GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / skfp / pcmplc.c
blob6c46fffe3deab4eb641e13c2919dea1b93ff8929
1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
18 PCM
19 Physical Connection Management
23 * Hardware independent state machine implemantation
24 * The following external SMT functions are referenced :
26 * queue_event()
27 * smt_timer_start()
28 * smt_timer_stop()
30 * The following external HW dependent functions are referenced :
31 * sm_pm_control()
32 * sm_ph_linestate()
33 * sm_pm_ls_latch()
35 * The following HW dependent events are required :
36 * PC_QLS
37 * PC_ILS
38 * PC_HLS
39 * PC_MLS
40 * PC_NSE
41 * PC_LEM
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
53 #ifndef lint
54 static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
55 #endif
57 #ifdef FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef ANSIC
60 struct s_smc * smc, int type, int index
61 #endif
63 #endif
64 #ifdef CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
73 * FSM Macros
75 #define AFLAG (0x20)
76 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x) (x|AFLAG)
81 * PCM states
83 #define PC0_OFF 0
84 #define PC1_BREAK 1
85 #define PC2_TRACE 2
86 #define PC3_CONNECT 3
87 #define PC4_NEXT 4
88 #define PC5_SIGNAL 5
89 #define PC6_JOIN 6
90 #define PC7_VERIFY 7
91 #define PC8_ACTIVE 8
92 #define PC9_MAINT 9
94 #ifdef DEBUG
96 * symbolic state names
98 static const char * const pcm_states[] = {
99 "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100 "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
104 * symbolic event names
106 static const char * const pcm_events[] = {
107 "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108 "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109 "PC_ENABLE","PC_DISABLE",
110 "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111 "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112 "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113 "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
114 "PC_NSE","PC_LEM"
116 #endif
118 #ifdef MOT_ELM
120 * PCL-S control register
121 * this register in the PLC-S controls the scrambling parameters
123 #define PLCS_CONTROL_C_U 0
124 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
125 PL_C_CIPHER_ENABLE)
126 #define PLCS_FASSERT_U 0
127 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
128 #define PLCS_FDEASSERT_U 0
129 #define PLCS_FDEASSERT_S 0
130 #else /* nMOT_ELM */
132 * PCL-S control register
133 * this register in the PLC-S controls the scrambling parameters
134 * can be patched for ANSI compliance if standard changes
136 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif /* nMOT_ELM */
144 * external vars
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
148 #define PS_OFF 0
149 #define PS_BIT3 1
150 #define PS_BIT4 2
151 #define PS_BIT7 3
152 #define PS_LCT 4
153 #define PS_BIT8 5
154 #define PS_JOIN 6
155 #define PS_ACTIVE 7
157 #define LCT_LEM_MAX 255
160 * PLC timing parameter
163 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN PLC_MS(6)
165 #define SLOW_C_MIN PLC_MS(10)
167 static const struct plt {
168 int timer ; /* relative plc timer address */
169 int para ; /* default timing parameters */
170 } pltm[] = {
171 { PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
172 { PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
173 { PL_TB_MIN, TP_TB_MIN }, /* min break time */
174 { PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
175 { PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
176 { PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
177 { PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
178 { 0,0 }
182 * interrupt mask
184 #ifdef SUPERNET_3
186 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
187 * PLL bug?
189 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
190 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
191 #else /* SUPERNET_3 */
193 * We do NOT need the elasticity buffer error during signaling.
195 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
196 PL_PCM_ENABLED | PL_SELF_TEST ;
197 #endif /* SUPERNET_3 */
198 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
199 PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
201 /* internal functions */
202 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
203 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
204 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
205 static void reset_lem_struct(struct s_phy *phy);
206 static void plc_init(struct s_smc *smc, int p);
207 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
208 static void sm_ph_lem_stop(struct s_smc *smc, int np);
209 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
210 static void real_init_plc(struct s_smc *smc);
213 * SMT timer interface
214 * start PCM timer 0
216 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
217 struct s_phy *phy)
219 phy->timer0_exp = FALSE ; /* clear timer event flag */
220 smt_timer_start(smc,&phy->pcm_timer0,value,
221 EV_TOKEN(EVENT_PCM+phy->np,event)) ;
224 * SMT timer interface
225 * stop PCM timer 0
227 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
229 if (phy->pcm_timer0.tm_active)
230 smt_timer_stop(smc,&phy->pcm_timer0) ;
234 init PCM state machine (called by driver)
235 clear all PCM vars and flags
237 void pcm_init(struct s_smc *smc)
239 int i ;
240 int np ;
241 struct s_phy *phy ;
242 struct fddi_mib_p *mib ;
244 for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
245 /* Indicates the type of PHY being used */
246 mib = phy->mib ;
247 mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
248 phy->np = np ;
249 switch (smc->s.sas) {
250 #ifdef CONCENTRATOR
251 case SMT_SAS :
252 mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
253 break ;
254 case SMT_DAS :
255 mib->fddiPORTMy_Type = (np == PA) ? TA :
256 (np == PB) ? TB : TM ;
257 break ;
258 case SMT_NAC :
259 mib->fddiPORTMy_Type = TM ;
260 break;
261 #else
262 case SMT_SAS :
263 mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
264 mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
265 FALSE ;
266 #ifndef SUPERNET_3
267 smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
268 #else
269 smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
270 #endif
271 break ;
272 case SMT_DAS :
273 mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
274 break ;
275 #endif
278 * set PMD-type
280 phy->pmd_scramble = 0 ;
281 switch (phy->pmd_type[PMD_SK_PMD]) {
282 case 'P' :
283 mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
284 break ;
285 case 'L' :
286 mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
287 break ;
288 case 'D' :
289 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
