GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / sfc / falcon.c
blob1de5a68d955cdfc6c96272732a06ab7078f727e3
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
31 /* Hardware control for SFC4000 (aka Falcon). */
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39 /* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
47 /**************************************************************************
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
53 **************************************************************************
55 static void falcon_setsda(void *data, int state)
57 struct efx_nic *efx = (struct efx_nic *)data;
58 efx_oword_t reg;
60 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
65 static void falcon_setscl(void *data, int state)
67 struct efx_nic *efx = (struct efx_nic *)data;
68 efx_oword_t reg;
70 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
75 static int falcon_getsda(void *data)
77 struct efx_nic *efx = (struct efx_nic *)data;
78 efx_oword_t reg;
80 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
84 static int falcon_getscl(void *data)
86 struct efx_nic *efx = (struct efx_nic *)data;
87 efx_oword_t reg;
89 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94 .setsda = falcon_setsda,
95 .setscl = falcon_setscl,
96 .getsda = falcon_getsda,
97 .getscl = falcon_getscl,
98 .udelay = 5,
99 /* Wait up to 50 ms for slave to let us pull SCL high */
100 .timeout = DIV_ROUND_UP(HZ, 20),
103 static void falcon_push_irq_moderation(struct efx_channel *channel)
105 efx_dword_t timer_cmd;
106 struct efx_nic *efx = channel->efx;
108 /* Set timer register */
109 if (channel->irq_moderation) {
110 EFX_POPULATE_DWORD_2(timer_cmd,
111 FRF_AB_TC_TIMER_MODE,
112 FFE_BB_TIMER_MODE_INT_HLDOFF,
113 FRF_AB_TC_TIMER_VAL,
114 channel->irq_moderation - 1);
115 } else {
116 EFX_POPULATE_DWORD_2(timer_cmd,
117 FRF_AB_TC_TIMER_MODE,
118 FFE_BB_TIMER_MODE_DIS,
119 FRF_AB_TC_TIMER_VAL, 0);
121 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123 channel->channel);
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128 static void falcon_prepare_flush(struct efx_nic *efx)
130 falcon_deconfigure_mac_wrapper(efx);
132 /* Wait for the tx and rx fifo's to get to the next packet boundary
133 * (~1ms without back-pressure), then to drain the remainder of the
134 * fifo's at data path speeds (negligible), with a healthy margin. */
135 msleep(10);
138 /* Acknowledge a legacy interrupt from Falcon
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
146 * NB most hardware supports MSI interrupts
148 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 efx_dword_t reg;
152 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
158 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 struct efx_nic *efx = dev_id;
161 efx_oword_t *int_ker = efx->irq_status.addr;
162 struct efx_channel *channel;
163 int syserr;
164 int queues;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170 netif_vdbg(efx, intr, efx->net_dev,
171 "IRQ %d on CPU %d not for me\n", irq,
172 raw_smp_processor_id());
173 return IRQ_NONE;
175 efx->last_irq_cpu = raw_smp_processor_id();
176 netif_vdbg(efx, intr, efx->net_dev,
177 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
180 /* Determine interrupting queues, clear interrupt status
181 * register and acknowledge the device interrupt.
183 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
184 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
186 /* Check to see if we have a serious error condition */
187 if (queues & (1U << efx->fatal_irq_level)) {
188 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
189 if (unlikely(syserr))
190 return efx_nic_fatal_interrupt(efx);
193 EFX_ZERO_OWORD(*int_ker);
194 wmb(); /* Ensure the vector is cleared before interrupt ack */
195 falcon_irq_ack_a1(efx);
197 /* Schedule processing of any interrupting queues */
198 channel = &efx->channel[0];
199 while (queues) {
200 if (queues & 0x01)
201 efx_schedule_channel(channel);
202 channel++;
203 queues >>= 1;
206 return IRQ_HANDLED;
208 /**************************************************************************
210 * EEPROM/flash
212 **************************************************************************
215 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
217 static int falcon_spi_poll(struct efx_nic *efx)
219 efx_oword_t reg;
220 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
221 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
224 /* Wait for SPI command completion */
225 static int falcon_spi_wait(struct efx_nic *efx)
227 /* Most commands will finish quickly, so we start polling at
228 * very short intervals. Sometimes the command may have to
229 * wait for VPD or expansion ROM access outside of our
230 * control, so we allow up to 100 ms. */
231 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
232 int i;
234 for (i = 0; i < 10; i++) {
235 if (!falcon_spi_poll(efx))
236 return 0;
237 udelay(10);
240 for (;;) {
241 if (!falcon_spi_poll(efx))
242 return 0;
243 if (time_after_eq(jiffies, timeout)) {
244 netif_err(efx, hw, efx->net_dev,
245 "timed out waiting for SPI\n");
246 return -ETIMEDOUT;
248 schedule_timeout_uninterruptible(1);
252 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
253 unsigned int command, int address,
254 const void *in, void *out, size_t len)
256 bool addressed = (address >= 0);
257 bool reading = (out != NULL);
258 efx_oword_t reg;
259 int rc;
261 /* Input validation */
262 if (len > FALCON_SPI_MAX_LEN)
263 return -EINVAL;
264 BUG_ON(!mutex_is_locked(&efx->spi_lock));
266 /* Check that previous command is not still running */
267 rc = falcon_spi_poll(efx);
268 if (rc)
269 return rc;
271 /* Program address register, if we have an address */
272 if (addressed) {
273 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
274 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
277 /* Program data register, if we have data */
278 if (in != NULL) {
279 memcpy(&reg, in, len);
280 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
283 /* Issue read/write command */
284 EFX_POPULATE_OWORD_7(reg,
285 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
286 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
287 FRF_AB_EE_SPI_HCMD_DABCNT, len,
288 FRF_AB_EE_SPI_HCMD_READ, reading,
289 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
290 FRF_AB_EE_SPI_HCMD_ADBCNT,
291 (addressed ? spi->addr_len : 0),
292 FRF_AB_EE_SPI_HCMD_ENC, command);
293 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
295 /* Wait for read/write to complete */
296 rc = falcon_spi_wait(efx);
297 if (rc)
298 return rc;
300 /* Read data */
301 if (out != NULL) {
302 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
303 memcpy(out, &reg, len);
306 return 0;
309 static size_t
310 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
312 return min(FALCON_SPI_MAX_LEN,
313 (spi->block_size - (start & (spi->block_size - 1))));
316 static inline u8
317 efx_spi_munge_command(const struct efx_spi_device *spi,
318 const u8 command, const unsigned int address)
320 return command | (((address >> 8) & spi->munge_address) << 3);
323 /* Wait up to 10 ms for buffered write completion */
325 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
327 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
328 u8 status;
329 int rc;
331 for (;;) {
332 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
