GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / e1000 / e1000_main.c
blobf97ac83442a500a305742c745893b0037f64951b
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k8-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217 * e1000_get_hw_dev - return device
218 * used by hardware layer to print debugging information
221 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
223 struct e1000_adapter *adapter = hw->back;
224 return adapter->netdev;
228 * e1000_init_module - Driver Registration Routine
230 * e1000_init_module is the first routine called when the driver is
231 * loaded. All it does is register with the PCI subsystem.
234 static int __init e1000_init_module(void)
236 int ret;
237 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
239 pr_info("%s\n", e1000_copyright);
241 ret = pci_register_driver(&e1000_driver);
242 if (copybreak != COPYBREAK_DEFAULT) {
243 if (copybreak == 0)
244 pr_info("copybreak disabled\n");
245 else
246 pr_info("copybreak enabled for "
247 "packets <= %u bytes\n", copybreak);
249 return ret;
252 module_init(e1000_init_module);
255 * e1000_exit_module - Driver Exit Cleanup Routine
257 * e1000_exit_module is called just before the driver is removed
258 * from memory.
261 static void __exit e1000_exit_module(void)
263 pci_unregister_driver(&e1000_driver);
266 module_exit(e1000_exit_module);
268 static int e1000_request_irq(struct e1000_adapter *adapter)
270 struct net_device *netdev = adapter->netdev;
271 irq_handler_t handler = e1000_intr;
272 int irq_flags = IRQF_SHARED;
273 int err;
275 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
276 netdev);
277 if (err) {
278 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281 return err;
284 static void e1000_free_irq(struct e1000_adapter *adapter)
286 struct net_device *netdev = adapter->netdev;
288 free_irq(adapter->pdev->irq, netdev);
292 * e1000_irq_disable - Mask off interrupt generation on the NIC
293 * @adapter: board private structure
296 static void e1000_irq_disable(struct e1000_adapter *adapter)
298 struct e1000_hw *hw = &adapter->hw;
300 ew32(IMC, ~0);
301 E1000_WRITE_FLUSH();
302 synchronize_irq(adapter->pdev->irq);
306 * e1000_irq_enable - Enable default interrupt generation settings
307 * @adapter: board private structure
310 static void e1000_irq_enable(struct e1000_adapter *adapter)
312 struct e1000_hw *hw = &adapter->hw;
314 ew32(IMS, IMS_ENABLE_MASK);
315 E1000_WRITE_FLUSH();
318 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
320 struct e1000_hw *hw = &adapter->hw;
321 struct net_device *netdev = adapter->netdev;
322 u16 vid = hw->mng_cookie.vlan_id;
323 u16 old_vid = adapter->mng_vlan_id;
324 if (adapter->vlgrp) {
325 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
326 if (hw->mng_cookie.status &
327 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
328 e1000_vlan_rx_add_vid(netdev, vid);
329 adapter->mng_vlan_id = vid;
330 } else
331 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
333 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
334 (vid != old_vid) &&
335 !vlan_group_get_device(adapter->vlgrp, old_vid))
336 e1000_vlan_rx_kill_vid(netdev, old_vid);
337 } else
338 adapter->mng_vlan_id = vid;
342 static void e1000_init_manageability(struct e1000_adapter *adapter)
344 struct e1000_hw *hw = &adapter->hw;
346 if (adapter->en_mng_pt) {
347 u32 manc = er32(MANC);
349 /* disable hardware interception of ARP */
350 manc &= ~(E1000_MANC_ARP_EN);
352 ew32(MANC, manc);
356 static void e1000_release_manageability(struct e1000_adapter *adapter)
358 struct e1000_hw *hw = &adapter->hw;
360 if (adapter->en_mng_pt) {
361 u32 manc = er32(MANC);
363 /* re-enable hardware interception of ARP */
364 manc |= E1000_MANC_ARP_EN;
366 ew32(MANC, manc);
371 * e1000_configure - configure the hardware for RX and TX
372 * @adapter = private board structure
374 static void e1000_configure(struct e1000_adapter *adapter)
376 struct net_device *netdev = adapter->netdev;
377 int i;
379 e1000_set_rx_mode(netdev);
381 e1000_restore_vlan(adapter);
382 e1000_init_manageability(adapter);
384 e1000_configure_tx(adapter);
385 e1000_setup_rctl(adapter);
386 e1000_configure_rx(adapter);
387 /* call E1000_DESC_UNUSED which always leaves
388 * at least 1 descriptor unused to make sure
389 * next_to_use != next_to_clean */
390 for (i = 0; i < adapter->num_rx_queues; i++) {
391 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
392 adapter->alloc_rx_buf(adapter, ring,
393 E1000_DESC_UNUSED(ring));
397 int e1000_up(struct e1000_adapter *adapter)
399 struct e1000_hw *hw = &adapter->hw;
401 /* hardware has been reset, we need to reload some things */
402 e1000_configure(adapter);
404 clear_bit(__E1000_DOWN, &adapter->flags);
406 napi_enable(&adapter->napi);
408 e1000_irq_enable(adapter);
410 netif_wake_queue(adapter->netdev);
412 /* fire a link change interrupt to start the watchdog */
413 ew32(ICS, E1000_ICS_LSC);
414 return 0;
418 * e1000_power_up_phy - restore link in case the phy was powered down
419 * @adapter: address of board private structure
421 * The phy may be powered down to save power and turn off link when the
422 * driver is unloaded and wake on lan is not enabled (among others)
423 * *** this routine MUST be followed by a call to e1000_reset ***
427 void e1000_power_up_phy(struct e1000_adapter *adapter)
429 struct e1000_hw *hw = &adapter->hw;
430 u16 mii_reg = 0;
432 /* Just clear the power down bit to wake the phy back up */
433 if (hw->media_type == e1000_media_type_copper) {
434 /* according to the manual, the phy will retain its
435 * settings across a power-down/up cycle */
436 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
437 mii_reg &= ~MII_CR_POWER_DOWN;
438 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
442 static void e1000_power_down_phy(struct e1000_adapter *adapter)
444 struct e1000_hw *hw = &adapter->hw;
446 /* Power down the PHY so no link is implied when interface is down *
447 * The PHY cannot be powered down if any of the following is true *
448 * (a) WoL is enabled
449 * (b) AMT is active
450 * (c) SoL/IDER session is active */
451 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
452 hw->media_type == e1000_media_type_copper) {
453 u16 mii_reg = 0;
455 switch (hw->mac_type) {
456 case e1000_82540:
457 case e1000_82545:
458 case e1000_82545_rev_3:
459 case e1000_82546:
460 case e1000_82546_rev_3:
461 case e1000_82541:
462 case e1000_82541_rev_2:
463 case e1000_82547:
464 case e1000_82547_rev_2:
465 if (er32(MANC) & E1000_MANC_SMBUS_EN)
466 goto out;
467 break;
468 default:
469 goto out;
471 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
472 mii_reg |= MII_CR_POWER_DOWN;
473 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
474 mdelay(1);
476 out:
477 return;
480 void e1000_down(struct e1000_adapter *adapter)
482 struct e1000_hw *hw = &adapter->hw;
483 struct net_device *netdev = adapter->netdev;
484 u32 rctl, tctl;
487 /* disable receives in the hardware */
488 rctl = er32(RCTL);
489 ew32(RCTL, rctl & ~E1000_RCTL_EN);
490 /* flush and sleep below */
492 netif_tx_disable(netdev);
494 /* disable transmits in the hardware */
495 tctl = er32(TCTL);
496 tctl &= ~E1000_TCTL_EN;
497 ew32(TCTL, tctl);
498 /* flush both disables and wait for them to finish */
499 E1000_WRITE_FLUSH();
500 msleep(10);
502 napi_disable(&adapter->napi);
504 e1000_irq_disable(adapter);
507 * Setting DOWN must be after irq_disable to prevent
508 * a screaming interrupt. Setting DOWN also prevents
509 * timers and tasks from rescheduling.
511 set_bit(__E1000_DOWN, &adapter->flags);
513 del_timer_sync(&adapter->tx_fifo_stall_timer);
514 del_timer_sync(&adapter->watchdog_timer);
515 del_timer_sync(&adapter->phy_info_timer);
517 adapter->link_speed = 0;
518 adapter->link_duplex = 0;
519 netif_carrier_off(netdev);
521 e1000_reset(adapter);
522 e1000_clean_all_tx_rings(adapter);
523 e1000_clean_all_rx_rings(adapter);
526 void e1000_reinit_locked(struct e1000_adapter *adapter)
528 WARN_ON(in_interrupt());
529 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
530 msleep(1);
531 e1000_down(adapter);
532 e1000_up(adapter);
533 clear_bit(__E1000_RESETTING, &adapter->flags);
536 void e1000_reset(struct e1000_adapter *adapter)
538 struct e1000_hw *hw = &adapter->hw;
539 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
540 bool legacy_pba_adjust = false;
541 u16 hwm;
543 /* Repartition Pba for greater than 9k mtu
544 * To take effect CTRL.RST is required.
547 switch (hw->mac_type) {
548 case e1000_82542_rev2_0:
549 case e1000_82542_rev2_1:
550 case e1000_82543:
551 case e1000_82544:
552 case e1000_82540:
553 case e1000_82541:
554 case e1000_82541_rev_2:
555 legacy_pba_adjust = true;
556 pba = E1000_PBA_48K;
557 break;
558 case e1000_82545:
559 case e1000_82545_rev_3:
560 case e1000_82546:
561 case e1000_82546_rev_3:
562 pba = E1000_PBA_48K;
563 break;
564 case e1000_82547:
565 case e1000_82547_rev_2:
566 legacy_pba_adjust = true;
567 pba = E1000_PBA_30K;
568 break;
569 case e1000_undefined:
570 case e1000_num_macs:
571 break;
574 if (legacy_pba_adjust) {
575 if (hw->max_frame_size > E1000_RXBUFFER_8192)
576 pba -= 8; /* allocate more FIFO for Tx */
578 if (hw->mac_type == e1000_82547) {
579 adapter->tx_fifo_head = 0;
580 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
581 adapter->tx_fifo_size =
582 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
583 atomic_set(&adapter->tx_fifo_stall, 0);
585 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
586 /* adjust PBA for jumbo frames */
587 ew32(PBA, pba);
589 /* To maintain wire speed transmits, the Tx FIFO should be
590 * large enough to accommodate two full transmit packets,
591 * rounded up to the next 1KB and expressed in KB. Likewise,
592 * the Rx FIFO should be large enough to accommodate at least
593 * one full receive packet and is similarly rounded up and
594 * expressed in KB. */
595 pba = er32(PBA);
596 /* upper 16 bits has Tx packet buffer allocation size in KB */
597 tx_space = pba >> 16;
598 /* lower 16 bits has Rx packet buffer allocation size in KB */
599 pba &= 0xffff;
601 * the tx fifo also stores 16 bytes of information about the tx
602 * but don't include ethernet FCS because hardware appends it
604 min_tx_space = (hw->max_frame_size +
605 sizeof(struct e1000_tx_desc) -
606 ETH_FCS_LEN) * 2;
607 min_tx_space = ALIGN(min_tx_space, 1024);
608 min_tx_space >>= 10;
609 /* software strips receive CRC, so leave room for it */
610 min_rx_space = hw->max_frame_size;
611 min_rx_space = ALIGN(min_rx_space, 1024);
612 min_rx_space >>= 10;
614 /* If current Tx allocation is less than the min Tx FIFO size,
615 * and the min Tx FIFO size is less than the current Rx FIFO
616 * allocation, take space away from current Rx allocation */
617 if (tx_space < min_tx_space &&
618 ((min_tx_space - tx_space) < pba)) {
619 pba = pba - (min_tx_space - tx_space);
621 /* PCI/PCIx hardware has PBA alignment constraints */
622 switch (hw->mac_type) {
623 case e1000_82545 ... e1000_82546_rev_3:
624 pba &= ~(E1000_PBA_8K - 1);
625 break;
626 default:
627 break;
630 /* if short on rx space, rx wins and must trump tx
631 * adjustment or use Early Receive if available */
632 if (pba < min_rx_space)
633 pba = min_rx_space;
637 ew32(PBA, pba);
640 * flow control settings:
641 * The high water mark must be low enough to fit one full frame
642 * (or the size used for early receive) above it in the Rx FIFO.