290 break ;
291 case 'S' :
292 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
293 phy->pmd_scramble = TRUE ;
294 break ;
295 case 'U' :
296 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
297 phy->pmd_scramble = TRUE ;
298 break ;
299 case '1' :
300 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
301 break ;
302 case '2' :
303 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
304 break ;
305 case '3' :
306 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
307 break ;
308 case '4' :
309 mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
310 break ;
311 case 'H' :
312 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
313 break ;
314 case 'I' :
315 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
316 break ;
317 case 'G' :
318 mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
319 break ;
320 default:
321 mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
322 break ;
325 * A and B port can be on primary and secondary path
327 switch (mib->fddiPORTMy_Type) {
328 case TA :
329 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
330 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
331 mib->fddiPORTRequestedPaths[2] =
332 MIB_P_PATH_LOCAL |
333 MIB_P_PATH_CON_ALTER |
334 MIB_P_PATH_SEC_PREFER ;
335 mib->fddiPORTRequestedPaths[3] =
336 MIB_P_PATH_LOCAL |
337 MIB_P_PATH_CON_ALTER |
338 MIB_P_PATH_SEC_PREFER |
339 MIB_P_PATH_THRU ;
340 break ;
341 case TB :
342 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
343 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
344 mib->fddiPORTRequestedPaths[2] =
345 MIB_P_PATH_LOCAL |
346 MIB_P_PATH_PRIM_PREFER ;
347 mib->fddiPORTRequestedPaths[3] =
348 MIB_P_PATH_LOCAL |
349 MIB_P_PATH_PRIM_PREFER |
350 MIB_P_PATH_CON_PREFER |
351 MIB_P_PATH_THRU ;
352 break ;
353 case TS :
354 mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
355 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
356 mib->fddiPORTRequestedPaths[2] =
357 MIB_P_PATH_LOCAL |
358 MIB_P_PATH_CON_ALTER |
359 MIB_P_PATH_PRIM_PREFER ;
360 mib->fddiPORTRequestedPaths[3] =
361 MIB_P_PATH_LOCAL |
362 MIB_P_PATH_CON_ALTER |
363 MIB_P_PATH_PRIM_PREFER ;
364 break ;
365 case TM :
366 mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
367 mib->fddiPORTRequestedPaths[2] =
368 MIB_P_PATH_LOCAL |
369 MIB_P_PATH_SEC_ALTER |
370 MIB_P_PATH_PRIM_ALTER ;
371 mib->fddiPORTRequestedPaths[3] = 0 ;
372 break ;
375 phy->pc_lem_fail = FALSE ;
376 mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
377 mib->fddiPORTLCTFail_Ct = 0 ;
378 mib->fddiPORTBS_Flag = 0 ;
379 mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
380 mib->fddiPORTNeighborType = TNONE ;
381 phy->ls_flag = 0 ;
382 phy->rc_flag = 0 ;
383 phy->tc_flag = 0 ;
384 phy->td_flag = 0 ;
385 if (np >= PM)
386 phy->phy_name = '0' + np - PM ;
387 else
388 phy->phy_name = 'A' + np ;
389 phy->wc_flag = FALSE ; /* set by SMT */
390 memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
391 reset_lem_struct(phy) ;
392 memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
393 phy->plc.p_state = PS_OFF ;
394 for (i = 0 ; i < NUMBITS ; i++) {
395 phy->t_next[i] = 0 ;
398 real_init_plc(smc) ;
401 void init_plc(struct s_smc *smc)
403 SK_UNUSED(smc) ;
406 * dummy
407 * this is an obsolete public entry point that has to remain
408 * for compat. It is used by various drivers.
409 * the work is now done in real_init_plc()
410 * which is called from pcm_init() ;
414 static void real_init_plc(struct s_smc *smc)
416 int p ;
418 for (p = 0 ; p < NUMPHYS ; p++)
419 plc_init(smc,p) ;
422 static void plc_init(struct s_smc *smc, int p)
424 int i ;
425 #ifndef MOT_ELM
426 int rev ; /* Revision of PLC-x */
427 #endif /* MOT_ELM */
429 /* transit PCM state machine to MAINT state */
430 outpw(PLC(p,PL_CNTRL_B),0) ;
431 outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
432 outpw(PLC(p,PL_CNTRL_A),0) ;
435 * if PLC-S then set control register C
437 #ifndef MOT_ELM
438 rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
439 if (rev != PLC_REVISION_A)
440 #endif /* MOT_ELM */
442 if (smc->y[p].pmd_scramble) {
443 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
444 #ifdef MOT_ELM
445 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
446 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
447 #endif /* MOT_ELM */
449 else {
450 outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
451 #ifdef MOT_ELM
452 outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
453 outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
454 #endif /* MOT_ELM */
459 * set timer register
461 for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
462 outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
464 (void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
465 plc_clear_irq(smc,p) ;
466 outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
469 * if PCM is configured for class s, it will NOT go to the
470 * REMOVE state if offline (page 3-36;)
471 * in the concentrator, all inactive PHYS always must be in
472 * the remove state
473 * there's no real need to use this feature at all ..
475 #ifndef CONCENTRATOR
476 if ((smc->s.sas == SMT_SAS) && (p == PS)) {
477 outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
479 #endif
483 * control PCM state machine
485 static void plc_go_state(struct s_smc *smc, int p, int state)
487 HW_PTR port ;
488 int val ;
490 SK_UNUSED(smc) ;
492 port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
493 val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
494 outpw(port,val) ;
495 outpw(port,val | state) ;
499 * read current line state (called by ECM & PCM)
501 int sm_pm_get_ls(struct s_smc *smc, int phy)
503 int state ;
505 #ifdef CONCENTRATOR
506 if (!plc_is_installed(smc,phy))
507 return(PC_QLS) ;
508 #endif
510 state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
511 switch(state) {
512 case PL_L_QLS:
513 state = PC_QLS ;
514 break ;
515 case PL_L_MLS:
516 state = PC_MLS ;
517 break ;
518 case PL_L_HLS:
519 state = PC_HLS ;
520 break ;
521 case PL_L_ILS4:
522 case PL_L_ILS16:
523 state = PC_ILS ;
524 break ;
525 case PL_L_ALS:
526 state = PC_LS_PDR ;
527 break ;
528 default :
529 state = PC_LS_NONE ;
531 return(state) ;
534 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
536 int np = phy->np ; /* PHY index */
537 int n ;
538 int i ;
540 SK_UNUSED(smc) ;
542 /* create bit vector */
543 for (i = len-1,n = 0 ; i >= 0 ; i--) {
544 n = (n<<1) | phy->t_val[phy->bitn+i] ;
546 if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
547 return(1) ;
549 /* write bit[n] & length = 1 to regs */
550 outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
551 outpw(PLC(np,PL_XMIT_VECTOR),n) ;
552 #ifdef DEBUG
