GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / e1000e / ethtool.c
blobcd3775c0b7f05635eeba10f455095e5aa5abb287
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
37 #include "e1000.h"
39 enum {NETDEV_STATS, E1000_STATS};
41 struct e1000_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int type;
44 int sizeof_stat;
45 int stat_offset;
48 #define E1000_STAT(m) E1000_STATS, \
49 sizeof(((struct e1000_adapter *)0)->m), \
50 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
52 sizeof(((struct net_device *)0)->m), \
53 offsetof(struct net_device, m)
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 { "rx_packets", E1000_STAT(stats.gprc) },
57 { "tx_packets", E1000_STAT(stats.gptc) },
58 { "rx_bytes", E1000_STAT(stats.gorc) },
59 { "tx_bytes", E1000_STAT(stats.gotc) },
60 { "rx_broadcast", E1000_STAT(stats.bprc) },
61 { "tx_broadcast", E1000_STAT(stats.bptc) },
62 { "rx_multicast", E1000_STAT(stats.mprc) },
63 { "tx_multicast", E1000_STAT(stats.mptc) },
64 { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65 { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67 { "multicast", E1000_STAT(stats.mprc) },
68 { "collisions", E1000_STAT(stats.colc) },
69 { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74 { "rx_missed_errors", E1000_STAT(stats.mpc) },
75 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79 { "tx_window_errors", E1000_STAT(stats.latecol) },
80 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81 { "tx_deferred_ok", E1000_STAT(stats.dc) },
82 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85 { "tx_restart_queue", E1000_STAT(restart_queue) },
86 { "rx_long_length_errors", E1000_STAT(stats.roc) },
87 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98 { "rx_header_split", E1000_STAT(rx_hdr_split) },
99 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100 { "tx_smbus", E1000_STAT(stats.mgptc) },
101 { "rx_smbus", E1000_STAT(stats.mgprc) },
102 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
107 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110 "Register test (offline)", "Eeprom test (offline)",
111 "Interrupt test (offline)", "Loopback test (offline)",
112 "Link test (on/offline)"
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
116 static int e1000_get_settings(struct net_device *netdev,
117 struct ethtool_cmd *ecmd)
119 struct e1000_adapter *adapter = netdev_priv(netdev);
120 struct e1000_hw *hw = &adapter->hw;
122 if (hw->phy.media_type == e1000_media_type_copper) {
124 ecmd->supported = (SUPPORTED_10baseT_Half |
125 SUPPORTED_10baseT_Full |
126 SUPPORTED_100baseT_Half |
127 SUPPORTED_100baseT_Full |
128 SUPPORTED_1000baseT_Full |
129 SUPPORTED_Autoneg |
130 SUPPORTED_TP);
131 if (hw->phy.type == e1000_phy_ife)
132 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133 ecmd->advertising = ADVERTISED_TP;
135 if (hw->mac.autoneg == 1) {
136 ecmd->advertising |= ADVERTISED_Autoneg;
137 /* the e1000 autoneg seems to match ethtool nicely */
138 ecmd->advertising |= hw->phy.autoneg_advertised;
141 ecmd->port = PORT_TP;
142 ecmd->phy_address = hw->phy.addr;
143 ecmd->transceiver = XCVR_INTERNAL;
145 } else {
146 ecmd->supported = (SUPPORTED_1000baseT_Full |
147 SUPPORTED_FIBRE |
148 SUPPORTED_Autoneg);
150 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151 ADVERTISED_FIBRE |
152 ADVERTISED_Autoneg);
154 ecmd->port = PORT_FIBRE;
155 ecmd->transceiver = XCVR_EXTERNAL;
158 ecmd->speed = -1;
159 ecmd->duplex = -1;
161 if (netif_running(netdev)) {
162 if (netif_carrier_ok(netdev)) {
163 ecmd->speed = adapter->link_speed;
164 ecmd->duplex = adapter->link_duplex - 1;
166 } else {
167 u32 status = er32(STATUS);
168 if (status & E1000_STATUS_LU) {
169 if (status & E1000_STATUS_SPEED_1000)
170 ecmd->speed = 1000;
171 else if (status & E1000_STATUS_SPEED_100)
172 ecmd->speed = 100;
173 else
174 ecmd->speed = 10;
176 if (status & E1000_STATUS_FD)
177 ecmd->duplex = DUPLEX_FULL;
178 else
179 ecmd->duplex = DUPLEX_HALF;
183 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
184 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
186 /* MDI-X => 2; MDI =>1; Invalid =>0 */
187 if ((hw->phy.media_type == e1000_media_type_copper) &&
188 netif_carrier_ok(netdev))
189 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
190 ETH_TP_MDI;
191 else
192 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
194 return 0;
197 static u32 e1000_get_link(struct net_device *netdev)
199 struct e1000_adapter *adapter = netdev_priv(netdev);
200 struct e1000_hw *hw = &adapter->hw;
203 * Avoid touching hardware registers when possible, otherwise
204 * link negotiation can get messed up when user-level scripts
205 * are rapidly polling the driver to see if link is up.
207 return netif_running(netdev) ? netif_carrier_ok(netdev) :
208 !!(er32(STATUS) & E1000_STATUS_LU);
211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
213 struct e1000_mac_info *mac = &adapter->hw.mac;
215 mac->autoneg = 0;
217 /* Fiber NICs only allow 1000 gbps Full duplex */
218 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
219 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
220 e_err("Unsupported Speed/Duplex configuration\n");
221 return -EINVAL;
224 switch (spddplx) {
225 case SPEED_10 + DUPLEX_HALF:
226 mac->forced_speed_duplex = ADVERTISE_10_HALF;
227 break;
228 case SPEED_10 + DUPLEX_FULL:
229 mac->forced_speed_duplex = ADVERTISE_10_FULL;
230 break;
231 case SPEED_100 + DUPLEX_HALF:
232 mac->forced_speed_duplex = ADVERTISE_100_HALF;
233 break;
234 case SPEED_100 + DUPLEX_FULL:
235 mac->forced_speed_duplex = ADVERTISE_100_FULL;
236 break;
237 case SPEED_1000 + DUPLEX_FULL:
238 mac->autoneg = 1;
239 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
240 break;
241 case SPEED_1000 + DUPLEX_HALF: /* not supported */
242 default:
243 e_err("Unsupported Speed/Duplex configuration\n");
244 return -EINVAL;
246 return 0;
249 static int e1000_set_settings(struct net_device *netdev,
250 struct ethtool_cmd *ecmd)
252 struct e1000_adapter *adapter = netdev_priv(netdev);
253 struct e1000_hw *hw = &adapter->hw;
256 * When SoL/IDER sessions are active, autoneg/speed/duplex
257 * cannot be changed
259 if (e1000_check_reset_block(hw)) {
260 e_err("Cannot change link characteristics when SoL/IDER is "
261 "active.\n");
262 return -EINVAL;
265 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
266 msleep(1);
268 if (ecmd->autoneg == AUTONEG_ENABLE) {
269 hw->mac.autoneg = 1;
270 if (hw->phy.media_type == e1000_media_type_fiber)
271 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
272 ADVERTISED_FIBRE |
273 ADVERTISED_Autoneg;
274 else
275 hw->phy.autoneg_advertised = ecmd->advertising |
276 ADVERTISED_TP |
277 ADVERTISED_Autoneg;
278 ecmd->advertising = hw->phy.autoneg_advertised;
279 if (adapter->fc_autoneg)
280 hw->fc.requested_mode = e1000_fc_default;
281 } else {
282 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
283 clear_bit(__E1000_RESETTING, &adapter->state);
284 return -EINVAL;
288 /* reset the link */
290 if (netif_running(adapter->netdev)) {
291 e1000e_down(adapter);
292 e1000e_up(adapter);
293 } else {