643 * Set it to the lower of:
644 * - 90% of the Rx FIFO size, and
645 * - the full Rx FIFO size minus the early receive size (for parts
646 * with ERT support assuming ERT set to E1000_ERT_2048), or
647 * - the full Rx FIFO size minus one full frame
649 hwm = min(((pba << 10) * 9 / 10),
650 ((pba << 10) - hw->max_frame_size));
652 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
653 hw->fc_low_water = hw->fc_high_water - 8;
654 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
655 hw->fc_send_xon = 1;
656 hw->fc = hw->original_fc;
658 /* Allow time for pending master requests to run */
659 e1000_reset_hw(hw);
660 if (hw->mac_type >= e1000_82544)
661 ew32(WUC, 0);
663 if (e1000_init_hw(hw))
664 e_dev_err("Hardware Error\n");
665 e1000_update_mng_vlan(adapter);
667 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
668 if (hw->mac_type >= e1000_82544 &&
669 hw->autoneg == 1 &&
670 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
671 u32 ctrl = er32(CTRL);
672 /* clear phy power management bit if we are in gig only mode,
673 * which if enabled will attempt negotiation to 100Mb, which
674 * can cause a loss of link at power off or driver unload */
675 ctrl &= ~E1000_CTRL_SWDPIN3;
676 ew32(CTRL, ctrl);
679 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
680 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
682 e1000_reset_adaptive(hw);
683 e1000_phy_get_info(hw, &adapter->phy_info);
685 e1000_release_manageability(adapter);
689 * Dump the eeprom for users having checksum issues
691 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
693 struct net_device *netdev = adapter->netdev;
694 struct ethtool_eeprom eeprom;
695 const struct ethtool_ops *ops = netdev->ethtool_ops;
696 u8 *data;
697 int i;
698 u16 csum_old, csum_new = 0;
700 eeprom.len = ops->get_eeprom_len(netdev);
701 eeprom.offset = 0;
703 data = kmalloc(eeprom.len, GFP_KERNEL);
704 if (!data) {
705 pr_err("Unable to allocate memory to dump EEPROM data\n");
706 return;
709 ops->get_eeprom(netdev, &eeprom, data);
711 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
712 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
713 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
714 csum_new += data[i] + (data[i + 1] << 8);
715 csum_new = EEPROM_SUM - csum_new;
717 pr_err("/*********************/\n");
718 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
719 pr_err("Calculated : 0x%04x\n", csum_new);
721 pr_err("Offset Values\n");
722 pr_err("======== ======\n");
723 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
725 pr_err("Include this output when contacting your support provider.\n");
726 pr_err("This is not a software error! Something bad happened to\n");
727 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
728 pr_err("result in further problems, possibly loss of data,\n");
729 pr_err("corruption or system hangs!\n");
730 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
731 pr_err("which is invalid and requires you to set the proper MAC\n");
732 pr_err("address manually before continuing to enable this network\n");
733 pr_err("device. Please inspect the EEPROM dump and report the\n");
734 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
735 pr_err("/*********************/\n");
737 kfree(data);
741 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
742 * @pdev: PCI device information struct
744 * Return true if an adapter needs ioport resources
746 static int e1000_is_need_ioport(struct pci_dev *pdev)
748 switch (pdev->device) {
749 case E1000_DEV_ID_82540EM:
750 case E1000_DEV_ID_82540EM_LOM:
751 case E1000_DEV_ID_82540EP:
752 case E1000_DEV_ID_82540EP_LOM:
753 case E1000_DEV_ID_82540EP_LP:
754 case E1000_DEV_ID_82541EI:
755 case E1000_DEV_ID_82541EI_MOBILE:
756 case E1000_DEV_ID_82541ER:
757 case E1000_DEV_ID_82541ER_LOM:
758 case E1000_DEV_ID_82541GI:
759 case E1000_DEV_ID_82541GI_LF:
760 case E1000_DEV_ID_82541GI_MOBILE:
761 case E1000_DEV_ID_82544EI_COPPER:
762 case E1000_DEV_ID_82544EI_FIBER:
763 case E1000_DEV_ID_82544GC_COPPER:
764 case E1000_DEV_ID_82544GC_LOM:
765 case E1000_DEV_ID_82545EM_COPPER:
766 case E1000_DEV_ID_82545EM_FIBER:
767 case E1000_DEV_ID_82546EB_COPPER:
768 case E1000_DEV_ID_82546EB_FIBER:
769 case E1000_DEV_ID_82546EB_QUAD_COPPER:
770 return true;
771 default:
772 return false;
776 static const struct net_device_ops e1000_netdev_ops = {
777 .ndo_open = e1000_open,
778 .ndo_stop = e1000_close,
779 .ndo_start_xmit = e1000_xmit_frame,
780 .ndo_get_stats = e1000_get_stats,
781 .ndo_set_rx_mode = e1000_set_rx_mode,
782 .ndo_set_mac_address = e1000_set_mac,
783 .ndo_tx_timeout = e1000_tx_timeout,
784 .ndo_change_mtu = e1000_change_mtu,
785 .ndo_do_ioctl = e1000_ioctl,
786 .ndo_validate_addr = eth_validate_addr,
788 .ndo_vlan_rx_register = e1000_vlan_rx_register,
789 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
790 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
791 #ifdef CONFIG_NET_POLL_CONTROLLER
792 .ndo_poll_controller = e1000_netpoll,
793 #endif
797 * e1000_probe - Device Initialization Routine
798 * @pdev: PCI device information struct
799 * @ent: entry in e1000_pci_tbl
801 * Returns 0 on success, negative on failure
803 * e1000_probe initializes an adapter identified by a pci_dev structure.
804 * The OS initialization, configuring of the adapter private structure,
805 * and a hardware reset occur.
807 static int __devinit e1000_probe(struct pci_dev *pdev,
808 const struct pci_device_id *ent)
810 struct net_device *netdev;
811 struct e1000_adapter *adapter;
812 struct e1000_hw *hw;
814 static int cards_found = 0;
815 static int global_quad_port_a = 0; /* global ksp3 port a indication */
816 int i, err, pci_using_dac;
817 u16 eeprom_data = 0;
818 u16 eeprom_apme_mask = E1000_EEPROM_APME;
819 int bars, need_ioport;
821 /* do not allocate ioport bars when not needed */
822 need_ioport = e1000_is_need_ioport(pdev);
823 if (need_ioport) {
824 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
825 err = pci_enable_device(pdev);
826 } else {
827 bars = pci_select_bars(pdev, IORESOURCE_MEM);
828 err = pci_enable_device_mem(pdev);
830 if (err)
831 return err;
833 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
834 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
835 pci_using_dac = 1;
836 } else {
837 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
838 if (err) {
839 err = dma_set_coherent_mask(&pdev->dev,
840 DMA_BIT_MASK(32));
841 if (err) {
842 pr_err("No usable DMA config, aborting\n");
843 goto err_dma;
846 pci_using_dac = 0;
849 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
850 if (err)
851 goto err_pci_reg;
853 pci_set_master(pdev);
854 err = pci_save_state(pdev);
855 if (err)
856 goto err_alloc_etherdev;
858 err = -ENOMEM;
859 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
860 if (!netdev)
861 goto err_alloc_etherdev;
863 SET_NETDEV_DEV(netdev, &pdev->dev);
865 pci_set_drvdata(pdev, netdev);
866 adapter = netdev_priv(netdev);
867 adapter->netdev = netdev;
868 adapter->pdev = pdev;
869 adapter->msg_enable = (1 << debug) - 1;
870 adapter->bars = bars;
871 adapter->need_ioport = need_ioport;
873 hw = &adapter->hw;
874 hw->back = adapter;
876 err = -EIO;
877 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
878 if (!hw->hw_addr)
879 goto err_ioremap;
881 if (adapter->need_ioport) {
882 for (i = BAR_1; i <= BAR_5; i++) {
883 if (pci_resource_len(pdev, i) == 0)
884 continue;
885 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
886 hw->io_base = pci_resource_start(pdev, i);
887 break;
892 netdev->netdev_ops = &e1000_netdev_ops;
893 e1000_set_ethtool_ops(netdev);
894 netdev->watchdog_timeo = 5 * HZ;
895 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
897 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
899 adapter->bd_number = cards_found;
901 /* setup the private structure */
903 err = e1000_sw_init(adapter);
904 if (err)
905 goto err_sw_init;
907 err = -EIO;
909 if (hw->mac_type >= e1000_82543) {
910 netdev->features = NETIF_F_SG |
911 NETIF_F_HW_CSUM |
912 NETIF_F_HW_VLAN_TX |
913 NETIF_F_HW_VLAN_RX |
914 NETIF_F_HW_VLAN_FILTER;
917 if ((hw->mac_type >= e1000_82544) &&
918 (hw->mac_type != e1000_82547))
919 netdev->features |= NETIF_F_TSO;
921 if (pci_using_dac)
922 netdev->features |= NETIF_F_HIGHDMA;
924 netdev->vlan_features |= NETIF_F_TSO;
925 netdev->vlan_features |= NETIF_F_HW_CSUM;
926 netdev->vlan_features |= NETIF_F_SG;
928 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
930 /* initialize eeprom parameters */
931 if (e1000_init_eeprom_params(hw)) {
932 e_err(probe, "EEPROM initialization failed\n");
933 goto err_eeprom;
936 /* before reading the EEPROM, reset the controller to
937 * put the device in a known good starting state */
939 e1000_reset_hw(hw);
941 /* make sure the EEPROM is good */
942 if (e1000_validate_eeprom_checksum(hw) < 0) {
943 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
944 e1000_dump_eeprom(adapter);
946 * set MAC address to all zeroes to invalidate and temporary
947 * disable this device for the user. This blocks regular
948 * traffic while still permitting ethtool ioctls from reaching
949 * the hardware as well as allowing the user to run the
950 * interface after manually setting a hw addr using
951 * `ip set address`
953 memset(hw->mac_addr, 0, netdev->addr_len);
954 } else {
955 /* copy the MAC address out of the EEPROM */
956 if (e1000_read_mac_addr(hw))
957 e_err(probe, "EEPROM Read Error\n");
959 /* don't block initalization here due to bad MAC address */
960 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
961 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
963 if (!is_valid_ether_addr(netdev->perm_addr))
964 e_err(probe, "Invalid MAC Address\n");
966 e1000_get_bus_info(hw);
968 init_timer(&adapter->tx_fifo_stall_timer);
969 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
970 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
972 init_timer(&adapter->watchdog_timer);
973 adapter->watchdog_timer.function = &e1000_watchdog;
974 adapter->watchdog_timer.data = (unsigned long) adapter;
976 init_timer(&adapter->phy_info_timer);
977 adapter->phy_info_timer.function = &e1000_update_phy_info;
978 adapter->phy_info_timer.data = (unsigned long)adapter;
980 INIT_WORK(&adapter->reset_task, e1000_reset_task);
982 e1000_check_options(adapter);
984 /* Initial Wake on LAN setting
985 * If APM wake is enabled in the EEPROM,
986 * enable the ACPI Magic Packet filter
989 switch (hw->mac_type) {
990 case e1000_82542_rev2_0:
991 case e1000_82542_rev2_1:
992 case e1000_82543:
993 break;
994 case e1000_82544:
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
997 eeprom_apme_mask = E1000_EEPROM_82544_APM;
998 break;
999 case e1000_82546:
1000 case e1000_82546_rev_3:
1001 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1002 e1000_read_eeprom(hw,
1003 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1004 break;
1006 /* Fall Through */
1007 default:
1008 e1000_read_eeprom(hw,
1009 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1010 break;
1012 if (eeprom_data & eeprom_apme_mask)
1013 adapter->eeprom_wol |= E1000_WUFC_MAG;
1015 /* now that we have the eeprom settings, apply the special cases
1016 * where the eeprom may be wrong or the board simply won't support
1017 * wake on lan on a particular port */
1018 switch (pdev->device) {
1019 case E1000_DEV_ID_82546GB_PCIE:
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546EB_FIBER:
1023 case E1000_DEV_ID_82546GB_FIBER:
1024 /* Wake events only supported on port A for dual fiber
1025 * regardless of eeprom setting */
1026 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1027 adapter->eeprom_wol = 0;
1028 break;
1029 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1030 /* if quad port adapter, disable WoL on all but port A */
1031 if (global_quad_port_a != 0)
1032 adapter->eeprom_wol = 0;
1033 else
1034 adapter->quad_port_a = 1;
1035 /* Reset for multiple quad port adapters */
1036 if (++global_quad_port_a == 4)
1037 global_quad_port_a = 0;
1038 break;
1041 /* initialize the wol settings based on the eeprom settings */
1042 adapter->wol = adapter->eeprom_wol;
1043 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1045 /* reset the hardware with the new settings */
1046 e1000_reset(adapter);
1048 strcpy(netdev->name, "eth%d");
1049 err = register_netdev(netdev);
1050 if (err)
1051 goto err_register;
1053 /* print bus type/speed/width info */
1054 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1055 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1056 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1057 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1058 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1059 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1060 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1061 netdev->dev_addr);
1063 /* carrier off reporting is important to ethtool even BEFORE open */
1064 netif_carrier_off(netdev);
1066 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1068 cards_found++;
1069 return 0;
1071 err_register:
1072 err_eeprom:
1073 e1000_phy_hw_reset(hw);
1075 if (hw->flash_address)
1076 iounmap(hw->flash_address);
1077 kfree(adapter->tx_ring);
1078 kfree(adapter->rx_ring);
1079 err_sw_init:
1080 iounmap(hw->hw_addr);
1081 err_ioremap:
1082 free_netdev(netdev);
1083 err_alloc_etherdev:
1084 pci_release_selected_regions(pdev, bars);
1085 err_pci_reg:
1086 err_dma:
1087 pci_disable_device(pdev);
1088 return err;
1092 * e1000_remove - Device Removal Routine
1093 * @pdev: PCI device information struct
1095 * e1000_remove is called by the PCI subsystem to alert the driver
1096 * that it should release a PCI device. The could be caused by a
1097 * Hot-Plug event, or because the driver is going to be removed from
1098 * memory.
1101 static void __devexit e1000_remove(struct pci_dev *pdev)
1103 struct net_device *netdev = pci_get_drvdata(pdev);
1104 struct e1000_adapter *adapter = netdev_priv(netdev);
1105 struct e1000_hw *hw = &adapter->hw;
1107 set_bit(__E1000_DOWN, &adapter->flags);
1108 del_timer_sync(&adapter->tx_fifo_stall_timer);
1109 del_timer_sync(&adapter->watchdog_timer);
1110 del_timer_sync(&adapter->phy_info_timer);
1112 cancel_work_sync(&adapter->reset_task);
1114 e1000_release_manageability(adapter);
1116 unregister_netdev(netdev);
1118 e1000_phy_hw_reset(hw);
1120 kfree(adapter->tx_ring);
1121 kfree(adapter->rx_ring);
1123 iounmap(hw->hw_addr);
1124 if (hw->flash_address)
1125 iounmap(hw->flash_address);
1126 pci_release_selected_regions(pdev, adapter->bars);
1128 free_netdev(netdev);
1130 pci_disable_device(pdev);
1134 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1135 * @adapter: board private structure to initialize
1137 * e1000_sw_init initializes the Adapter private data structure.