553 #ifdef DEBUG_BRD
554 if (smc->debug.d_plc & 0x80)
555 #else
556 if (debug.d_plc & 0x80)
557 #endif
558 printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
559 #endif
560 return(0) ;
564 * config plc muxes
566 void plc_config_mux(struct s_smc *smc, int mux)
568 if (smc->s.sas != SMT_DAS)
569 return ;
570 if (mux == MUX_WRAPB) {
571 SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
572 SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
574 else {
575 CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
576 CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
578 CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
579 CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
583 PCM state machine
584 called by dispatcher & fddi_init() (driver)
586 display state change
587 process event
588 until SM is stable
590 void pcm(struct s_smc *smc, const int np, int event)
592 int state ;
593 int oldstate ;
594 struct s_phy *phy ;
595 struct fddi_mib_p *mib ;
597 #ifndef CONCENTRATOR
599 * ignore 2nd PHY if SAS
601 if ((np != PS) && (smc->s.sas == SMT_SAS))
602 return ;
603 #endif
604 phy = &smc->y[np] ;
605 mib = phy->mib ;
606 oldstate = mib->fddiPORTPCMState ;
607 do {
608 DB_PCM("PCM %c: state %s",
609 phy->phy_name,
610 (mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
611 DB_PCM("%s, event %s\n",
612 pcm_states[mib->fddiPORTPCMState & ~AFLAG],
613 pcm_events[event]) ;
614 state = mib->fddiPORTPCMState ;
615 pcm_fsm(smc,phy,event) ;
616 event = 0 ;
617 } while (state != mib->fddiPORTPCMState) ;
619 * because the PLC does the bit signaling for us,
620 * we're always in SIGNAL state
621 * the MIB want's to see CONNECT
622 * we therefore fake an entry in the MIB
624 if (state == PC5_SIGNAL)
625 mib->fddiPORTPCMStateX = PC3_CONNECT ;
626 else
627 mib->fddiPORTPCMStateX = state ;
629 #ifndef SLIM_SMT
631 * path change
633 if ( mib->fddiPORTPCMState != oldstate &&
634 ((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
635 smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
636 (int) (INDEX_PORT+ phy->np),0) ;
638 #endif
640 #ifdef FDDI_MIB
641 /* check whether a snmp-trap has to be sent */
643 if ( mib->fddiPORTPCMState != oldstate ) {
644 /* a real state change took place */
645 DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
646 if ( mib->fddiPORTPCMState == PC0_OFF ) {
647 /* send first trap */
648 snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
649 } else if ( oldstate == PC0_OFF ) {
650 /* send second trap */
651 snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
652 } else if ( mib->fddiPORTPCMState != PC2_TRACE &&
653 oldstate == PC8_ACTIVE ) {
654 /* send third trap */
655 snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
656 } else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
657 /* send fourth trap */
658 snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
661 #endif
663 pcm_state_change(smc,np,state) ;
667 * PCM state machine
669 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
671 int i ;
672 int np = phy->np ; /* PHY index */
673 struct s_plc *plc ;
674 struct fddi_mib_p *mib ;
675 #ifndef MOT_ELM
676 u_short plc_rev ; /* Revision of the plc */
677 #endif /* nMOT_ELM */
679 plc = &phy->plc ;
680 mib = phy->mib ;
683 * general transitions independent of state
685 switch (cmd) {
686 case PC_STOP :
687 /*PC00-PC80*/
688 if (mib->fddiPORTPCMState != PC9_MAINT) {
689 GO_STATE(PC0_OFF) ;
690 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
691 FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
692 smt_get_port_event_word(smc));
694 return ;
695 case PC_START :
696 /*PC01-PC81*/
697 if (mib->fddiPORTPCMState != PC9_MAINT)
698 GO_STATE(PC1_BREAK) ;
699 return ;
700 case PC_DISABLE :
701 /* PC09-PC99 */
702 GO_STATE(PC9_MAINT) ;
703 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
704 FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
705 smt_get_port_event_word(smc));
706 return ;
707 case PC_TIMEOUT_LCT :
708 /* if long or extended LCT */
709 stop_pcm_timer0(smc,phy) ;
710 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
711 /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
712 return ;
715 switch(mib->fddiPORTPCMState) {
716 case ACTIONS(PC0_OFF) :
717 stop_pcm_timer0(smc,phy) ;
718 outpw(PLC(np,PL_CNTRL_A),0) ;
719 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
720 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
721 sm_ph_lem_stop(smc,np) ; /* disable LEM */
722 phy->cf_loop = FALSE ;
723 phy->cf_join = FALSE ;
724 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
725 plc_go_state(smc,np,PL_PCM_STOP) ;
726 mib->fddiPORTConnectState = PCM_DISABLED ;
727 ACTIONS_DONE() ;
728 break ;
729 case PC0_OFF:
730 /*PC09*/
731 if (cmd == PC_MAINT) {
732 GO_STATE(PC9_MAINT) ;
733 break ;
735 break ;
736 case ACTIONS(PC1_BREAK) :
737 /* Stop the LCT timer if we came from Signal state */
738 stop_pcm_timer0(smc,phy) ;
739 ACTIONS_DONE() ;
740 plc_go_state(smc,np,0) ;
741 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
742 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
743 sm_ph_lem_stop(smc,np) ; /* disable LEM */
745 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
748 * Go to OFF state in any case.
750 plc_go_state(smc,np,PL_PCM_STOP) ;
752 if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
753 mib->fddiPORTConnectState = PCM_CONNECTING ;
754 phy->cf_loop = FALSE ;
755 phy->cf_join = FALSE ;
756 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
757 phy->ls_flag = FALSE ;
758 phy->pc_mode = PM_NONE ; /* needed by CFM */
759 phy->bitn = 0 ; /* bit signaling start bit */
760 for (i = 0 ; i < 3 ; i++)
761 pc_tcode_actions(smc,i,phy) ;
763 /* Set the non-active interrupt mask register */
764 outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
767 * If the LCT was stopped. There might be a
768 * PCM_CODE interrupt event present.
769 * This must be cleared.
771 (void)inpw(PLC(np,PL_INTR_EVENT)) ;
772 #ifndef MOT_ELM
773 /* Get the plc revision for revision dependent code */
774 plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
776 if (plc_rev != PLC_REV_SN3)
777 #endif /* MOT_ELM */
780 * No supernet III PLC, so set Xmit verctor and
781 * length BEFORE starting the state machine.
783 if (plc_send_bits(smc,phy,3)) {
784 return ;
789 plc_go_state(smc,np,PL_PCM_START) ;
791 #ifdef MOT_ELM
792 if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
793 #else /* nMOT_ELM */
794 if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
795 PLC_REVISION_A) &&
796 !(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
797 #endif /* nMOT_ELM */
800 * Set register again (PLCS errata) or the first time
801 * (new SN3 PLCS).