333 &status, sizeof(status));
334 if (rc)
335 return rc;
336 if (!(status & SPI_STATUS_NRDY))
337 return 0;
338 if (time_after_eq(jiffies, timeout)) {
339 netif_err(efx, hw, efx->net_dev,
340 "SPI write timeout on device %d"
341 " last status=0x%02x\n",
342 spi->device_id, status);
343 return -ETIMEDOUT;
345 schedule_timeout_uninterruptible(1);
349 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
350 loff_t start, size_t len, size_t *retlen, u8 *buffer)
352 size_t block_len, pos = 0;
353 unsigned int command;
354 int rc = 0;
356 while (pos < len) {
357 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
359 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
360 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
361 buffer + pos, block_len);
362 if (rc)
363 break;
364 pos += block_len;
366 /* Avoid locking up the system */
367 cond_resched();
368 if (signal_pending(current)) {
369 rc = -EINTR;
370 break;
374 if (retlen)
375 *retlen = pos;
376 return rc;
380 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
381 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
383 u8 verify_buffer[FALCON_SPI_MAX_LEN];
384 size_t block_len, pos = 0;
385 unsigned int command;
386 int rc = 0;
388 while (pos < len) {
389 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
390 if (rc)
391 break;
393 block_len = min(len - pos,
394 falcon_spi_write_limit(spi, start + pos));
395 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
396 rc = falcon_spi_cmd(efx, spi, command, start + pos,
397 buffer + pos, NULL, block_len);
398 if (rc)
399 break;
401 rc = falcon_spi_wait_write(efx, spi);
402 if (rc)
403 break;
405 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
406 rc = falcon_spi_cmd(efx, spi, command, start + pos,
407 NULL, verify_buffer, block_len);
408 if (memcmp(verify_buffer, buffer + pos, block_len)) {
409 rc = -EIO;
410 break;
413 pos += block_len;
415 /* Avoid locking up the system */
416 cond_resched();
417 if (signal_pending(current)) {
418 rc = -EINTR;
419 break;
423 if (retlen)
424 *retlen = pos;
425 return rc;
428 /**************************************************************************
430 * MAC wrapper
432 **************************************************************************
435 static void falcon_push_multicast_hash(struct efx_nic *efx)
437 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
439 WARN_ON(!mutex_is_locked(&efx->mac_lock));
441 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
442 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
445 static void falcon_reset_macs(struct efx_nic *efx)
447 struct falcon_nic_data *nic_data = efx->nic_data;
448 efx_oword_t reg, mac_ctrl;
449 int count;
451 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
452 /* It's not safe to use GLB_CTL_REG to reset the
453 * macs, so instead use the internal MAC resets
455 if (!EFX_IS10G(efx)) {
456 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
457 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
458 udelay(1000);
460 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
461 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
462 udelay(1000);
463 return;
464 } else {
465 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
466 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
468 for (count = 0; count < 10000; count++) {
469 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
470 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
472 return;
473 udelay(10);
476 netif_err(efx, hw, efx->net_dev,
477 "timed out waiting for XMAC core reset\n");
481 /* Mac stats will fail whist the TX fifo is draining */
482 WARN_ON(nic_data->stats_disable_count == 0);
484 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
485 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
486 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
488 efx_reado(efx, &reg, FR_AB_GLB_CTL);
489 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
490 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
491 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
492 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
494 count = 0;
495 while (1) {
496 efx_reado(efx, &reg, FR_AB_GLB_CTL);
497 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
498 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
499 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
500 netif_dbg(efx, hw, efx->net_dev,
501 "Completed MAC reset after %d loops\n",
502 count);
503 break;
505 if (count > 20) {
506 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
507 break;
509 count++;
510 udelay(10);
513 /* Ensure the correct MAC is selected before statistics
514 * are re-enabled by the caller */
515 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
517 /* This can run even when the GMAC is selected */
518 falcon_setup_xaui(efx);
521 void falcon_drain_tx_fifo(struct efx_nic *efx)
523 efx_oword_t reg;
525 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
526 (efx->loopback_mode != LOOPBACK_NONE))
527 return;
529 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
530 /* There is no point in draining more than once */
531 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
532 return;
534 falcon_reset_macs(efx);
537 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
539 efx_oword_t reg;
541 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
542 return;
544 /* Isolate the MAC -> RX */
545 efx_reado(efx, &reg, FR_AZ_RX_CFG);
546 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
547 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
549 /* Isolate TX -> MAC */
550 falcon_drain_tx_fifo(efx);
553 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
555 struct efx_link_state *link_state = &efx->link_state;
556 efx_oword_t reg;
557 int link_speed, isolate;
559 isolate = (efx->reset_pending != RESET_TYPE_NONE);
561 switch (link_state->speed) {
562 case 10000: link_speed = 3; break;
563 case 1000: link_speed = 2; break;
564 case 100: link_speed = 1; break;
565 default: link_speed = 0; break;
567 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
568 * as advertised. Disable to ensure packets are not
569 * indefinitely held and TX queue can be flushed at any point
570 * while the link is down. */
571 EFX_POPULATE_OWORD_5(reg,
572 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
573 FRF_AB_MAC_BCAD_ACPT, 1,
574 FRF_AB_MAC_UC_PROM, efx->promiscuous,
575 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
576 FRF_AB_MAC_SPEED, link_speed);
577 /* On B0, MAC backpressure can be disabled and packets get
578 * discarded. */
579 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
580 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
581 !link_state->up || isolate);
584 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
586 /* Restore the multicast hash registers. */
587 falcon_push_multicast_hash(efx);
589 efx_reado(efx, &reg, FR_AZ_RX_CFG);
590 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
591 * initialisation but it may read back as 0) */
592 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
593 /* Unisolate the MAC -> RX */
594 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
595 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
596 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
599 static void falcon_stats_request(struct efx_nic *efx)