1138 * Fields are initialized based on PCI device information and
1139 * OS network device settings (MTU size).
1142 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1144 struct e1000_hw *hw = &adapter->hw;
1145 struct net_device *netdev = adapter->netdev;
1146 struct pci_dev *pdev = adapter->pdev;
1148 /* PCI config space info */
1150 hw->vendor_id = pdev->vendor;
1151 hw->device_id = pdev->device;
1152 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1153 hw->subsystem_id = pdev->subsystem_device;
1154 hw->revision_id = pdev->revision;
1156 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1158 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1159 hw->max_frame_size = netdev->mtu +
1160 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1161 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1163 /* identify the MAC */
1165 if (e1000_set_mac_type(hw)) {
1166 e_err(probe, "Unknown MAC Type\n");
1167 return -EIO;
1170 switch (hw->mac_type) {
1171 default:
1172 break;
1173 case e1000_82541:
1174 case e1000_82547:
1175 case e1000_82541_rev_2:
1176 case e1000_82547_rev_2:
1177 hw->phy_init_script = 1;
1178 break;
1181 e1000_set_media_type(hw);
1183 hw->wait_autoneg_complete = false;
1184 hw->tbi_compatibility_en = true;
1185 hw->adaptive_ifs = true;
1187 /* Copper options */
1189 if (hw->media_type == e1000_media_type_copper) {
1190 hw->mdix = AUTO_ALL_MODES;
1191 hw->disable_polarity_correction = false;
1192 hw->master_slave = E1000_MASTER_SLAVE;
1195 adapter->num_tx_queues = 1;
1196 adapter->num_rx_queues = 1;
1198 if (e1000_alloc_queues(adapter)) {
1199 e_err(probe, "Unable to allocate memory for queues\n");
1200 return -ENOMEM;
1203 /* Explicitly disable IRQ since the NIC can be in any state. */
1204 e1000_irq_disable(adapter);
1206 spin_lock_init(&adapter->stats_lock);
1208 set_bit(__E1000_DOWN, &adapter->flags);
1210 return 0;
1214 * e1000_alloc_queues - Allocate memory for all rings
1215 * @adapter: board private structure to initialize
1217 * We allocate one ring per queue at run-time since we don't know the
1218 * number of queues at compile-time.
1221 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1223 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1224 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1225 if (!adapter->tx_ring)
1226 return -ENOMEM;
1228 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1229 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1230 if (!adapter->rx_ring) {
1231 kfree(adapter->tx_ring);
1232 return -ENOMEM;
1235 return E1000_SUCCESS;
1239 * e1000_open - Called when a network interface is made active
1240 * @netdev: network interface device structure
1242 * Returns 0 on success, negative value on failure
1244 * The open entry point is called when a network interface is made
1245 * active by the system (IFF_UP). At this point all resources needed
1246 * for transmit and receive operations are allocated, the interrupt
1247 * handler is registered with the OS, the watchdog timer is started,
1248 * and the stack is notified that the interface is ready.
1251 static int e1000_open(struct net_device *netdev)
1253 struct e1000_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255 int err;
1257 /* disallow open during test */
1258 if (test_bit(__E1000_TESTING, &adapter->flags))
1259 return -EBUSY;
1261 netif_carrier_off(netdev);
1263 /* allocate transmit descriptors */
1264 err = e1000_setup_all_tx_resources(adapter);
1265 if (err)
1266 goto err_setup_tx;
1268 /* allocate receive descriptors */
1269 err = e1000_setup_all_rx_resources(adapter);
1270 if (err)
1271 goto err_setup_rx;
1273 e1000_power_up_phy(adapter);
1275 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1276 if ((hw->mng_cookie.status &
1277 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1278 e1000_update_mng_vlan(adapter);
1281 /* before we allocate an interrupt, we must be ready to handle it.
1282 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1283 * as soon as we call pci_request_irq, so we have to setup our
1284 * clean_rx handler before we do so. */
1285 e1000_configure(adapter);
1287 err = e1000_request_irq(adapter);
1288 if (err)
1289 goto err_req_irq;
1291 /* From here on the code is the same as e1000_up() */
1292 clear_bit(__E1000_DOWN, &adapter->flags);
1294 napi_enable(&adapter->napi);
1296 e1000_irq_enable(adapter);
1298 netif_start_queue(netdev);
1300 /* fire a link status change interrupt to start the watchdog */
1301 ew32(ICS, E1000_ICS_LSC);
1303 return E1000_SUCCESS;
1305 err_req_irq:
1306 e1000_power_down_phy(adapter);
1307 e1000_free_all_rx_resources(adapter);
1308 err_setup_rx:
1309 e1000_free_all_tx_resources(adapter);
1310 err_setup_tx:
1311 e1000_reset(adapter);
1313 return err;
1317 * e1000_close - Disables a network interface
1318 * @netdev: network interface device structure
1320 * Returns 0, this is not allowed to fail
1322 * The close entry point is called when an interface is de-activated
1323 * by the OS. The hardware is still under the drivers control, but
1324 * needs to be disabled. A global MAC reset is issued to stop the
1325 * hardware, and all transmit and receive resources are freed.
1328 static int e1000_close(struct net_device *netdev)
1330 struct e1000_adapter *adapter = netdev_priv(netdev);
1331 struct e1000_hw *hw = &adapter->hw;
1333 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1334 e1000_down(adapter);
1335 e1000_power_down_phy(adapter);
1336 e1000_free_irq(adapter);
1338 e1000_free_all_tx_resources(adapter);
1339 e1000_free_all_rx_resources(adapter);
1341 /* kill manageability vlan ID if supported, but not if a vlan with
1342 * the same ID is registered on the host OS (let 8021q kill it) */
1343 if ((hw->mng_cookie.status &
1344 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1345 !(adapter->vlgrp &&
1346 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1347 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1350 return 0;
1354 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1355 * @adapter: address of board private structure
1356 * @start: address of beginning of memory
1357 * @len: length of memory
1359 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1360 unsigned long len)
1362 struct e1000_hw *hw = &adapter->hw;
1363 unsigned long begin = (unsigned long)start;
1364 unsigned long end = begin + len;
1366 /* First rev 82545 and 82546 need to not allow any memory
1367 * write location to cross 64k boundary due to errata 23 */
1368 if (hw->mac_type == e1000_82545 ||
1369 hw->mac_type == e1000_82546) {
1370 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1373 return true;
1377 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1378 * @adapter: board private structure
1379 * @txdr: tx descriptor ring (for a specific queue) to setup
1381 * Return 0 on success, negative on failure
1384 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1385 struct e1000_tx_ring *txdr)
1387 struct pci_dev *pdev = adapter->pdev;
1388 int size;
1390 size = sizeof(struct e1000_buffer) * txdr->count;
1391 txdr->buffer_info = vmalloc(size);
1392 if (!txdr->buffer_info) {
1393 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1394 "ring\n");
1395 return -ENOMEM;
1397 memset(txdr->buffer_info, 0, size);
1399 /* round up to nearest 4K */
1401 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1402 txdr->size = ALIGN(txdr->size, 4096);
1404 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1405 GFP_KERNEL);
1406 if (!txdr->desc) {
1407 setup_tx_desc_die:
1408 vfree(txdr->buffer_info);
1409 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1410 "ring\n");
1411 return -ENOMEM;
1414 /* Fix for errata 23, can't cross 64kB boundary */
1415 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1416 void *olddesc = txdr->desc;
1417 dma_addr_t olddma = txdr->dma;
1418 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1419 txdr->size, txdr->desc);
1420 /* Try again, without freeing the previous */
1421 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1422 &txdr->dma, GFP_KERNEL);
1423 /* Failed allocation, critical failure */
1424 if (!txdr->desc) {
1425 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1426 olddma);
1427 goto setup_tx_desc_die;
1430 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1431 /* give up */
1432 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1433 txdr->dma);
1434 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1435 olddma);
1436 e_err(probe, "Unable to allocate aligned memory "
1437 "for the transmit descriptor ring\n");
1438 vfree(txdr->buffer_info);
1439 return -ENOMEM;
1440 } else {
1441 /* Free old allocation, new allocation was successful */
1442 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1443 olddma);
1446 memset(txdr->desc, 0, txdr->size);
1448 txdr->next_to_use = 0;
1449 txdr->next_to_clean = 0;
1451 return 0;
1455 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1456 * (Descriptors) for all queues
1457 * @adapter: board private structure
1459 * Return 0 on success, negative on failure
1462 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1464 int i, err = 0;
1466 for (i = 0; i < adapter->num_tx_queues; i++) {
1467 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1468 if (err) {
1469 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1470 for (i-- ; i >= 0; i--)
1471 e1000_free_tx_resources(adapter,
1472 &adapter->tx_ring[i]);
1473 break;
1477 return err;
1481 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1482 * @adapter: board private structure
1484 * Configure the Tx unit of the MAC after a reset.
1487 static void e1000_configure_tx(struct e1000_adapter *adapter)
1489 u64 tdba;
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 tdlen, tctl, tipg;
1492 u32 ipgr1, ipgr2;
1494 /* Setup the HW Tx Head and Tail descriptor pointers */
1496 switch (adapter->num_tx_queues) {
1497 case 1:
1498 default:
1499 tdba = adapter->tx_ring[0].dma;
1500 tdlen = adapter->tx_ring[0].count *
1501 sizeof(struct e1000_tx_desc);
1502 ew32(TDLEN, tdlen);
1503 ew32(TDBAH, (tdba >> 32));
1504 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1505 ew32(TDT, 0);
1506 ew32(TDH, 0);
1507 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1508 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1509 break;
1512 /* Set the default values for the Tx Inter Packet Gap timer */
1513 if ((hw->media_type == e1000_media_type_fiber ||
1514 hw->media_type == e1000_media_type_internal_serdes))
1515 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1516 else
1517 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1519 switch (hw->mac_type) {
1520 case e1000_82542_rev2_0:
1521 case e1000_82542_rev2_1:
1522 tipg = DEFAULT_82542_TIPG_IPGT;
1523 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1524 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1525 break;
1526 default:
1527 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1528 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1529 break;
1531 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1532 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1533 ew32(TIPG, tipg);
1535 /* Set the Tx Interrupt Delay register */
1537 ew32(TIDV, adapter->tx_int_delay);
1538 if (hw->mac_type >= e1000_82540)
1539 ew32(TADV, adapter->tx_abs_int_delay);
1541 /* Program the Transmit Control Register */
1543 tctl = er32(TCTL);
1544 tctl &= ~E1000_TCTL_CT;
1545 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1546 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1548 e1000_config_collision_dist(hw);
1550 /* Setup Transmit Descriptor Settings for eop descriptor */
1551 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1553 /* only set IDE if we are delaying interrupts using the timers */
1554 if (adapter->tx_int_delay)
1555 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1557 if (hw->mac_type < e1000_82543)
1558 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1559 else
1560 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1562 if (hw->mac_type == e1000_82544 &&
1563 hw->bus_type == e1000_bus_type_pcix)
1564 adapter->pcix_82544 = 1;
1566 ew32(TCTL, tctl);
1571 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1572 * @adapter: board private structure
1573 * @rxdr: rx descriptor ring (for a specific queue) to setup
1575 * Returns 0 on success, negative on failure
1578 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1579 struct e1000_rx_ring *rxdr)
1581 struct pci_dev *pdev = adapter->pdev;
1582 int size, desc_len;
1584 size = sizeof(struct e1000_buffer) * rxdr->count;
1585 rxdr->buffer_info = vmalloc(size);
1586 if (!rxdr->buffer_info) {
1587 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1588 "ring\n");
1589 return -ENOMEM;
1591 memset(rxdr->buffer_info, 0, size);
1593 desc_len = sizeof(struct e1000_rx_desc);
1595 /* Round up to nearest 4K */
1597 rxdr->size = rxdr->count * desc_len;
1598 rxdr->size = ALIGN(rxdr->size, 4096);
1600 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1601 GFP_KERNEL);
1603 if (!rxdr->desc) {
1604 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1605 "ring\n");
1606 setup_rx_desc_die:
1607 vfree(rxdr->buffer_info);
1608 return -ENOMEM;
1611 /* Fix for errata 23, can't cross 64kB boundary */
1612 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1613 void *olddesc = rxdr->desc;
1614 dma_addr_t olddma = rxdr->dma;
1615 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1616 rxdr->size, rxdr->desc);
1617 /* Try again, without freeing the previous */
1618 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1619 &rxdr->dma, GFP_KERNEL);
1620 /* Failed allocation, critical failure */
1621 if (!rxdr->desc) {
1622 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1623 olddma);
1624 e_err(probe, "Unable to allocate memory for the Rx "
1625 "descriptor ring\n");
1626 goto setup_rx_desc_die;
1629 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1630 /* give up */
1631 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1632 rxdr->dma);
1633 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1634 olddma);
1635 e_err(probe, "Unable to allocate aligned memory for "
1636 "the Rx descriptor ring\n");
1637 goto setup_rx_desc_die;
1638 } else {
1639 /* Free old allocation, new allocation was successful */
1640 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1641 olddma);
1644 memset(rxdr->desc, 0, rxdr->size);
1646 rxdr->next_to_clean = 0;
1647 rxdr->next_to_use = 0;
1648 rxdr->rx_skb_top = NULL;
1650 return 0;
1654 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1655 * (Descriptors) for all queues
1656 * @adapter: board private structure
1658 * Return 0 on success, negative on failure
1661 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1663 int i, err = 0;
1665 for (i = 0; i < adapter->num_rx_queues; i++) {
1666 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1667 if (err) {
1668 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1669 for (i-- ; i >= 0; i--)
1670 e1000_free_rx_resources(adapter,
1671 &adapter->rx_ring[i]);
1672 break;
1676 return err;
1680 * e1000_setup_rctl - configure the receive control registers
1681 * @adapter: Board private structure
1683 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1685 struct e1000_hw *hw = &adapter->hw;
1686 u32 rctl;
1688 rctl = er32(RCTL);
1690 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1692 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1693 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1694 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1696 if (hw->tbi_compatibility_on == 1)
1697 rctl |= E1000_RCTL_SBP;
1698 else
1699 rctl &= ~E1000_RCTL_SBP;
1701 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1702 rctl &= ~E1000_RCTL_LPE;
1703 else
1704 rctl |= E1000_RCTL_LPE;
1706 /* Setup buffer sizes */
1707 rctl &= ~E1000_RCTL_SZ_4096;
1708 rctl |= E1000_RCTL_BSEX;
1709 switch (adapter->rx_buffer_len) {
1710 case E1000_RXBUFFER_2048:
1711 default:
1712 rctl |= E1000_RCTL_SZ_2048;
1713 rctl &= ~E1000_RCTL_BSEX;
1714 break;
1715 case E1000_RXBUFFER_4096:
1716 rctl |= E1000_RCTL_SZ_4096;
1717 break;
1718 case E1000_RXBUFFER_8192:
1719 rctl |= E1000_RCTL_SZ_8192;
1720 break;
1721 case E1000_RXBUFFER_16384:
1722 rctl |= E1000_RCTL_SZ_16384;
1723 break;
1726 ew32(RCTL, rctl);
1730 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1731 * @adapter: board private structure
1733 * Configure the Rx unit of the MAC after a reset.
