000000 || !fixed)
9296 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9297 if (target_rate == 24000000)
9298 goto apply;
9300 if (target_rate == 36000000 || !fixed)
9301 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9302 if (target_rate == 36000000)
9303 goto apply;
9305 if (target_rate == 48000000 || !fixed)
9306 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9307 if (target_rate == 48000000)
9308 goto apply;
9310 if (target_rate == 54000000 || !fixed)
9311 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9312 if (target_rate == 54000000)
9313 goto apply;
9315 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9316 return -EINVAL;
9318 apply:
9319 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9320 mask, fixed ? "fixed" : "sub-rates");
9321 mutex_lock(&priv->mutex);
9322 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9323 priv->config &= ~CFG_FIXED_RATE;
9324 ipw_set_fixed_rate(priv, priv->ieee->mode);
9325 } else
9326 priv->config |= CFG_FIXED_RATE;
9328 if (priv->rates_mask == mask) {
9329 IPW_DEBUG_WX("Mask set to current mask.\n");
9330 mutex_unlock(&priv->mutex);
9331 return 0;
9334 priv->rates_mask = mask;
9336 /* Network configuration changed -- force [re]association */
9337 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9338 if (!ipw_disassociate(priv))
9339 ipw_associate(priv);
9341 mutex_unlock(&priv->mutex);
9342 return 0;
9345 static int ipw_wx_get_rate(struct net_device *dev,
9346 struct iw_request_info *info,
9347 union iwreq_data *wrqu, char *extra)
9349 struct ipw_priv *priv = libipw_priv(dev);
9350 mutex_lock(&priv->mutex);
9351 wrqu->bitrate.value = priv->last_rate;
9352 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9353 mutex_unlock(&priv->mutex);
9354 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9355 return 0;
9358 static int ipw_wx_set_rts(struct net_device *dev,
9359 struct iw_request_info *info,
9360 union iwreq_data *wrqu, char *extra)
9362 struct ipw_priv *priv = libipw_priv(dev);
9363 mutex_lock(&priv->mutex);
9364 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9365 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9366 else {
9367 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9368 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9369 mutex_unlock(&priv->mutex);
9370 return -EINVAL;
9372 priv->rts_threshold = wrqu->rts.value;
9375 ipw_send_rts_threshold(priv, priv->rts_threshold);
9376 mutex_unlock(&priv->mutex);
9377 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9378 return 0;
9381 static int ipw_wx_get_rts(struct net_device *dev,
9382 struct iw_request_info *info,
9383 union iwreq_data *wrqu, char *extra)
9385 struct ipw_priv *priv = libipw_priv(dev);
9386 mutex_lock(&priv->mutex);
9387 wrqu->rts.value = priv->rts_threshold;
9388 wrqu->rts.fixed = 0; /* no auto select */
9389 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9390 mutex_unlock(&priv->mutex);
9391 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9392 return 0;
9395 static int ipw_wx_set_txpow(struct net_device *dev,
9396 struct iw_request_info *info,
9397 union iwreq_data *wrqu, char *extra)
9399 struct ipw_priv *priv = libipw_priv(dev);
9400 int err = 0;
9402 mutex_lock(&priv->mutex);
9403 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9404 err = -EINPROGRESS;
9405 goto out;
9408 if (!wrqu->power.fixed)
9409 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9411 if (wrqu->power.flags != IW_TXPOW_DBM) {
9412 err = -EINVAL;
9413 goto out;
9416 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9417 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9418 err = -EINVAL;
9419 goto out;
9422 priv->tx_power = wrqu->power.value;
9423 err = ipw_set_tx_power(priv);
9424 out:
9425 mutex_unlock(&priv->mutex);
9426 return err;
9429 static int ipw_wx_get_txpow(struct net_device *dev,
9430 struct iw_request_info *info,
9431 union iwreq_data *wrqu, char *extra)
9433 struct ipw_priv *priv = libipw_priv(dev);
9434 mutex_lock(&priv->mutex);
9435 wrqu->power.value = priv->tx_power;
9436 wrqu->power.fixed = 1;
9437 wrqu->power.flags = IW_TXPOW_DBM;
9438 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9439 mutex_unlock(&priv->mutex);
9441 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9442 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9444 return 0;
9447 static int ipw_wx_set_frag(struct net_device *dev,
9448 struct iw_request_info *info,
9449 union iwreq_data *wrqu, char *extra)
9451 struct ipw_priv *priv = libipw_priv(dev);
9452 mutex_lock(&priv->mutex);
9453 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9454 priv->ieee->fts = DEFAULT_FTS;
9455 else {
9456 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9457 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9458 mutex_unlock(&priv->mutex);
9459 return -EINVAL;
9462 priv->ieee->fts = wrqu->frag.value & ~0x1;
9465 ipw_send_frag_threshold(priv, wrqu->frag.value);
9466 mutex_unlock(&priv->mutex);
9467 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9468 return 0;
9471 static int ipw_wx_get_frag(struct net_device *dev,
9472 struct iw_request_info *info,
9473 union iwreq_data *wrqu, char *extra)
9475 struct ipw_priv *priv = libipw_priv(dev);
9476 mutex_lock(&priv->mutex);
9477 wrqu->frag.value = priv->ieee->fts;
9478 wrqu->frag.fixed = 0; /* no auto select */
9479 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9480 mutex_unlock(&priv->mutex);
9481 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9483 return 0;
9486 static int ipw_wx_set_retry(struct net_device *dev,
9487 struct iw_request_info *info,
9488 union iwreq_data *wrqu, char *extra)
9490 struct ipw_priv *priv = libipw_priv(dev);
9492 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9493 return -EINVAL;
9495 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9496 return 0;
9498 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9499 return -EINVAL;
9501 mutex_lock(&priv->mutex);
9502 if (wrqu->retry.flags & IW_RETRY_SHORT)
9503 priv->short_retry_limit = (u8) wrqu->retry.value;
9504 else if (wrqu->retry.flags & IW_RETRY_LONG)
9505 priv->long_retry_limit = (u8) wrqu->retry.value;
9506 else {
9507 priv->short_retry_limit = (u8) wrqu->retry.value;
9508 priv->long_retry_limit = (u8) wrqu->retry.value;
9511 ipw_send_retry_limit(priv, priv->short_retry_limit,
9512 priv->long_retry_limit);
9513 mutex_unlock(&priv->mutex);
9514 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9515 priv->short_retry_limit, priv->long_retry_limit);
9516 return 0;
9519 static int ipw_wx_get_retry(struct net_device *dev,
9520 struct iw_request_info *info,
9521 union iwreq_data *wrqu, char *extra)
9523 struct ipw_priv *priv = libipw_priv(dev);
9525 mutex_lock(&priv->mutex);
9526 wrqu->retry.disabled = 0;
9528 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9529 mutex_unlock(&priv->mutex);
9530 return -EINVAL;
9533 if (wrqu->retry.flags & IW_RETRY_LONG) {
9534 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9535 wrqu->retry.value = priv->long_retry_limit;
9536 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9537 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9538 wrqu->retry.value = priv->short_retry_limit;
9539 } else {
9540 wrqu->retry.flags = IW_RETRY_LIMIT;
9541 wrqu->retry.value = priv->short_retry_limit;
9543 mutex_unlock(&priv->mutex);
9545 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9547 return 0;
9550 static int ipw_wx_set_scan(struct net_device *dev,
9551 struct iw_request_info *info,
9552 union iwreq_data *wrqu, char *extra)
9554 struct ipw_priv *priv = libipw_priv(dev);
9555 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9556 struct delayed_work *work = NULL;
9558 mutex_lock(&priv->mutex);
9560 priv->user_requested_scan = 1;
9562 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9563 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9564 int len = min((int)req->essid_len,
9565 (int)sizeof(priv->direct_scan_ssid));
9566 memcpy(priv->direct_scan_ssid, req->essid, len);
9567 priv->direct_scan_ssid_len = len;
9568 work = &priv->request_direct_scan;
9569 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9570 work = &priv->request_passive_scan;
9572 } else {
9573 /* Normal active broadcast scan */
9574 work = &priv->request_scan;
9577 mutex_unlock(&priv->mutex);
9579 IPW_DEBUG_WX("Start scan\n");
9581 queue_delayed_work(priv->workqueue, work, 0);
9583 return 0;
9586 static int ipw_wx_get_scan(struct net_device *dev,
9587 struct iw_request_info *info,
9588 union iwreq_data *wrqu, char *extra)
9590 struct ipw_priv *priv = libipw_priv(dev);
9591 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9594 static int ipw_wx_set_encode(struct net_device *dev,
9595 struct iw_request_info *info,
9596 union iwreq_data *wrqu, char *key)
9598 struct ipw_priv *priv = libipw_priv(dev);
9599 int ret;
9600 u32 cap = priv->capability;
9602 mutex_lock(&priv->mutex);
9603 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9605 /* In IBSS mode, we need to notify the firmware to update
9606 * the beacon info after we changed the capability. */
9607 if (cap != priv->capability &&
9608 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9609 priv->status & STATUS_ASSOCIATED)
9610 ipw_disassociate(priv);
9612 mutex_unlock(&priv->mutex);
9613 return ret;
9616 static int ipw_wx_get_encode(struct net_device *dev,
9617 struct iw_request_info *info,
9618 union iwreq_data *wrqu, char *key)
9620 struct ipw_priv *priv = libipw_priv(dev);
9621 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9624 static int ipw_wx_set_power(struct net_device *dev,
9625 struct iw_request_info *info,
9626 union iwreq_data *wrqu, char *extra)
9628 struct ipw_priv *priv = libipw_priv(dev);
9629 int err;
9630 mutex_lock(&priv->mutex);
9631 if (wrqu->power.disabled) {
9632 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9633 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9634 if (err) {
9635 IPW_DEBUG_WX("failed setting power mode.\n");
9636 mutex_unlock(&priv->mutex);
9637 return err;
9639 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9640 mutex_unlock(&priv->mutex);
9641 return 0;
9644 switch (wrqu->power.flags & IW_POWER_MODE) {
9645 case IW_POWER_ON: /* If not specified */
9646 case IW_POWER_MODE: /* If set all mask */
9647 case IW_POWER_ALL_R: /* If explicitly state all */
9648 break;
9649 default: /* Otherwise we don't support it */