803 (void) plc_send_bits(smc,phy,3) ;
806 GO_STATE(PC5_SIGNAL) ;
807 plc->p_state = PS_BIT3 ;
808 plc->p_bits = 3 ;
809 plc->p_start = 0 ;
811 break ;
812 case PC1_BREAK :
813 break ;
814 case ACTIONS(PC2_TRACE) :
815 plc_go_state(smc,np,PL_PCM_TRACE) ;
816 ACTIONS_DONE() ;
817 break ;
818 case PC2_TRACE :
819 break ;
821 case PC3_CONNECT : /* these states are done by hardware */
822 case PC4_NEXT :
823 break ;
825 case ACTIONS(PC5_SIGNAL) :
826 ACTIONS_DONE() ;
827 case PC5_SIGNAL :
828 if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
829 break ;
830 switch (plc->p_state) {
831 case PS_BIT3 :
832 for (i = 0 ; i <= 2 ; i++)
833 pc_rcode_actions(smc,i,phy) ;
834 pc_tcode_actions(smc,3,phy) ;
835 plc->p_state = PS_BIT4 ;
836 plc->p_bits = 1 ;
837 plc->p_start = 3 ;
838 phy->bitn = 3 ;
839 if (plc_send_bits(smc,phy,1)) {
840 return ;
842 break ;
843 case PS_BIT4 :
844 pc_rcode_actions(smc,3,phy) ;
845 for (i = 4 ; i <= 6 ; i++)
846 pc_tcode_actions(smc,i,phy) ;
847 plc->p_state = PS_BIT7 ;
848 plc->p_bits = 3 ;
849 plc->p_start = 4 ;
850 phy->bitn = 4 ;
851 if (plc_send_bits(smc,phy,3)) {
852 return ;
854 break ;
855 case PS_BIT7 :
856 for (i = 3 ; i <= 6 ; i++)
857 pc_rcode_actions(smc,i,phy) ;
858 plc->p_state = PS_LCT ;
859 plc->p_bits = 0 ;
860 plc->p_start = 7 ;
861 phy->bitn = 7 ;
862 sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
863 /* start LCT */
864 i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
865 outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
866 outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
867 break ;
868 case PS_LCT :
869 /* check for local LCT failure */
870 pc_tcode_actions(smc,7,phy) ;
872 * set tval[7]
874 plc->p_state = PS_BIT8 ;
875 plc->p_bits = 1 ;
876 plc->p_start = 7 ;
877 phy->bitn = 7 ;
878 if (plc_send_bits(smc,phy,1)) {
879 return ;
881 break ;
882 case PS_BIT8 :
883 /* check for remote LCT failure */
884 pc_rcode_actions(smc,7,phy) ;
885 if (phy->t_val[7] || phy->r_val[7]) {
886 plc_go_state(smc,np,PL_PCM_STOP) ;
887 GO_STATE(PC1_BREAK) ;
888 break ;
890 for (i = 8 ; i <= 9 ; i++)
891 pc_tcode_actions(smc,i,phy) ;
892 plc->p_state = PS_JOIN ;
893 plc->p_bits = 2 ;
894 plc->p_start = 8 ;
895 phy->bitn = 8 ;
896 if (plc_send_bits(smc,phy,2)) {
897 return ;
899 break ;
900 case PS_JOIN :
901 for (i = 8 ; i <= 9 ; i++)
902 pc_rcode_actions(smc,i,phy) ;
903 plc->p_state = PS_ACTIVE ;
904 GO_STATE(PC6_JOIN) ;
905 break ;
907 break ;
909 case ACTIONS(PC6_JOIN) :
911 * prevent mux error when going from WRAP_A to WRAP_B
913 if (smc->s.sas == SMT_DAS && np == PB &&
914 (smc->y[PA].pc_mode == PM_TREE ||
915 smc->y[PB].pc_mode == PM_TREE)) {
916 SETMASK(PLC(np,PL_CNTRL_A),
917 PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
918 SETMASK(PLC(np,PL_CNTRL_B),
919 PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
921 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
922 SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
923 ACTIONS_DONE() ;
924 cmd = 0 ;
925 /* fall thru */
926 case PC6_JOIN :
927 switch (plc->p_state) {
928 case PS_ACTIVE:
929 /*PC88b*/
930 if (!phy->cf_join) {
931 phy->cf_join = TRUE ;
932 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
934 if (cmd == PC_JOIN)
935 GO_STATE(PC8_ACTIVE) ;
936 /*PC82*/
937 if (cmd == PC_TRACE) {
938 GO_STATE(PC2_TRACE) ;
939 break ;
941 break ;
943 break ;
945 case PC7_VERIFY :
946 break ;
948 case ACTIONS(PC8_ACTIVE) :
950 * start LEM for SMT
952 sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
954 phy->tr_flag = FALSE ;
955 mib->fddiPORTConnectState = PCM_ACTIVE ;
957 /* Set the active interrupt mask register */
958 outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
960 ACTIONS_DONE() ;
961 break ;
962 case PC8_ACTIVE :
963 /*PC81 is done by PL_TNE_EXPIRED irq */
964 /*PC82*/
965 if (cmd == PC_TRACE) {
966 GO_STATE(PC2_TRACE) ;
967 break ;
969 /*PC88c: is done by TRACE_PROP irq */
971 break ;
972 case ACTIONS(PC9_MAINT) :
973 stop_pcm_timer0(smc,phy) ;
974 CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
975 CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
976 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
977 sm_ph_lem_stop(smc,np) ; /* disable LEM */
978 phy->cf_loop = FALSE ;
979 phy->cf_join = FALSE ;
980 queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
981 plc_go_state(smc,np,PL_PCM_STOP) ;
982 mib->fddiPORTConnectState = PCM_DISABLED ;
983 SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
984 sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
985 outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
986 ACTIONS_DONE() ;
987 break ;
988 case PC9_MAINT :
989 DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
990 /*PC90*/
991 if (cmd == PC_ENABLE) {
992 GO_STATE(PC0_OFF) ;
993 break ;
995 break ;
997 default:
998 SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
999 break ;
1004 * force line state on a PHY output (only in MAINT state)
1006 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1008 int cntrl ;
1010 SK_UNUSED(smc) ;
1012 cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1013 PL_PCM_STOP | PL_MAINT ;
1014 switch(ls) {
1015 case PC_QLS: /* Force Quiet */
1016 cntrl |= PL_M_QUI0 ;
1017 break ;
1018 case PC_MLS: /* Force Master */
1019 cntrl |= PL_M_MASTR ;
1020 break ;
1021 case PC_HLS: /* Force Halt */
1022 cntrl |= PL_M_HALT ;
1023 break ;
1024 default :
1025 case PC_ILS: /* Force Idle */
1026 cntrl |= PL_M_IDLE ;
1027 break ;
1028 case PC_LS_PDR: /* Enable repeat filter */
1029 cntrl |= PL_M_TPDR ;
1030 break ;
1032 outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1035 static void reset_lem_struct(struct s_phy *phy)
1037 struct lem_counter *lem = &phy->lem ;
1039 phy->mib->fddiPORTLer_Estimate = 15 ;
1040 lem->lem_float_ber = 15 * 100 ;
1044 * link error monitor
1046 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1048 int ber ;
1049 u_long errors ;
1050 struct lem_counter *lem = &phy->lem ;
1051 struct fddi_mib_p *mib ;
1052 int cond ;
1054 mib = phy->mib ;
1056 if (!lem->lem_on)
1057 return ;
1059 errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1060 lem->lem_errors += errors ;
1061 mib->fddiPORTLem_Ct += errors ;
1063 errors = lem->lem_errors ;
1065 * calculation is called on a intervall of 8 seconds
1066 * -> this means, that one error in 8 sec. is one of 8*125*10E6
1067 * the same as BER = 10E-9
1068 * Please note:
1069 * -> 9 errors in 8 seconds mean:
1070 * BER = 9 * 10E-9 and this is
1071 * < 10E-8, so the limit of 10E-8 is not reached!