294 e1000e_reset(adapter);
297 clear_bit(__E1000_RESETTING, &adapter->state);
298 return 0;
301 static void e1000_get_pauseparam(struct net_device *netdev,
302 struct ethtool_pauseparam *pause)
304 struct e1000_adapter *adapter = netdev_priv(netdev);
305 struct e1000_hw *hw = &adapter->hw;
307 pause->autoneg =
308 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
310 if (hw->fc.current_mode == e1000_fc_rx_pause) {
311 pause->rx_pause = 1;
312 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
313 pause->tx_pause = 1;
314 } else if (hw->fc.current_mode == e1000_fc_full) {
315 pause->rx_pause = 1;
316 pause->tx_pause = 1;
320 static int e1000_set_pauseparam(struct net_device *netdev,
321 struct ethtool_pauseparam *pause)
323 struct e1000_adapter *adapter = netdev_priv(netdev);
324 struct e1000_hw *hw = &adapter->hw;
325 int retval = 0;
327 adapter->fc_autoneg = pause->autoneg;
329 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
330 msleep(1);
332 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
333 hw->fc.requested_mode = e1000_fc_default;
334 if (netif_running(adapter->netdev)) {
335 e1000e_down(adapter);
336 e1000e_up(adapter);
337 } else {
338 e1000e_reset(adapter);
340 } else {
341 if (pause->rx_pause && pause->tx_pause)
342 hw->fc.requested_mode = e1000_fc_full;
343 else if (pause->rx_pause && !pause->tx_pause)
344 hw->fc.requested_mode = e1000_fc_rx_pause;
345 else if (!pause->rx_pause && pause->tx_pause)
346 hw->fc.requested_mode = e1000_fc_tx_pause;
347 else if (!pause->rx_pause && !pause->tx_pause)
348 hw->fc.requested_mode = e1000_fc_none;
350 hw->fc.current_mode = hw->fc.requested_mode;
352 if (hw->phy.media_type == e1000_media_type_fiber) {
353 retval = hw->mac.ops.setup_link(hw);
354 /* implicit goto out */
355 } else {
356 retval = e1000e_force_mac_fc(hw);
357 if (retval)
358 goto out;
359 e1000e_set_fc_watermarks(hw);
363 out:
364 clear_bit(__E1000_RESETTING, &adapter->state);
365 return retval;
368 static u32 e1000_get_rx_csum(struct net_device *netdev)
370 struct e1000_adapter *adapter = netdev_priv(netdev);
371 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
374 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
376 struct e1000_adapter *adapter = netdev_priv(netdev);
378 if (data)
379 adapter->flags |= FLAG_RX_CSUM_ENABLED;
380 else
381 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
383 if (netif_running(netdev))
384 e1000e_reinit_locked(adapter);
385 else
386 e1000e_reset(adapter);
387 return 0;
390 static u32 e1000_get_tx_csum(struct net_device *netdev)
392 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
395 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
397 if (data)
398 netdev->features |= NETIF_F_HW_CSUM;
399 else
400 netdev->features &= ~NETIF_F_HW_CSUM;
402 return 0;
405 static int e1000_set_tso(struct net_device *netdev, u32 data)
407 struct e1000_adapter *adapter = netdev_priv(netdev);
409 if (data) {
410 netdev->features |= NETIF_F_TSO;
411 netdev->features |= NETIF_F_TSO6;
412 } else {
413 netdev->features &= ~NETIF_F_TSO;
414 netdev->features &= ~NETIF_F_TSO6;
417 adapter->flags |= FLAG_TSO_FORCE;
418 return 0;
421 static u32 e1000_get_msglevel(struct net_device *netdev)
423 struct e1000_adapter *adapter = netdev_priv(netdev);
424 return adapter->msg_enable;
427 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
429 struct e1000_adapter *adapter = netdev_priv(netdev);
430 adapter->msg_enable = data;
433 static int e1000_get_regs_len(struct net_device *netdev)
435 #define E1000_REGS_LEN 32 /* overestimate */
436 return E1000_REGS_LEN * sizeof(u32);
439 static void e1000_get_regs(struct net_device *netdev,
440 struct ethtool_regs *regs, void *p)
442 struct e1000_adapter *adapter = netdev_priv(netdev);
443 struct e1000_hw *hw = &adapter->hw;
444 u32 *regs_buff = p;
445 u16 phy_data;
446 u8 revision_id;
448 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
450 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
452 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
454 regs_buff[0] = er32(CTRL);
455 regs_buff[1] = er32(STATUS);
457 regs_buff[2] = er32(RCTL);
458 regs_buff[3] = er32(RDLEN);
459 regs_buff[4] = er32(RDH);
460 regs_buff[5] = er32(RDT);
461 regs_buff[6] = er32(RDTR);
463 regs_buff[7] = er32(TCTL);
464 regs_buff[8] = er32(TDLEN);
465 regs_buff[9] = er32(TDH);
466 regs_buff[10] = er32(TDT);
467 regs_buff[11] = er32(TIDV);
469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not
473 * exist */
474 if (hw->phy.type == e1000_phy_m88) {
475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 regs_buff[13] = (u32)phy_data; /* cable length */
477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 regs_buff[18] = regs_buff[13]; /* cable polarity */
483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[20] = regs_buff[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff[22] = adapter->phy_stats.receive_errors;
487 regs_buff[23] = regs_buff[13]; /* mdix mode */
489 regs_buff[21] = 0; /* was idle_errors */
490 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
495 static int e1000_get_eeprom_len(struct net_device *netdev)
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 return adapter->hw.nvm.word_size * 2;
501 static int e1000_get_eeprom(struct net_device *netdev,
502 struct ethtool_eeprom *eeprom, u8 *bytes)
504 struct e1000_adapter *adapter = netdev_priv(netdev);
505 struct e1000_hw *hw = &adapter->hw;
506 u16 *eeprom_buff;
507 int first_word;
508 int last_word;
509 int ret_val = 0;
510 u16 i;
512 if (eeprom->len == 0)
513 return -EINVAL;
515 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
517 first_word = eeprom->offset >> 1;
518 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
520 eeprom_buff = kmalloc(sizeof(u16) *
521 (last_word - first_word + 1), GFP_KERNEL);
522 if (!eeprom_buff)
523 return -ENOMEM;
525 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526 ret_val = e1000_read_nvm(hw, first_word,
527 last_word - first_word + 1,
528 eeprom_buff);
529 } else {
530 for (i = 0; i < last_word - first_word + 1; i++) {
531 ret_val = e1000_read_nvm(hw, first_word + i, 1,
532 &eeprom_buff[i]);
533 if (ret_val)
534 break;
538 if (ret_val) {
539 /* a read error occurred, throw away the result */
540 memset(eeprom_buff, 0xff, sizeof(u16) *
541 (last_word - first_word + 1));
542 } else {
543 /* Device's eeprom is always little-endian, word addressable */
544 for (i = 0; i < last_word - first_word + 1; i++)
545 le16_to_cpus(&eeprom_buff[i]);
548 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
549 kfree(eeprom_buff);
551 return ret_val;
554 static int e1000_set_eeprom(struct net_device *netdev,
555 struct ethtool_eeprom *eeprom, u8 *bytes)
557 struct e1000_adapter *adapter = netdev_priv(netdev);
558 struct e1000_hw *hw = &adapter->hw;
559 u16 *eeprom_buff;
560 void *ptr;
561 int max_len;
562 int first_word;
563 int last_word;
564 int ret_val = 0;
565 u16 i;
567 if (eeprom->len == 0)
568 return -EOPNOTSUPP;
570 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
571 return -EFAULT;
573 if (adapter->flags & FLAG_READ_ONLY_NVM)