9650 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9651 wrqu->power.flags);
9652 mutex_unlock(&priv->mutex);
9653 return -EOPNOTSUPP;
9656 /* If the user hasn't specified a power management mode yet, default
9657 * to BATTERY */
9658 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9659 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9660 else
9661 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9663 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9664 if (err) {
9665 IPW_DEBUG_WX("failed setting power mode.\n");
9666 mutex_unlock(&priv->mutex);
9667 return err;
9670 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9671 mutex_unlock(&priv->mutex);
9672 return 0;
9675 static int ipw_wx_get_power(struct net_device *dev,
9676 struct iw_request_info *info,
9677 union iwreq_data *wrqu, char *extra)
9679 struct ipw_priv *priv = libipw_priv(dev);
9680 mutex_lock(&priv->mutex);
9681 if (!(priv->power_mode & IPW_POWER_ENABLED))
9682 wrqu->power.disabled = 1;
9683 else
9684 wrqu->power.disabled = 0;
9686 mutex_unlock(&priv->mutex);
9687 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9689 return 0;
9692 static int ipw_wx_set_powermode(struct net_device *dev,
9693 struct iw_request_info *info,
9694 union iwreq_data *wrqu, char *extra)
9696 struct ipw_priv *priv = libipw_priv(dev);
9697 int mode = *(int *)extra;
9698 int err;
9700 mutex_lock(&priv->mutex);
9701 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9702 mode = IPW_POWER_AC;
9704 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9705 err = ipw_send_power_mode(priv, mode);
9706 if (err) {
9707 IPW_DEBUG_WX("failed setting power mode.\n");
9708 mutex_unlock(&priv->mutex);
9709 return err;
9711 priv->power_mode = IPW_POWER_ENABLED | mode;
9713 mutex_unlock(&priv->mutex);
9714 return 0;
9717 #define MAX_WX_STRING 80
9718 static int ipw_wx_get_powermode(struct net_device *dev,
9719 struct iw_request_info *info,
9720 union iwreq_data *wrqu, char *extra)
9722 struct ipw_priv *priv = libipw_priv(dev);
9723 int level = IPW_POWER_LEVEL(priv->power_mode);
9724 char *p = extra;
9726 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9728 switch (level) {
9729 case IPW_POWER_AC:
9730 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9731 break;
9732 case IPW_POWER_BATTERY:
9733 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9734 break;
9735 default:
9736 p += snprintf(p, MAX_WX_STRING - (p - extra),
9737 "(Timeout %dms, Period %dms)",
9738 timeout_duration[level - 1] / 1000,
9739 period_duration[level - 1] / 1000);
9742 if (!(priv->power_mode & IPW_POWER_ENABLED))
9743 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9745 wrqu->data.length = p - extra + 1;
9747 return 0;
9750 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9751 struct iw_request_info *info,
9752 union iwreq_data *wrqu, char *extra)
9754 struct ipw_priv *priv = libipw_priv(dev);
9755 int mode = *(int *)extra;
9756 u8 band = 0, modulation = 0;
9758 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9759 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9760 return -EINVAL;
9762 mutex_lock(&priv->mutex);
9763 if (priv->adapter == IPW_2915ABG) {
9764 priv->ieee->abg_true = 1;
9765 if (mode & IEEE_A) {
9766 band |= LIBIPW_52GHZ_BAND;
9767 modulation |= LIBIPW_OFDM_MODULATION;
9768 } else
9769 priv->ieee->abg_true = 0;
9770 } else {
9771 if (mode & IEEE_A) {
9772 IPW_WARNING("Attempt to set 2200BG into "
9773 "802.11a mode\n");
9774 mutex_unlock(&priv->mutex);
9775 return -EINVAL;
9778 priv->ieee->abg_true = 0;
9781 if (mode & IEEE_B) {
9782 band |= LIBIPW_24GHZ_BAND;
9783 modulation |= LIBIPW_CCK_MODULATION;
9784 } else
9785 priv->ieee->abg_true = 0;
9787 if (mode & IEEE_G) {
9788 band |= LIBIPW_24GHZ_BAND;
9789 modulation |= LIBIPW_OFDM_MODULATION;
9790 } else
9791 priv->ieee->abg_true = 0;
9793 priv->ieee->mode = mode;
9794 priv->ieee->freq_band = band;
9795 priv->ieee->modulation = modulation;
9796 init_supported_rates(priv, &priv->rates);
9798 /* Network configuration changed -- force [re]association */
9799 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9800 if (!ipw_disassociate(priv)) {
9801 ipw_send_supported_rates(priv, &priv->rates);
9802 ipw_associate(priv);
9805 /* Update the band LEDs */
9806 ipw_led_band_on(priv);
9808 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9809 mode & IEEE_A ? 'a' : '.',
9810 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9811 mutex_unlock(&priv->mutex);
9812 return 0;
9815 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9816 struct iw_request_info *info,
9817 union iwreq_data *wrqu, char *extra)
9819 struct ipw_priv *priv = libipw_priv(dev);
9820 mutex_lock(&priv->mutex);
9821 switch (priv->ieee->mode) {
9822 case IEEE_A:
9823 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9824 break;
9825 case IEEE_B:
9826 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9827 break;
9828 case IEEE_A | IEEE_B:
9829 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9830 break;
9831 case IEEE_G:
9832 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9833 break;
9834 case IEEE_A | IEEE_G:
9835 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9836 break;
9837 case IEEE_B | IEEE_G:
9838 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9839 break;
9840 case IEEE_A | IEEE_B | IEEE_G:
9841 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9842 break;
9843 default:
9844 strncpy(extra, "unknown", MAX_WX_STRING);
9845 break;
9848 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9850 wrqu->data.length = strlen(extra) + 1;
9851 mutex_unlock(&priv->mutex);
9853 return 0;
9856 static int ipw_wx_set_preamble(struct net_device *dev,
9857 struct iw_request_info *info,
9858 union iwreq_data *wrqu, char *extra)
9860 struct ipw_priv *priv = libipw_priv(dev);
9861 int mode = *(int *)extra;
9862 mutex_lock(&priv->mutex);
9863 /* Switching from SHORT -> LONG requires a disassociation */
9864 if (mode == 1) {
9865 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9866 priv->config |= CFG_PREAMBLE_LONG;
9868 /* Network configuration changed -- force [re]association */
9869 IPW_DEBUG_ASSOC
9870 ("[re]association triggered due to preamble change.\n");
9871 if (!ipw_disassociate(priv))
9872 ipw_associate(priv);
9874 goto done;
9877 if (mode == 0) {
9878 priv->config &= ~CFG_PREAMBLE_LONG;
9879 goto done;
9881 mutex_unlock(&priv->mutex);
9882 return -EINVAL;
9884 done:
9885 mutex_unlock(&priv->mutex);
9886 return 0;
9889 static int ipw_wx_get_preamble(struct net_device *dev,
9890 struct iw_request_info *info,
9891 union iwreq_data *wrqu, char *extra)
9893 struct ipw_priv *priv = libipw_priv(dev);
9894 mutex_lock(&priv->mutex);
9895 if (priv->config & CFG_PREAMBLE_LONG)
9896 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9897 else
9898 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9899 mutex_unlock(&priv->mutex);
9900 return 0;
9903 #ifdef CONFIG_IPW2200_MONITOR
9904 static int ipw_wx_set_monitor(struct net_device *dev,
9905 struct iw_request_info *info,
9906 union iwreq_data *wrqu, char *extra)
9908 struct ipw_priv *priv = libipw_priv(dev);
9909 int *parms = (int *)extra;
9910 int enable = (parms[0] > 0);
9911 mutex_lock(&priv->mutex);
9912 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9913 if (enable) {
9914 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9915 #ifdef CONFIG_IPW2200_RADIOTAP
9916 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9917 #else
9918 priv->net_dev->type = ARPHRD_IEEE80211;
9919 #endif
9920 queue_work(priv->workqueue, &priv->adapter_restart);
9923 ipw_set_channel(priv, parms[1]);
9924 } else {
9925 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9926 mutex_unlock(&priv->mutex);
9927 return 0;
9929 priv->net_dev->type = ARPHRD_ETHER;
9930 queue_work(priv->workqueue, &priv->adapter_restart);
9932 mutex_unlock(&priv->mutex);
9933 return 0;
9936 #endif /* CONFIG_IPW2200_MONITOR */
9938 static int ipw_wx_reset(struct net_device *dev,
9939 struct iw_request_info *info,
9940 union iwreq_data *wrqu, char *extra)
9942 struct ipw_priv *priv = libipw_priv(dev);
9943 IPW_DEBUG_WX("RESET\n");
9944 queue_work(priv->workqueue, &priv->adapter_restart);
9945 return 0;
9948 static int ipw_wx_sw_reset(struct net_device *dev,
9949 struct iw_request_info *info,
9950 union iwreq_data *wrqu, char *extra)
9952 struct ipw_priv *priv = libipw_priv(dev);
9953 union iwreq_data wrqu_sec = {
9954 .encoding = {
9955 .flags = IW_ENCODE_DISABLED,
9958 int ret;
9960 IPW_DEBUG_WX("SW_RESET\n");
9962 mutex_lock(&priv->mutex);
9964 ret = ipw_sw_reset(priv, 2);
9965 if (!ret) {
9966 free_firmware();
9967 ipw_adapter_restart(priv);
9970 /* The SW reset bit might have been toggled on by the 'disable'
9971 * module parameter, so take appropriate action */
9972 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9974 mutex_unlock(&priv->mutex);
9975 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9976 mutex_lock(&priv->mutex);
9978 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9979 /* Configuration likely changed -- force [re]association */
9980 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9981 "reset.\n");
9982 if (!ipw_disassociate(priv))
9983 ipw_associate(priv);
9986 mutex_unlock(&priv->mutex);
9988 return 0;
9991 /* Rebase the WE IOCTLs to zero for the handler array */
9992 static iw_handler ipw_wx_handlers[] = {