1074 if (!errors) ber = 15 ;
1075 else if (errors <= 9) ber = 9 ;
1076 else if (errors <= 99) ber = 8 ;
1077 else if (errors <= 999) ber = 7 ;
1078 else if (errors <= 9999) ber = 6 ;
1079 else if (errors <= 99999) ber = 5 ;
1080 else if (errors <= 999999) ber = 4 ;
1081 else if (errors <= 9999999) ber = 3 ;
1082 else if (errors <= 99999999) ber = 2 ;
1083 else if (errors <= 999999999) ber = 1 ;
1084 else ber = 0 ;
1087 * weighted average
1089 ber *= 100 ;
1090 lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1091 lem->lem_float_ber /= 10 ;
1092 mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1093 if (mib->fddiPORTLer_Estimate < 4) {
1094 mib->fddiPORTLer_Estimate = 4 ;
1097 if (lem->lem_errors) {
1098 DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
1099 DB_PCMN(1,"errors : %ld\n",lem->lem_errors,0) ;
1100 DB_PCMN(1,"sum_errors : %ld\n",mib->fddiPORTLem_Ct,0) ;
1101 DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
1102 DB_PCMN(1,"float BER : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
1103 DB_PCMN(1,"avg. BER : 10E-%d\n",
1104 mib->fddiPORTLer_Estimate,0) ;
1107 lem->lem_errors = 0L ;
1109 #ifndef SLIM_SMT
1110 cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1111 TRUE : FALSE ;
1112 #ifdef SMT_EXT_CUTOFF
1113 smt_ler_alarm_check(smc,phy,cond) ;
1114 #endif /* nSMT_EXT_CUTOFF */
1115 if (cond != mib->fddiPORTLerFlag) {
1116 smt_srf_event(smc,SMT_COND_PORT_LER,
1117 (int) (INDEX_PORT+ phy->np) ,cond) ;
1119 #endif
1121 if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1122 phy->pc_lem_fail = TRUE ; /* flag */
1123 mib->fddiPORTLem_Reject_Ct++ ;
1125 * "forgive 10e-2" if we cutoff so we can come
1126 * up again ..
1128 lem->lem_float_ber += 2*100 ;
1130 /*PC81b*/
1131 #ifdef CONCENTRATOR
1132 DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1133 phy->np, mib->fddiPORTLer_Cutoff) ;
1134 #endif
1135 #ifdef SMT_EXT_CUTOFF
1136 smt_port_off_event(smc,phy->np);
1137 #else /* nSMT_EXT_CUTOFF */
1138 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1139 #endif /* nSMT_EXT_CUTOFF */
1144 * called by SMT to calculate LEM bit error rate
1146 void sm_lem_evaluate(struct s_smc *smc)
1148 int np ;
1150 for (np = 0 ; np < NUMPHYS ; np++)
1151 lem_evaluate(smc,&smc->y[np]) ;
1154 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1156 struct lem_counter *lem = &phy->lem ;
1157 struct fddi_mib_p *mib ;
1158 int errors ;
1160 mib = phy->mib ;
1162 phy->pc_lem_fail = FALSE ; /* flag */
1163 errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1164 lem->lem_errors += errors ;
1165 mib->fddiPORTLem_Ct += errors ;
1166 if (lem->lem_errors) {
1167 switch(phy->lc_test) {
1168 case LC_SHORT:
1169 if (lem->lem_errors >= smc->s.lct_short)
1170 phy->pc_lem_fail = TRUE ;
1171 break ;
1172 case LC_MEDIUM:
1173 if (lem->lem_errors >= smc->s.lct_medium)
1174 phy->pc_lem_fail = TRUE ;
1175 break ;
1176 case LC_LONG:
1177 if (lem->lem_errors >= smc->s.lct_long)
1178 phy->pc_lem_fail = TRUE ;
1179 break ;
1180 case LC_EXTENDED:
1181 if (lem->lem_errors >= smc->s.lct_extended)
1182 phy->pc_lem_fail = TRUE ;
1183 break ;
1185 DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
1187 if (phy->pc_lem_fail) {
1188 mib->fddiPORTLCTFail_Ct++ ;
1189 mib->fddiPORTLem_Reject_Ct++ ;
1191 else
1192 mib->fddiPORTLCTFail_Ct = 0 ;
1196 * LEM functions
1198 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1200 struct lem_counter *lem = &smc->y[np].lem ;
1202 lem->lem_on = 1 ;
1203 lem->lem_errors = 0L ;
1205 /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1206 * often.