574 return -EINVAL;
576 max_len = hw->nvm.word_size * 2;
578 first_word = eeprom->offset >> 1;
579 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
580 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
581 if (!eeprom_buff)
582 return -ENOMEM;
584 ptr = (void *)eeprom_buff;
586 if (eeprom->offset & 1) {
587 /* need read/modify/write of first changed EEPROM word */
588 /* only the second byte of the word is being modified */
589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590 ptr++;
592 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
593 /* need read/modify/write of last changed EEPROM word */
594 /* only the first byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, last_word, 1,
596 &eeprom_buff[last_word - first_word]);
598 if (ret_val)
599 goto out;
601 /* Device's eeprom is always little-endian, word addressable */
602 for (i = 0; i < last_word - first_word + 1; i++)
603 le16_to_cpus(&eeprom_buff[i]);
605 memcpy(ptr, bytes, eeprom->len);
607 for (i = 0; i < last_word - first_word + 1; i++)
608 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
610 ret_val = e1000_write_nvm(hw, first_word,
611 last_word - first_word + 1, eeprom_buff);
613 if (ret_val)
614 goto out;
617 * Update the checksum over the first part of the EEPROM if needed
618 * and flush shadow RAM for applicable controllers
620 if ((first_word <= NVM_CHECKSUM_REG) ||
621 (hw->mac.type == e1000_82583) ||
622 (hw->mac.type == e1000_82574) ||
623 (hw->mac.type == e1000_82573))
624 ret_val = e1000e_update_nvm_checksum(hw);
626 out:
627 kfree(eeprom_buff);
628 return ret_val;
631 static void e1000_get_drvinfo(struct net_device *netdev,
632 struct ethtool_drvinfo *drvinfo)
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635 char firmware_version[32];
637 strncpy(drvinfo->driver, e1000e_driver_name, 32);
638 strncpy(drvinfo->version, e1000e_driver_version, 32);
641 * EEPROM image version # is reported as firmware version # for
642 * PCI-E controllers
644 sprintf(firmware_version, "%d.%d-%d",
645 (adapter->eeprom_vers & 0xF000) >> 12,
646 (adapter->eeprom_vers & 0x0FF0) >> 4,
647 (adapter->eeprom_vers & 0x000F));
649 strncpy(drvinfo->fw_version, firmware_version, 32);
650 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
651 drvinfo->regdump_len = e1000_get_regs_len(netdev);
652 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
655 static void e1000_get_ringparam(struct net_device *netdev,
656 struct ethtool_ringparam *ring)
658 struct e1000_adapter *adapter = netdev_priv(netdev);
659 struct e1000_ring *tx_ring = adapter->tx_ring;
660 struct e1000_ring *rx_ring = adapter->rx_ring;
662 ring->rx_max_pending = E1000_MAX_RXD;
663 ring->tx_max_pending = E1000_MAX_TXD;
664 ring->rx_mini_max_pending = 0;
665 ring->rx_jumbo_max_pending = 0;
666 ring->rx_pending = rx_ring->count;
667 ring->tx_pending = tx_ring->count;
668 ring->rx_mini_pending = 0;
669 ring->rx_jumbo_pending = 0;
672 static int e1000_set_ringparam(struct net_device *netdev,
673 struct ethtool_ringparam *ring)
675 struct e1000_adapter *adapter = netdev_priv(netdev);
676 struct e1000_ring *tx_ring, *tx_old;
677 struct e1000_ring *rx_ring, *rx_old;
678 int err;
680 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681 return -EINVAL;
683 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
684 msleep(1);
686 if (netif_running(adapter->netdev))
687 e1000e_down(adapter);
689 tx_old = adapter->tx_ring;
690 rx_old = adapter->rx_ring;
692 err = -ENOMEM;
693 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
694 if (!tx_ring)
695 goto err_alloc_tx;
697 * use a memcpy to save any previously configured
698 * items like napi structs from having to be
699 * reinitialized
701 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
703 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
704 if (!rx_ring)
705 goto err_alloc_rx;
706 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
708 adapter->tx_ring = tx_ring;
709 adapter->rx_ring = rx_ring;
711 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
712 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
713 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
715 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
716 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
717 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
719 if (netif_running(adapter->netdev)) {
720 /* Try to get new resources before deleting old */
721 err = e1000e_setup_rx_resources(adapter);
722 if (err)
723 goto err_setup_rx;
724 err = e1000e_setup_tx_resources(adapter);
725 if (err)
726 goto err_setup_tx;
729 * restore the old in order to free it,
730 * then add in the new
732 adapter->rx_ring = rx_old;
733 adapter->tx_ring = tx_old;
734 e1000e_free_rx_resources(adapter);
735 e1000e_free_tx_resources(adapter);
736 kfree(tx_old);
737 kfree(rx_old);
738 adapter->rx_ring = rx_ring;
739 adapter->tx_ring = tx_ring;
740 err = e1000e_up(adapter);
741 if (err)
742 goto err_setup;
745 clear_bit(__E1000_RESETTING, &adapter->state);
746 return 0;
747 err_setup_tx:
748 e1000e_free_rx_resources(adapter);
749 err_setup_rx:
750 adapter->rx_ring = rx_old;
751 adapter->tx_ring = tx_old;
752 kfree(rx_ring);
753 err_alloc_rx:
754 kfree(tx_ring);
755 err_alloc_tx:
756 e1000e_up(adapter);
757 err_setup:
758 clear_bit(__E1000_RESETTING, &adapter->state);
759 return err;
762 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
763 int reg, int offset, u32 mask, u32 write)
765 u32 pat, val;
766 static const u32 test[] =
767 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
768 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
769 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
770 (test[pat] & write));
771 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
772 if (val != (test[pat] & write & mask)) {
773 e_err("pattern test reg %04X failed: got 0x%08X "
774 "expected 0x%08X\n", reg + offset, val,
775 (test[pat] & write & mask));
776 *data = reg;
777 return 1;
780 return 0;
783 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
784 int reg, u32 mask, u32 write)
786 u32 val;
787 __ew32(&adapter->hw, reg, write & mask);
788 val = __er32(&adapter->hw, reg);
789 if ((write & mask) != (val & mask)) {
790 e_err("set/check reg %04X test failed: got 0x%08X "
791 "expected 0x%08X\n", reg, (val & mask), (write & mask));
792 *data = reg;
793 return 1;
795 return 0;
797 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
798 do { \
799 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
800 return 1; \
801 } while (0)
802 #define REG_PATTERN_TEST(reg, mask, write) \
803 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
805 #define REG_SET_AND_CHECK(reg, mask, write) \
806 do { \
807 if (reg_set_and_check(adapter, data, reg, mask, write)) \
808 return 1; \
809 } while (0)
811 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
813 struct e1000_hw *hw = &adapter->hw;
814 struct e1000_mac_info *mac = &adapter->hw.mac;
815 u32 value;
816 u32 before;
817 u32 after;
818 u32 i;
819 u32 toggle;
820 u32 mask;
823 * The status register is Read Only, so a write should fail.