9993 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9994 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9995 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9996 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9997 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9998 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9999 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10000 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10001 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10002 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10003 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10004 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10005 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10006 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10007 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10008 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10009 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10010 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10011 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10012 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10013 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10014 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10015 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10016 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10017 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10018 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10019 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10020 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10021 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10022 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10023 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10024 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10025 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10026 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10027 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10028 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10029 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10030 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10031 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10032 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10033 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10036 enum {
10037 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10038 IPW_PRIV_GET_POWER,
10039 IPW_PRIV_SET_MODE,
10040 IPW_PRIV_GET_MODE,
10041 IPW_PRIV_SET_PREAMBLE,
10042 IPW_PRIV_GET_PREAMBLE,
10043 IPW_PRIV_RESET,
10044 IPW_PRIV_SW_RESET,
10045 #ifdef CONFIG_IPW2200_MONITOR
10046 IPW_PRIV_SET_MONITOR,
10047 #endif
10050 static struct iw_priv_args ipw_priv_args[] = {
10052 .cmd = IPW_PRIV_SET_POWER,
10053 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10054 .name = "set_power"},
10056 .cmd = IPW_PRIV_GET_POWER,
10057 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10058 .name = "get_power"},
10060 .cmd = IPW_PRIV_SET_MODE,
10061 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10062 .name = "set_mode"},
10064 .cmd = IPW_PRIV_GET_MODE,
10065 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10066 .name = "get_mode"},
10068 .cmd = IPW_PRIV_SET_PREAMBLE,
10069 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10070 .name = "set_preamble"},
10072 .cmd = IPW_PRIV_GET_PREAMBLE,
10073 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10074 .name = "get_preamble"},
10076 IPW_PRIV_RESET,
10077 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10079 IPW_PRIV_SW_RESET,
10080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10081 #ifdef CONFIG_IPW2200_MONITOR
10083 IPW_PRIV_SET_MONITOR,
10084 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10085 #endif /* CONFIG_IPW2200_MONITOR */
10088 static iw_handler ipw_priv_handler[] = {
10089 ipw_wx_set_powermode,
10090 ipw_wx_get_powermode,
10091 ipw_wx_set_wireless_mode,
10092 ipw_wx_get_wireless_mode,
10093 ipw_wx_set_preamble,
10094 ipw_wx_get_preamble,
10095 ipw_wx_reset,
10096 ipw_wx_sw_reset,
10097 #ifdef CONFIG_IPW2200_MONITOR
10098 ipw_wx_set_monitor,
10099 #endif
10102 static struct iw_handler_def ipw_wx_handler_def = {
10103 .standard = ipw_wx_handlers,
10104 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10105 .num_private = ARRAY_SIZE(ipw_priv_handler),
10106 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10107 .private = ipw_priv_handler,
10108 .private_args = ipw_priv_args,
10109 .get_wireless_stats = ipw_get_wireless_stats,
10113 * Get wireless statistics.
10114 * Called by /proc/net/wireless
10115 * Also called by SIOCGIWSTATS
10117 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10119 struct ipw_priv *priv = libipw_priv(dev);
10120 struct iw_statistics *wstats;
10122 wstats = &priv->wstats;
10124 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10125 * netdev->get_wireless_stats seems to be called before fw is
10126 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10127 * and associated; if not associcated, the values are all meaningless
10128 * anyway, so set them all to NULL and INVALID */
10129 if (!(priv->status & STATUS_ASSOCIATED)) {
10130 wstats->miss.beacon = 0;
10131 wstats->discard.retries = 0;
10132 wstats->qual.qual = 0;
10133 wstats->qual.level = 0;
10134 wstats->qual.noise = 0;
10135 wstats->qual.updated = 7;
10136 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10137 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10138 return wstats;
10141 wstats->qual.qual = priv->quality;
10142 wstats->qual.level = priv->exp_avg_rssi;
10143 wstats->qual.noise = priv->exp_avg_noise;
10144 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10145 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10147 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10148 wstats->discard.retries = priv->last_tx_failures;
10149 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10151 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10152 goto fail_get_ordinal;
10153 wstats->discard.retries += tx_retry; */
10155 return wstats;
10158 /* net device stuff */
10160 static void init_sys_config(struct ipw_sys_config *sys_config)
10162 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10163 sys_config->bt_coexistence = 0;
10164 sys_config->answer_broadcast_ssid_probe = 0;
10165 sys_config->accept_all_data_frames = 0;
10166 sys_config->accept_non_directed_frames = 1;
10167 sys_config->exclude_unicast_unencrypted = 0;
10168 sys_config->disable_unicast_decryption = 1;
10169 sys_config->exclude_multicast_unencrypted = 0;
10170 sys_config->disable_multicast_decryption = 1;
10171 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10172 antenna = CFG_SYS_ANTENNA_BOTH;
10173 sys_config->antenna_diversity = antenna;
10174 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10175 sys_config->dot11g_auto_detection = 0;
10176 sys_config->enable_cts_to_self = 0;
10177 sys_config->bt_coexist_collision_thr = 0;
10178 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10179 sys_config->silence_threshold = 0x1e;
10182 static int ipw_net_open(struct net_device *dev)
10184 IPW_DEBUG_INFO("dev->open\n");
10185 netif_start_queue(dev);
10186 return 0;
10189 static int ipw_net_stop(struct net_device *dev)
10191 IPW_DEBUG_INFO("dev->close\n");
10192 netif_stop_queue(dev);
10193 return 0;
10197 todo:
10199 modify to send one tfd per fragment instead of using chunking. otherwise
10200 we need to heavily modify the libipw_skb_to_txb.
10203 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10204 int pri)
10206 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10207 txb->fragments[0]->data;
10208 int i = 0;
10209 struct tfd_frame *tfd;
10210 #ifdef CONFIG_IPW2200_QOS
10211 int tx_id = ipw_get_tx_queue_number(priv, pri);
10212 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10213 #else
10214 struct clx2_tx_queue *txq = &priv->txq[0];
10215 #endif
10216 struct clx2_queue *q = &txq->q;
10217 u8 id, hdr_len, unicast;
10218 int fc;
10220 if (!(priv->status & STATUS_ASSOCIATED))
10221 goto drop;
10223 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10224 switch (priv->ieee->iw_mode) {
10225 case IW_MODE_ADHOC:
10226 unicast = !is_multicast_ether_addr(hdr->addr1);
10227 id = ipw_find_station(priv, hdr->addr1);
10228 if (id == IPW_INVALID_STATION) {
10229 id = ipw_add_station(priv, hdr->addr1);
10230 if (id == IPW_INVALID_STATION) {
10231 IPW_WARNING("Attempt to send data to "
10232 "invalid cell: %pM\n",
10233 hdr->addr1);
10234 goto drop;
10237 break;
10239 case IW_MODE_INFRA:
10240 default:
10241 unicast = !is_multicast_ether_addr(hdr->addr3);
10242 id = 0;
10243 break;
10246 tfd = &txq->bd[q->first_empty];
10247 txq->txb[q->first_empty] = txb;
10248 memset(tfd, 0, sizeof(*tfd));
10249 tfd->u.data.station_number = id;
10251 tfd->control_flags.message_type = TX_FRAME_TYPE;
10252 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10254 tfd->u.data.cmd_id = DINO_CMD_TX;
10255 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10257 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10258 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10259 else
10260 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10262 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10263 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10265 fc = le16_to_cpu(hdr->frame_ctl);
10266 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10268 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10270 if (likely(unicast))
10271 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10273 if (txb->encrypted && !priv->ieee->host_encrypt) {
10274 switch (priv->ieee->sec.level) {
10275 case SEC_LEVEL_3:
10276 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10277 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10278 if (!unicast)
10279 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10281 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10282 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10283 tfd->u.data.key_index = 0;
10284 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10285 break;
10286 case SEC_LEVEL_2:
10287 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10288 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10289 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10290 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10291 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10292 break;
10293 case SEC_LEVEL_1:
10294 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10295 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10296 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10297 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10299 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10300 else
10301 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10302 break;
10303 case SEC_LEVEL_0:
10304 break;
10305 default:
10306 printk(KERN_ERR "Unknown security level %d\n",
10307 priv->ieee->sec.level);
10308 break;
10310 } else
10311 /* No hardware encryption */
10312 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10314 #ifdef CONFIG_IPW2200_QOS
10315 if (fc & IEEE80211_STYPE_QOS_DATA)
10316 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10317 #endif /* CONFIG_IPW2200_QOS */