1209 outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1210 (void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
1212 /* enable LE INT */
1213 SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1216 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1218 struct lem_counter *lem = &smc->y[np].lem ;
1220 lem->lem_on = 0 ;
1221 CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1224 /* ARGSUSED */
1225 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1226 /* int on_off; en- or disable ident. ls */
1228 SK_UNUSED(smc) ;
1230 phy = phy ; on_off = on_off ;
1235 * PCM pseudo code
1236 * receive actions are called AFTER the bit n is received,
1237 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1241 * PCM pseudo code 5.1 .. 6.1
1243 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1245 struct fddi_mib_p *mib ;
1247 mib = phy->mib ;
1249 DB_PCMN(1,"SIG rec %x %x:\n", bit,phy->r_val[bit] ) ;
1250 bit++ ;
1252 switch(bit) {
1253 case 0:
1254 case 1:
1255 case 2:
1256 break ;
1257 case 3 :
1258 if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1259 mib->fddiPORTNeighborType = TA ;
1260 else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1261 mib->fddiPORTNeighborType = TB ;
1262 else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1263 mib->fddiPORTNeighborType = TS ;
1264 else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1265 mib->fddiPORTNeighborType = TM ;
1266 break ;
1267 case 4:
1268 if (mib->fddiPORTMy_Type == TM &&
1269 mib->fddiPORTNeighborType == TM) {
1270 DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1271 phy->phy_name,0) ;
1272 mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1273 RS_SET(smc,RS_EVENT) ;
1275 else if (phy->t_val[3] || phy->r_val[3]) {
1276 mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1277 if (mib->fddiPORTMy_Type == TM ||
1278 mib->fddiPORTNeighborType == TM)
1279 phy->pc_mode = PM_TREE ;
1280 else
1281 phy->pc_mode = PM_PEER ;
1283 /* reevaluate the selection criteria (wc_flag) */
1284 all_selection_criteria (smc);
1286 if (phy->wc_flag) {
1287 mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1290 else {
1291 mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1292 RS_SET(smc,RS_EVENT) ;
1293 DB_PCMN(1,"PCM %c : E101 withhold other\n",
1294 phy->phy_name,0) ;
1296 phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1297 (mib->fddiPORTMy_Type != TM) &&
1298 (mib->fddiPORTNeighborType ==
1299 mib->fddiPORTMy_Type)) ;
1300 if (phy->twisted) {
1301 DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1302 phy->phy_name,0) ;
1304 break ;
1305 case 5 :
1306 break ;
1307 case 6:
1308 if (phy->t_val[4] || phy->r_val[4]) {
1309 if ((phy->t_val[4] && phy->t_val[5]) ||
1310 (phy->r_val[4] && phy->r_val[5]) )
1311 phy->lc_test = LC_EXTENDED ;
1312 else
1313 phy->lc_test = LC_LONG ;
1315 else if (phy->t_val[5] || phy->r_val[5])
1316 phy->lc_test = LC_MEDIUM ;
1317 else
1318 phy->lc_test = LC_SHORT ;
1319 switch (phy->lc_test) {
1320 case LC_SHORT : /* 50ms */
1321 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1322 phy->t_next[7] = smc->s.pcm_lc_short ;
1323 break ;
1324 case LC_MEDIUM : /* 500ms */
1325 outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1326 phy->t_next[7] = smc->s.pcm_lc_medium ;
1327 break ;
1328 case LC_LONG :
1329 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1330 phy->t_next[7] = smc->s.pcm_lc_long ;
1331 break ;
1332 case LC_EXTENDED :
1333 SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1334 phy->t_next[7] = smc->s.pcm_lc_extended ;
1335 break ;
1337 if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1338 start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1340 DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
1341 phy->t_next[9] = smc->s.pcm_t_next_9 ;
1342 break ;
1343 case 7:
1344 if (phy->t_val[6]) {
1345 phy->cf_loop = TRUE ;
1347 phy->td_flag = TRUE ;
1348 break ;
1349 case 8:
1350 if (phy->t_val[7] || phy->r_val[7]) {
1351 DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1352 phy->phy_name,phy->t_val[7]? "local":"remote") ;
1353 queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1355 break ;
1356 case 9:
1357 if (phy->t_val[8] || phy->r_val[8]) {
1358 if (phy->t_val[8])
1359 phy->cf_loop = TRUE ;
1360 phy->td_flag = TRUE ;
1362 break ;
1363 case 10:
1364 if (phy->r_val[9]) {
1365 /* neighbor intends to have MAC on output */ ;
1366 mib->fddiPORTMacIndicated.R_val = TRUE ;
1368 else {
1369 /* neighbor does not intend to have MAC on output */ ;
1370 mib->fddiPORTMacIndicated.R_val = FALSE ;
1372 break ;
1377 * PCM pseudo code 5.1 .. 6.1
1379 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1381 int np = phy->np ;
1382 struct fddi_mib_p *mib ;
1384 mib = phy->mib ;
1386 switch(bit) {
1387 case 0:
1388 phy->t_val[0] = 0 ; /* no escape used */
1389 break ;
1390 case 1:
1391 if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1392 phy->t_val[1] = 1 ;
1393 else
1394 phy->t_val[1] = 0 ;
1395 break ;
1396 case 2 :
1397 if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1398 phy->t_val[2] = 1 ;
1399 else
1400 phy->t_val[2] = 0 ;
1401 break ;
1402 case 3:
1404 int type,ne ;
1405 int policy ;
1407 type = mib->fddiPORTMy_Type ;
1408 ne = mib->fddiPORTNeighborType ;
1409 policy = smc->mib.fddiSMTConnectionPolicy ;
1411 phy->t_val[3] = 1 ; /* Accept connection */
1412 switch (type) {
1413 case TA :
1414 if (
1415 ((policy & POLICY_AA) && ne == TA) ||
1416 ((policy & POLICY_AB) && ne == TB) ||
1417 ((policy & POLICY_AS) && ne == TS) ||
1418 ((policy & POLICY_AM) && ne == TM) )
1419 phy->t_val[3] = 0 ; /* Reject */
1420 break ;
1421 case TB :
1422 if (
1423 ((policy & POLICY_BA) && ne == TA) ||
1424 ((policy & POLICY_BB) && ne == TB) ||
1425 ((policy & POLICY_BS) && ne == TS) ||
1426 ((policy & POLICY_BM) && ne == TM) )
1427 phy->t_val[3] = 0 ; /* Reject */
1428 break ;
1429 case TS :
1430 if (
1431 ((policy & POLICY_SA) && ne == TA) ||
1432 ((policy & POLICY_SB) && ne == TB) ||
1433 ((policy & POLICY_SS) && ne == TS) ||
1434 ((policy & POLICY_SM) && ne == TM) )
1435 phy->t_val[3] = 0 ; /* Reject */
1436 break ;
1437 case TM :
1438 if ( ne == TM ||
1439 ((policy & POLICY_MA) && ne == TA) ||
1440 ((policy & POLICY_MB) && ne == TB) ||
1441 ((policy & POLICY_MS) && ne == TS) ||
1442 ((policy & POLICY_MM) && ne == TM) )
1443 phy->t_val[3] = 0 ; /* Reject */
1444 break ;
1446 #ifndef SLIM_SMT
1448 * detect undesirable connection attempt event
1450 if ( (type == TA && ne == TA ) ||
1451 (type == TA && ne == TS ) ||
1452 (type == TB && ne == TB ) ||
1453 (type == TB && ne == TS ) ||
1454 (type == TS && ne == TA ) ||
1455 (type == TS && ne == TB ) ) {
1456 smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1457 (int) (INDEX_PORT+ phy->np) ,0) ;
1459 #endif
1461 break ;
1462 case 4:
1463 if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1464 if (phy->pc_lem_fail) {
1465 phy->t_val[4] = 1 ; /* long */
1466 phy->t_val[5] = 0 ;
1468 else {
1469 phy->t_val[4] = 0 ;
1470 if (mib->fddiPORTLCTFail_Ct > 0)
1471 phy->t_val[5] = 1 ; /* medium */
1472 else
1473 phy->t_val[5] = 0 ; /* short */
1476 * Implementers choice: use medium
1477 * instead of short when undesired
1478 * connection attempt is made.