824 * Some bits that get toggled are ignored.
826 switch (mac->type) {
827 /* there are several bits on newer hardware that are r/w */
828 case e1000_82571:
829 case e1000_82572:
830 case e1000_80003es2lan:
831 toggle = 0x7FFFF3FF;
832 break;
833 default:
834 toggle = 0x7FFFF033;
835 break;
838 before = er32(STATUS);
839 value = (er32(STATUS) & toggle);
840 ew32(STATUS, toggle);
841 after = er32(STATUS) & toggle;
842 if (value != after) {
843 e_err("failed STATUS register test got: 0x%08X expected: "
844 "0x%08X\n", after, value);
845 *data = 1;
846 return 1;
848 /* restore previous status */
849 ew32(STATUS, before);
851 if (!(adapter->flags & FLAG_IS_ICH)) {
852 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
853 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
854 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
855 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
858 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
859 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
860 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
861 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
862 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
863 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
864 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
865 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
866 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
869 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
871 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
872 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
873 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
875 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
876 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
877 if (!(adapter->flags & FLAG_IS_ICH))
878 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
879 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
880 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
881 mask = 0x8003FFFF;
882 switch (mac->type) {
883 case e1000_ich10lan:
884 case e1000_pchlan:
885 case e1000_pch2lan:
886 mask |= (1 << 18);
887 break;
888 default:
889 break;
891 for (i = 0; i < mac->rar_entry_count; i++)
892 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
893 mask, 0xFFFFFFFF);
895 for (i = 0; i < mac->mta_reg_count; i++)
896 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
898 *data = 0;
899 return 0;
902 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
904 u16 temp;
905 u16 checksum = 0;
906 u16 i;
908 *data = 0;
909 /* Read and add up the contents of the EEPROM */
910 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
911 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
912 *data = 1;
913 return *data;
915 checksum += temp;
918 /* If Checksum is not Correct return error else test passed */
919 if ((checksum != (u16) NVM_SUM) && !(*data))
920 *data = 2;
922 return *data;
925 static irqreturn_t e1000_test_intr(int irq, void *data)
927 struct net_device *netdev = (struct net_device *) data;
928 struct e1000_adapter *adapter = netdev_priv(netdev);
929 struct e1000_hw *hw = &adapter->hw;
931 adapter->test_icr |= er32(ICR);
933 return IRQ_HANDLED;
936 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
938 struct net_device *netdev = adapter->netdev;
939 struct e1000_hw *hw = &adapter->hw;
940 u32 mask;
941 u32 shared_int = 1;
942 u32 irq = adapter->pdev->irq;
943 int i;
944 int ret_val = 0;
945 int int_mode = E1000E_INT_MODE_LEGACY;
947 *data = 0;
949 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
950 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
951 int_mode = adapter->int_mode;
952 e1000e_reset_interrupt_capability(adapter);
953 adapter->int_mode = E1000E_INT_MODE_LEGACY;
954 e1000e_set_interrupt_capability(adapter);
956 /* Hook up test interrupt handler just for this test */
957 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
958 netdev)) {
959 shared_int = 0;
960 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
961 netdev->name, netdev)) {
962 *data = 1;
963 ret_val = -1;
964 goto out;
966 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
968 /* Disable all the interrupts */
969 ew32(IMC, 0xFFFFFFFF);
970 msleep(10);
972 /* Test each interrupt */
973 for (i = 0; i < 10; i++) {
974 /* Interrupt to test */
975 mask = 1 << i;
977 if (adapter->flags & FLAG_IS_ICH) {
978 switch (mask) {
979 case E1000_ICR_RXSEQ:
980 continue;
981 case 0x00000100:
982 if (adapter->hw.mac.type == e1000_ich8lan ||
983 adapter->hw.mac.type == e1000_ich9lan)
984 continue;
985 break;
986 default:
987 break;
991 if (!shared_int) {
993 * Disable the interrupt to be reported in
994 * the cause register and then force the same
995 * interrupt and see if one gets posted. If
996 * an interrupt was posted to the bus, the
997 * test failed.
999 adapter->test_icr = 0;
1000 ew32(IMC, mask);
1001 ew32(ICS, mask);
1002 msleep(10);
1004 if (adapter->test_icr & mask) {
1005 *data = 3;
1006 break;
1011 * Enable the interrupt to be reported in
1012 * the cause register and then force the same
1013 * interrupt and see if one gets posted. If
1014 * an interrupt was not posted to the bus, the
1015 * test failed.
1017 adapter->test_icr = 0;
1018 ew32(IMS, mask);
1019 ew32(ICS, mask);
1020 msleep(10);
1022 if (!(adapter->test_icr & mask)) {
1023 *data = 4;
1024 break;
1027 if (!shared_int) {
1029 * Disable the other interrupts to be reported in
1030 * the cause register and then force the other
1031 * interrupts and see if any get posted. If
1032 * an interrupt was posted to the bus, the
1033 * test failed.