1736 static void e1000_configure_rx(struct e1000_adapter *adapter)
1738 u64 rdba;
1739 struct e1000_hw *hw = &adapter->hw;
1740 u32 rdlen, rctl, rxcsum;
1742 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1743 rdlen = adapter->rx_ring[0].count *
1744 sizeof(struct e1000_rx_desc);
1745 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1746 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1747 } else {
1748 rdlen = adapter->rx_ring[0].count *
1749 sizeof(struct e1000_rx_desc);
1750 adapter->clean_rx = e1000_clean_rx_irq;
1751 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1754 /* disable receives while setting up the descriptors */
1755 rctl = er32(RCTL);
1756 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1758 /* set the Receive Delay Timer Register */
1759 ew32(RDTR, adapter->rx_int_delay);
1761 if (hw->mac_type >= e1000_82540) {
1762 ew32(RADV, adapter->rx_abs_int_delay);
1763 if (adapter->itr_setting != 0)
1764 ew32(ITR, 1000000000 / (adapter->itr * 256));
1767 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1768 * the Base and Length of the Rx Descriptor Ring */
1769 switch (adapter->num_rx_queues) {
1770 case 1:
1771 default:
1772 rdba = adapter->rx_ring[0].dma;
1773 ew32(RDLEN, rdlen);
1774 ew32(RDBAH, (rdba >> 32));
1775 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1776 ew32(RDT, 0);
1777 ew32(RDH, 0);
1778 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1779 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1780 break;
1783 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1784 if (hw->mac_type >= e1000_82543) {
1785 rxcsum = er32(RXCSUM);
1786 if (adapter->rx_csum)
1787 rxcsum |= E1000_RXCSUM_TUOFL;
1788 else
1789 /* don't need to clear IPPCSE as it defaults to 0 */
1790 rxcsum &= ~E1000_RXCSUM_TUOFL;
1791 ew32(RXCSUM, rxcsum);
1794 /* Enable Receives */
1795 ew32(RCTL, rctl);
1799 * e1000_free_tx_resources - Free Tx Resources per Queue
1800 * @adapter: board private structure
1801 * @tx_ring: Tx descriptor ring for a specific queue
1803 * Free all transmit software resources
1806 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1807 struct e1000_tx_ring *tx_ring)
1809 struct pci_dev *pdev = adapter->pdev;
1811 e1000_clean_tx_ring(adapter, tx_ring);
1813 vfree(tx_ring->buffer_info);
1814 tx_ring->buffer_info = NULL;
1816 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1817 tx_ring->dma);
1819 tx_ring->desc = NULL;
1823 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1824 * @adapter: board private structure
1826 * Free all transmit software resources
1829 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1831 int i;
1833 for (i = 0; i < adapter->num_tx_queues; i++)
1834 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1837 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1838 struct e1000_buffer *buffer_info)
1840 if (buffer_info->dma) {
1841 if (buffer_info->mapped_as_page)
1842 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1843 buffer_info->length, DMA_TO_DEVICE);
1844 else
1845 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1846 buffer_info->length,
1847 DMA_TO_DEVICE);
1848 buffer_info->dma = 0;
1850 if (buffer_info->skb) {
1851 dev_kfree_skb_any(buffer_info->skb);
1852 buffer_info->skb = NULL;
1854 buffer_info->time_stamp = 0;
1855 /* buffer_info must be completely set up in the transmit path */
1859 * e1000_clean_tx_ring - Free Tx Buffers
1860 * @adapter: board private structure
1861 * @tx_ring: ring to be cleaned
1864 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1865 struct e1000_tx_ring *tx_ring)
1867 struct e1000_hw *hw = &adapter->hw;
1868 struct e1000_buffer *buffer_info;
1869 unsigned long size;
1870 unsigned int i;
1872 /* Free all the Tx ring sk_buffs */
1874 for (i = 0; i < tx_ring->count; i++) {
1875 buffer_info = &tx_ring->buffer_info[i];
1876 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1879 size = sizeof(struct e1000_buffer) * tx_ring->count;
1880 memset(tx_ring->buffer_info, 0, size);
1882 /* Zero out the descriptor ring */
1884 memset(tx_ring->desc, 0, tx_ring->size);
1886 tx_ring->next_to_use = 0;
1887 tx_ring->next_to_clean = 0;
1888 tx_ring->last_tx_tso = 0;
1890 writel(0, hw->hw_addr + tx_ring->tdh);
1891 writel(0, hw->hw_addr + tx_ring->tdt);
1895 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1896 * @adapter: board private structure
1899 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1901 int i;
1903 for (i = 0; i < adapter->num_tx_queues; i++)
1904 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1908 * e1000_free_rx_resources - Free Rx Resources
1909 * @adapter: board private structure
1910 * @rx_ring: ring to clean the resources from
1912 * Free all receive software resources
1915 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1916 struct e1000_rx_ring *rx_ring)
1918 struct pci_dev *pdev = adapter->pdev;
1920 e1000_clean_rx_ring(adapter, rx_ring);
1922 vfree(rx_ring->buffer_info);
1923 rx_ring->buffer_info = NULL;
1925 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1926 rx_ring->dma);
1928 rx_ring->desc = NULL;
1932 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1933 * @adapter: board private structure
1935 * Free all receive software resources
1938 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1940 int i;
1942 for (i = 0; i < adapter->num_rx_queues; i++)
1943 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1947 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1948 * @adapter: board private structure
1949 * @rx_ring: ring to free buffers from
1952 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1953 struct e1000_rx_ring *rx_ring)
1955 struct e1000_hw *hw = &adapter->hw;
1956 struct e1000_buffer *buffer_info;
1957 struct pci_dev *pdev = adapter->pdev;
1958 unsigned long size;
1959 unsigned int i;
1961 /* Free all the Rx ring sk_buffs */
1962 for (i = 0; i < rx_ring->count; i++) {
1963 buffer_info = &rx_ring->buffer_info[i];
1964 if (buffer_info->dma &&
1965 adapter->clean_rx == e1000_clean_rx_irq) {
1966 dma_unmap_single(&pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_FROM_DEVICE);
1969 } else if (buffer_info->dma &&
1970 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1971 dma_unmap_page(&pdev->dev, buffer_info->dma,
1972 buffer_info->length,
1973 DMA_FROM_DEVICE);
1976 buffer_info->dma = 0;
1977 if (buffer_info->page) {
1978 put_page(buffer_info->page);
1979 buffer_info->page = NULL;
1981 if (buffer_info->skb) {
1982 dev_kfree_skb(buffer_info->skb);
1983 buffer_info->skb = NULL;
1987 /* there also may be some cached data from a chained receive */
1988 if (rx_ring->rx_skb_top) {
1989 dev_kfree_skb(rx_ring->rx_skb_top);
1990 rx_ring->rx_skb_top = NULL;
1993 size = sizeof(struct e1000_buffer) * rx_ring->count;
1994 memset(rx_ring->buffer_info, 0, size);
1996 /* Zero out the descriptor ring */
1997 memset(rx_ring->desc, 0, rx_ring->size);
1999 rx_ring->next_to_clean = 0;
2000 rx_ring->next_to_use = 0;
2002 writel(0, hw->hw_addr + rx_ring->rdh);
2003 writel(0, hw->hw_addr + rx_ring->rdt);
2007 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2008 * @adapter: board private structure
2011 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2013 int i;
2015 for (i = 0; i < adapter->num_rx_queues; i++)
2016 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2019 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2020 * and memory write and invalidate disabled for certain operations
2022 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2024 struct e1000_hw *hw = &adapter->hw;
2025 struct net_device *netdev = adapter->netdev;
2026 u32 rctl;
2028 e1000_pci_clear_mwi(hw);
2030 rctl = er32(RCTL);
2031 rctl |= E1000_RCTL_RST;
2032 ew32(RCTL, rctl);
2033 E1000_WRITE_FLUSH();
2034 mdelay(5);
2036 if (netif_running(netdev))
2037 e1000_clean_all_rx_rings(adapter);
2040 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2042 struct e1000_hw *hw = &adapter->hw;
2043 struct net_device *netdev = adapter->netdev;
2044 u32 rctl;
2046 rctl = er32(RCTL);
2047 rctl &= ~E1000_RCTL_RST;
2048 ew32(RCTL, rctl);
2049 E1000_WRITE_FLUSH();
2050 mdelay(5);
2052 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2053 e1000_pci_set_mwi(hw);
2055 if (netif_running(netdev)) {
2056 /* No need to loop, because 82542 supports only 1 queue */
2057 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2058 e1000_configure_rx(adapter);
2059 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2064 * e1000_set_mac - Change the Ethernet Address of the NIC
2065 * @netdev: network interface device structure
2066 * @p: pointer to an address structure
2068 * Returns 0 on success, negative on failure
2071 static int e1000_set_mac(struct net_device *netdev, void *p)
2073 struct e1000_adapter *adapter = netdev_priv(netdev);
2074 struct e1000_hw *hw = &adapter->hw;
2075 struct sockaddr *addr = p;
2077 if (!is_valid_ether_addr(addr->sa_data))
2078 return -EADDRNOTAVAIL;
2080 /* 82542 2.0 needs to be in reset to write receive address registers */
2082 if (hw->mac_type == e1000_82542_rev2_0)
2083 e1000_enter_82542_rst(adapter);
2085 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2086 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2088 e1000_rar_set(hw, hw->mac_addr, 0);
2090 if (hw->mac_type == e1000_82542_rev2_0)
2091 e1000_leave_82542_rst(adapter);
2093 return 0;
2097 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2098 * @netdev: network interface device structure
2100 * The set_rx_mode entry point is called whenever the unicast or multicast
2101 * address lists or the network interface flags are updated. This routine is
2102 * responsible for configuring the hardware for proper unicast, multicast,
2103 * promiscuous mode, and all-multi behavior.
2106 static void e1000_set_rx_mode(struct net_device *netdev)
2108 struct e1000_adapter *adapter = netdev_priv(netdev);
2109 struct e1000_hw *hw = &adapter->hw;
2110 struct netdev_hw_addr *ha;
2111 bool use_uc = false;
2112 u32 rctl;
2113 u32 hash_value;
2114 int i, rar_entries = E1000_RAR_ENTRIES;
2115 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2116 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2118 if (!mcarray) {
2119 e_err(probe, "memory allocation failed\n");
2120 return;
2123 /* Check for Promiscuous and All Multicast modes */
2125 rctl = er32(RCTL);
2127 if (netdev->flags & IFF_PROMISC) {
2128 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2129 rctl &= ~E1000_RCTL_VFE;
2130 } else {
2131 if (netdev->flags & IFF_ALLMULTI)
2132 rctl |= E1000_RCTL_MPE;
2133 else
2134 rctl &= ~E1000_RCTL_MPE;
2135 /* Enable VLAN filter if there is a VLAN */
2136 if (adapter->vlgrp)
2137 rctl |= E1000_RCTL_VFE;
2140 if (netdev_uc_count(netdev) > rar_entries - 1) {
2141 rctl |= E1000_RCTL_UPE;
2142 } else if (!(netdev->flags & IFF_PROMISC)) {
2143 rctl &= ~E1000_RCTL_UPE;
2144 use_uc = true;
2147 ew32(RCTL, rctl);
2149 /* 82542 2.0 needs to be in reset to write receive address registers */
2151 if (hw->mac_type == e1000_82542_rev2_0)
2152 e1000_enter_82542_rst(adapter);
2154 /* load the first 14 addresses into the exact filters 1-14. Unicast
2155 * addresses take precedence to avoid disabling unicast filtering
2156 * when possible.