1480 if (phy->wc_flag)
1481 phy->t_val[5] = 1 ; /* medium */
1483 mib->fddiPORTConnectState = PCM_CONNECTING ;
1485 else {
1486 mib->fddiPORTConnectState = PCM_STANDBY ;
1487 phy->t_val[4] = 1 ; /* extended */
1488 phy->t_val[5] = 1 ;
1490 break ;
1491 case 5:
1492 break ;
1493 case 6:
1494 /* we do NOT have a MAC for LCT */
1495 phy->t_val[6] = 0 ;
1496 break ;
1497 case 7:
1498 phy->cf_loop = FALSE ;
1499 lem_check_lct(smc,phy) ;
1500 if (phy->pc_lem_fail) {
1501 DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1502 phy->phy_name,0) ;
1503 phy->t_val[7] = 1 ;
1505 else
1506 phy->t_val[7] = 0 ;
1507 break ;
1508 case 8:
1509 phy->t_val[8] = 0 ; /* Don't request MAC loopback */
1510 break ;
1511 case 9:
1512 phy->cf_loop = 0 ;
1513 if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1514 ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1515 queue_event(smc,EVENT_PCM+np,PC_START) ;
1516 break ;
1518 phy->t_val[9] = FALSE ;
1519 switch (smc->s.sas) {
1520 case SMT_DAS :
1522 * MAC intended on output
1524 if (phy->pc_mode == PM_TREE) {
1525 if ((np == PB) || ((np == PA) &&
1526 (smc->y[PB].mib->fddiPORTConnectState !=
1527 PCM_ACTIVE)))
1528 phy->t_val[9] = TRUE ;
1530 else {
1531 if (np == PB)
1532 phy->t_val[9] = TRUE ;
1534 break ;
1535 case SMT_SAS :
1536 if (np == PS)
1537 phy->t_val[9] = TRUE ;
1538 break ;
1539 #ifdef CONCENTRATOR
1540 case SMT_NAC :
1542 * MAC intended on output
1544 if (np == PB)
1545 phy->t_val[9] = TRUE ;
1546 break ;
1547 #endif
1549 mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1550 break ;
1552 DB_PCMN(1,"SIG snd %x %x:\n", bit,phy->t_val[bit] ) ;
1556 * return status twisted (called by SMT)
1558 int pcm_status_twisted(struct s_smc *smc)
1560 int twist = 0 ;
1561 if (smc->s.sas != SMT_DAS)
1562 return(0) ;
1563 if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1564 twist |= 1 ;
1565 if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1566 twist |= 2 ;
1567 return(twist) ;
1571 * return status (called by SMT)
1572 * type
1573 * state
1574 * remote phy type
1575 * remote mac yes/no
1577 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1578 int *remote, int *mac)
1580 struct s_phy *phy = &smc->y[np] ;
1581 struct fddi_mib_p *mib ;
1583 mib = phy->mib ;
1585 /* remote PHY type and MAC - set only if active */
1586 *mac = 0 ;
1587 *type = mib->fddiPORTMy_Type ; /* our PHY type */
1588 *state = mib->fddiPORTConnectState ;
1589 *remote = mib->fddiPORTNeighborType ;
1591 switch(mib->fddiPORTPCMState) {
1592 case PC8_ACTIVE :
1593 *mac = mib->fddiPORTMacIndicated.R_val ;
1594 break ;
1599 * return rooted station status (called by SMT)
1601 int pcm_rooted_station(struct s_smc *smc)
1603 int n ;
1605 for (n = 0 ; n < NUMPHYS ; n++) {
1606 if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1607 smc->y[n].mib->fddiPORTNeighborType == TM)
1608 return(0) ;
1610 return(1) ;
1614 * Interrupt actions for PLC & PCM events
1616 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1617 /* int np; PHY index */
1619 struct s_phy *phy = &smc->y[np] ;
1620 struct s_plc *plc = &phy->plc ;
1621 int n ;
1622 #ifdef SUPERNET_3
1623 int corr_mask ;
1624 #endif /* SUPERNET_3 */
1625 int i ;
1627 if (np >= smc->s.numphys) {
1628 plc->soft_err++ ;
1629 return ;
1631 if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
1633 * Check whether the SRF Condition occurred.
1635 if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1637 * This is the real Elasticity Error.
1638 * More than one in a row are treated as a
1639 * single one.
1640 * Only count this in the active state.
1642 phy->mib->fddiPORTEBError_Ct ++ ;
1646 plc->ebuf_err++ ;
1647 if (plc->ebuf_cont <= 1000) {
1649 * Prevent counter from being wrapped after
1650 * hanging years in that interrupt.
1652 plc->ebuf_cont++ ; /* Ebuf continous error */
1655 #ifdef SUPERNET_3
1656 if (plc->ebuf_cont == 1000 &&
1657 ((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1658 PLC_REV_SN3)) {
1660 * This interrupt remeained high for at least
1661 * 1000 consecutive interrupt calls.
1663 * This is caused by a hardware error of the
1664 * ORION part of the Supernet III chipset.
1666 * Disable this bit from the mask.
1668 corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1669 outpw(PLC(np,PL_INTR_MASK),corr_mask);
1672 * Disconnect from the ring.
1673 * Call the driver with the reset indication.
1675 queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1678 * Make an error log entry.
1680 SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1683 * Indicate the Reset.
1685 drv_reset_indication(smc) ;
1687 #endif /* SUPERNET_3 */
1688 } else {
1689 /* Reset the continous error variable */
1690 plc->ebuf_cont = 0 ; /* reset Ebuf continous error */
1692 if (cmd & PL_PHYINV) { /* physical layer invalid signal */
1693 plc->phyinv++ ;
1695 if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
1696 plc->vsym_ctr++ ;
1698 if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1699 plc->mini_ctr++ ;
1701 if (cmd & PL_LE_CTR) { /* link error event counter */
1702 int j ;
1705 * note: PL_LINK_ERR_CTR MUST be read to clear it
1707 j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1708 i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1710 if (i < j) {
1711 /* wrapped around */
1712 i += 256 ;
1715 if (phy->lem.lem_on) {
1716 /* Note: Lem errors shall only be counted when
1717 * link is ACTIVE or LCT is active.