1035 adapter->test_icr = 0;
1036 ew32(IMC, ~mask & 0x00007FFF);
1037 ew32(ICS, ~mask & 0x00007FFF);
1038 msleep(10);
1040 if (adapter->test_icr) {
1041 *data = 5;
1042 break;
1047 /* Disable all the interrupts */
1048 ew32(IMC, 0xFFFFFFFF);
1049 msleep(10);
1051 /* Unhook test interrupt handler */
1052 free_irq(irq, netdev);
1054 out:
1055 if (int_mode == E1000E_INT_MODE_MSIX) {
1056 e1000e_reset_interrupt_capability(adapter);
1057 adapter->int_mode = int_mode;
1058 e1000e_set_interrupt_capability(adapter);
1061 return ret_val;
1064 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1066 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1067 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1068 struct pci_dev *pdev = adapter->pdev;
1069 int i;
1071 if (tx_ring->desc && tx_ring->buffer_info) {
1072 for (i = 0; i < tx_ring->count; i++) {
1073 if (tx_ring->buffer_info[i].dma)
1074 dma_unmap_single(&pdev->dev,
1075 tx_ring->buffer_info[i].dma,
1076 tx_ring->buffer_info[i].length,
1077 DMA_TO_DEVICE);
1078 if (tx_ring->buffer_info[i].skb)
1079 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1083 if (rx_ring->desc && rx_ring->buffer_info) {
1084 for (i = 0; i < rx_ring->count; i++) {
1085 if (rx_ring->buffer_info[i].dma)
1086 dma_unmap_single(&pdev->dev,
1087 rx_ring->buffer_info[i].dma,
1088 2048, DMA_FROM_DEVICE);
1089 if (rx_ring->buffer_info[i].skb)
1090 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1094 if (tx_ring->desc) {
1095 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1096 tx_ring->dma);
1097 tx_ring->desc = NULL;
1099 if (rx_ring->desc) {
1100 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1101 rx_ring->dma);
1102 rx_ring->desc = NULL;
1105 kfree(tx_ring->buffer_info);
1106 tx_ring->buffer_info = NULL;
1107 kfree(rx_ring->buffer_info);
1108 rx_ring->buffer_info = NULL;
1111 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1113 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1114 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1115 struct pci_dev *pdev = adapter->pdev;
1116 struct e1000_hw *hw = &adapter->hw;
1117 u32 rctl;
1118 int i;
1119 int ret_val;
1121 /* Setup Tx descriptor ring and Tx buffers */
1123 if (!tx_ring->count)
1124 tx_ring->count = E1000_DEFAULT_TXD;
1126 tx_ring->buffer_info = kcalloc(tx_ring->count,
1127 sizeof(struct e1000_buffer),
1128 GFP_KERNEL);
1129 if (!(tx_ring->buffer_info)) {
1130 ret_val = 1;
1131 goto err_nomem;
1134 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1135 tx_ring->size = ALIGN(tx_ring->size, 4096);
1136 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1137 &tx_ring->dma, GFP_KERNEL);
1138 if (!tx_ring->desc) {
1139 ret_val = 2;
1140 goto err_nomem;
1142 tx_ring->next_to_use = 0;
1143 tx_ring->next_to_clean = 0;
1145 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1146 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1147 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1148 ew32(TDH, 0);
1149 ew32(TDT, 0);
1150 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1151 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1152 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1154 for (i = 0; i < tx_ring->count; i++) {
1155 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1156 struct sk_buff *skb;
1157 unsigned int skb_size = 1024;
1159 skb = alloc_skb(skb_size, GFP_KERNEL);
1160 if (!skb) {
1161 ret_val = 3;
1162 goto err_nomem;
1164 skb_put(skb, skb_size);
1165 tx_ring->buffer_info[i].skb = skb;
1166 tx_ring->buffer_info[i].length = skb->len;
1167 tx_ring->buffer_info[i].dma =
1168 dma_map_single(&pdev->dev, skb->data, skb->len,
1169 DMA_TO_DEVICE);
1170 if (dma_mapping_error(&pdev->dev,
1171 tx_ring->buffer_info[i].dma)) {
1172 ret_val = 4;
1173 goto err_nomem;
1175 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1176 tx_desc->lower.data = cpu_to_le32(skb->len);
1177 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1178 E1000_TXD_CMD_IFCS |
1179 E1000_TXD_CMD_RS);
1180 tx_desc->upper.data = 0;
1183 /* Setup Rx descriptor ring and Rx buffers */
1185 if (!rx_ring->count)
1186 rx_ring->count = E1000_DEFAULT_RXD;
1188 rx_ring->buffer_info = kcalloc(rx_ring->count,
1189 sizeof(struct e1000_buffer),
1190 GFP_KERNEL);
1191 if (!(rx_ring->buffer_info)) {
1192 ret_val = 5;
1193 goto err_nomem;
1196 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1197 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1198 &rx_ring->dma, GFP_KERNEL);
1199 if (!rx_ring->desc) {
1200 ret_val = 6;
1201 goto err_nomem;
1203 rx_ring->next_to_use = 0;
1204 rx_ring->next_to_clean = 0;
1206 rctl = er32(RCTL);
1207 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1208 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1209 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1210 ew32(RDLEN, rx_ring->size);
1211 ew32(RDH, 0);
1212 ew32(RDT, 0);
1213 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1214 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1215 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1216 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1217 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1218 ew32(RCTL, rctl);
1220 for (i = 0; i < rx_ring->count; i++) {
1221 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1222 struct sk_buff *skb;
1224 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1225 if (!skb) {
1226 ret_val = 7;
1227 goto err_nomem;
1229 skb_reserve(skb, NET_IP_ALIGN);
1230 rx_ring->buffer_info[i].skb = skb;
1231 rx_ring->buffer_info[i].dma =
1232 dma_map_single(&pdev->dev, skb->data, 2048,
1233 DMA_FROM_DEVICE);
1234 if (dma_mapping_error(&pdev->dev,
1235 rx_ring->buffer_info[i].dma)) {
1236 ret_val = 8;
1237 goto err_nomem;
1239 rx_desc->buffer_addr =
1240 cpu_to_le64(rx_ring->buffer_info[i].dma);
1241 memset(skb->data, 0x00, skb->len);
1244 return 0;
1246 err_nomem:
1247 e1000_free_desc_rings(adapter);
1248 return ret_val;
1251 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1253 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1254 e1e_wphy(&adapter->hw, 29, 0x001F);
1255 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1256 e1e_wphy(&adapter->hw, 29, 0x001A);
1257 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1260 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1262 struct e1000_hw *hw = &adapter->hw;
1263 u32 ctrl_reg = 0;
1264 u32 stat_reg = 0;
1265 u16 phy_reg = 0;
1267 hw->mac.autoneg = 0;
1269 if (hw->phy.type == e1000_phy_ife) {
1270 /* force 100, set loopback */
1271 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1273 /* Now set up the MAC to the same speed/duplex as the PHY. */
1274 ctrl_reg = er32(CTRL);
1275 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1279 E1000_CTRL_FD); /* Force Duplex to FULL */
1281 ew32(CTRL, ctrl_reg);
1282 udelay(500);
1284 return 0;
1287 /* Specific PHY configuration for loopback */
1288 switch (hw->phy.type) {
1289 case e1000_phy_m88:
1290 /* Auto-MDI/MDIX Off */
1291 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1292 /* reset to update Auto-MDI/MDIX */
1293 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1294 /* autoneg off */
1295 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1296 break;
1297 case e1000_phy_gg82563:
1298 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1299 break;
1300 case e1000_phy_bm:
1301 /* Set Default MAC Interface speed to 1GB */
1302 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1303 phy_reg &= ~0x0007;
1304 phy_reg |= 0x006;
1305 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1306 /* Assert SW reset for above settings to take effect */
1307 e1000e_commit_phy(hw);
1308 mdelay(1);
1309 /* Force Full Duplex */
1310 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1311 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1312 /* Set Link Up (in force link) */
1313 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1314 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1315 /* Force Link */
1316 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1317 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1318 /* Set Early Link Enable */
1319 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1320 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1321 break;
1322 case e1000_phy_82577:
1323 case e1000_phy_82578:
1324 e1000_configure_k1_ich8lan(hw, false);
1325 break;
1326 case e1000_phy_82579:
1327 /* Disable PHY energy detect power down */
1328 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1329 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1330 /* Disable full chip energy detect */
1331 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1332 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1333 /* Enable loopback on the PHY */
1334 #define I82577_PHY_LBK_CTRL 19
1335 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1336 break;
1337 default:
1338 break;
1341 /* force 1000, set loopback */
1342 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1343 mdelay(250);
1345 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346 ctrl_reg = er32(CTRL);
1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1351 E1000_CTRL_FD); /* Force Duplex to FULL */
1353 if (adapter->flags & FLAG_IS_ICH)
1354 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1356 if (hw->phy.media_type == e1000_media_type_copper &&
1357 hw->phy.type == e1000_phy_m88) {
1358 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1359 } else {
1361 * Set the ILOS bit on the fiber Nic if half duplex link is
1362 * detected.