2158 * RAR 0 is used for the station MAC adddress
2159 * if there are not 14 addresses, go ahead and clear the filters
2161 i = 1;
2162 if (use_uc)
2163 netdev_for_each_uc_addr(ha, netdev) {
2164 if (i == rar_entries)
2165 break;
2166 e1000_rar_set(hw, ha->addr, i++);
2169 netdev_for_each_mc_addr(ha, netdev) {
2170 if (i == rar_entries) {
2171 /* load any remaining addresses into the hash table */
2172 u32 hash_reg, hash_bit, mta;
2173 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2174 hash_reg = (hash_value >> 5) & 0x7F;
2175 hash_bit = hash_value & 0x1F;
2176 mta = (1 << hash_bit);
2177 mcarray[hash_reg] |= mta;
2178 } else {
2179 e1000_rar_set(hw, ha->addr, i++);
2183 for (; i < rar_entries; i++) {
2184 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2185 E1000_WRITE_FLUSH();
2186 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2187 E1000_WRITE_FLUSH();
2190 /* write the hash table completely, write from bottom to avoid
2191 * both stupid write combining chipsets, and flushing each write */
2192 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2194 * If we are on an 82544 has an errata where writing odd
2195 * offsets overwrites the previous even offset, but writing
2196 * backwards over the range solves the issue by always
2197 * writing the odd offset first
2199 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2201 E1000_WRITE_FLUSH();
2203 if (hw->mac_type == e1000_82542_rev2_0)
2204 e1000_leave_82542_rst(adapter);
2206 kfree(mcarray);
2209 /* Need to wait a few seconds after link up to get diagnostic information from
2210 * the phy */
2212 static void e1000_update_phy_info(unsigned long data)
2214 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2215 struct e1000_hw *hw = &adapter->hw;
2216 e1000_phy_get_info(hw, &adapter->phy_info);
2220 * e1000_82547_tx_fifo_stall - Timer Call-back
2221 * @data: pointer to adapter cast into an unsigned long
2224 static void e1000_82547_tx_fifo_stall(unsigned long data)
2226 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2227 struct e1000_hw *hw = &adapter->hw;
2228 struct net_device *netdev = adapter->netdev;
2229 u32 tctl;
2231 if (atomic_read(&adapter->tx_fifo_stall)) {
2232 if ((er32(TDT) == er32(TDH)) &&
2233 (er32(TDFT) == er32(TDFH)) &&
2234 (er32(TDFTS) == er32(TDFHS))) {
2235 tctl = er32(TCTL);
2236 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2237 ew32(TDFT, adapter->tx_head_addr);
2238 ew32(TDFH, adapter->tx_head_addr);
2239 ew32(TDFTS, adapter->tx_head_addr);
2240 ew32(TDFHS, adapter->tx_head_addr);
2241 ew32(TCTL, tctl);
2242 E1000_WRITE_FLUSH();
2244 adapter->tx_fifo_head = 0;
2245 atomic_set(&adapter->tx_fifo_stall, 0);
2246 netif_wake_queue(netdev);
2247 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2248 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2253 bool e1000_has_link(struct e1000_adapter *adapter)
2255 struct e1000_hw *hw = &adapter->hw;
2256 bool link_active = false;
2258 /* get_link_status is set on LSC (link status) interrupt or
2259 * rx sequence error interrupt. get_link_status will stay
2260 * false until the e1000_check_for_link establishes link
2261 * for copper adapters ONLY
2263 switch (hw->media_type) {
2264 case e1000_media_type_copper:
2265 if (hw->get_link_status) {
2266 e1000_check_for_link(hw);
2267 link_active = !hw->get_link_status;
2268 } else {
2269 link_active = true;
2271 break;
2272 case e1000_media_type_fiber:
2273 e1000_check_for_link(hw);
2274 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2275 break;
2276 case e1000_media_type_internal_serdes:
2277 e1000_check_for_link(hw);
2278 link_active = hw->serdes_has_link;
2279 break;
2280 default:
2281 break;
2284 return link_active;
2288 * e1000_watchdog - Timer Call-back
2289 * @data: pointer to adapter cast into an unsigned long
2291 static void e1000_watchdog(unsigned long data)
2293 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2294 struct e1000_hw *hw = &adapter->hw;
2295 struct net_device *netdev = adapter->netdev;
2296 struct e1000_tx_ring *txdr = adapter->tx_ring;
2297 u32 link, tctl;
2299 link = e1000_has_link(adapter);
2300 if ((netif_carrier_ok(netdev)) && link)
2301 goto link_up;
2303 if (link) {
2304 if (!netif_carrier_ok(netdev)) {
2305 u32 ctrl;
2306 bool txb2b = true;
2307 /* update snapshot of PHY registers on LSC */
2308 e1000_get_speed_and_duplex(hw,
2309 &adapter->link_speed,
2310 &adapter->link_duplex);
2312 ctrl = er32(CTRL);
2313 pr_info("%s NIC Link is Up %d Mbps %s, "
2314 "Flow Control: %s\n",
2315 netdev->name,
2316 adapter->link_speed,
2317 adapter->link_duplex == FULL_DUPLEX ?
2318 "Full Duplex" : "Half Duplex",
2319 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2320 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2321 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2322 E1000_CTRL_TFCE) ? "TX" : "None")));
2324 /* adjust timeout factor according to speed/duplex */
2325 adapter->tx_timeout_factor = 1;
2326 switch (adapter->link_speed) {
2327 case SPEED_10:
2328 txb2b = false;
2329 adapter->tx_timeout_factor = 16;
2330 break;
2331 case SPEED_100:
2332 txb2b = false;
2333 /* maybe add some timeout factor ? */
2334 break;
2337 /* enable transmits in the hardware */
2338 tctl = er32(TCTL);
2339 tctl |= E1000_TCTL_EN;
2340 ew32(TCTL, tctl);
2342 netif_carrier_on(netdev);
2343 if (!test_bit(__E1000_DOWN, &adapter->flags))
2344 mod_timer(&adapter->phy_info_timer,
2345 round_jiffies(jiffies + 2 * HZ));
2346 adapter->smartspeed = 0;
2348 } else {
2349 if (netif_carrier_ok(netdev)) {
2350 adapter->link_speed = 0;
2351 adapter->link_duplex = 0;
2352 pr_info("%s NIC Link is Down\n",
2353 netdev->name);
2354 netif_carrier_off(netdev);
2356 if (!test_bit(__E1000_DOWN, &adapter->flags))
2357 mod_timer(&adapter->phy_info_timer,
2358 round_jiffies(jiffies + 2 * HZ));
2361 e1000_smartspeed(adapter);
2364 link_up:
2365 e1000_update_stats(adapter);
2367 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2368 adapter->tpt_old = adapter->stats.tpt;
2369 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2370 adapter->colc_old = adapter->stats.colc;
2372 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2373 adapter->gorcl_old = adapter->stats.gorcl;
2374 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2375 adapter->gotcl_old = adapter->stats.gotcl;
2377 e1000_update_adaptive(hw);
2379 if (!netif_carrier_ok(netdev)) {
2380 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2381 /* We've lost link, so the controller stops DMA,
2382 * but we've got queued Tx work that's never going
2383 * to get done, so reset controller to flush Tx.
2384 * (Do the reset outside of interrupt context). */
2385 adapter->tx_timeout_count++;
2386 schedule_work(&adapter->reset_task);
2387 /* return immediately since reset is imminent */
2388 return;
2392 /* Simple mode for Interrupt Throttle Rate (ITR) */
2393 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2395 * Symmetric Tx/Rx gets a reduced ITR=2000;
2396 * Total asymmetrical Tx or Rx gets ITR=8000;
2397 * everyone else is between 2000-8000.
2399 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2400 u32 dif = (adapter->gotcl > adapter->gorcl ?
2401 adapter->gotcl - adapter->gorcl :
2402 adapter->gorcl - adapter->gotcl) / 10000;
2403 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2405 ew32(ITR, 1000000000 / (itr * 256));
2408 /* Cause software interrupt to ensure rx ring is cleaned */
2409 ew32(ICS, E1000_ICS_RXDMT0);
2411 /* Force detection of hung controller every watchdog period */
2412 adapter->detect_tx_hung = true;
2414 /* Reset the timer */
2415 if (!test_bit(__E1000_DOWN, &adapter->flags))
2416 mod_timer(&adapter->watchdog_timer,
2417 round_jiffies(jiffies + 2 * HZ));
2420 enum latency_range {
2421 lowest_latency = 0,
2422 low_latency = 1,
2423 bulk_latency = 2,
2424 latency_invalid = 255
2428 * e1000_update_itr - update the dynamic ITR value based on statistics
2429 * @adapter: pointer to adapter
2430 * @itr_setting: current adapter->itr
2431 * @packets: the number of packets during this measurement interval
2432 * @bytes: the number of bytes during this measurement interval
2434 * Stores a new ITR value based on packets and byte
2435 * counts during the last interrupt. The advantage of per interrupt
2436 * computation is faster updates and more accurate ITR for the current
2437 * traffic pattern. Constants in this function were computed
2438 * based on theoretical maximum wire speed and thresholds were set based
2439 * on testing data as well as attempting to minimize response time
2440 * while increasing bulk throughput.
2441 * this functionality is controlled by the InterruptThrottleRate module
2442 * parameter (see e1000_param.c)
2444 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2445 u16 itr_setting, int packets, int bytes)
2447 unsigned int retval = itr_setting;
2448 struct e1000_hw *hw = &adapter->hw;
2450 if (unlikely(hw->mac_type < e1000_82540))
2451 goto update_itr_done;
2453 if (packets == 0)
2454 goto update_itr_done;
2456 switch (itr_setting) {
2457 case lowest_latency:
2458 /* jumbo frames get bulk treatment*/
2459 if (bytes/packets > 8000)
2460 retval = bulk_latency;
2461 else if ((packets < 5) && (bytes > 512))
2462 retval = low_latency;
2463 break;
2464 case low_latency: /* 50 usec aka 20000 ints/s */
2465 if (bytes > 10000) {
2466 /* jumbo frames need bulk latency setting */
2467 if (bytes/packets > 8000)
2468 retval = bulk_latency;
2469 else if ((packets < 10) || ((bytes/packets) > 1200))
2470 retval = bulk_latency;
2471 else if ((packets > 35))
2472 retval = lowest_latency;
2473 } else if (bytes/packets > 2000)
2474 retval = bulk_latency;
2475 else if (packets <= 2 && bytes < 512)
2476 retval = lowest_latency;
2477 break;
2478 case bulk_latency: /* 250 usec aka 4000 ints/s */
2479 if (bytes > 25000) {
2480 if (packets > 35)
2481 retval = low_latency;
2482 } else if (bytes < 6000) {
2483 retval = low_latency;
2485 break;
2488 update_itr_done:
2489 return retval;
2492 static void e1000_set_itr(struct e1000_adapter *adapter)
2494 struct e1000_hw *hw = &adapter->hw;
2495 u16 current_itr;
2496 u32 new_itr = adapter->itr;
2498 if (unlikely(hw->mac_type < e1000_82540))
2499 return;
2501 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2502 if (unlikely(adapter->link_speed != SPEED_1000)) {
2503 current_itr = 0;
2504 new_itr = 4000;
2505 goto set_itr_now;
2508 adapter->tx_itr = e1000_update_itr(adapter,
2509 adapter->tx_itr,
2510 adapter->total_tx_packets,
2511 adapter->total_tx_bytes);
2512 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2513 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2514 adapter->tx_itr = low_latency;
2516 adapter->rx_itr = e1000_update_itr(adapter,
2517 adapter->rx_itr,
2518 adapter->total_rx_packets,
2519 adapter->total_rx_bytes);
2520 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2521 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2522 adapter->rx_itr = low_latency;
2524 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2526 switch (current_itr) {
2527 /* counts and packets in update_itr are dependent on these numbers */
2528 case lowest_latency:
2529 new_itr = 70000;
2530 break;
2531 case low_latency:
2532 new_itr = 20000; /* aka hwitr = ~200 */
2533 break;
2534 case bulk_latency:
2535 new_itr = 4000;
2536 break;
2537 default:
2538 break;
2541 set_itr_now:
2542 if (new_itr != adapter->itr) {
2543 /* this attempts to bias the interrupt rate towards Bulk
2544 * by adding intermediate steps when interrupt rate is
2545 * increasing */
2546 new_itr = new_itr > adapter->itr ?