10319 /* payload */
10320 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10321 txb->nr_frags));
10322 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10323 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10324 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10325 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10326 i, le32_to_cpu(tfd->u.data.num_chunks),
10327 txb->fragments[i]->len - hdr_len);
10328 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10329 i, tfd->u.data.num_chunks,
10330 txb->fragments[i]->len - hdr_len);
10331 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10332 txb->fragments[i]->len - hdr_len);
10334 tfd->u.data.chunk_ptr[i] =
10335 cpu_to_le32(pci_map_single
10336 (priv->pci_dev,
10337 txb->fragments[i]->data + hdr_len,
10338 txb->fragments[i]->len - hdr_len,
10339 PCI_DMA_TODEVICE));
10340 tfd->u.data.chunk_len[i] =
10341 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10344 if (i != txb->nr_frags) {
10345 struct sk_buff *skb;
10346 u16 remaining_bytes = 0;
10347 int j;
10349 for (j = i; j < txb->nr_frags; j++)
10350 remaining_bytes += txb->fragments[j]->len - hdr_len;
10352 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10353 remaining_bytes);
10354 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10355 if (skb != NULL) {
10356 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10357 for (j = i; j < txb->nr_frags; j++) {
10358 int size = txb->fragments[j]->len - hdr_len;
10360 printk(KERN_INFO "Adding frag %d %d...\n",
10361 j, size);
10362 memcpy(skb_put(skb, size),
10363 txb->fragments[j]->data + hdr_len, size);
10365 dev_kfree_skb_any(txb->fragments[i]);
10366 txb->fragments[i] = skb;
10367 tfd->u.data.chunk_ptr[i] =
10368 cpu_to_le32(pci_map_single
10369 (priv->pci_dev, skb->data,
10370 remaining_bytes,
10371 PCI_DMA_TODEVICE));
10373 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10377 /* kick DMA */
10378 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10379 ipw_write32(priv, q->reg_w, q->first_empty);
10381 if (ipw_tx_queue_space(q) < q->high_mark)
10382 netif_stop_queue(priv->net_dev);
10384 return NETDEV_TX_OK;
10386 drop:
10387 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10388 libipw_txb_free(txb);
10389 return NETDEV_TX_OK;
10392 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10394 struct ipw_priv *priv = libipw_priv(dev);
10395 #ifdef CONFIG_IPW2200_QOS
10396 int tx_id = ipw_get_tx_queue_number(priv, pri);
10397 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10398 #else
10399 struct clx2_tx_queue *txq = &priv->txq[0];
10400 #endif /* CONFIG_IPW2200_QOS */
10402 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10403 return 1;
10405 return 0;
10408 #ifdef CONFIG_IPW2200_PROMISCUOUS
10409 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10410 struct libipw_txb *txb)
10412 struct libipw_rx_stats dummystats;
10413 struct ieee80211_hdr *hdr;
10414 u8 n;
10415 u16 filter = priv->prom_priv->filter;
10416 int hdr_only = 0;
10418 if (filter & IPW_PROM_NO_TX)
10419 return;
10421 memset(&dummystats, 0, sizeof(dummystats));
10423 /* Filtering of fragment chains is done agains the first fragment */
10424 hdr = (void *)txb->fragments[0]->data;
10425 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10426 if (filter & IPW_PROM_NO_MGMT)
10427 return;
10428 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10429 hdr_only = 1;
10430 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10431 if (filter & IPW_PROM_NO_CTL)
10432 return;
10433 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10434 hdr_only = 1;
10435 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10436 if (filter & IPW_PROM_NO_DATA)
10437 return;
10438 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10439 hdr_only = 1;
10442 for(n=0; n<txb->nr_frags; ++n) {
10443 struct sk_buff *src = txb->fragments[n];
10444 struct sk_buff *dst;
10445 struct ieee80211_radiotap_header *rt_hdr;
10446 int len;
10448 if (hdr_only) {
10449 hdr = (void *)src->data;
10450 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10451 } else
10452 len = src->len;
10454 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10455 if (!dst)
10456 continue;
10458 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10460 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10461 rt_hdr->it_pad = 0;
10462 rt_hdr->it_present = 0; /* after all, it's just an idea */
10463 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10465 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10466 ieee80211chan2mhz(priv->channel));
10467 if (priv->channel > 14) /* 802.11a */
10468 *(__le16*)skb_put(dst, sizeof(u16)) =
10469 cpu_to_le16(IEEE80211_CHAN_OFDM |
10470 IEEE80211_CHAN_5GHZ);
10471 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10472 *(__le16*)skb_put(dst, sizeof(u16)) =
10473 cpu_to_le16(IEEE80211_CHAN_CCK |
10474 IEEE80211_CHAN_2GHZ);
10475 else /* 802.11g */
10476 *(__le16*)skb_put(dst, sizeof(u16)) =
10477 cpu_to_le16(IEEE80211_CHAN_OFDM |
10478 IEEE80211_CHAN_2GHZ);
10480 rt_hdr->it_len = cpu_to_le16(dst->len);
10482 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10484 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10485 dev_kfree_skb_any(dst);
10488 #endif
10490 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10491 struct net_device *dev, int pri)
10493 struct ipw_priv *priv = libipw_priv(dev);
10494 unsigned long flags;
10495 netdev_tx_t ret;
10497 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10498 spin_lock_irqsave(&priv->lock, flags);
10500 #ifdef CONFIG_IPW2200_PROMISCUOUS
10501 if (rtap_iface && netif_running(priv->prom_net_dev))
10502 ipw_handle_promiscuous_tx(priv, txb);
10503 #endif
10505 ret = ipw_tx_skb(priv, txb, pri);
10506 if (ret == NETDEV_TX_OK)
10507 __ipw_led_activity_on(priv);
10508 spin_unlock_irqrestore(&priv->lock, flags);
10510 return ret;
10513 static void ipw_net_set_multicast_list(struct net_device *dev)
10518 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10520 struct ipw_priv *priv = libipw_priv(dev);
10521 struct sockaddr *addr = p;
10523 if (!is_valid_ether_addr(addr->sa_data))
10524 return -EADDRNOTAVAIL;
10525 mutex_lock(&priv->mutex);
10526 priv->config |= CFG_CUSTOM_MAC;
10527 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10528 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10529 priv->net_dev->name, priv->mac_addr);
10530 queue_work(priv->workqueue, &priv->adapter_restart);
10531 mutex_unlock(&priv->mutex);
10532 return 0;
10535 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10536 struct ethtool_drvinfo *info)
10538 struct ipw_priv *p = libipw_priv(dev);
10539 char vers[64];
10540 char date[32];
10541 u32 len;
10543 strcpy(info->driver, DRV_NAME);
10544 strcpy(info->version, DRV_VERSION);
10546 len = sizeof(vers);
10547 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10548 len = sizeof(date);
10549 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10551 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10552 vers, date);
10553 strcpy(info->bus_info, pci_name(p->pci_dev));
10554 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10557 static u32 ipw_ethtool_get_link(struct net_device *dev)
10559 struct ipw_priv *priv = libipw_priv(dev);
10560 return (priv->status & STATUS_ASSOCIATED) != 0;
10563 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10565 return IPW_EEPROM_IMAGE_SIZE;
10568 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10569 struct ethtool_eeprom *eeprom, u8 * bytes)
10571 struct ipw_priv *p = libipw_priv(dev);
10573 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10574 return -EINVAL;
10575 mutex_lock(&p->mutex);
10576 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10577 mutex_unlock(&p->mutex);
10578 return 0;
10581 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10582 struct ethtool_eeprom *eeprom, u8 * bytes)
10584 struct ipw_priv *p = libipw_priv(dev);
10585 int i;
10587 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10588 return -EINVAL;
10589 mutex_lock(&p->mutex);
10590 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10591 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10592 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10593 mutex_unlock(&p->mutex);
10594 return 0;
10597 static const struct ethtool_ops ipw_ethtool_ops = {
10598 .get_link = ipw_ethtool_get_link,
10599 .get_drvinfo = ipw_ethtool_get_drvinfo,
10600 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10601 .get_eeprom = ipw_ethtool_get_eeprom,
10602 .set_eeprom = ipw_ethtool_set_eeprom,
10605 static irqreturn_t ipw_isr(int irq, void *data)
10607 struct ipw_priv *priv = data;
10608 u32 inta, inta_mask;
10610 if (!priv)
10611 return IRQ_NONE;
10613 spin_lock(&priv->irq_lock);
10615 if (!(priv->status & STATUS_INT_ENABLED)) {
10616 /* IRQ is disabled */
10617 goto none;
10620 inta = ipw_read32(priv, IPW_INTA_RW);
10621 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10623 if (inta == 0xFFFFFFFF) {
10624 /* Hardware disappeared */
10625 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10626 goto none;
10629 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10630 /* Shared interrupt */
10631 goto none;
10634 /* tell the device to stop sending interrupts */
10635 __ipw_disable_interrupts(priv);
10637 /* ack current interrupts */
10638 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10639 ipw_write32(priv, IPW_INTA_RW, inta);
10641 /* Cache INTA value for our tasklet */
10642 priv->isr_inta = inta;
10644 tasklet_schedule(&priv->irq_tasklet);
10646 spin_unlock(&priv->irq_lock);
10648 return IRQ_HANDLED;
10649 none:
10650 spin_unlock(&priv->irq_lock);
10651 return IRQ_NONE;
10654 static void ipw_rf_kill(void *adapter)
10656 struct ipw_priv *priv = adapter;
10657 unsigned long flags;
10659 spin_lock_irqsave(&priv->lock, flags);
10661 if (rf_kill_active(priv)) {
10662 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10663 if (priv->workqueue)
10664 queue_delayed_work(priv->workqueue,
10665 &priv->rf_kill, 2 * HZ);
10666 goto exit_unlock;
10669 /* RF Kill is now disabled, so bring the device back up */
10671 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10672 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10673 "device\n");
10675 /* we can not do an adapter restart while inside an irq lock */