1364 stat_reg = er32(STATUS);
1365 if ((stat_reg & E1000_STATUS_FD) == 0)
1366 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1369 ew32(CTRL, ctrl_reg);
1372 * Disable the receiver on the PHY so when a cable is plugged in, the
1373 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1375 if (hw->phy.type == e1000_phy_m88)
1376 e1000_phy_disable_receiver(adapter);
1378 udelay(500);
1380 return 0;
1383 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1385 struct e1000_hw *hw = &adapter->hw;
1386 u32 ctrl = er32(CTRL);
1387 int link = 0;
1389 /* special requirements for 82571/82572 fiber adapters */
1392 * jump through hoops to make sure link is up because serdes
1393 * link is hardwired up
1395 ctrl |= E1000_CTRL_SLU;
1396 ew32(CTRL, ctrl);
1398 /* disable autoneg */
1399 ctrl = er32(TXCW);
1400 ctrl &= ~(1 << 31);
1401 ew32(TXCW, ctrl);
1403 link = (er32(STATUS) & E1000_STATUS_LU);
1405 if (!link) {
1406 /* set invert loss of signal */
1407 ctrl = er32(CTRL);
1408 ctrl |= E1000_CTRL_ILOS;
1409 ew32(CTRL, ctrl);
1413 * special write to serdes control register to enable SerDes analog
1414 * loopback
1416 #define E1000_SERDES_LB_ON 0x410
1417 ew32(SCTL, E1000_SERDES_LB_ON);
1418 msleep(10);
1420 return 0;
1423 /* only call this for fiber/serdes connections to es2lan */
1424 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1426 struct e1000_hw *hw = &adapter->hw;
1427 u32 ctrlext = er32(CTRL_EXT);
1428 u32 ctrl = er32(CTRL);
1431 * save CTRL_EXT to restore later, reuse an empty variable (unused
1432 * on mac_type 80003es2lan)
1434 adapter->tx_fifo_head = ctrlext;
1436 /* clear the serdes mode bits, putting the device into mac loopback */
1437 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1438 ew32(CTRL_EXT, ctrlext);
1440 /* force speed to 1000/FD, link up */
1441 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1442 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1443 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1444 ew32(CTRL, ctrl);
1446 /* set mac loopback */
1447 ctrl = er32(RCTL);
1448 ctrl |= E1000_RCTL_LBM_MAC;
1449 ew32(RCTL, ctrl);
1451 /* set testing mode parameters (no need to reset later) */
1452 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1453 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1454 ew32(KMRNCTRLSTA,
1455 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1457 return 0;
1460 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1462 struct e1000_hw *hw = &adapter->hw;
1463 u32 rctl;
1465 if (hw->phy.media_type == e1000_media_type_fiber ||
1466 hw->phy.media_type == e1000_media_type_internal_serdes) {
1467 switch (hw->mac.type) {
1468 case e1000_80003es2lan:
1469 return e1000_set_es2lan_mac_loopback(adapter);
1470 break;
1471 case e1000_82571:
1472 case e1000_82572:
1473 return e1000_set_82571_fiber_loopback(adapter);
1474 break;
1475 default:
1476 rctl = er32(RCTL);
1477 rctl |= E1000_RCTL_LBM_TCVR;
1478 ew32(RCTL, rctl);
1479 return 0;
1481 } else if (hw->phy.media_type == e1000_media_type_copper) {
1482 return e1000_integrated_phy_loopback(adapter);
1485 return 7;
1488 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 rctl;
1492 u16 phy_reg;
1494 rctl = er32(RCTL);
1495 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1496 ew32(RCTL, rctl);
1498 switch (hw->mac.type) {
1499 case e1000_80003es2lan:
1500 if (hw->phy.media_type == e1000_media_type_fiber ||
1501 hw->phy.media_type == e1000_media_type_internal_serdes) {
1502 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1503 ew32(CTRL_EXT, adapter->tx_fifo_head);
1504 adapter->tx_fifo_head = 0;
1506 /* fall through */
1507 case e1000_82571:
1508 case e1000_82572:
1509 if (hw->phy.media_type == e1000_media_type_fiber ||
1510 hw->phy.media_type == e1000_media_type_internal_serdes) {
1511 #define E1000_SERDES_LB_OFF 0x400
1512 ew32(SCTL, E1000_SERDES_LB_OFF);
1513 msleep(10);
1514 break;
1516 /* Fall Through */
1517 default:
1518 hw->mac.autoneg = 1;
1519 if (hw->phy.type == e1000_phy_gg82563)
1520 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1521 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1522 if (phy_reg & MII_CR_LOOPBACK) {
1523 phy_reg &= ~MII_CR_LOOPBACK;
1524 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1525 e1000e_commit_phy(hw);
1527 break;
1531 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1532 unsigned int frame_size)
1534 memset(skb->data, 0xFF, frame_size);
1535 frame_size &= ~1;
1536 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1537 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1538 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1541 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1542 unsigned int frame_size)
1544 frame_size &= ~1;
1545 if (*(skb->data + 3) == 0xFF)
1546 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1547 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1548 return 0;
1549 return 13;
1552 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1554 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1555 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1556 struct pci_dev *pdev = adapter->pdev;
1557 struct e1000_hw *hw = &adapter->hw;
1558 int i, j, k, l;
1559 int lc;
1560 int good_cnt;
1561 int ret_val = 0;
1562 unsigned long time;
1564 ew32(RDT, rx_ring->count - 1);
1567 * Calculate the loop count based on the largest descriptor ring
1568 * The idea is to wrap the largest ring a number of times using 64
1569 * send/receive pairs during each loop
1572 if (rx_ring->count <= tx_ring->count)
1573 lc = ((tx_ring->count / 64) * 2) + 1;
1574 else
1575 lc = ((rx_ring->count / 64) * 2) + 1;
1577 k = 0;
1578 l = 0;
1579 for (j = 0; j <= lc; j++) { /* loop count loop */
1580 for (i = 0; i < 64; i++) { /* send the packets */
1581 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1582 1024);
1583 dma_sync_single_for_device(&pdev->dev,
1584 tx_ring->buffer_info[k].dma,
1585 tx_ring->buffer_info[k].length,
1586 DMA_TO_DEVICE);
1587 k++;
1588 if (k == tx_ring->count)
1589 k = 0;
1591 ew32(TDT, k);
1592 msleep(200);
1593 time = jiffies; /* set the start time for the receive */
1594 good_cnt = 0;
1595 do { /* receive the sent packets */
1596 dma_sync_single_for_cpu(&pdev->dev,
1597 rx_ring->buffer_info[l].dma, 2048,
1598 DMA_FROM_DEVICE);
1600 ret_val = e1000_check_lbtest_frame(