601 struct falcon_nic_data *nic_data = efx->nic_data;
602 efx_oword_t reg;
604 WARN_ON(nic_data->stats_pending);
605 WARN_ON(nic_data->stats_disable_count);
607 if (nic_data->stats_dma_done == NULL)
608 return; /* no mac selected */
610 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
611 nic_data->stats_pending = true;
612 wmb(); /* ensure done flag is clear */
614 /* Initiate DMA transfer of stats */
615 EFX_POPULATE_OWORD_2(reg,
616 FRF_AB_MAC_STAT_DMA_CMD, 1,
617 FRF_AB_MAC_STAT_DMA_ADR,
618 efx->stats_buffer.dma_addr);
619 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
621 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
624 static void falcon_stats_complete(struct efx_nic *efx)
626 struct falcon_nic_data *nic_data = efx->nic_data;
628 if (!nic_data->stats_pending)
629 return;
631 nic_data->stats_pending = 0;
632 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
633 rmb(); /* read the done flag before the stats */
634 efx->mac_op->update_stats(efx);
635 } else {
636 netif_err(efx, hw, efx->net_dev,
637 "timed out waiting for statistics\n");
641 static void falcon_stats_timer_func(unsigned long context)
643 struct efx_nic *efx = (struct efx_nic *)context;
644 struct falcon_nic_data *nic_data = efx->nic_data;
646 spin_lock(&efx->stats_lock);
648 falcon_stats_complete(efx);
649 if (nic_data->stats_disable_count == 0)
650 falcon_stats_request(efx);
652 spin_unlock(&efx->stats_lock);
655 static void falcon_switch_mac(struct efx_nic *efx);
657 static bool falcon_loopback_link_poll(struct efx_nic *efx)
659 struct efx_link_state old_state = efx->link_state;
661 WARN_ON(!mutex_is_locked(&efx->mac_lock));
662 WARN_ON(!LOOPBACK_INTERNAL(efx));
664 efx->link_state.fd = true;
665 efx->link_state.fc = efx->wanted_fc;
666 efx->link_state.up = true;
668 if (efx->loopback_mode == LOOPBACK_GMAC)
669 efx->link_state.speed = 1000;
670 else
671 efx->link_state.speed = 10000;
673 return !efx_link_state_equal(&efx->link_state, &old_state);
676 static int falcon_reconfigure_port(struct efx_nic *efx)
678 int rc;
680 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
682 /* Poll the PHY link state *before* reconfiguring it. This means we
683 * will pick up the correct speed (in loopback) to select the correct
684 * MAC.
686 if (LOOPBACK_INTERNAL(efx))
687 falcon_loopback_link_poll(efx);
688 else
689 efx->phy_op->poll(efx);
691 falcon_stop_nic_stats(efx);
692 falcon_deconfigure_mac_wrapper(efx);
694 falcon_switch_mac(efx);
696 efx->phy_op->reconfigure(efx);
697 rc = efx->mac_op->reconfigure(efx);
698 BUG_ON(rc);
700 falcon_start_nic_stats(efx);
702 /* Synchronise efx->link_state with the kernel */
703 efx_link_status_changed(efx);
705 return 0;
708 /**************************************************************************
710 * PHY access via GMII
712 **************************************************************************
715 /* Wait for GMII access to complete */
716 static int falcon_gmii_wait(struct efx_nic *efx)
718 efx_oword_t md_stat;
719 int count;
721 /* wait upto 50ms - taken max from datasheet */
722 for (count = 0; count < 5000; count++) {
723 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
724 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
725 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
726 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
727 netif_err(efx, hw, efx->net_dev,
728 "error from GMII access "
729 EFX_OWORD_FMT"\n",
730 EFX_OWORD_VAL(md_stat));
731 return -EIO;
733 return 0;
735 udelay(10);
737 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
738 return -ETIMEDOUT;
741 /* Write an MDIO register of a PHY connected to Falcon. */
742 static int falcon_mdio_write(struct net_device *net_dev,
743 int prtad, int devad, u16 addr, u16 value)
745 struct efx_nic *efx = netdev_priv(net_dev);
746 efx_oword_t reg;
747 int rc;
749 netif_vdbg(efx, hw, efx->net_dev,
750 "writing MDIO %d register %d.%d with 0x%04x\n",
751 prtad, devad, addr, value);
753 mutex_lock(&efx->mdio_lock);
755 /* Check MDIO not currently being accessed */
756 rc = falcon_gmii_wait(efx);
757 if (rc)
758 goto out;
760 /* Write the address/ID register */
761 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
762 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
764 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
765 FRF_AB_MD_DEV_ADR, devad);
766 efx_writeo(efx, &reg, FR_AB_MD_ID);
768 /* Write data */
769 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
770 efx_writeo(efx, &reg, FR_AB_MD_TXD);
772 EFX_POPULATE_OWORD_2(reg,
773 FRF_AB_MD_WRC, 1,
774 FRF_AB_MD_GC, 0);
775 efx_writeo(efx, &reg, FR_AB_MD_CS);
777 /* Wait for data to be written */
778 rc = falcon_gmii_wait(efx);
779 if (rc) {
780 /* Abort the write operation */
781 EFX_POPULATE_OWORD_2(reg,
782 FRF_AB_MD_WRC, 0,
783 FRF_AB_MD_GC, 1);
784 efx_writeo(efx, &reg, FR_AB_MD_CS);
785 udelay(10);
788 out:
789 mutex_unlock(&efx->mdio_lock);
790 return rc;
793 /* Read an MDIO register of a PHY connected to Falcon. */
794 static int falcon_mdio_read(struct net_device *net_dev,
795 int prtad, int devad, u16 addr)
797 struct efx_nic *efx = netdev_priv(net_dev);
798 efx_oword_t reg;
799 int rc;
801 mutex_lock(&efx->mdio_lock);
803 /* Check MDIO not currently being accessed */
804 rc = falcon_gmii_wait(efx);
805 if (rc)
806 goto out;
808 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
809 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
811 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
812 FRF_AB_MD_DEV_ADR, devad);
813 efx_writeo(efx, &reg, FR_AB_MD_ID);
815 /* Request data to be read */
816 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
817 efx_writeo(efx, &reg, FR_AB_MD_CS);
819 /* Wait for data to become available */
820 rc = falcon_gmii_wait(efx);
821 if (rc == 0) {
822 efx_reado(efx, &reg, FR_AB_MD_RXD);
823 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
824 netif_vdbg(efx, hw, efx->net_dev,
825 "read from MDIO %d register %d.%d, got %04x\n",
826 prtad, devad, addr, rc);
827 } else {
828 /* Abort the read operation */
829 EFX_POPULATE_OWORD_2(reg,
830 FRF_AB_MD_RIC, 0,
831 FRF_AB_MD_GC, 1);
832 efx_writeo(efx, &reg, FR_AB_MD_CS);
834 netif_dbg(efx, hw, efx->net_dev,
835 "read from MDIO %d register %d.%d, got error %d\n",
836 prtad, devad, addr, rc);
839 out:
840 mutex_unlock(&efx->mdio_lock);
841 return rc;
844 static void falcon_clock_mac(struct efx_nic *efx)
846 unsigned strap_val;
847 efx_oword_t nic_stat;
849 /* Configure the NIC generated MAC clock correctly */
850 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
851 strap_val = EFX_IS10G(efx) ? 5 : 3;
852 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
853 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
854 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
855 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
856 } else {
857 /* Falcon A1 does not support 1G/10G speed switching
858 * and must not be used with a PHY that does. */
859 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
860 strap_val);
864 static void falcon_switch_mac(struct efx_nic *efx)
866 struct efx_mac_operations *old_mac_op = efx->mac_op;
867 struct falcon_nic_data *nic_data = efx->nic_data;
868 unsigned int stats_done_offset;
870 WARN_ON(!mutex_is_locked(&efx->mac_lock));
871 WARN_ON(nic_data->stats_disable_count == 0);
873 efx->mac_op = (EFX_IS10G(efx) ?