10676 queue_work(priv->workqueue, &priv->adapter_restart);
10677 } else
10678 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10679 "enabled\n");
10681 exit_unlock:
10682 spin_unlock_irqrestore(&priv->lock, flags);
10685 static void ipw_bg_rf_kill(struct work_struct *work)
10687 struct ipw_priv *priv =
10688 container_of(work, struct ipw_priv, rf_kill.work);
10689 mutex_lock(&priv->mutex);
10690 ipw_rf_kill(priv);
10691 mutex_unlock(&priv->mutex);
10694 static void ipw_link_up(struct ipw_priv *priv)
10696 priv->last_seq_num = -1;
10697 priv->last_frag_num = -1;
10698 priv->last_packet_time = 0;
10700 netif_carrier_on(priv->net_dev);
10702 cancel_delayed_work(&priv->request_scan);
10703 cancel_delayed_work(&priv->request_direct_scan);
10704 cancel_delayed_work(&priv->request_passive_scan);
10705 cancel_delayed_work(&priv->scan_event);
10706 ipw_reset_stats(priv);
10707 /* Ensure the rate is updated immediately */
10708 priv->last_rate = ipw_get_current_rate(priv);
10709 ipw_gather_stats(priv);
10710 ipw_led_link_up(priv);
10711 notify_wx_assoc_event(priv);
10713 if (priv->config & CFG_BACKGROUND_SCAN)
10714 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10717 static void ipw_bg_link_up(struct work_struct *work)
10719 struct ipw_priv *priv =
10720 container_of(work, struct ipw_priv, link_up);
10721 mutex_lock(&priv->mutex);
10722 ipw_link_up(priv);
10723 mutex_unlock(&priv->mutex);
10726 static void ipw_link_down(struct ipw_priv *priv)
10728 ipw_led_link_down(priv);
10729 netif_carrier_off(priv->net_dev);
10730 notify_wx_assoc_event(priv);
10732 /* Cancel any queued work ... */
10733 cancel_delayed_work(&priv->request_scan);
10734 cancel_delayed_work(&priv->request_direct_scan);
10735 cancel_delayed_work(&priv->request_passive_scan);
10736 cancel_delayed_work(&priv->adhoc_check);
10737 cancel_delayed_work(&priv->gather_stats);
10739 ipw_reset_stats(priv);
10741 if (!(priv->status & STATUS_EXIT_PENDING)) {
10742 /* Queue up another scan... */
10743 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10744 } else
10745 cancel_delayed_work(&priv->scan_event);
10748 static void ipw_bg_link_down(struct work_struct *work)
10750 struct ipw_priv *priv =
10751 container_of(work, struct ipw_priv, link_down);
10752 mutex_lock(&priv->mutex);
10753 ipw_link_down(priv);
10754 mutex_unlock(&priv->mutex);
10757 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10759 int ret = 0;
10761 priv->workqueue = create_workqueue(DRV_NAME);
10762 init_waitqueue_head(&priv->wait_command_queue);
10763 init_waitqueue_head(&priv->wait_state);
10765 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10766 INIT_WORK(&priv->associate, ipw_bg_associate);
10767 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10768 INIT_WORK(&priv->system_config, ipw_system_config);
10769 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10770 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10771 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10772 INIT_WORK(&priv->up, ipw_bg_up);
10773 INIT_WORK(&priv->down, ipw_bg_down);
10774 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10775 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10776 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10777 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10778 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10779 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10780 INIT_WORK(&priv->roam, ipw_bg_roam);
10781 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10782 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10783 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10784 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10785 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10786 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10787 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10789 #ifdef CONFIG_IPW2200_QOS
10790 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10791 #endif /* CONFIG_IPW2200_QOS */
10793 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10794 ipw_irq_tasklet, (unsigned long)priv);
10796 return ret;
10799 static void shim__set_security(struct net_device *dev,
10800 struct libipw_security *sec)
10802 struct ipw_priv *priv = libipw_priv(dev);
10803 int i;
10804 for (i = 0; i < 4; i++) {
10805 if (sec->flags & (1 << i)) {
10806 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10807 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10808 if (sec->key_sizes[i] == 0)
10809 priv->ieee->sec.flags &= ~(1 << i);
10810 else {
10811 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10812 sec->key_sizes[i]);
10813 priv->ieee->sec.flags |= (1 << i);
10815 priv->status |= STATUS_SECURITY_UPDATED;
10816 } else if (sec->level != SEC_LEVEL_1)
10817 priv->ieee->sec.flags &= ~(1 << i);
10820 if (sec->flags & SEC_ACTIVE_KEY) {
10821 if (sec->active_key <= 3) {
10822 priv->ieee->sec.active_key = sec->active_key;
10823 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10824 } else
10825 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10826 priv->status |= STATUS_SECURITY_UPDATED;
10827 } else
10828 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10830 if ((sec->flags & SEC_AUTH_MODE) &&
10831 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10832 priv->ieee->sec.auth_mode = sec->auth_mode;
10833 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10834 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10835 priv->capability |= CAP_SHARED_KEY;
10836 else
10837 priv->capability &= ~CAP_SHARED_KEY;
10838 priv->status |= STATUS_SECURITY_UPDATED;
10841 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10842 priv->ieee->sec.flags |= SEC_ENABLED;
10843 priv->ieee->sec.enabled = sec->enabled;
10844 priv->status |= STATUS_SECURITY_UPDATED;
10845 if (sec->enabled)
10846 priv->capability |= CAP_PRIVACY_ON;
10847 else
10848 priv->capability &= ~CAP_PRIVACY_ON;
10851 if (sec->flags & SEC_ENCRYPT)
10852 priv->ieee->sec.encrypt = sec->encrypt;
10854 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10855 priv->ieee->sec.level = sec->level;
10856 priv->ieee->sec.flags |= SEC_LEVEL;
10857 priv->status |= STATUS_SECURITY_UPDATED;
10860 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10861 ipw_set_hwcrypto_keys(priv);
10863 /* To match current functionality of ipw2100 (which works well w/
10864 * various supplicants, we don't force a disassociate if the
10865 * privacy capability changes ... */
10868 static int init_supported_rates(struct ipw_priv *priv,
10869 struct ipw_supported_rates *rates)
10871 /* TODO: Mask out rates based on priv->rates_mask */
10873 memset(rates, 0, sizeof(*rates));
10874 /* configure supported rates */
10875 switch (priv->ieee->freq_band) {
10876 case LIBIPW_52GHZ_BAND:
10877 rates->ieee_mode = IPW_A_MODE;
10878 rates->purpose = IPW_RATE_CAPABILITIES;
10879 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10880 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10881 break;
10883 default: /* Mixed or 2.4Ghz */
10884 rates->ieee_mode = IPW_G_MODE;
10885 rates->purpose = IPW_RATE_CAPABILITIES;
10886 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10887 LIBIPW_CCK_DEFAULT_RATES_MASK);
10888 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10889 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10890 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10892 break;
10895 return 0;
10898 static int ipw_config(struct ipw_priv *priv)
10900 /* This is only called from ipw_up, which resets/reloads the firmware
10901 so, we don't need to first disable the card before we configure
10902 it */
10903 if (ipw_set_tx_power(priv))
10904 goto error;
10906 /* initialize adapter address */
10907 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10908 goto error;
10910 /* set basic system config settings */
10911 init_sys_config(&priv->sys_config);
10913 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10914 * Does not support BT priority yet (don't abort or defer our Tx) */
10915 if (bt_coexist) {
10916 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10918 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10919 priv->sys_config.bt_coexistence
10920 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10921 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10922 priv->sys_config.bt_coexistence
10923 |= CFG_BT_COEXISTENCE_OOB;
10926 #ifdef CONFIG_IPW2200_PROMISCUOUS
10927 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10928 priv->sys_config.accept_all_data_frames = 1;
10929 priv->sys_config.accept_non_directed_frames = 1;
10930 priv->sys_config.accept_all_mgmt_bcpr = 1;
10931 priv->sys_config.accept_all_mgmt_frames = 1;
10933 #endif
10935 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10936 priv->sys_config.answer_broadcast_ssid_probe = 1;
10937 else
10938 priv->sys_config.answer_broadcast_ssid_probe = 0;
10940 if (ipw_send_system_config(priv))
10941 goto error;
10943 init_supported_rates(priv, &priv->rates);
10944 if (ipw_send_supported_rates(priv, &priv->rates))
10945 goto error;
10947 /* Set request-to-send threshold */
10948 if (priv->rts_threshold) {
10949 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10950 goto error;
10952 #ifdef CONFIG_IPW2200_QOS
10953 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10954 ipw_qos_activate(priv, NULL);
10955 #endif /* CONFIG_IPW2200_QOS */
10957 if (ipw_set_random_seed(priv))
10958 goto error;
10960 /* final state transition to the RUN state */
10961 if (ipw_send_host_complete(priv))
10962 goto error;
10964 priv->status |= STATUS_INIT;
10966 ipw_led_init(priv);
10967 ipw_led_radio_on(priv);
10968 priv->notif_missed_beacons = 0;
10970 /* Set hardware WEP key if it is configured. */
10971 if ((priv->capability & CAP_PRIVACY_ON) &&
10972 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10973 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10974 ipw_set_hwcrypto_keys(priv);
10976 return 0;
10978 error:
10979 return -EIO;
10983 * NOTE:
10985 * These tables have been tested in conjunction with the
10986 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10988 * Altering this values, using it on other hardware, or in geographies
10989 * not intended for resale of the above mentioned Intel adapters has
10990 * not been tested.
10992 * Remember to update the table in README.ipw2200 when changing this
10993 * table.