1601 rx_ring->buffer_info[l].skb, 1024);
1602 if (!ret_val)
1603 good_cnt++;
1604 l++;
1605 if (l == rx_ring->count)
1606 l = 0;
1608 * time + 20 msecs (200 msecs on 2.4) is more than
1609 * enough time to complete the receives, if it's
1610 * exceeded, break and error off
1612 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1613 if (good_cnt != 64) {
1614 ret_val = 13; /* ret_val is the same as mis-compare */
1615 break;
1617 if (jiffies >= (time + 20)) {
1618 ret_val = 14; /* error code for time out error */
1619 break;
1621 } /* end loop count loop */
1622 return ret_val;
1625 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1628 * PHY loopback cannot be performed if SoL/IDER
1629 * sessions are active
1631 if (e1000_check_reset_block(&adapter->hw)) {
1632 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1633 *data = 0;
1634 goto out;
1637 *data = e1000_setup_desc_rings(adapter);
1638 if (*data)
1639 goto out;
1641 *data = e1000_setup_loopback_test(adapter);
1642 if (*data)
1643 goto err_loopback;
1645 *data = e1000_run_loopback_test(adapter);
1646 e1000_loopback_cleanup(adapter);
1648 err_loopback:
1649 e1000_free_desc_rings(adapter);
1650 out:
1651 return *data;
1654 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1656 struct e1000_hw *hw = &adapter->hw;
1658 *data = 0;
1659 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1660 int i = 0;
1661 hw->mac.serdes_has_link = false;
1664 * On some blade server designs, link establishment
1665 * could take as long as 2-3 minutes
1667 do {
1668 hw->mac.ops.check_for_link(hw);
1669 if (hw->mac.serdes_has_link)
1670 return *data;
1671 msleep(20);
1672 } while (i++ < 3750);
1674 *data = 1;
1675 } else {
1676 hw->mac.ops.check_for_link(hw);
1677 if (hw->mac.autoneg)
1678 msleep(4000);
1680 if (!(er32(STATUS) &
1681 E1000_STATUS_LU))
1682 *data = 1;
1684 return *data;
1687 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1689 switch (sset) {
1690 case ETH_SS_TEST:
1691 return E1000_TEST_LEN;
1692 case ETH_SS_STATS:
1693 return E1000_STATS_LEN;
1694 default:
1695 return -EOPNOTSUPP;
1699 static void e1000_diag_test(struct net_device *netdev,
1700 struct ethtool_test *eth_test, u64 *data)
1702 struct e1000_adapter *adapter = netdev_priv(netdev);
1703 u16 autoneg_advertised;
1704 u8 forced_speed_duplex;
1705 u8 autoneg;
1706 bool if_running = netif_running(netdev);
1708 set_bit(__E1000_TESTING, &adapter->state);
1709 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1710 /* Offline tests */
1712 /* save speed, duplex, autoneg settings */
1713 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1714 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1715 autoneg = adapter->hw.mac.autoneg;
1717 e_info("offline testing starting\n");
1720 * Link test performed before hardware reset so autoneg doesn't
1721 * interfere with test result
1723 if (e1000_link_test(adapter, &data[4]))
1724 eth_test->flags |= ETH_TEST_FL_FAILED;
1726 if (if_running)
1727 /* indicate we're in test mode */
1728 dev_close(netdev);
1729 else
1730 e1000e_reset(adapter);
1732 if (e1000_reg_test(adapter, &data[0]))
1733 eth_test->flags |= ETH_TEST_FL_FAILED;
1735 e1000e_reset(adapter);
1736 if (e1000_eeprom_test(adapter, &data[1]))
1737 eth_test->flags |= ETH_TEST_FL_FAILED;
1739 e1000e_reset(adapter);
1740 if (e1000_intr_test(adapter, &data[2]))
1741 eth_test->flags |= ETH_TEST_FL_FAILED;
1743 e1000e_reset(adapter);
1744 /* make sure the phy is powered up */
1745 e1000e_power_up_phy(adapter);
1746 if (e1000_loopback_test(adapter, &data[3]))
1747 eth_test->flags |= ETH_TEST_FL_FAILED;
1749 /* restore speed, duplex, autoneg settings */
1750 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1751 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1752 adapter->hw.mac.autoneg = autoneg;
1754 /* force this routine to wait until autoneg complete/timeout */
1755 adapter->hw.phy.autoneg_wait_to_complete = 1;
1756 e1000e_reset(adapter);
1757 adapter->hw.phy.autoneg_wait_to_complete = 0;
1759 clear_bit(__E1000_TESTING, &adapter->state);
1760 if (if_running)
1761 dev_open(netdev);
1762 } else {
1763 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1764 clear_bit(__E1000_TESTING, &adapter->state);
1765 dev_open(netdev);
1766 set_bit(__E1000_TESTING, &adapter->state);
1769 e_info("online testing starting\n");
1770 /* Online tests */
1771 if (e1000_link_test(adapter, &data[4]))
1772 eth_test->flags |= ETH_TEST_FL_FAILED;
1774 /* Online tests aren't run; pass by default */
1775 data[0] = 0;
1776 data[1] = 0;
1777 data[2] = 0;
1778 data[3] = 0;
1780 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1781 dev_close(netdev);
1783 clear_bit(__E1000_TESTING, &adapter->state);
1785 msleep_interruptible(4 * 1000);
1788 static void e1000_get_wol(struct net_device *netdev,
1789 struct ethtool_wolinfo *wol)
1791 struct e1000_adapter *adapter = netdev_priv(netdev);
1793 wol->supported = 0;
1794 wol->wolopts = 0;
1796 if (!(adapter->flags & FLAG_HAS_WOL) ||
1797 !device_can_wakeup(&adapter->pdev->dev))
1798 return;
1800 wol->supported = WAKE_UCAST | WAKE_MCAST |
1801 WAKE_BCAST | WAKE_MAGIC |
1802 WAKE_PHY | WAKE_ARP;
1804 /* apply any specific unsupported masks here */
1805 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1806 wol->supported &= ~WAKE_UCAST;
1808 if (adapter->wol & E1000_WUFC_EX)
1809 e_err("Interface does not support directed (unicast) "
1810 "frame wake-up packets\n");
1813 if (adapter->wol & E1000_WUFC_EX)
1814 wol->wolopts |= WAKE_UCAST;
1815 if (adapter->wol & E1000_WUFC_MC)
1816 wol->wolopts |= WAKE_MCAST;
1817 if (adapter->wol & E1000_WUFC_BC)
1818 wol->wolopts |= WAKE_BCAST;
1819 if (adapter->wol & E1000_WUFC_MAG)
1820 wol->wolopts |= WAKE_MAGIC;
1821 if (adapter->wol & E1000_WUFC_LNKC)
1822 wol->wolopts |= WAKE_PHY;
1823 if (adapter->wol & E1000_WUFC_ARP)
1824 wol->wolopts |= WAKE_ARP;
1827 static int e1000_set_wol(struct net_device *netdev,
1828 struct ethtool_wolinfo *wol)
1830 struct e1000_adapter *adapter = netdev_priv(netdev);
1832 if (!(adapter->flags & FLAG_HAS_WOL) ||
1833 !device_can_wakeup(&adapter->pdev->dev) ||
1834 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1835 WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1836 return -EOPNOTSUPP;
1838 /* these settings will always override what we currently have */
1839 adapter->wol = 0;