874 &falcon_xmac_operations : &falcon_gmac_operations);
876 if (EFX_IS10G(efx))
877 stats_done_offset = XgDmaDone_offset;
878 else
879 stats_done_offset = GDmaDone_offset;
880 nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
882 if (old_mac_op == efx->mac_op)
883 return;
885 falcon_clock_mac(efx);
887 netif_dbg(efx, hw, efx->net_dev, "selected %cMAC\n",
888 EFX_IS10G(efx) ? 'X' : 'G');
889 /* Not all macs support a mac-level link state */
890 efx->xmac_poll_required = false;
891 falcon_reset_macs(efx);
894 /* This call is responsible for hooking in the MAC and PHY operations */
895 static int falcon_probe_port(struct efx_nic *efx)
897 int rc;
899 switch (efx->phy_type) {
900 case PHY_TYPE_SFX7101:
901 efx->phy_op = &falcon_sfx7101_phy_ops;
902 break;
903 case PHY_TYPE_SFT9001A:
904 case PHY_TYPE_SFT9001B:
905 efx->phy_op = &falcon_sft9001_phy_ops;
906 break;
907 case PHY_TYPE_QT2022C2:
908 case PHY_TYPE_QT2025C:
909 efx->phy_op = &falcon_qt202x_phy_ops;
910 break;
911 default:
912 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
913 efx->phy_type);
914 return -ENODEV;
917 /* Fill out MDIO structure and loopback modes */
918 efx->mdio.mdio_read = falcon_mdio_read;
919 efx->mdio.mdio_write = falcon_mdio_write;
920 rc = efx->phy_op->probe(efx);
921 if (rc != 0)
922 return rc;
924 /* Initial assumption */
925 efx->link_state.speed = 10000;
926 efx->link_state.fd = true;
928 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
929 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
930 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
931 else
932 efx->wanted_fc = EFX_FC_RX;
933 if (efx->mdio.mmds & MDIO_DEVS_AN)
934 efx->wanted_fc |= EFX_FC_AUTO;
936 /* Allocate buffer for stats */
937 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
938 FALCON_MAC_STATS_SIZE);
939 if (rc)
940 return rc;
941 netif_dbg(efx, probe, efx->net_dev,
942 "stats buffer at %llx (virt %p phys %llx)\n",
943 (u64)efx->stats_buffer.dma_addr,
944 efx->stats_buffer.addr,
945 (u64)virt_to_phys(efx->stats_buffer.addr));
947 return 0;
950 static void falcon_remove_port(struct efx_nic *efx)
952 efx->phy_op->remove(efx);
953 efx_nic_free_buffer(efx, &efx->stats_buffer);
956 /**************************************************************************
958 * Falcon test code
960 **************************************************************************/
962 static int
963 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
965 struct falcon_nvconfig *nvconfig;
966 struct efx_spi_device *spi;
967 void *region;
968 int rc, magic_num, struct_ver;
969 __le16 *word, *limit;
970 u32 csum;
972 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
973 if (!spi)
974 return -EINVAL;
976 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
977 if (!region)
978 return -ENOMEM;
979 nvconfig = region + FALCON_NVCONFIG_OFFSET;
981 mutex_lock(&efx->spi_lock);
982 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
983 mutex_unlock(&efx->spi_lock);
984 if (rc) {
985 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
986 efx->spi_flash ? "flash" : "EEPROM");
987 rc = -EIO;
988 goto out;
991 magic_num = le16_to_cpu(nvconfig->board_magic_num);
992 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
994 rc = -EINVAL;
995 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
996 netif_err(efx, hw, efx->net_dev,
997 "NVRAM bad magic 0x%x\n", magic_num);
998 goto out;
1000 if (struct_ver < 2) {
1001 netif_err(efx, hw, efx->net_dev,
1002 "NVRAM has ancient version 0x%x\n", struct_ver);
1003 goto out;
1004 } else if (struct_ver < 4) {
1005 word = &nvconfig->board_magic_num;
1006 limit = (__le16 *) (nvconfig + 1);
1007 } else {
1008 word = region;
1009 limit = region + FALCON_NVCONFIG_END;
1011 for (csum = 0; word < limit; ++word)
1012 csum += le16_to_cpu(*word);
1014 if (~csum & 0xffff) {
1015 netif_err(efx, hw, efx->net_dev,
1016 "NVRAM has incorrect checksum\n");
1017 goto out;
1020 rc = 0;
1021 if (nvconfig_out)
1022 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1024 out:
1025 kfree(region);
1026 return rc;
1029 static int falcon_test_nvram(struct efx_nic *efx)
1031 return falcon_read_nvram(efx, NULL);
1034 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1035 { FR_AZ_ADR_REGION,
1036 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1037 { FR_AZ_RX_CFG,
1038 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1039 { FR_AZ_TX_CFG,
1040 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1041 { FR_AZ_TX_RESERVED,
1042 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1043 { FR_AB_MAC_CTRL,
1044 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1045 { FR_AZ_SRM_TX_DC_CFG,
1046 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1047 { FR_AZ_RX_DC_CFG,
1048 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1049 { FR_AZ_RX_DC_PF_WM,
1050 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1051 { FR_BZ_DP_CTRL,