2547 min(adapter->itr + (new_itr >> 2), new_itr) :
2548 new_itr;
2549 adapter->itr = new_itr;
2550 ew32(ITR, 1000000000 / (new_itr * 256));
2554 #define E1000_TX_FLAGS_CSUM 0x00000001
2555 #define E1000_TX_FLAGS_VLAN 0x00000002
2556 #define E1000_TX_FLAGS_TSO 0x00000004
2557 #define E1000_TX_FLAGS_IPV4 0x00000008
2558 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2559 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2561 static int e1000_tso(struct e1000_adapter *adapter,
2562 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2564 struct e1000_context_desc *context_desc;
2565 struct e1000_buffer *buffer_info;
2566 unsigned int i;
2567 u32 cmd_length = 0;
2568 u16 ipcse = 0, tucse, mss;
2569 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2570 int err;
2572 if (skb_is_gso(skb)) {
2573 if (skb_header_cloned(skb)) {
2574 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2575 if (err)
2576 return err;
2579 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2580 mss = skb_shinfo(skb)->gso_size;
2581 if (skb->protocol == htons(ETH_P_IP)) {
2582 struct iphdr *iph = ip_hdr(skb);
2583 iph->tot_len = 0;
2584 iph->check = 0;
2585 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2586 iph->daddr, 0,
2587 IPPROTO_TCP,
2589 cmd_length = E1000_TXD_CMD_IP;
2590 ipcse = skb_transport_offset(skb) - 1;
2591 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2592 ipv6_hdr(skb)->payload_len = 0;
2593 tcp_hdr(skb)->check =
2594 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2595 &ipv6_hdr(skb)->daddr,
2596 0, IPPROTO_TCP, 0);
2597 ipcse = 0;
2599 ipcss = skb_network_offset(skb);
2600 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2601 tucss = skb_transport_offset(skb);
2602 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2603 tucse = 0;
2605 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2606 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2608 i = tx_ring->next_to_use;
2609 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2610 buffer_info = &tx_ring->buffer_info[i];
2612 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2613 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2614 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2615 context_desc->upper_setup.tcp_fields.tucss = tucss;
2616 context_desc->upper_setup.tcp_fields.tucso = tucso;
2617 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2618 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2619 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2620 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2622 buffer_info->time_stamp = jiffies;
2623 buffer_info->next_to_watch = i;
2625 if (++i == tx_ring->count) i = 0;
2626 tx_ring->next_to_use = i;
2628 return true;
2630 return false;
2633 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2634 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2636 struct e1000_context_desc *context_desc;
2637 struct e1000_buffer *buffer_info;
2638 unsigned int i;
2639 u8 css;
2640 u32 cmd_len = E1000_TXD_CMD_DEXT;
2642 if (skb->ip_summed != CHECKSUM_PARTIAL)
2643 return false;
2645 switch (skb->protocol) {
2646 case cpu_to_be16(ETH_P_IP):
2647 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2648 cmd_len |= E1000_TXD_CMD_TCP;
2649 break;
2650 case cpu_to_be16(ETH_P_IPV6):
2651 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2652 cmd_len |= E1000_TXD_CMD_TCP;
2653 break;
2654 default:
2655 if (unlikely(net_ratelimit()))
2656 e_warn(drv, "checksum_partial proto=%x!\n",
2657 skb->protocol);
2658 break;
2661 css = skb_transport_offset(skb);
2663 i = tx_ring->next_to_use;
2664 buffer_info = &tx_ring->buffer_info[i];
2665 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2667 context_desc->lower_setup.ip_config = 0;
2668 context_desc->upper_setup.tcp_fields.tucss = css;
2669 context_desc->upper_setup.tcp_fields.tucso =
2670 css + skb->csum_offset;
2671 context_desc->upper_setup.tcp_fields.tucse = 0;
2672 context_desc->tcp_seg_setup.data = 0;
2673 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2675 buffer_info->time_stamp = jiffies;
2676 buffer_info->next_to_watch = i;
2678 if (unlikely(++i == tx_ring->count)) i = 0;
2679 tx_ring->next_to_use = i;
2681 return true;
2684 #define E1000_MAX_TXD_PWR 12
2685 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2687 static int e1000_tx_map(struct e1000_adapter *adapter,
2688 struct e1000_tx_ring *tx_ring,
2689 struct sk_buff *skb, unsigned int first,
2690 unsigned int max_per_txd, unsigned int nr_frags,
2691 unsigned int mss)
2693 struct e1000_hw *hw = &adapter->hw;
2694 struct pci_dev *pdev = adapter->pdev;
2695 struct e1000_buffer *buffer_info;
2696 unsigned int len = skb_headlen(skb);
2697 unsigned int offset = 0, size, count = 0, i;
2698 unsigned int f;
2700 i = tx_ring->next_to_use;
2702 while (len) {
2703 buffer_info = &tx_ring->buffer_info[i];
2704 size = min(len, max_per_txd);
2705 if (!skb->data_len && tx_ring->last_tx_tso &&
2706 !skb_is_gso(skb)) {
2707 tx_ring->last_tx_tso = 0;
2708 size -= 4;
2711 if (unlikely(mss && !nr_frags && size == len && size > 8))
2712 size -= 4;
2713 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2714 (size > 2015) && count == 0))
2715 size = 2015;
2717 if (unlikely(adapter->pcix_82544 &&
2718 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2719 size > 4))
2720 size -= 4;
2722 buffer_info->length = size;
2723 /* set time_stamp *before* dma to help avoid a possible race */
2724 buffer_info->time_stamp = jiffies;
2725 buffer_info->mapped_as_page = false;
2726 buffer_info->dma = dma_map_single(&pdev->dev,
2727 skb->data + offset,
2728 size, DMA_TO_DEVICE);
2729 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2730 goto dma_error;
2731 buffer_info->next_to_watch = i;
2733 len -= size;
2734 offset += size;
2735 count++;
2736 if (len) {
2737 i++;
2738 if (unlikely(i == tx_ring->count))
2739 i = 0;
2743 for (f = 0; f < nr_frags; f++) {
2744 struct skb_frag_struct *frag;
2746 frag = &skb_shinfo(skb)->frags[f];
2747 len = frag->size;
2748 offset = frag->page_offset;
2750 while (len) {
2751 i++;
2752 if (unlikely(i == tx_ring->count))
2753 i = 0;
2755 buffer_info = &tx_ring->buffer_info[i];
2756 size = min(len, max_per_txd);
2757 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2758 size -= 4;
2759 if (unlikely(adapter->pcix_82544 &&
2760 !((unsigned long)(page_to_phys(frag->page) + offset
2761 + size - 1) & 4) &&
2762 size > 4))
2763 size -= 4;
2765 buffer_info->length = size;
2766 buffer_info->time_stamp = jiffies;
2767 buffer_info->mapped_as_page = true;
2768 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2769 offset, size,
2770 DMA_TO_DEVICE);
2771 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2772 goto dma_error;
2773 buffer_info->next_to_watch = i;
2775 len -= size;
2776 offset += size;
2777 count++;
2781 tx_ring->buffer_info[i].skb = skb;
2782 tx_ring->buffer_info[first].next_to_watch = i;
2784 return count;
2786 dma_error:
2787 dev_err(&pdev->dev, "TX DMA map failed\n");
2788 buffer_info->dma = 0;
2789 if (count)
2790 count--;
2792 while (count--) {
2793 if (i==0)
2794 i += tx_ring->count;
2795 i--;
2796 buffer_info = &tx_ring->buffer_info[i];
2797 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2800 return 0;
2803 static void e1000_tx_queue(struct e1000_adapter *adapter,
2804 struct e1000_tx_ring *tx_ring, int tx_flags,
2805 int count)
2807 struct e1000_hw *hw = &adapter->hw;
2808 struct e1000_tx_desc *tx_desc = NULL;
2809 struct e1000_buffer *buffer_info;
2810 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2811 unsigned int i;
2813 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2814 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2815 E1000_TXD_CMD_TSE;
2816 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2818 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2819 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2822 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2823 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2824 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2827 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2828 txd_lower |= E1000_TXD_CMD_VLE;
2829 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2832 i = tx_ring->next_to_use;
2834 while (count--) {
2835 buffer_info = &tx_ring->buffer_info[i];
2836 tx_desc = E1000_TX_DESC(*tx_ring, i);
2837 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2838 tx_desc->lower.data =
2839 cpu_to_le32(txd_lower | buffer_info->length);
2840 tx_desc->upper.data = cpu_to_le32(txd_upper);
2841 if (unlikely(++i == tx_ring->count)) i = 0;
2844 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2846 /* Force memory writes to complete before letting h/w
2847 * know there are new descriptors to fetch. (Only
2848 * applicable for weak-ordered memory model archs,
2849 * such as IA-64). */
2850 wmb();
2852 tx_ring->next_to_use = i;
2853 writel(i, hw->hw_addr + tx_ring->tdt);
2854 /* we need this if more than one processor can write to our tail
2855 * at a time, it syncronizes IO on IA64/Altix systems */
2856 mmiowb();
2860 #define E1000_FIFO_HDR 0x10
2861 #define E1000_82547_PAD_LEN 0x3E0
2863 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2864 struct sk_buff *skb)
2866 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2867 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2869 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2871 if (adapter->link_duplex != HALF_DUPLEX)
2872 goto no_fifo_stall_required;
2874 if (atomic_read(&adapter->tx_fifo_stall))
2875 return 1;
2877 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2878 atomic_set(&adapter->tx_fifo_stall, 1);
2879 return 1;
2882 no_fifo_stall_required:
2883 adapter->tx_fifo_head += skb_fifo_len;
2884 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2885 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2886 return 0;
2889 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2891 struct e1000_adapter *adapter = netdev_priv(netdev);
2892 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2894 netif_stop_queue(netdev);
2895 /* Herbert's original patch had:
2896 * smp_mb__after_netif_stop_queue();
2897 * but since that doesn't exist yet, just open code it. */
2898 smp_mb();
2900 /* We need to check again in a case another CPU has just
2901 * made room available. */
2902 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2903 return -EBUSY;
2905 /* A reprieve! */
2906 netif_start_queue(netdev);
2907 ++adapter->restart_queue;
2908 return 0;
2911 static int e1000_maybe_stop_tx(struct net_device *netdev,
2912 struct e1000_tx_ring *tx_ring, int size)
2914 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2915 return 0;
2916 return __e1000_maybe_stop_tx(netdev, size);
2919 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2920 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2921 struct net_device *netdev)
2923 struct e1000_adapter *adapter = netdev_priv(netdev);
2924 struct e1000_hw *hw = &adapter->hw;
2925 struct e1000_tx_ring *tx_ring;
2926 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2927 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2928 unsigned int tx_flags = 0;
2929 unsigned int len = skb_headlen(skb);
2930 unsigned int nr_frags;
2931 unsigned int mss;
2932 int count = 0;
2933 int tso;
2934 unsigned int f;
2936 /* This goes back to the question of how to logically map a tx queue
2937 * to a flow. Right now, performance is impacted slightly negatively
2938 * if using multiple tx queues. If the stack breaks away from a
2939 * single qdisc implementation, we can look at this again. */
2940 tx_ring = adapter->tx_ring;
2942 if (unlikely(skb->len <= 0)) {
2943 dev_kfree_skb_any(skb);
2944 return NETDEV_TX_OK;
2947 mss = skb_shinfo(skb)->gso_size;
2948 /* The controller does a simple calculation to
2949 * make sure there is enough room in the FIFO before
2950 * initiating the DMA for each buffer. The calc is:
2951 * 4 = ceil(buffer len/mss). To make sure we don't
2952 * overrun the FIFO, adjust the max buffer len if mss
2953 * drops. */
2954 if (mss) {
2955 u8 hdr_len;
2956 max_per_txd = min(mss << 2, max_per_txd);
2957 max_txd_pwr = fls(max_per_txd) - 1;
2959 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2960 if (skb->data_len && hdr_len == len) {
2961 switch (hw->mac_type) {
2962 unsigned int pull_size;
2963 case e1000_82544:
2964 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2965 break;
2966 /* fall through */
2967 pull_size = min((unsigned int)4, skb->data_len);
2968 if (!__pskb_pull_tail(skb, pull_size)) {
2969 e_err(drv, "__pskb_pull_tail "
2970 "failed.\n");
2971 dev_kfree_skb_any(skb);
2972 return NETDEV_TX_OK;
2974 len = skb_headlen(skb);
2975 break;
2976 default:
2977 /* do nothing */
2978 break;
2983 /* reserve a descriptor for the offload context */
2984 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2985 count++;
2986 count++;
2988 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2989 count++;
2991 count += TXD_USE_COUNT(len, max_txd_pwr);
2993 if (adapter->pcix_82544)
2994 count++;
2996 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2997 (len > 2015)))
2998 count++;
3000 nr_frags = skb_shinfo(skb)->nr_frags;
3001 for (f = 0; f < nr_frags; f++)
3002 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3003 max_txd_pwr);
3004 if (adapter->pcix_82544)
3005 count += nr_frags;
3007 /* need: count + 2 desc gap to keep tail from touching
3008 * head, otherwise try next time */
3009 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3010 return NETDEV_TX_BUSY;
3012 if (unlikely(hw->mac_type == e1000_82547)) {
3013 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3014 netif_stop_queue(netdev);
3015 if (!test_bit(__E1000_DOWN, &adapter->flags))
3016 mod_timer(&adapter->tx_fifo_stall_timer,
3017 jiffies + 1);
3018 return NETDEV_TX_BUSY;
3022 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3023 tx_flags |= E1000_TX_FLAGS_VLAN;
3024 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3027 first = tx_ring->next_to_use;
3029 tso = e1000_tso(adapter, tx_ring, skb);
3030 if (tso < 0) {
3031 dev_kfree_skb_any(skb);
3032 return NETDEV_TX_OK;
3035 if (likely(tso)) {
3036 if (likely(hw->mac_type != e1000_82544))
3037 tx_ring->last_tx_tso = 1;
3038 tx_flags |= E1000_TX_FLAGS_TSO;
3039 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3040 tx_flags |= E1000_TX_FLAGS_CSUM;
3042 if (likely(skb->protocol == htons(ETH_P_IP)))
3043 tx_flags |= E1000_TX_FLAGS_IPV4;
3045 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3046 nr_frags, mss);
3048 if (count) {
3049 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3050 /* Make sure there is space in the ring for the next send. */
3051 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3053 } else {
3054 dev_kfree_skb_any(skb);
3055 tx_ring->buffer_info[first].time_stamp = 0;
3056 tx_ring->next_to_use = first;
3059 return NETDEV_TX_OK;
3063 * e1000_tx_timeout - Respond to a Tx Hang
3064 * @netdev: network interface device structure
3067 static void e1000_tx_timeout(struct net_device *netdev)
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3071 /* Do the reset outside of interrupt context */
3072 adapter->tx_timeout_count++;
3073 schedule_work(&adapter->reset_task);
3076 static void e1000_reset_task(struct work_struct *work)
3078 struct e1000_adapter *adapter =
3079 container_of(work, struct e1000_adapter, reset_task);
3081 e1000_reinit_locked(adapter);
3085 * e1000_get_stats - Get System Network Statistics
3086 * @netdev: network interface device structure
3088 * Returns the address of the device statistics structure.
3089 * The statistics are actually updated from the timer callback.
3092 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3094 /* only return the current stats */
3095 return &netdev->stats;
3099 * e1000_change_mtu - Change the Maximum Transfer Unit
3100 * @netdev: network interface device structure
3101 * @new_mtu: new value for maximum frame size
3103 * Returns 0 on success, negative on failure
3106 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3108 struct e1000_adapter *adapter = netdev_priv(netdev);
3109 struct e1000_hw *hw = &adapter->hw;
3110 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3112 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3113 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3114 e_err(probe, "Invalid MTU setting\n");
3115 return -EINVAL;
3118 /* Adapter-specific max frame size limits. */
3119 switch (hw->mac_type) {
3120 case e1000_undefined ... e1000_82542_rev2_1:
3121 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3122 e_err(probe, "Jumbo Frames not supported.\n");
3123 return -EINVAL;
3125 break;
3126 default:
3127 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3128 break;
3131 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3132 msleep(1);
3133 /* e1000_down has a dependency on max_frame_size */
3134 hw->max_frame_size = max_frame;
3135 if (netif_running(netdev))
3136 e1000_down(adapter);
3138 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3139 * means we reserve 2 more, this pushes us to allocate from the next
3140 * larger slab size.