1841 if (wol->wolopts & WAKE_UCAST)
1842 adapter->wol |= E1000_WUFC_EX;
1843 if (wol->wolopts & WAKE_MCAST)
1844 adapter->wol |= E1000_WUFC_MC;
1845 if (wol->wolopts & WAKE_BCAST)
1846 adapter->wol |= E1000_WUFC_BC;
1847 if (wol->wolopts & WAKE_MAGIC)
1848 adapter->wol |= E1000_WUFC_MAG;
1849 if (wol->wolopts & WAKE_PHY)
1850 adapter->wol |= E1000_WUFC_LNKC;
1851 if (wol->wolopts & WAKE_ARP)
1852 adapter->wol |= E1000_WUFC_ARP;
1854 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1856 return 0;
1859 /* toggle LED 4 times per second = 2 "blinks" per second */
1860 #define E1000_ID_INTERVAL (HZ/4)
1862 /* bit defines for adapter->led_status */
1863 #define E1000_LED_ON 0
1865 static void e1000e_led_blink_task(struct work_struct *work)
1867 struct e1000_adapter *adapter = container_of(work,
1868 struct e1000_adapter, led_blink_task);
1870 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1871 adapter->hw.mac.ops.led_off(&adapter->hw);
1872 else
1873 adapter->hw.mac.ops.led_on(&adapter->hw);
1876 static void e1000_led_blink_callback(unsigned long data)
1878 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1880 schedule_work(&adapter->led_blink_task);
1881 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1884 static int e1000_phys_id(struct net_device *netdev, u32 data)
1886 struct e1000_adapter *adapter = netdev_priv(netdev);
1887 struct e1000_hw *hw = &adapter->hw;
1889 if (!data)
1890 data = INT_MAX;
1892 if ((hw->phy.type == e1000_phy_ife) ||
1893 (hw->mac.type == e1000_pchlan) ||
1894 (hw->mac.type == e1000_pch2lan) ||
1895 (hw->mac.type == e1000_82583) ||
1896 (hw->mac.type == e1000_82574)) {
1897 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1898 if (!adapter->blink_timer.function) {
1899 init_timer(&adapter->blink_timer);
1900 adapter->blink_timer.function =
1901 e1000_led_blink_callback;
1902 adapter->blink_timer.data = (unsigned long) adapter;
1904 mod_timer(&adapter->blink_timer, jiffies);
1905 msleep_interruptible(data * 1000);
1906 del_timer_sync(&adapter->blink_timer);
1907 if (hw->phy.type == e1000_phy_ife)
1908 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1909 } else {
1910 e1000e_blink_led(hw);
1911 msleep_interruptible(data * 1000);
1914 hw->mac.ops.led_off(hw);
1915 clear_bit(E1000_LED_ON, &adapter->led_status);
1916 hw->mac.ops.cleanup_led(hw);
1918 return 0;
1921 static int e1000_get_coalesce(struct net_device *netdev,
1922 struct ethtool_coalesce *ec)
1924 struct e1000_adapter *adapter = netdev_priv(netdev);
1926 if (adapter->itr_setting <= 4)
1927 ec->rx_coalesce_usecs = adapter->itr_setting;
1928 else
1929 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1931 return 0;
1934 static int e1000_set_coalesce(struct net_device *netdev,
1935 struct ethtool_coalesce *ec)
1937 struct e1000_adapter *adapter = netdev_priv(netdev);
1938 struct e1000_hw *hw = &adapter->hw;
1940 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1941 ((ec->rx_coalesce_usecs > 4) &&
1942 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1943 (ec->rx_coalesce_usecs == 2))
1944 return -EINVAL;
1946 if (ec->rx_coalesce_usecs == 4) {
1947 adapter->itr = adapter->itr_setting = 4;
1948 } else if (ec->rx_coalesce_usecs <= 3) {
1949 adapter->itr = 20000;
1950 adapter->itr_setting = ec->rx_coalesce_usecs;
1951 } else {
1952 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1953 adapter->itr_setting = adapter->itr & ~3;
1956 if (adapter->itr_setting != 0)
1957 ew32(ITR, 1000000000 / (adapter->itr * 256));
1958 else
1959 ew32(ITR, 0);
1961 return 0;
1964 static int e1000_nway_reset(struct net_device *netdev)
1966 struct e1000_adapter *adapter = netdev_priv(netdev);
1967 if (netif_running(netdev))
1968 e1000e_reinit_locked(adapter);
1969 return 0;
1972 static void e1000_get_ethtool_stats(struct net_device *netdev,
1973 struct ethtool_stats *stats,
1974 u64 *data)
1976 struct e1000_adapter *adapter = netdev_priv(netdev);
1977 int i;
1978 char *p = NULL;
1980 e1000e_update_stats(adapter);
1981 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1982 switch (e1000_gstrings_stats[i].type) {
1983 case NETDEV_STATS:
1984 p = (char *) netdev +
1985 e1000_gstrings_stats[i].stat_offset;
1986 break;
1987 case E1000_STATS:
1988 p = (char *) adapter +
1989 e1000_gstrings_stats[i].stat_offset;
1990 break;
1993 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1994 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1998 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1999 u8 *data)
2001 u8 *p = data;
2002 int i;
2004 switch (stringset) {
2005 case ETH_SS_TEST:
2006 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2007 break;
2008 case ETH_SS_STATS:
2009 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2010 memcpy(p, e1000_gstrings_stats[i].stat_string,
2011 ETH_GSTRING_LEN);
2012 p += ETH_GSTRING_LEN;
2014 break;
2018 static const struct ethtool_ops e1000_ethtool_ops = {
2019 .get_settings = e1000_get_settings,
2020 .set_settings = e1000_set_settings,
2021 .get_drvinfo = e1000_get_drvinfo,
2022 .get_regs_len = e1000_get_regs_len,
2023 .get_regs = e1000_get_regs,
2024 .get_wol = e1000_get_wol,
2025 .set_wol = e1000_set_wol,
2026 .get_msglevel = e1000_get_msglevel,
2027 .set_msglevel = e1000_set_msglevel,
2028 .nway_reset = e1000_nway_reset,
2029 .get_link = e1000_get_link,
2030 .get_eeprom_len = e1000_get_eeprom_len,
2031 .get_eeprom = e1000_get_eeprom,
2032 .set_eeprom = e1000_set_eeprom,
2033 .get_ringparam = e1000_get_ringparam,
2034 .set_ringparam = e1000_set_ringparam,
2035 .get_pauseparam = e1000_get_pauseparam,
2036 .set_pauseparam = e1000_set_pauseparam,
2037 .get_rx_csum = e1000_get_rx_csum,
2038 .set_rx_csum = e1000_set_rx_csum,
2039 .get_tx_csum = e1000_get_tx_csum,
2040 .set_tx_csum = e1000_set_tx_csum,
2041 .get_sg = ethtool_op_get_sg,
2042 .set_sg = ethtool_op_set_sg,
2043 .get_tso = ethtool_op_get_tso,
2044 .set_tso = e1000_set_tso,
2045 .self_test = e1000_diag_test,
2046 .get_strings = e1000_get_strings,
2047 .phys_id = e1000_phys_id,
2048 .get_ethtool_stats = e1000_get_ethtool_stats,
2049 .get_sset_count = e1000e_get_sset_count,
2050 .get_coalesce = e1000_get_coalesce,
2051 .set_coalesce = e1000_set_coalesce,
2052 .get_flags = ethtool_op_get_flags,
2055 void e1000e_set_ethtool_ops(struct net_device *netdev)
2057 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);