1052 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1053 { FR_AB_GM_CFG2,
1054 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1055 { FR_AB_GMF_CFG0,
1056 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1057 { FR_AB_XM_GLB_CFG,
1058 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1059 { FR_AB_XM_TX_CFG,
1060 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1061 { FR_AB_XM_RX_CFG,
1062 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1063 { FR_AB_XM_RX_PARAM,
1064 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1065 { FR_AB_XM_FC,
1066 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1067 { FR_AB_XM_ADR_LO,
1068 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1069 { FR_AB_XX_SD_CTL,
1070 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1073 static int falcon_b0_test_registers(struct efx_nic *efx)
1075 return efx_nic_test_registers(efx, falcon_b0_register_tests,
1076 ARRAY_SIZE(falcon_b0_register_tests));
1079 /**************************************************************************
1081 * Device reset
1083 **************************************************************************
1086 /* Resets NIC to known state. This routine must be called in process
1087 * context and is allowed to sleep. */
1088 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1090 struct falcon_nic_data *nic_data = efx->nic_data;
1091 efx_oword_t glb_ctl_reg_ker;
1092 int rc;
1094 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1095 RESET_TYPE(method));
1097 /* Initiate device reset */
1098 if (method == RESET_TYPE_WORLD) {
1099 rc = pci_save_state(efx->pci_dev);
1100 if (rc) {
1101 netif_err(efx, drv, efx->net_dev,
1102 "failed to backup PCI state of primary "
1103 "function prior to hardware reset\n");
1104 goto fail1;
1106 if (efx_nic_is_dual_func(efx)) {
1107 rc = pci_save_state(nic_data->pci_dev2);
1108 if (rc) {
1109 netif_err(efx, drv, efx->net_dev,
1110 "failed to backup PCI state of "
1111 "secondary function prior to "
1112 "hardware reset\n");
1113 goto fail2;
1117 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1118 FRF_AB_EXT_PHY_RST_DUR,
1119 FFE_AB_EXT_PHY_RST_DUR_10240US,
1120 FRF_AB_SWRST, 1);
1121 } else {
1122 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1123 /* exclude PHY from "invisible" reset */
1124 FRF_AB_EXT_PHY_RST_CTL,
1125 method == RESET_TYPE_INVISIBLE,
1126 /* exclude EEPROM/flash and PCIe */
1127 FRF_AB_PCIE_CORE_RST_CTL, 1,
1128 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1129 FRF_AB_PCIE_SD_RST_CTL, 1,
1130 FRF_AB_EE_RST_CTL, 1,
1131 FRF_AB_EXT_PHY_RST_DUR,
1132 FFE_AB_EXT_PHY_RST_DUR_10240US,
1133 FRF_AB_SWRST, 1);
1135 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1137 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1138 schedule_timeout_uninterruptible(HZ / 20);
1140 /* Restore PCI configuration if needed */
1141 if (method == RESET_TYPE_WORLD) {
1142 if (efx_nic_is_dual_func(efx)) {
1143 rc = pci_restore_state(nic_data->pci_dev2);
1144 if (rc) {
1145 netif_err(efx, drv, efx->net_dev,
1146 "failed to restore PCI config for "
1147 "the secondary function\n");
1148 goto fail3;
1151 rc = pci_restore_state(efx->pci_dev);
1152 if (rc) {
1153 netif_err(efx, drv, efx->net_dev,
1154 "failed to restore PCI config for the "
1155 "primary function\n");
1156 goto fail4;
1158 netif_dbg(efx, drv, efx->net_dev,
1159 "successfully restored PCI config\n");
1162 /* Assert that reset complete */
1163 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1164 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1165 rc = -ETIMEDOUT;
1166 netif_err(efx, hw, efx->net_dev,
1167 "timed out waiting for hardware reset\n");
1168 goto fail5;
1170 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1172 return 0;
1174 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1175 fail2:
1176 fail3:
1177 pci_restore_state(efx->pci_dev);
1178 fail1:
1179 fail4:
1180 fail5:
1181 return rc;
1184 static void falcon_monitor(struct efx_nic *efx)
1186 bool link_changed;
1187 int rc;
1189 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1191 rc = falcon_board(efx)->type->monitor(efx);
1192 if (rc) {
1193 netif_err(efx, hw, efx->net_dev,
1194 "Board sensor %s; shutting down PHY\n",
1195 (rc == -ERANGE) ? "reported fault" : "failed");
1196 efx->phy_mode |= PHY_MODE_LOW_POWER;
1197 rc = __efx_reconfigure_port(efx);
1198 WARN_ON(rc);
1201 if (LOOPBACK_INTERNAL(efx))
1202 link_changed = falcon_loopback_link_poll(efx);
1203 else
1204 link_changed = efx->phy_op->poll(efx);
1206 if (link_changed) {
1207 falcon_stop_nic_stats(efx);
1208 falcon_deconfigure_mac_wrapper(efx);
1210 falcon_switch_mac(efx);
1211 rc = efx->mac_op->reconfigure(efx);
1212 BUG_ON(rc);
1214 falcon_start_nic_stats(efx);
1216 efx_link_status_changed(efx);
1219 if (EFX_IS10G(efx))
1220 falcon_poll_xmac(efx);
1223 /* Zeroes out the SRAM contents. This routine must be called in
1224 * process context and is allowed to sleep.