3141 * i.e. RXBUFFER_2048 --> size-4096 slab
3142 * however with the new *_jumbo_rx* routines, jumbo receives will use
3143 * fragmented skbs */
3145 if (max_frame <= E1000_RXBUFFER_2048)
3146 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3147 else
3148 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3149 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3150 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3151 adapter->rx_buffer_len = PAGE_SIZE;
3152 #endif
3154 /* adjust allocation if LPE protects us, and we aren't using SBP */
3155 if (!hw->tbi_compatibility_on &&
3156 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3157 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3158 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3160 pr_info("%s changing MTU from %d to %d\n",
3161 netdev->name, netdev->mtu, new_mtu);
3162 netdev->mtu = new_mtu;
3164 if (netif_running(netdev))
3165 e1000_up(adapter);
3166 else
3167 e1000_reset(adapter);
3169 clear_bit(__E1000_RESETTING, &adapter->flags);
3171 return 0;
3175 * e1000_update_stats - Update the board statistics counters
3176 * @adapter: board private structure
3179 void e1000_update_stats(struct e1000_adapter *adapter)
3181 struct net_device *netdev = adapter->netdev;
3182 struct e1000_hw *hw = &adapter->hw;
3183 struct pci_dev *pdev = adapter->pdev;
3184 unsigned long flags;
3185 u16 phy_tmp;
3187 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3190 * Prevent stats update while adapter is being reset, or if the pci
3191 * connection is down.
3193 if (adapter->link_speed == 0)
3194 return;
3195 if (pci_channel_offline(pdev))
3196 return;
3198 spin_lock_irqsave(&adapter->stats_lock, flags);
3200 /* these counters are modified from e1000_tbi_adjust_stats,
3201 * called from the interrupt context, so they must only
3202 * be written while holding adapter->stats_lock
3205 adapter->stats.crcerrs += er32(CRCERRS);
3206 adapter->stats.gprc += er32(GPRC);
3207 adapter->stats.gorcl += er32(GORCL);
3208 adapter->stats.gorch += er32(GORCH);
3209 adapter->stats.bprc += er32(BPRC);
3210 adapter->stats.mprc += er32(MPRC);
3211 adapter->stats.roc += er32(ROC);
3213 adapter->stats.prc64 += er32(PRC64);
3214 adapter->stats.prc127 += er32(PRC127);
3215 adapter->stats.prc255 += er32(PRC255);
3216 adapter->stats.prc511 += er32(PRC511);
3217 adapter->stats.prc1023 += er32(PRC1023);
3218 adapter->stats.prc1522 += er32(PRC1522);
3220 adapter->stats.symerrs += er32(SYMERRS);
3221 adapter->stats.mpc += er32(MPC);
3222 adapter->stats.scc += er32(SCC);
3223 adapter->stats.ecol += er32(ECOL);
3224 adapter->stats.mcc += er32(MCC);
3225 adapter->stats.latecol += er32(LATECOL);
3226 adapter->stats.dc += er32(DC);
3227 adapter->stats.sec += er32(SEC);
3228 adapter->stats.rlec += er32(RLEC);
3229 adapter->stats.xonrxc += er32(XONRXC);
3230 adapter->stats.xontxc += er32(XONTXC);
3231 adapter->stats.xoffrxc += er32(XOFFRXC);
3232 adapter->stats.xofftxc += er32(XOFFTXC);
3233 adapter->stats.fcruc += er32(FCRUC);
3234 adapter->stats.gptc += er32(GPTC);
3235 adapter->stats.gotcl += er32(GOTCL);
3236 adapter->stats.gotch += er32(GOTCH);
3237 adapter->stats.rnbc += er32(RNBC);
3238 adapter->stats.ruc += er32(RUC);
3239 adapter->stats.rfc += er32(RFC);
3240 adapter->stats.rjc += er32(RJC);
3241 adapter->stats.torl += er32(TORL);
3242 adapter->stats.torh += er32(TORH);
3243 adapter->stats.totl += er32(TOTL);
3244 adapter->stats.toth += er32(TOTH);
3245 adapter->stats.tpr += er32(TPR);
3247 adapter->stats.ptc64 += er32(PTC64);
3248 adapter->stats.ptc127 += er32(PTC127);
3249 adapter->stats.ptc255 += er32(PTC255);
3250 adapter->stats.ptc511 += er32(PTC511);
3251 adapter->stats.ptc1023 += er32(PTC1023);
3252 adapter->stats.ptc1522 += er32(PTC1522);
3254 adapter->stats.mptc += er32(MPTC);
3255 adapter->stats.bptc += er32(BPTC);
3257 /* used for adaptive IFS */
3259 hw->tx_packet_delta = er32(TPT);
3260 adapter->stats.tpt += hw->tx_packet_delta;
3261 hw->collision_delta = er32(COLC);
3262 adapter->stats.colc += hw->collision_delta;
3264 if (hw->mac_type >= e1000_82543) {
3265 adapter->stats.algnerrc += er32(ALGNERRC);
3266 adapter->stats.rxerrc += er32(RXERRC);
3267 adapter->stats.tncrs += er32(TNCRS);
3268 adapter->stats.cexterr += er32(CEXTERR);
3269 adapter->stats.tsctc += er32(TSCTC);
3270 adapter->stats.tsctfc += er32(TSCTFC);
3273 /* Fill out the OS statistics structure */
3274 netdev->stats.multicast = adapter->stats.mprc;
3275 netdev->stats.collisions = adapter->stats.colc;
3277 /* Rx Errors */
3279 /* RLEC on some newer hardware can be incorrect so build
3280 * our own version based on RUC and ROC */
3281 netdev->stats.rx_errors = adapter->stats.rxerrc +
3282 adapter->stats.crcerrs + adapter->stats.algnerrc +
3283 adapter->stats.ruc + adapter->stats.roc +
3284 adapter->stats.cexterr;
3285 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3286 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3287 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3288 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3289 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3291 /* Tx Errors */
3292 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3293 netdev->stats.tx_errors = adapter->stats.txerrc;
3294 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3295 netdev->stats.tx_window_errors = adapter->stats.latecol;
3296 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3297 if (hw->bad_tx_carr_stats_fd &&
3298 adapter->link_duplex == FULL_DUPLEX) {
3299 netdev->stats.tx_carrier_errors = 0;
3300 adapter->stats.tncrs = 0;
3303 /* Tx Dropped needs to be maintained elsewhere */
3305 /* Phy Stats */
3306 if (hw->media_type == e1000_media_type_copper) {
3307 if ((adapter->link_speed == SPEED_1000) &&
3308 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3309 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3310 adapter->phy_stats.idle_errors += phy_tmp;
3313 if ((hw->mac_type <= e1000_82546) &&
3314 (hw->phy_type == e1000_phy_m88) &&
3315 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3316 adapter->phy_stats.receive_errors += phy_tmp;
3319 /* Management Stats */
3320 if (hw->has_smbus) {
3321 adapter->stats.mgptc += er32(MGTPTC);
3322 adapter->stats.mgprc += er32(MGTPRC);
3323 adapter->stats.mgpdc += er32(MGTPDC);
3326 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3330 * e1000_intr - Interrupt Handler
3331 * @irq: interrupt number
3332 * @data: pointer to a network interface device structure
3335 static irqreturn_t e1000_intr(int irq, void *data)
3337 struct net_device *netdev = data;
3338 struct e1000_adapter *adapter = netdev_priv(netdev);
3339 struct e1000_hw *hw = &adapter->hw;
3340 u32 icr = er32(ICR);
3342 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3343 return IRQ_NONE; /* Not our interrupt */
3345 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3346 hw->get_link_status = 1;
3347 /* guard against interrupt when we're going down */
3348 if (!test_bit(__E1000_DOWN, &adapter->flags))
3349 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3352 /* disable interrupts, without the synchronize_irq bit */
3353 ew32(IMC, ~0);
3354 E1000_WRITE_FLUSH();
3356 if (likely(napi_schedule_prep(&adapter->napi))) {
3357 adapter->total_tx_bytes = 0;
3358 adapter->total_tx_packets = 0;
3359 adapter->total_rx_bytes = 0;
3360 adapter->total_rx_packets = 0;
3361 __napi_schedule(&adapter->napi);
3362 } else {
3363 /* this really should not happen! if it does it is basically a
3364 * bug, but not a hard error, so enable ints and continue */
3365 if (!test_bit(__E1000_DOWN, &adapter->flags))
3366 e1000_irq_enable(adapter);
3369 return IRQ_HANDLED;
3373 * e1000_clean - NAPI Rx polling callback
3374 * @adapter: board private structure
3376 static int e1000_clean(struct napi_struct *napi, int budget)
3378 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3379 int tx_clean_complete = 0, work_done = 0;
3381 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3383 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3385 if (!tx_clean_complete)
3386 work_done = budget;
3388 /* If budget not fully consumed, exit the polling mode */
3389 if (work_done < budget) {
3390 if (likely(adapter->itr_setting & 3))
3391 e1000_set_itr(adapter);
3392 napi_complete(napi);
3393 if (!test_bit(__E1000_DOWN, &adapter->flags))
3394 e1000_irq_enable(adapter);
3397 return work_done;
3401 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3402 * @adapter: board private structure
3404 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3405 struct e1000_tx_ring *tx_ring)
3407 struct e1000_hw *hw = &adapter->hw;
3408 struct net_device *netdev = adapter->netdev;
3409 struct e1000_tx_desc *tx_desc, *eop_desc;
3410 struct e1000_buffer *buffer_info;
3411 unsigned int i, eop;
3412 unsigned int count = 0;
3413 unsigned int total_tx_bytes=0, total_tx_packets=0;
3415 i = tx_ring->next_to_clean;
3416 eop = tx_ring->buffer_info[i].next_to_watch;
3417 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3419 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3420 (count < tx_ring->count)) {
3421 bool cleaned = false;
3422 rmb(); /* read buffer_info after eop_desc */
3423 for ( ; !cleaned; count++) {
3424 tx_desc = E1000_TX_DESC(*tx_ring, i);
3425 buffer_info = &tx_ring->buffer_info[i];
3426 cleaned = (i == eop);
3428 if (cleaned) {
3429 struct sk_buff *skb = buffer_info->skb;
3430 unsigned int segs, bytecount;
3431 segs = skb_shinfo(skb)->gso_segs ?: 1;
3432 /* multiply data chunks by size of headers */
3433 bytecount = ((segs - 1) * skb_headlen(skb)) +
3434 skb->len;
3435 total_tx_packets += segs;
3436 total_tx_bytes += bytecount;
3438 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3439 tx_desc->upper.data = 0;
3441 if (unlikely(++i == tx_ring->count)) i = 0;
3444 eop = tx_ring->buffer_info[i].next_to_watch;
3445 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3448 tx_ring->next_to_clean = i;
3450 #define TX_WAKE_THRESHOLD 32
3451 if (unlikely(count && netif_carrier_ok(netdev) &&
3452 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3453 /* Make sure that anybody stopping the queue after this
3454 * sees the new next_to_clean.