1719 phy->lem.lem_errors += i ;
1720 phy->mib->fddiPORTLem_Ct += i ;
1723 if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
1724 if (plc->p_state == PS_LCT) {
1726 * end of LCT
1730 plc->tpc_exp++ ;
1732 if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1733 switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1734 case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
1735 case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
1736 case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
1737 case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
1740 if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
1741 int reason;
1743 reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1745 switch (reason) {
1746 case PL_B_PCS : plc->b_pcs++ ; break ;
1747 case PL_B_TPC : plc->b_tpc++ ; break ;
1748 case PL_B_TNE : plc->b_tne++ ; break ;
1749 case PL_B_QLS : plc->b_qls++ ; break ;
1750 case PL_B_ILS : plc->b_ils++ ; break ;
1751 case PL_B_HLS : plc->b_hls++ ; break ;
1754 /*jd 05-Aug-1999 changed: Bug #10419 */
1755 DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
1756 if (smc->e.DisconnectFlag == FALSE) {
1757 DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
1758 queue_event(smc,EVENT_PCM+np,PC_START) ;
1760 else {
1761 DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
1763 return ;
1766 * If both CODE & ENABLE are set ignore enable
1768 if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1769 queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1770 n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1771 for (i = 0 ; i < plc->p_bits ; i++) {
1772 phy->r_val[plc->p_start+i] = n & 1 ;
1773 n >>= 1 ;
1776 else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1777 queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1779 if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
1780 /*PC22b*/
1781 if (!phy->tr_flag) {
1782 DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1783 np,smc->mib.fddiSMTECMState) ;
1784 phy->tr_flag = TRUE ;
1785 smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1786 queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1790 * filter PLC glitch ???
1791 * QLS || HLS only while in PC2_TRACE state
1793 if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1794 /*PC22a*/
1795 if (smc->e.path_test == PT_PASSED) {
1796 DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
1797 phy->mib->fddiPORTPCMState) ;
1799 smc->e.path_test = PT_PENDING ;
1800 queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1803 if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
1804 /* break_required (TNE > NS_Max) */
1805 if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1806 if (!phy->tr_flag) {
1807 DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
1808 queue_event(smc,EVENT_PCM+np,PC_START) ;
1809 return ;
1815 #ifdef DEBUG
1817 * fill state struct
1819 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1821 struct s_phy *phy ;
1822 struct pcm_state *pcs ;
1823 int i ;
1824 int ii ;
1825 short rbits ;
1826 short tbits ;
1827 struct fddi_mib_p *mib ;
1829 for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1830 i++ , phy++, pcs++ ) {
1831 mib = phy->mib ;
1832 pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1833 pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1834 pcs->pcm_mode = phy->pc_mode ;
1835 pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1836 pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1837 pcs->pcm_lsf = phy->ls_flag ;
1838 pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1839 pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1840 for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1841 rbits <<= 1 ;
1842 tbits <<= 1 ;
1843 if (phy->r_val[NUMBITS-1-ii])
1844 rbits |= 1 ;
1845 if (phy->t_val[NUMBITS-1-ii])
1846 tbits |= 1 ;
1848 pcs->pcm_r_val = rbits ;
1849 pcs->pcm_t_val = tbits ;
1853 int get_pcm_state(struct s_smc *smc, int np)
1855 int pcs ;
1857 SK_UNUSED(smc) ;
1859 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1860 case PL_PC0 : pcs = PC_STOP ; break ;
1861 case PL_PC1 : pcs = PC_START ; break ;
1862 case PL_PC2 : pcs = PC_TRACE ; break ;
1863 case PL_PC3 : pcs = PC_SIGNAL ; break ;
1864 case PL_PC4 : pcs = PC_SIGNAL ; break ;
1865 case PL_PC5 : pcs = PC_SIGNAL ; break ;
1866 case PL_PC6 : pcs = PC_JOIN ; break ;
1867 case PL_PC7 : pcs = PC_JOIN ; break ;
1868 case PL_PC8 : pcs = PC_ENABLE ; break ;
1869 case PL_PC9 : pcs = PC_MAINT ; break ;
1870 default : pcs = PC_DISABLE ; break ;
1872 return(pcs) ;
1875 char *get_linestate(struct s_smc *smc, int np)
1877 char *ls = "" ;
1879 SK_UNUSED(smc) ;
1881 switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1882 case PL_L_NLS : ls = "NOISE" ; break ;
1883 case PL_L_ALS : ls = "ACTIV" ; break ;
1884 case PL_L_UND : ls = "UNDEF" ; break ;
1885 case PL_L_ILS4: ls = "ILS 4" ; break ;
1886 case PL_L_QLS : ls = "QLS" ; break ;
1887 case PL_L_MLS : ls = "MLS" ; break ;
1888 case PL_L_HLS : ls = "HLS" ; break ;
1889 case PL_L_ILS16:ls = "ILS16" ; break ;
1890 #ifdef lint
1891 default: ls = "unknown" ; break ;
1892 #endif
1894 return(ls) ;
1897 char *get_pcmstate(struct s_smc *smc, int np)
1899 char *pcs ;
1901 SK_UNUSED(smc) ;
1903 switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1904 case PL_PC0 : pcs = "OFF" ; break ;
1905 case PL_PC1 : pcs = "BREAK" ; break ;
1906 case PL_PC2 : pcs = "TRACE" ; break ;
1907 case PL_PC3 : pcs = "CONNECT"; break ;
1908 case PL_PC4 : pcs = "NEXT" ; break ;
1909 case PL_PC5 : pcs = "SIGNAL" ; break ;
1910 case PL_PC6 : pcs = "JOIN" ; break ;
1911 case PL_PC7 : pcs = "VERIFY" ; break ;
1912 case PL_PC8 : pcs = "ACTIV" ; break ;
1913 case PL_PC9 : pcs = "MAINT" ; break ;
1914 default : pcs = "UNKNOWN" ; break ;
1916 return(pcs) ;
1919 void list_phy(struct s_smc *smc)
1921 struct s_plc *plc ;
1922 int np ;
1924 for (np = 0 ; np < NUMPHYS ; np++) {
1925 plc = &smc->y[np].plc ;
1926 printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1927 printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1928 plc->soft_err,plc->b_pcs);
1929 printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1930 plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1931 printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1932 plc->ebuf_err,plc->b_tne) ;
1933 printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1934 plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1935 printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1936 plc->vsym_ctr,plc->b_ils) ;
1937 printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1938 plc->mini_ctr,plc->b_hls) ;
1939 printf("\tnodepr_err: %ld\n",plc->np_err) ;
1940 printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1941 printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1946 #ifdef CONCENTRATOR
1947 void pcm_lem_dump(struct s_smc *smc)
1949 int i ;
1950 struct s_phy *phy ;
1951 struct fddi_mib_p *mib ;
1953 char *entostring() ;
1955 printf("PHY errors BER\n") ;
1956 printf("----------------------\n") ;
1957 for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
1958 if (!plc_is_installed(smc,i))
1959 continue ;
1960 mib = phy->mib ;
1961 printf("%s\t%ld\t10E-%d\n",
1962 entostring(smc,ENTITY_PHY(i)),
1963 mib->fddiPORTLem_Ct,
1964 mib->fddiPORTLer_Estimate) ;
1967 #endif
1968 #endif