1226 static int falcon_reset_sram(struct efx_nic *efx)
1228 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1229 int count;
1231 /* Set the SRAM wake/sleep GPIO appropriately. */
1232 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1233 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1234 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1235 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1237 /* Initiate SRAM reset */
1238 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1239 FRF_AZ_SRM_INIT_EN, 1,
1240 FRF_AZ_SRM_NB_SZ, 0);
1241 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1243 /* Wait for SRAM reset to complete */
1244 count = 0;
1245 do {
1246 netif_dbg(efx, hw, efx->net_dev,
1247 "waiting for SRAM reset (attempt %d)...\n", count);
1249 /* SRAM reset is slow; expect around 16ms */
1250 schedule_timeout_uninterruptible(HZ / 50);
1252 /* Check for reset complete */
1253 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1254 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1255 netif_dbg(efx, hw, efx->net_dev,
1256 "SRAM reset complete\n");
1258 return 0;
1260 } while (++count < 20); /* wait upto 0.4 sec */
1262 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1263 return -ETIMEDOUT;
1266 static int falcon_spi_device_init(struct efx_nic *efx,
1267 struct efx_spi_device **spi_device_ret,
1268 unsigned int device_id, u32 device_type)
1270 struct efx_spi_device *spi_device;
1272 if (device_type != 0) {
1273 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1274 if (!spi_device)
1275 return -ENOMEM;
1276 spi_device->device_id = device_id;
1277 spi_device->size =
1278 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1279 spi_device->addr_len =
1280 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1281 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1282 spi_device->addr_len == 1);
1283 spi_device->erase_command =
1284 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1285 spi_device->erase_size =
1286 1 << SPI_DEV_TYPE_FIELD(device_type,
1287 SPI_DEV_TYPE_ERASE_SIZE);
1288 spi_device->block_size =
1289 1 << SPI_DEV_TYPE_FIELD(device_type,
1290 SPI_DEV_TYPE_BLOCK_SIZE);
1291 } else {
1292 spi_device = NULL;
1295 kfree(*spi_device_ret);
1296 *spi_device_ret = spi_device;
1297 return 0;
1300 static void falcon_remove_spi_devices(struct efx_nic *efx)
1302 kfree(efx->spi_eeprom);
1303 efx->spi_eeprom = NULL;
1304 kfree(efx->spi_flash);
1305 efx->spi_flash = NULL;
1308 /* Extract non-volatile configuration */
1309 static int falcon_probe_nvconfig(struct efx_nic *efx)
1311 struct falcon_nvconfig *nvconfig;
1312 int board_rev;
1313 int rc;
1315 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1316 if (!nvconfig)
1317 return -ENOMEM;
1319 rc = falcon_read_nvram(efx, nvconfig);
1320 if (rc == -EINVAL) {
1321 netif_err(efx, probe, efx->net_dev,
1322 "NVRAM is invalid therefore using defaults\n");
1323 efx->phy_type = PHY_TYPE_NONE;
1324 efx->mdio.prtad = MDIO_PRTAD_NONE;
1325 board_rev = 0;
1326 rc = 0;
1327 } else if (rc) {
1328 goto fail1;
1329 } else {
1330 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1331 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1333 efx->phy_type = v2->port0_phy_type;
1334 efx->mdio.prtad = v2->port0_phy_addr;
1335 board_rev = le16_to_cpu(v2->board_revision);
1337 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1338 rc = falcon_spi_device_init(
1339 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1340 le32_to_cpu(v3->spi_device_type
1341 [FFE_AB_SPI_DEVICE_FLASH]));
1342 if (rc)
1343 goto fail2;
1344 rc = falcon_spi_device_init(
1345 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346 le32_to_cpu(v3->spi_device_type
1347 [FFE_AB_SPI_DEVICE_EEPROM]));
1348 if (rc)
1349 goto fail2;
1353 /* Read the MAC addresses */
1354 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1356 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1357 efx->phy_type, efx->mdio.prtad);
1359 rc = falcon_probe_board(efx, board_rev);
1360 if (rc)
1361 goto fail2;
1363 kfree(nvconfig);
1364 return 0;
1366 fail2:
1367 falcon_remove_spi_devices(efx);
1368 fail1:
1369 kfree(nvconfig);
1370 return rc;
1373 /* Probe all SPI devices on the NIC */
1374 static void falcon_probe_spi_devices(struct efx_nic *efx)
1376 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1377 int boot_dev;
1379 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1380 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1381 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1383 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1384 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1385 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1386 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1387 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1388 "flash" : "EEPROM");
1389 } else {
1390 /* Disable VPD and set clock dividers to safe
1391 * values for initial programming. */
1392 boot_dev = -1;
1393 netif_dbg(efx, probe, efx->net_dev,
1394 "Booted from internal ASIC settings;"
1395 " setting SPI config\n");
1396 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1397 /* 125 MHz / 7 ~= 20 MHz */
1398 FRF_AB_EE_SF_CLOCK_DIV, 7,
1399 /* 125 MHz / 63 ~= 2 MHz */
1400 FRF_AB_EE_EE_CLOCK_DIV, 63);
1401 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1404 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1405 falcon_spi_device_init(efx, &efx->spi_flash,
1406 FFE_AB_SPI_DEVICE_FLASH,
1407 default_flash_type);
1408 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1409 falcon_spi_device_init(efx, &efx->spi_eeprom,
1410 FFE_AB_SPI_DEVICE_EEPROM,
1411 large_eeprom_type);
1414 static int falcon_probe_nic(struct efx_nic *efx)
1416 struct falcon_nic_data *nic_data;
1417 struct falcon_board *board;
1418 int rc;
1420 /* Allocate storage for hardware specific data */
1421 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1422 if (!nic_data)
1423 return -ENOMEM;
1424 efx->nic_data = nic_data;
1426 rc = -ENODEV;
1428 if (efx_nic_fpga_ver(efx) != 0) {
1429 netif_err(efx, probe, efx->net_dev,
1430 "Falcon FPGA not supported\n");
1431 goto fail1;
1434 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1435 efx_oword_t nic_stat;
1436 struct pci_dev *dev;
1437 u8 pci_rev = efx->pci_dev->revision;
1439 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1440 netif_err(efx, probe, efx->net_dev,
1441 "Falcon rev A0 not supported\n");
1442 goto fail1;
1444 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1445 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1446 netif_err(efx, probe, efx->net_dev,
1447 "Falcon rev A1 1G not supported\n");
1448 goto fail1;
1450 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1451 netif_err(efx, probe, efx->net_dev,
1452 "Falcon rev A1 PCI-X not supported\n");
1453 goto fail1;
1456 dev = pci_dev_get(efx->pci_dev);