10996 static const struct libipw_geo ipw_geos[] = {
10997 { /* Restricted */
10998 "---",
10999 .bg_channels = 11,
11000 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001 {2427, 4}, {2432, 5}, {2437, 6},
11002 {2442, 7}, {2447, 8}, {2452, 9},
11003 {2457, 10}, {2462, 11}},
11006 { /* Custom US/Canada */
11007 "ZZF",
11008 .bg_channels = 11,
11009 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11010 {2427, 4}, {2432, 5}, {2437, 6},
11011 {2442, 7}, {2447, 8}, {2452, 9},
11012 {2457, 10}, {2462, 11}},
11013 .a_channels = 8,
11014 .a = {{5180, 36},
11015 {5200, 40},
11016 {5220, 44},
11017 {5240, 48},
11018 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11019 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11020 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11021 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11024 { /* Rest of World */
11025 "ZZD",
11026 .bg_channels = 13,
11027 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11028 {2427, 4}, {2432, 5}, {2437, 6},
11029 {2442, 7}, {2447, 8}, {2452, 9},
11030 {2457, 10}, {2462, 11}, {2467, 12},
11031 {2472, 13}},
11034 { /* Custom USA & Europe & High */
11035 "ZZA",
11036 .bg_channels = 11,
11037 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11038 {2427, 4}, {2432, 5}, {2437, 6},
11039 {2442, 7}, {2447, 8}, {2452, 9},
11040 {2457, 10}, {2462, 11}},
11041 .a_channels = 13,
11042 .a = {{5180, 36},
11043 {5200, 40},
11044 {5220, 44},
11045 {5240, 48},
11046 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11047 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11048 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11049 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11050 {5745, 149},
11051 {5765, 153},
11052 {5785, 157},
11053 {5805, 161},
11054 {5825, 165}},
11057 { /* Custom NA & Europe */
11058 "ZZB",
11059 .bg_channels = 11,
11060 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11061 {2427, 4}, {2432, 5}, {2437, 6},
11062 {2442, 7}, {2447, 8}, {2452, 9},
11063 {2457, 10}, {2462, 11}},
11064 .a_channels = 13,
11065 .a = {{5180, 36},
11066 {5200, 40},
11067 {5220, 44},
11068 {5240, 48},
11069 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11070 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11071 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11072 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11073 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11074 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11075 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11076 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11077 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11080 { /* Custom Japan */
11081 "ZZC",
11082 .bg_channels = 11,
11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084 {2427, 4}, {2432, 5}, {2437, 6},
11085 {2442, 7}, {2447, 8}, {2452, 9},
11086 {2457, 10}, {2462, 11}},
11087 .a_channels = 4,
11088 .a = {{5170, 34}, {5190, 38},
11089 {5210, 42}, {5230, 46}},
11092 { /* Custom */
11093 "ZZM",
11094 .bg_channels = 11,
11095 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11096 {2427, 4}, {2432, 5}, {2437, 6},
11097 {2442, 7}, {2447, 8}, {2452, 9},
11098 {2457, 10}, {2462, 11}},
11101 { /* Europe */
11102 "ZZE",
11103 .bg_channels = 13,
11104 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11105 {2427, 4}, {2432, 5}, {2437, 6},
11106 {2442, 7}, {2447, 8}, {2452, 9},
11107 {2457, 10}, {2462, 11}, {2467, 12},
11108 {2472, 13}},
11109 .a_channels = 19,
11110 .a = {{5180, 36},
11111 {5200, 40},
11112 {5220, 44},
11113 {5240, 48},
11114 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11115 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11116 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11117 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11118 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11119 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11120 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11121 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11122 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11123 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11124 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11125 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11126 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11127 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11128 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11131 { /* Custom Japan */
11132 "ZZJ",
11133 .bg_channels = 14,
11134 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11135 {2427, 4}, {2432, 5}, {2437, 6},
11136 {2442, 7}, {2447, 8}, {2452, 9},
11137 {2457, 10}, {2462, 11}, {2467, 12},
11138 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11139 .a_channels = 4,
11140 .a = {{5170, 34}, {5190, 38},
11141 {5210, 42}, {5230, 46}},
11144 { /* Rest of World */
11145 "ZZR",
11146 .bg_channels = 14,
11147 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11148 {2427, 4}, {2432, 5}, {2437, 6},
11149 {2442, 7}, {2447, 8}, {2452, 9},
11150 {2457, 10}, {2462, 11}, {2467, 12},
11151 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11152 LIBIPW_CH_PASSIVE_ONLY}},
11155 { /* High Band */
11156 "ZZH",
11157 .bg_channels = 13,
11158 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159 {2427, 4}, {2432, 5}, {2437, 6},
11160 {2442, 7}, {2447, 8}, {2452, 9},
11161 {2457, 10}, {2462, 11},
11162 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11163 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11164 .a_channels = 4,
11165 .a = {{5745, 149}, {5765, 153},
11166 {5785, 157}, {5805, 161}},
11169 { /* Custom Europe */
11170 "ZZG",
11171 .bg_channels = 13,
11172 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11173 {2427, 4}, {2432, 5}, {2437, 6},
11174 {2442, 7}, {2447, 8}, {2452, 9},
11175 {2457, 10}, {2462, 11},
11176 {2467, 12}, {2472, 13}},
11177 .a_channels = 4,
11178 .a = {{5180, 36}, {5200, 40},
11179 {5220, 44}, {5240, 48}},
11182 { /* Europe */
11183 "ZZK",
11184 .bg_channels = 13,
11185 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11186 {2427, 4}, {2432, 5}, {2437, 6},
11187 {2442, 7}, {2447, 8}, {2452, 9},
11188 {2457, 10}, {2462, 11},
11189 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11190 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11191 .a_channels = 24,
11192 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11193 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11194 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11195 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11196 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11197 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11198 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11199 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11200 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11201 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11202 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11203 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11204 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11205 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11206 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11207 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11208 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11209 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11210 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11211 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11212 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11213 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11214 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11215 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11218 { /* Europe */
11219 "ZZL",
11220 .bg_channels = 11,
11221 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11222 {2427, 4}, {2432, 5}, {2437, 6},
11223 {2442, 7}, {2447, 8}, {2452, 9},
11224 {2457, 10}, {2462, 11}},
11225 .a_channels = 13,
11226 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11227 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11228 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11229 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11230 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11231 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11232 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11233 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11234 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11235 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11236 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11237 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11238 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11242 #define MAX_HW_RESTARTS 5
11243 static int ipw_up(struct ipw_priv *priv)
11245 int rc, i, j;
11247 /* Age scan list entries found before suspend */
11248 if (priv->suspend_time) {
11249 libipw_networks_age(priv->ieee, priv->suspend_time);
11250 priv->suspend_time = 0;
11253 if (priv->status & STATUS_EXIT_PENDING)
11254 return -EIO;
11256 if (cmdlog && !priv->cmdlog) {
11257 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11258 GFP_KERNEL);
11259 if (priv->cmdlog == NULL) {
11260 IPW_ERROR("Error allocating %d command log entries.\n",
11261 cmdlog);
11262 return -ENOMEM;
11263 } else {
11264 priv->cmdlog_len = cmdlog;
11268 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11269 /* Load the microcode, firmware, and eeprom.
11270 * Also start the clocks. */
11271 rc = ipw_load(priv);
11272 if (rc) {
11273 IPW_ERROR("Unable to load firmware: %d\n", rc);
11274 return rc;
11277 ipw_init_ordinals(priv);
11278 if (!(priv->config & CFG_CUSTOM_MAC))
11279 eeprom_parse_mac(priv, priv->mac_addr);
11280 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11281 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11283 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11284 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11285 ipw_geos[j].name, 3))
11286 break;
11288 if (j == ARRAY_SIZE(ipw_geos)) {
11289 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11290 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11291 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11292 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11293 j = 0;
11295 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11296 IPW_WARNING("Could not set geography.");
11297 return 0;
11300 if (priv->status & STATUS_RF_KILL_SW) {
11301 IPW_WARNING("Radio disabled by module parameter.\n");
11302 return 0;
11303 } else if (rf_kill_active(priv)) {
11304 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11305 "Kill switch must be turned off for "
11306 "wireless networking to work.\n");
11307 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11308 2 * HZ);
11309 return 0;
11312 rc = ipw_config(priv);
11313 if (!rc) {
11314 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11316 /* If configure to try and auto-associate, kick
11317 * off a scan. */
11318 queue_delayed_work(priv->workqueue,
11319 &priv->request_scan, 0);
11321 return 0;
11324 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11325 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11326 i, MAX_HW_RESTARTS);
11328 /* We had an error bringing up the hardware, so take it
11329 * all the way back down so we can try again */
11330 ipw_down(priv);
11333 /* tried to restart and config the device for as long as our
11334 * patience could withstand */