1457 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1458 dev))) {
1459 if (dev->bus == efx->pci_dev->bus &&
1460 dev->devfn == efx->pci_dev->devfn + 1) {
1461 nic_data->pci_dev2 = dev;
1462 break;
1465 if (!nic_data->pci_dev2) {
1466 netif_err(efx, probe, efx->net_dev,
1467 "failed to find secondary function\n");
1468 rc = -ENODEV;
1469 goto fail2;
1473 /* Now we can reset the NIC */
1474 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1475 if (rc) {
1476 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477 goto fail3;
1480 /* Allocate memory for INT_KER */
1481 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482 if (rc)
1483 goto fail4;
1484 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1486 netif_dbg(efx, probe, efx->net_dev,
1487 "INT_KER at %llx (virt %p phys %llx)\n",
1488 (u64)efx->irq_status.dma_addr,
1489 efx->irq_status.addr,
1490 (u64)virt_to_phys(efx->irq_status.addr));
1492 falcon_probe_spi_devices(efx);
1494 /* Read in the non-volatile configuration */
1495 rc = falcon_probe_nvconfig(efx);
1496 if (rc)
1497 goto fail5;
1499 /* Initialise I2C adapter */
1500 board = falcon_board(efx);
1501 board->i2c_adap.owner = THIS_MODULE;
1502 board->i2c_data = falcon_i2c_bit_operations;
1503 board->i2c_data.data = efx;
1504 board->i2c_adap.algo_data = &board->i2c_data;
1505 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1506 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1507 sizeof(board->i2c_adap.name));
1508 rc = i2c_bit_add_bus(&board->i2c_adap);
1509 if (rc)
1510 goto fail5;
1512 rc = falcon_board(efx)->type->init(efx);
1513 if (rc) {
1514 netif_err(efx, probe, efx->net_dev,
1515 "failed to initialise board\n");
1516 goto fail6;
1519 nic_data->stats_disable_count = 1;
1520 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1521 (unsigned long)efx);
1523 return 0;
1525 fail6:
1526 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1527 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1528 fail5:
1529 falcon_remove_spi_devices(efx);
1530 efx_nic_free_buffer(efx, &efx->irq_status);
1531 fail4:
1532 fail3:
1533 if (nic_data->pci_dev2) {
1534 pci_dev_put(nic_data->pci_dev2);
1535 nic_data->pci_dev2 = NULL;
1537 fail2:
1538 fail1:
1539 kfree(efx->nic_data);
1540 return rc;
1543 static void falcon_init_rx_cfg(struct efx_nic *efx)
1545 /* Prior to Siena the RX DMA engine will split each frame at
1546 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1547 * be so large that that never happens. */
1548 const unsigned huge_buf_size = (3 * 4096) >> 5;
1549 /* RX control FIFO thresholds (32 entries) */
1550 const unsigned ctrl_xon_thr = 20;
1551 const unsigned ctrl_xoff_thr = 25;
1552 /* RX data FIFO thresholds (256-byte units; size varies) */
1553 int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1554 int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1555 efx_oword_t reg;
1557 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1558 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1559 /* Data FIFO size is 5.5K */
1560 if (data_xon_thr < 0)
1561 data_xon_thr = 512 >> 8;
1562 if (data_xoff_thr < 0)
1563 data_xoff_thr = 2048 >> 8;
1564 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1565 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1566 huge_buf_size);
1567 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1568 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1569 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1570 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1571 } else {
1572 /* Data FIFO size is 80K; register fields moved */
1573 if (data_xon_thr < 0)
1574 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1575 if (data_xoff_thr < 0)
1576 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1577 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1578 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1579 huge_buf_size);
1580 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1581 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1582 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1583 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1584 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1586 /* Enable hash insertion. This is broken for the
1587 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1588 * IPv4 hashes. */
1589 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1590 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1591 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1593 /* Always enable XOFF signal from RX FIFO. We enable
1594 * or disable transmission of pause frames at the MAC. */
1595 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1596 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1599 /* This call performs hardware-specific global initialisation, such as
1600 * defining the descriptor cache sizes and number of RSS channels.
1601 * It does not set up any buffers, descriptor rings or event queues.
1603 static int falcon_init_nic(struct efx_nic *efx)
1605 efx_oword_t temp;
1606 int rc;
1608 /* Use on-chip SRAM */
1609 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1610 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1611 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1613 /* Set the source of the GMAC clock */
1614 if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1615 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1616 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1617 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1620 /* Select the correct MAC */
1621 falcon_clock_mac(efx);
1623 rc = falcon_reset_sram(efx);
1624 if (rc)
1625 return rc;
1627 /* Clear the parity enables on the TX data fifos as
1628 * they produce false parity errors because of timing issues
1630 if (EFX_WORKAROUND_5129(efx)) {
1631 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1632 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1633 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1636 if (EFX_WORKAROUND_7244(efx)) {
1637 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1638 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1639 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1640 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1641 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1642 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1645 /* Setup RX. Wait for descriptor is broken and must
1646 * be disabled. RXDP recovery shouldn't be needed, but is.
1648 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1649 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1650 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1651 if (EFX_WORKAROUND_5583(efx))
1652 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1653 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1655 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1656 * descriptors (which is bad).
1658 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1659 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1660 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1662 falcon_init_rx_cfg(efx);
1664 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1665 /* Set hash key for IPv4 */
1666 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1667 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1669 /* Set destination of both TX and RX Flush events */
1670 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1671 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1674 efx_nic_init_common(efx);
1676 return 0;
1679 static void falcon_remove_nic(struct efx_nic *efx)
1681 struct falcon_nic_data *nic_data = efx->nic_data;
1682 struct falcon_board *board = falcon_board(efx);
1683 int rc;
1685 board->type->fini(efx);
1687 /* Remove I2C adapter and clear it in preparation for a retry */
1688 rc = i2c_del_adapter(&board->i2c_adap);
1689 BUG_ON(rc);
1690 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1692 falcon_remove_spi_devices(efx);
1693 efx_nic_free_buffer(efx, &efx->irq_status);
1695 falcon_reset_hw(efx, RESET_TYPE_ALL);
1697 /* Release the second function after the reset */
1698 if (nic_data->pci_dev2) {
1699 pci_dev_put(nic_data->pci_dev2);
1700 nic_data->pci_dev2 = NULL;
1703 /* Tear down the private nic state */
1704 kfree(efx->nic_data);
1705 efx->nic_data = NULL;
1708 static void falcon_update_nic_stats(struct efx_nic *efx)
1710 struct falcon_nic_data *nic_data = efx->nic_data;
1711 efx_oword_t cnt;
1713 if (nic_data->stats_disable_count)
1714 return;
1716 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1717 efx->n_rx_nodesc_drop_cnt +=
1718 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1720 if (nic_data->stats_pending &&
1721 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1722 nic_data->stats_pending = false;
1723 rmb(); /* read the done flag before the stats */
1724 efx->mac_op->update_stats(efx);
1728 void falcon_start_nic_stats(struct efx_nic *efx)
1730 struct falcon_nic_data *nic_data = efx->nic_data;
1732 spin_lock_bh(&efx->stats_lock);
1733 if (--nic_data->stats_disable_count == 0)
1734 falcon_stats_request(efx);
1735 spin_unlock_bh(&efx->stats_lock);
1738 void falcon_stop_nic_stats(struct efx_nic *efx)
1740 struct falcon_nic_data *nic_data = efx->nic_data;
1741 int i;
1743 might_sleep();
1745 spin_lock_bh(&efx->stats_lock);
1746 ++nic_data->stats_disable_count;
1747 spin_unlock_bh(&efx->stats_lock);
1749 del_timer_sync(&nic_data->stats_timer);
1751 /* Wait enough time for the most recent transfer to
1752 * complete. */
1753 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1754 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1755 break;
1756 msleep(1);
1759 spin_lock_bh(&efx->stats_lock);
1760 falcon_stats_complete(efx);
1761 spin_unlock_bh(&efx->stats_lock);
1764 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1766 falcon_board(efx)->type->set_id_led(efx, mode);
1769 /**************************************************************************
1771 * Wake on LAN
1773 **************************************************************************
1776 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1778 wol->supported = 0;
1779 wol->wolopts = 0;
1780 memset(&wol->sopass, 0, sizeof(wol->sopass));
1783 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1785 if (type != 0)
1786 return -EINVAL;
1787 return 0;
1790 /**************************************************************************
1792 * Revision-dependent attributes used by efx.c and nic.c
1794 **************************************************************************
1797 struct efx_nic_type falcon_a1_nic_type = {
1798 .probe = falcon_probe_nic,
1799 .remove = falcon_remove_nic,
1800 .init = falcon_init_nic,
1801 .fini = efx_port_dummy_op_void,
1802 .monitor = falcon_monitor,
1803 .reset = falcon_reset_hw,
1804 .probe_port = falcon_probe_port,
1805 .remove_port = falcon_remove_port,
1806 .prepare_flush = falcon_prepare_flush,
1807 .update_stats = falcon_update_nic_stats,
1808 .start_stats = falcon_start_nic_stats,
1809 .stop_stats = falcon_stop_nic_stats,
1810 .set_id_led = falcon_set_id_led,
1811 .push_irq_moderation = falcon_push_irq_moderation,
1812 .push_multicast_hash = falcon_push_multicast_hash,
1813 .reconfigure_port = falcon_reconfigure_port,
1814 .get_wol = falcon_get_wol,
1815 .set_wol = falcon_set_wol,
1816 .resume_wol = efx_port_dummy_op_void,
1817 .test_nvram = falcon_test_nvram,
1818 .default_mac_ops = &falcon_xmac_operations,
1820 .revision = EFX_REV_FALCON_A1,
1821 .mem_map_size = 0x20000,
1822 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1823 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1824 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1825 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1826 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1827 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1828 .rx_buffer_padding = 0x24,
1829 .max_interrupt_mode = EFX_INT_MODE_MSI,
1830 .phys_addr_channels = 4,
1831 .tx_dc_base = 0x130000,
1832 .rx_dc_base = 0x100000,
1833 .offload_features = NETIF_F_IP_CSUM,
1834 .reset_world_flags = ETH_RESET_IRQ,
1837 struct efx_nic_type falcon_b0_nic_type = {
1838 .probe = falcon_probe_nic,
1839 .remove = falcon_remove_nic,
1840 .init = falcon_init_nic,
1841 .fini = efx_port_dummy_op_void,
1842 .monitor = falcon_monitor,
1843 .reset = falcon_reset_hw,
1844 .probe_port = falcon_probe_port,
1845 .remove_port = falcon_remove_port,
1846 .prepare_flush = falcon_prepare_flush,
1847 .update_stats = falcon_update_nic_stats,
1848 .start_stats = falcon_start_nic_stats,
1849 .stop_stats = falcon_stop_nic_stats,
1850 .set_id_led = falcon_set_id_led,
1851 .push_irq_moderation = falcon_push_irq_moderation,
1852 .push_multicast_hash = falcon_push_multicast_hash,
1853 .reconfigure_port = falcon_reconfigure_port,
1854 .get_wol = falcon_get_wol,
1855 .set_wol = falcon_set_wol,
1856 .resume_wol = efx_port_dummy_op_void,
1857 .test_registers = falcon_b0_test_registers,
1858 .test_nvram = falcon_test_nvram,
1859 .default_mac_ops = &falcon_xmac_operations,
1861 .revision = EFX_REV_FALCON_B0,
1862 /* Map everything up to and including the RSS indirection
1863 * table. Don't map MSI-X table, MSI-X PBA since Linux
1864 * requires that they not be mapped. */
1865 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1866 FR_BZ_RX_INDIRECTION_TBL_STEP *
1867 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1868 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1869 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1870 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1871 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1872 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1873 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1874 .rx_buffer_hash_size = 0x10,
1875 .rx_buffer_padding = 0,
1876 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1877 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1878 * interrupt handler only supports 32
1879 * channels */
1880 .tx_dc_base = 0x130000,
1881 .rx_dc_base = 0x100000,
1882 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH,
1883 .reset_world_flags = ETH_RESET_IRQ,