11335 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11337 return -EIO;
11340 static void ipw_bg_up(struct work_struct *work)
11342 struct ipw_priv *priv =
11343 container_of(work, struct ipw_priv, up);
11344 mutex_lock(&priv->mutex);
11345 ipw_up(priv);
11346 mutex_unlock(&priv->mutex);
11349 static void ipw_deinit(struct ipw_priv *priv)
11351 int i;
11353 if (priv->status & STATUS_SCANNING) {
11354 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11355 ipw_abort_scan(priv);
11358 if (priv->status & STATUS_ASSOCIATED) {
11359 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11360 ipw_disassociate(priv);
11363 ipw_led_shutdown(priv);
11365 /* Wait up to 1s for status to change to not scanning and not
11366 * associated (disassociation can take a while for a ful 802.11
11367 * exchange */
11368 for (i = 1000; i && (priv->status &
11369 (STATUS_DISASSOCIATING |
11370 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11371 udelay(10);
11373 if (priv->status & (STATUS_DISASSOCIATING |
11374 STATUS_ASSOCIATED | STATUS_SCANNING))
11375 IPW_DEBUG_INFO("Still associated or scanning...\n");
11376 else
11377 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11379 /* Attempt to disable the card */
11380 ipw_send_card_disable(priv, 0);
11382 priv->status &= ~STATUS_INIT;
11385 static void ipw_down(struct ipw_priv *priv)
11387 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11389 priv->status |= STATUS_EXIT_PENDING;
11391 if (ipw_is_init(priv))
11392 ipw_deinit(priv);
11394 /* Wipe out the EXIT_PENDING status bit if we are not actually
11395 * exiting the module */
11396 if (!exit_pending)
11397 priv->status &= ~STATUS_EXIT_PENDING;
11399 /* tell the device to stop sending interrupts */
11400 ipw_disable_interrupts(priv);
11402 /* Clear all bits but the RF Kill */
11403 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11404 netif_carrier_off(priv->net_dev);
11406 ipw_stop_nic(priv);
11408 ipw_led_radio_off(priv);
11411 static void ipw_bg_down(struct work_struct *work)
11413 struct ipw_priv *priv =
11414 container_of(work, struct ipw_priv, down);
11415 mutex_lock(&priv->mutex);
11416 ipw_down(priv);
11417 mutex_unlock(&priv->mutex);
11420 /* Called by register_netdev() */
11421 static int ipw_net_init(struct net_device *dev)
11423 int i, rc = 0;
11424 struct ipw_priv *priv = libipw_priv(dev);
11425 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11426 struct wireless_dev *wdev = &priv->ieee->wdev;
11427 mutex_lock(&priv->mutex);
11429 if (ipw_up(priv)) {
11430 rc = -EIO;
11431 goto out;
11434 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11436 /* fill-out priv->ieee->bg_band */
11437 if (geo->bg_channels) {
11438 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11440 bg_band->band = IEEE80211_BAND_2GHZ;
11441 bg_band->n_channels = geo->bg_channels;
11442 bg_band->channels =
11443 kzalloc(geo->bg_channels *
11444 sizeof(struct ieee80211_channel), GFP_KERNEL);
11445 /* translate geo->bg to bg_band.channels */
11446 for (i = 0; i < geo->bg_channels; i++) {
11447 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11448 bg_band->channels[i].center_freq = geo->bg[i].freq;
11449 bg_band->channels[i].hw_value = geo->bg[i].channel;
11450 bg_band->channels[i].max_power = geo->bg[i].max_power;
11451 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11452 bg_band->channels[i].flags |=
11453 IEEE80211_CHAN_PASSIVE_SCAN;
11454 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11455 bg_band->channels[i].flags |=
11456 IEEE80211_CHAN_NO_IBSS;
11457 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11458 bg_band->channels[i].flags |=
11459 IEEE80211_CHAN_RADAR;
11460 /* No equivalent for LIBIPW_CH_80211H_RULES,
11461 LIBIPW_CH_UNIFORM_SPREADING, or
11462 LIBIPW_CH_B_ONLY... */
11464 /* point at bitrate info */
11465 bg_band->bitrates = ipw2200_bg_rates;
11466 bg_band->n_bitrates = ipw2200_num_bg_rates;
11468 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11471 /* fill-out priv->ieee->a_band */
11472 if (geo->a_channels) {
11473 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11475 a_band->band = IEEE80211_BAND_5GHZ;
11476 a_band->n_channels = geo->a_channels;
11477 a_band->channels =
11478 kzalloc(geo->a_channels *
11479 sizeof(struct ieee80211_channel), GFP_KERNEL);
11480 /* translate geo->bg to a_band.channels */
11481 for (i = 0; i < geo->a_channels; i++) {
11482 a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11483 a_band->channels[i].center_freq = geo->a[i].freq;
11484 a_band->channels[i].hw_value = geo->a[i].channel;
11485 a_band->channels[i].max_power = geo->a[i].max_power;
11486 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11487 a_band->channels[i].flags |=
11488 IEEE80211_CHAN_PASSIVE_SCAN;
11489 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11490 a_band->channels[i].flags |=
11491 IEEE80211_CHAN_NO_IBSS;
11492 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11493 a_band->channels[i].flags |=
11494 IEEE80211_CHAN_RADAR;
11495 /* No equivalent for LIBIPW_CH_80211H_RULES,
11496 LIBIPW_CH_UNIFORM_SPREADING, or
11497 LIBIPW_CH_B_ONLY... */
11499 /* point at bitrate info */
11500 a_band->bitrates = ipw2200_a_rates;
11501 a_band->n_bitrates = ipw2200_num_a_rates;
11503 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11506 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11508 /* With that information in place, we can now register the wiphy... */
11509 if (wiphy_register(wdev->wiphy)) {
11510 rc = -EIO;
11511 goto out;
11514 out:
11515 mutex_unlock(&priv->mutex);
11516 return rc;
11519 /* PCI driver stuff */
11520 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11521 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11522 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11523 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11524 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11525 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11526 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11527 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11528 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11529 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11530 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11531 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11532 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11533 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11534 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11535 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11536 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11537 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11538 {PCI_VDEVICE(INTEL, 0x104f), 0},
11539 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11540 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11541 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11542 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11544 /* required last entry */
11545 {0,}
11548 MODULE_DEVICE_TABLE(pci, card_ids);
11550 static struct attribute *ipw_sysfs_entries[] = {
11551 &dev_attr_rf_kill.attr,
11552 &dev_attr_direct_dword.attr,
11553 &dev_attr_indirect_byte.attr,
11554 &dev_attr_indirect_dword.attr,
11555 &dev_attr_mem_gpio_reg.attr,
11556 &dev_attr_command_event_reg.attr,
11557 &dev_attr_nic_type.attr,
11558 &dev_attr_status.attr,
11559 &dev_attr_cfg.attr,
11560 &dev_attr_error.attr,
11561 &dev_attr_event_log.attr,
11562 &dev_attr_cmd_log.attr,
11563 &dev_attr_eeprom_delay.attr,
11564 &dev_attr_ucode_version.attr,
11565 &dev_attr_rtc.attr,
11566 &dev_attr_scan_age.attr,
11567 &dev_attr_led.attr,
11568 &dev_attr_speed_scan.attr,
11569 &dev_attr_net_stats.attr,
11570 &dev_attr_channels.attr,
11571 #ifdef CONFIG_IPW2200_PROMISCUOUS
11572 &dev_attr_rtap_iface.attr,
11573 &dev_attr_rtap_filter.attr,
11574 #endif
11575 NULL
11578 static struct attribute_group ipw_attribute_group = {
11579 .name = NULL, /* put in device directory */
11580 .attrs = ipw_sysfs_entries,
11583 #ifdef CONFIG_IPW2200_PROMISCUOUS
11584 static int ipw_prom_open(struct net_device *dev)
11586 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11587 struct ipw_priv *priv = prom_priv->priv;
11589 IPW_DEBUG_INFO("prom dev->open\n");
11590 netif_carrier_off(dev);
11592 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11593 priv->sys_config.accept_all_data_frames = 1;
11594 priv->sys_config.accept_non_directed_frames = 1;
11595 priv->sys_config.accept_all_mgmt_bcpr = 1;
11596 priv->sys_config.accept_all_mgmt_frames = 1;
11598 ipw_send_system_config(priv);
11601 return 0;
11604 static int ipw_prom_stop(struct net_device *dev)
11606 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11607 struct ipw_priv *priv = prom_priv->priv;
11609 IPW_DEBUG_INFO("prom dev->stop\n");
11611 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11612 priv->sys_config.accept_all_data_frames = 0;
11613 priv->sys_config.accept_non_directed_frames = 0;
11614 priv->sys_config.accept_all_mgmt_bcpr = 0;
11615 priv->sys_config.accept_all_mgmt_frames = 0;
11617 ipw_send_system_config(priv);
11620 return 0;
11623 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11624 struct net_device *dev)
11626 IPW_DEBUG_INFO("prom dev->xmit\n");
11627 dev_kfree_skb(skb);
11628 return NETDEV_TX_OK;
11631 static const struct net_device_ops ipw_prom_netdev_ops = {
11632 .ndo_open = ipw_prom_open,
11633 .ndo_stop = ipw_prom_stop,
11634 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11635 .ndo_change_mtu = libipw_change_mtu,
11636 .ndo_set_mac_address = eth_mac_addr,
11637 .ndo_validate_addr = eth_validate_addr,
11640 static int ipw_prom_alloc(struct ipw_priv *priv)
11642 int rc = 0;
11644 if (priv->prom_net_dev)
11645 return -EPERM;
11647 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11648 if (priv->prom_net_dev == NULL)
11649 return -ENOMEM;
11651 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11652 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11653 priv->prom_priv->priv = priv;
11655 strcpy(priv->prom_net_dev->name, "rtap%d");
11656 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11658 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11659 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11661 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11662 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11664 rc = register_netdev(priv->prom_net_dev);
11665 if (rc) {
11666 free_libipw(priv->prom_net_dev, 1);
11667 priv->prom_net_dev = NULL;
11668 return rc;
11671 return 0;
11674 static void ipw_prom_free(struct ipw_priv *priv)
11676 if (!priv->prom_net_dev)
11677 return;
11679 unregister_netdev(priv->prom_net_dev);
11680 free_libipw(priv->prom_net_dev, 1);
11682 priv->prom_net_dev = NULL;
11685 #endif
11687 static const struct net_device_ops ipw_netdev_ops = {
11688 .ndo_init = ipw_net_init,
11689 .ndo_open = ipw_net_open,
11690 .ndo_stop = ipw_net_stop,
11691 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11692 .ndo_set_mac_address = ipw_net_set_mac_address,
11693 .ndo_start_xmit = libipw_xmit,
11694 .ndo_change_mtu = libipw_change_mtu,
11695 .ndo_validate_addr = eth_validate_addr,
11698 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11699 const struct pci_device_id *ent)
11701 int err = 0;
11702 struct net_device *net_dev;
11703 void __iomem *base;
11704 u32 length, val;
11705 struct ipw_priv *priv;
11706 int i;
11708 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11709 if (net_dev == NULL) {
11710 err = -ENOMEM;
11711 goto out;
11714 priv = libipw_priv(net_dev);
11715 priv->ieee = netdev_priv(net_dev);
11717 priv->net_dev = net_dev;
11718 priv->pci_dev = pdev;
11719 ipw_debug_level = debug;
11720 spin_lock_init(&priv->irq_lock);
11721 spin_lock_init(&priv->lock);
11722 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11723 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11725 mutex_init(&priv->mutex);
11726 if (pci_enable_device(pdev)) {
11727 err = -ENODEV;
11728 goto out_free_libipw;
11731 pci_set_master(pdev);
11733 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11734 if (!err)
11735 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11736 if (err) {
11737 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11738 goto out_pci_disable_device;
11741 pci_set_drvdata(pdev, priv);
11743 err = pci_request_regions(pdev, DRV_NAME);
11744 if (err)
11745 goto out_pci_disable_device;
11747 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11748 * PCI Tx retries from interfering with C3 CPU state */
11749 pci_read_config_dword(pdev, 0x40, &val);
11750 if ((val & 0x0000ff00) != 0)
11751 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11753 length = pci_resource_len(pdev, 0);
11754 priv->hw_len = length;
11756 base = pci_ioremap_bar(pdev, 0);
11757 if (!base) {
11758 err = -ENODEV;
11759 goto out_pci_release_regions;
11762 priv->hw_base = base;
11763 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11764 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11766 err = ipw_setup_deferred_work(priv);
11767 if (err) {
11768 IPW_ERROR("Unable to setup deferred work\n");
11769 goto out_iounmap;
11772 ipw_sw_reset(priv, 1);
11774 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11775 if (err) {
11776 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11777 goto out_destroy_workqueue;
11780 SET_NETDEV_DEV(net_dev, &pdev->dev);
11782 mutex_lock(&priv->mutex);
11784 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11785 priv->ieee->set_security = shim__set_security;
11786 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11788 #ifdef CONFIG_IPW2200_QOS
11789 priv->ieee->is_qos_active = ipw_is_qos_active;
11790 priv->ieee->handle_probe_response = ipw_handle_beacon;
11791 priv->ieee->handle_beacon = ipw_handle_probe_response;
11792 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11793 #endif /* CONFIG_IPW2200_QOS */
11795 priv->ieee->perfect_rssi = -20;
11796 priv->ieee->worst_rssi = -85;
11798 net_dev->netdev_ops = &ipw_netdev_ops;
11799 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11800 net_dev->wireless_data = &priv->wireless_data;
11801 net_dev->wireless_handlers = &ipw_wx_handler_def;
11802 net_dev->ethtool_ops = &ipw_ethtool_ops;
11803 net_dev->irq = pdev->irq;
11804 net_dev->base_addr = (unsigned long)priv->hw_base;
11805 net_dev->mem_start = pci_resource_start(pdev, 0);
11806 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11808 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11809 if (err) {
11810 IPW_ERROR("failed to create sysfs device attributes\n");
11811 mutex_unlock(&priv->mutex);
11812 goto out_release_irq;
11815 mutex_unlock(&priv->mutex);
11816 err = register_netdev(net_dev);
11817 if (err) {
11818 IPW_ERROR("failed to register network device\n");
11819 goto out_remove_sysfs;
11822 #ifdef CONFIG_IPW2200_PROMISCUOUS
11823 if (rtap_iface) {
11824 err = ipw_prom_alloc(priv);
11825 if (err) {
11826 IPW_ERROR("Failed to register promiscuous network "
11827 "device (error %d).\n", err);
11828 unregister_netdev(priv->net_dev);
11829 goto out_remove_sysfs;
11832 #endif
11834 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11835 "channels, %d 802.11a channels)\n",
11836 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11837 priv->ieee->geo.a_channels);
11839 return 0;
11841 out_remove_sysfs:
11842 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11843 out_release_irq:
11844 free_irq(pdev->irq, priv);
11845 out_destroy_workqueue:
11846 destroy_workqueue(priv->workqueue);
11847 priv->workqueue = NULL;
11848 out_iounmap:
11849 iounmap(priv->hw_base);
11850 out_pci_release_regions:
11851 pci_release_regions(pdev);
11852 out_pci_disable_device:
11853 pci_disable_device(pdev);
11854 pci_set_drvdata(pdev, NULL);
11855 out_free_libipw:
11856 free_libipw(priv->net_dev, 0);
11857 out:
11858 return err;
11861 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11863 struct ipw_priv *priv = pci_get_drvdata(pdev);
11864 struct list_head *p, *q;
11865 int i;
11867 if (!priv)
11868 return;
11870 mutex_lock(&priv->mutex);
11872 priv->status |= STATUS_EXIT_PENDING;
11873 ipw_down(priv);
11874 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11876 mutex_unlock(&priv->mutex);
11878 unregister_netdev(priv->net_dev);
11880 if (priv->rxq) {
11881 ipw_rx_queue_free(priv, priv->rxq);
11882 priv->rxq = NULL;
11884 ipw_tx_queue_free(priv);
11886 if (priv->cmdlog) {
11887 kfree(priv->cmdlog);
11888 priv->cmdlog = NULL;
11890 /* ipw_down will ensure that there is no more pending work
11891 * in the workqueue's, so we can safely remove them now. */
11892 cancel_delayed_work(&priv->adhoc_check);
11893 cancel_delayed_work(&priv->gather_stats);
11894 cancel_delayed_work(&priv->request_scan);
11895 cancel_delayed_work(&priv->request_direct_scan);
11896 cancel_delayed_work(&priv->request_passive_scan);
11897 cancel_delayed_work(&priv->scan_event);
11898 cancel_delayed_work(&priv->rf_kill);
11899 cancel_delayed_work(&priv->scan_check);
11900 destroy_workqueue(priv->workqueue);
11901 priv->workqueue = NULL;
11903 /* Free MAC hash list for ADHOC */
11904 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11905 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11906 list_del(p);
11907 kfree(list_entry(p, struct ipw_ibss_seq, list));
11911 kfree(priv->error);
11912 priv->error = NULL;
11914 #ifdef CONFIG_IPW2200_PROMISCUOUS
11915 ipw_prom_free(priv);
11916 #endif
11918 free_irq(pdev->irq, priv);
11919 iounmap(priv->hw_base);
11920 pci_release_regions(pdev);
11921 pci_disable_device(pdev);
11922 pci_set_drvdata(pdev, NULL);
11923 /* wiphy_unregister needs to be here, before free_libipw */
11924 wiphy_unregister(priv->ieee->wdev.wiphy);
11925 kfree(priv->ieee->a_band.channels);
11926 kfree(priv->ieee->bg_band.channels);
11927 free_libipw(priv->net_dev, 0);
11928 free_firmware();
11931 #ifdef CONFIG_PM
11932 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11934 struct ipw_priv *priv = pci_get_drvdata(pdev);
11935 struct net_device *dev = priv->net_dev;
11937 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11939 /* Take down the device; powers it off, etc. */
11940 ipw_down(priv);
11942 /* Remove the PRESENT state of the device */
11943 netif_device_detach(dev);
11945 pci_save_state(pdev);
11946 pci_disable_device(pdev);
11947 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11949 priv->suspend_at = get_seconds();
11951 return 0;
11954 static int ipw_pci_resume(struct pci_dev *pdev)
11956 struct ipw_priv *priv = pci_get_drvdata(pdev);
11957 struct net_device *dev = priv->net_dev;
11958 int err;
11959 u32 val;
11961 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11963 pci_set_power_state(pdev, PCI_D0);
11964 err = pci_enable_device(pdev);
11965 if (err) {
11966 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11967 dev->name);
11968 return err;
11970 pci_restore_state(pdev);
11973 * Suspend/Resume resets the PCI configuration space, so we have to
11974 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11975 * from interfering with C3 CPU state. pci_restore_state won't help
11976 * here since it only restores the first 64 bytes pci config header.
11978 pci_read_config_dword(pdev, 0x40, &val);
11979 if ((val & 0x0000ff00) != 0)
11980 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11982 /* Set the device back into the PRESENT state; this will also wake
11983 * the queue of needed */
11984 netif_device_attach(dev);
11986 priv->suspend_time = get_seconds() - priv->suspend_at;
11988 /* Bring the device back up */
11989 queue_work(priv->workqueue, &priv->up);
11991 return 0;
11993 #endif
11995 static void ipw_pci_shutdown(struct pci_dev *pdev)
11997 struct ipw_priv *priv = pci_get_drvdata(pdev);
11999 /* Take down the device; powers it off, etc. */
12000 ipw_down(priv);
12002 pci_disable_device(pdev);
12005 /* driver initialization stuff */
12006 static struct pci_driver ipw_driver = {
12007 .name = DRV_NAME,
12008 .id_table = card_ids,
12009 .probe = ipw_pci_probe,
12010 .remove = __devexit_p(ipw_pci_remove),
12011 #ifdef CONFIG_PM
12012 .suspend = ipw_pci_suspend,
12013 .resume = ipw_pci_resume,
12014 #endif
12015 .shutdown = ipw_pci_shutdown,
12018 static int __init ipw_init(void)
12020 int ret;
12022 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12023 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12025 ret = pci_register_driver(&ipw_driver);
12026 if (ret) {
12027 IPW_ERROR("Unable to initialize PCI module\n");
12028 return ret;
12031 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12032 if (ret) {
12033 IPW_ERROR("Unable to create driver sysfs file\n");
12034 pci_unregister_driver(&ipw_driver);
12035 return ret;
12038 return ret;
12041 static void __exit ipw_exit(void)
12043 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12044 pci_unregister_driver(&ipw_driver);
12047 module_param(disable, int, 0444);
12048 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12050 module_param(associate, int, 0444);
12051 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12053 module_param(auto_create, int, 0444);
12054 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12056 module_param_named(led, led_support, int, 0444);
12057 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12059 module_param(debug, int, 0444);
12060 MODULE_PARM_DESC(debug, "debug output mask");
12062 module_param_named(channel, default_channel, int, 0444);
12063 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12065 #ifdef CONFIG_IPW2200_PROMISCUOUS
12066 module_param(rtap_iface, int, 0444);
12067 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12068 #endif
12070 #ifdef CONFIG_IPW2200_QOS
12071 module_param(qos_enable, int, 0444);
12072 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12074 module_param(qos_burst_enable, int, 0444);
12075 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12077 module_param(qos_no_ack_mask, int, 0444);
12078 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12080 module_param(burst_duration_CCK, int, 0444);
12081 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12083 module_param(burst_duration_OFDM, int, 0444);
12084 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12085 #endif /* CONFIG_IPW2200_QOS */
12087 #ifdef CONFIG_IPW2200_MONITOR
12088 module_param_named(mode, network_mode, int, 0444);
12089 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12090 #else
12091 module_param_named(mode, network_mode, int, 0444);
12092 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12093 #endif
12095 module_param(bt_coexist, int, 0444);
12096 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12098 module_param(hwcrypto, int, 0444);
12099 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12101 module_param(cmdlog, int, 0444);
12102 MODULE_PARM_DESC(cmdlog,
12103 "allocate a ring buffer for logging firmware commands");
12105 module_param(roaming, int, 0444);
12106 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12108 module_param(antenna, int, 0444);
12109 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12111 module_exit(ipw_exit);
12112 module_init(ipw_init);