3456 smp_mb();
3458 if (netif_queue_stopped(netdev) &&
3459 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3460 netif_wake_queue(netdev);
3461 ++adapter->restart_queue;
3465 if (adapter->detect_tx_hung) {
3466 /* Detect a transmit hang in hardware, this serializes the
3467 * check with the clearing of time_stamp and movement of i */
3468 adapter->detect_tx_hung = false;
3469 if (tx_ring->buffer_info[eop].time_stamp &&
3470 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3471 (adapter->tx_timeout_factor * HZ)) &&
3472 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3474 /* detected Tx unit hang */
3475 e_err(drv, "Detected Tx Unit Hang\n"
3476 " Tx Queue <%lu>\n"
3477 " TDH <%x>\n"
3478 " TDT <%x>\n"
3479 " next_to_use <%x>\n"
3480 " next_to_clean <%x>\n"
3481 "buffer_info[next_to_clean]\n"
3482 " time_stamp <%lx>\n"
3483 " next_to_watch <%x>\n"
3484 " jiffies <%lx>\n"
3485 " next_to_watch.status <%x>\n",
3486 (unsigned long)((tx_ring - adapter->tx_ring) /
3487 sizeof(struct e1000_tx_ring)),
3488 readl(hw->hw_addr + tx_ring->tdh),
3489 readl(hw->hw_addr + tx_ring->tdt),
3490 tx_ring->next_to_use,
3491 tx_ring->next_to_clean,
3492 tx_ring->buffer_info[eop].time_stamp,
3493 eop,
3494 jiffies,
3495 eop_desc->upper.fields.status);
3496 netif_stop_queue(netdev);
3499 adapter->total_tx_bytes += total_tx_bytes;
3500 adapter->total_tx_packets += total_tx_packets;
3501 netdev->stats.tx_bytes += total_tx_bytes;
3502 netdev->stats.tx_packets += total_tx_packets;
3503 return (count < tx_ring->count);
3507 * e1000_rx_checksum - Receive Checksum Offload for 82543
3508 * @adapter: board private structure
3509 * @status_err: receive descriptor status and error fields
3510 * @csum: receive descriptor csum field
3511 * @sk_buff: socket buffer with received data
3514 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3515 u32 csum, struct sk_buff *skb)
3517 struct e1000_hw *hw = &adapter->hw;
3518 u16 status = (u16)status_err;
3519 u8 errors = (u8)(status_err >> 24);
3520 skb->ip_summed = CHECKSUM_NONE;
3522 /* 82543 or newer only */
3523 if (unlikely(hw->mac_type < e1000_82543)) return;
3524 /* Ignore Checksum bit is set */
3525 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3526 /* TCP/UDP checksum error bit is set */
3527 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3528 /* let the stack verify checksum errors */
3529 adapter->hw_csum_err++;
3530 return;
3532 /* TCP/UDP Checksum has not been calculated */
3533 if (!(status & E1000_RXD_STAT_TCPCS))
3534 return;
3536 /* It must be a TCP or UDP packet with a valid checksum */
3537 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3538 /* TCP checksum is good */
3539 skb->ip_summed = CHECKSUM_UNNECESSARY;
3541 adapter->hw_csum_good++;
3545 * e1000_consume_page - helper function
3547 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3548 u16 length)
3550 bi->page = NULL;
3551 skb->len += length;
3552 skb->data_len += length;
3553 skb->truesize += length;
3557 * e1000_receive_skb - helper function to handle rx indications
3558 * @adapter: board private structure
3559 * @status: descriptor status field as written by hardware
3560 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3561 * @skb: pointer to sk_buff to be indicated to stack
3563 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3564 __le16 vlan, struct sk_buff *skb)
3566 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3567 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3568 le16_to_cpu(vlan) &
3569 E1000_RXD_SPC_VLAN_MASK);
3570 } else {
3571 netif_receive_skb(skb);
3576 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3577 * @adapter: board private structure
3578 * @rx_ring: ring to clean
3579 * @work_done: amount of napi work completed this call
3580 * @work_to_do: max amount of work allowed for this call to do
3582 * the return value indicates whether actual cleaning was done, there
3583 * is no guarantee that everything was cleaned
3585 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3586 struct e1000_rx_ring *rx_ring,
3587 int *work_done, int work_to_do)
3589 struct e1000_hw *hw = &adapter->hw;
3590 struct net_device *netdev = adapter->netdev;
3591 struct pci_dev *pdev = adapter->pdev;
3592 struct e1000_rx_desc *rx_desc, *next_rxd;
3593 struct e1000_buffer *buffer_info, *next_buffer;
3594 unsigned long irq_flags;
3595 u32 length;
3596 unsigned int i;
3597 int cleaned_count = 0;
3598 bool cleaned = false;
3599 unsigned int total_rx_bytes=0, total_rx_packets=0;
3601 i = rx_ring->next_to_clean;
3602 rx_desc = E1000_RX_DESC(*rx_ring, i);
3603 buffer_info = &rx_ring->buffer_info[i];
3605 while (rx_desc->status & E1000_RXD_STAT_DD) {
3606 struct sk_buff *skb;
3607 u8 status;
3609 if (*work_done >= work_to_do)
3610 break;
3611 (*work_done)++;
3612 rmb(); /* read descriptor and rx_buffer_info after status DD */
3614 status = rx_desc->status;
3615 skb = buffer_info->skb;
3616 buffer_info->skb = NULL;
3618 if (++i == rx_ring->count) i = 0;
3619 next_rxd = E1000_RX_DESC(*rx_ring, i);
3620 prefetch(next_rxd);
3622 next_buffer = &rx_ring->buffer_info[i];
3624 cleaned = true;
3625 cleaned_count++;
3626 dma_unmap_page(&pdev->dev, buffer_info->dma,
3627 buffer_info->length, DMA_FROM_DEVICE);
3628 buffer_info->dma = 0;
3630 length = le16_to_cpu(rx_desc->length);
3632 /* errors is only valid for DD + EOP descriptors */
3633 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3634 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3635 u8 last_byte = *(skb->data + length - 1);
3636 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3637 last_byte)) {
3638 spin_lock_irqsave(&adapter->stats_lock,
3639 irq_flags);
3640 e1000_tbi_adjust_stats(hw, &adapter->stats,
3641 length, skb->data);
3642 spin_unlock_irqrestore(&adapter->stats_lock,
3643 irq_flags);
3644 length--;
3645 } else {
3646 /* recycle both page and skb */
3647 buffer_info->skb = skb;
3648 /* an error means any chain goes out the window
3649 * too */
3650 if (rx_ring->rx_skb_top)
3651 dev_kfree_skb(rx_ring->rx_skb_top);
3652 rx_ring->rx_skb_top = NULL;
3653 goto next_desc;
3657 #define rxtop rx_ring->rx_skb_top
3658 if (!(status & E1000_RXD_STAT_EOP)) {
3659 /* this descriptor is only the beginning (or middle) */
3660 if (!rxtop) {
3661 /* this is the beginning of a chain */
3662 rxtop = skb;
3663 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3664 0, length);
3665 } else {
3666 /* this is the middle of a chain */
3667 skb_fill_page_desc(rxtop,
3668 skb_shinfo(rxtop)->nr_frags,
3669 buffer_info->page, 0, length);
3670 /* re-use the skb, only consumed the page */
3671 buffer_info->skb = skb;
3673 e1000_consume_page(buffer_info, rxtop, length);
3674 goto next_desc;
3675 } else {
3676 if (rxtop) {
3677 /* end of the chain */
3678 skb_fill_page_desc(rxtop,
3679 skb_shinfo(rxtop)->nr_frags,
3680 buffer_info->page, 0, length);
3681 /* re-use the current skb, we only consumed the
3682 * page */
3683 buffer_info->skb = skb;
3684 skb = rxtop;
3685 rxtop = NULL;
3686 e1000_consume_page(buffer_info, skb, length);
3687 } else {
3688 /* no chain, got EOP, this buf is the packet
3689 * copybreak to save the put_page/alloc_page */
3690 if (length <= copybreak &&
3691 skb_tailroom(skb) >= length) {
3692 u8 *vaddr;
3693 vaddr = kmap_atomic(buffer_info->page,
3694 KM_SKB_DATA_SOFTIRQ);
3695 memcpy(skb_tail_pointer(skb), vaddr, length);
3696 kunmap_atomic(vaddr,
3697 KM_SKB_DATA_SOFTIRQ);
3698 /* re-use the page, so don't erase
3699 * buffer_info->page */
3700 skb_put(skb, length);
3701 } else {
3702 skb_fill_page_desc(skb, 0,
3703 buffer_info->page, 0,
3704 length);
3705 e1000_consume_page(buffer_info, skb,
3706 length);
3711 e1000_rx_checksum(adapter,
3712 (u32)(status) |
3713 ((u32)(rx_desc->errors) << 24),
3714 le16_to_cpu(rx_desc->csum), skb);
3716 pskb_trim(skb, skb->len - 4);
3718 /* probably a little skewed due to removing CRC */
3719 total_rx_bytes += skb->len;
3720 total_rx_packets++;
3722 /* eth type trans needs skb->data to point to something */
3723 if (!pskb_may_pull(skb, ETH_HLEN)) {
3724 e_err(drv, "pskb_may_pull failed.\n");
3725 dev_kfree_skb(skb);
3726 goto next_desc;
3729 skb->protocol = eth_type_trans(skb, netdev);
3731 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3733 next_desc:
3734 rx_desc->status = 0;
3736 /* return some buffers to hardware, one at a time is too slow */
3737 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3738 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3739 cleaned_count = 0;
3742 /* use prefetched values */
3743 rx_desc = next_rxd;
3744 buffer_info = next_buffer;
3746 rx_ring->next_to_clean = i;
3748 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3749 if (cleaned_count)
3750 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3752 adapter->total_rx_packets += total_rx_packets;
3753 adapter->total_rx_bytes += total_rx_bytes;
3754 netdev->stats.rx_bytes += total_rx_bytes;
3755 netdev->stats.rx_packets += total_rx_packets;
3756 return cleaned;
3760 * this should improve performance for small packets with large amounts
3761 * of reassembly being done in the stack
3763 static void e1000_check_copybreak(struct net_device *netdev,
3764 struct e1000_buffer *buffer_info,
3765 u32 length, struct sk_buff **skb)
3767 struct sk_buff *new_skb;
3769 if (length > copybreak)
3770 return;
3772 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3773 if (!new_skb)
3774 return;
3776 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3777 (*skb)->data - NET_IP_ALIGN,
3778 length + NET_IP_ALIGN);
3779 /* save the skb in buffer_info as good */
3780 buffer_info->skb = *skb;
3781 *skb = new_skb;
3785 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3786 * @adapter: board private structure
3787 * @rx_ring: ring to clean
3788 * @work_done: amount of napi work completed this call
3789 * @work_to_do: max amount of work allowed for this call to do
3791 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3792 struct e1000_rx_ring *rx_ring,
3793 int *work_done, int work_to_do)
3795 struct e1000_hw *hw = &adapter->hw;
3796 struct net_device *netdev = adapter->netdev;
3797 struct pci_dev *pdev = adapter->pdev;
3798 struct e1000_rx_desc *rx_desc, *next_rxd;
3799 struct e1000_buffer *buffer_info, *next_buffer;
3800 unsigned long flags;
3801 u32 length;
3802 unsigned int i;
3803 int cleaned_count = 0;
3804 bool cleaned = false;
3805 unsigned int total_rx_bytes=0, total_rx_packets=0;
3807 i = rx_ring->next_to_clean;
3808 rx_desc = E1000_RX_DESC(*rx_ring, i);
3809 buffer_info = &rx_ring->buffer_info[i];
3811 while (rx_desc->status & E1000_RXD_STAT_DD) {
3812 struct sk_buff *skb;
3813 u8 status;
3815 if (*work_done >= work_to_do)
3816 break;
3817 (*work_done)++;
3818 rmb(); /* read descriptor and rx_buffer_info after status DD */
3820 status = rx_desc->status;
3821 skb = buffer_info->skb;
3822 buffer_info->skb = NULL;
3824 prefetch(skb->data - NET_IP_ALIGN);
3826 if (++i == rx_ring->count) i = 0;
3827 next_rxd = E1000_RX_DESC(*rx_ring, i);
3828 prefetch(next_rxd);
3830 next_buffer = &rx_ring->buffer_info[i];
3832 cleaned = true;
3833 cleaned_count++;
3834 dma_unmap_single(&pdev->dev, buffer_info->dma,
3835 buffer_info->length, DMA_FROM_DEVICE);
3836 buffer_info->dma = 0;
3838 length = le16_to_cpu(rx_desc->length);
3839 /* !EOP means multiple descriptors were used to store a single
3840 * packet, if thats the case we need to toss it. In fact, we
3841 * to toss every packet with the EOP bit clear and the next
3842 * frame that _does_ have the EOP bit set, as it is by
3843 * definition only a frame fragment
3845 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3846 adapter->discarding = true;
3848 if (adapter->discarding) {
3849 /* All receives must fit into a single buffer */
3850 e_dbg("Receive packet consumed multiple buffers\n");
3851 /* recycle */
3852 buffer_info->skb = skb;
3853 if (status & E1000_RXD_STAT_EOP)
3854 adapter->discarding = false;
3855 goto next_desc;
3858 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3859 u8 last_byte = *(skb->data + length - 1);
3860 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3861 last_byte)) {
3862 spin_lock_irqsave(&adapter->stats_lock, flags);
3863 e1000_tbi_adjust_stats(hw, &adapter->stats,
3864 length, skb->data);
3865 spin_unlock_irqrestore(&adapter->stats_lock,
3866 flags);
3867 length--;
3868 } else {
3869 /* recycle */
3870 buffer_info->skb = skb;
3871 goto next_desc;
3875 length -= 4;
3877 /* probably a little skewed due to removing CRC */
3878 total_rx_bytes += length;
3879 total_rx_packets++;
3881 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3883 skb_put(skb, length);
3885 /* Receive Checksum Offload */
3886 e1000_rx_checksum(adapter,
3887 (u32)(status) |
3888 ((u32)(rx_desc->errors) << 24),
3889 le16_to_cpu(rx_desc->csum), skb);
3891 skb->protocol = eth_type_trans(skb, netdev);
3893 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3895 next_desc:
3896 rx_desc->status = 0;
3898 /* return some buffers to hardware, one at a time is too slow */
3899 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3900 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3901 cleaned_count = 0;
3904 /* use prefetched values */
3905 rx_desc = next_rxd;
3906 buffer_info = next_buffer;
3908 rx_ring->next_to_clean = i;
3910 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3911 if (cleaned_count)
3912 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3914 adapter->total_rx_packets += total_rx_packets;
3915 adapter->total_rx_bytes += total_rx_bytes;
3916 netdev->stats.rx_bytes += total_rx_bytes;
3917 netdev->stats.rx_packets += total_rx_packets;
3918 return cleaned;
3922 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3923 * @adapter: address of board private structure
3924 * @rx_ring: pointer to receive ring structure
3925 * @cleaned_count: number of buffers to allocate this pass
3928 static void
3929 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3930 struct e1000_rx_ring *rx_ring, int cleaned_count)
3932 struct net_device *netdev = adapter->netdev;
3933 struct pci_dev *pdev = adapter->pdev;
3934 struct e1000_rx_desc *rx_desc;
3935 struct e1000_buffer *buffer_info;
3936 struct sk_buff *skb;
3937 unsigned int i;
3938 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3940 i = rx_ring->next_to_use;
3941 buffer_info = &rx_ring->buffer_info[i];
3943 while (cleaned_count--) {
3944 skb = buffer_info->skb;
3945 if (skb) {
3946 skb_trim(skb, 0);
3947 goto check_page;
3950 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3951 if (unlikely(!skb)) {
3952 /* Better luck next round */
3953 adapter->alloc_rx_buff_failed++;
3954 break;
3957 /* Fix for errata 23, can't cross 64kB boundary */
3958 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3959 struct sk_buff *oldskb = skb;
3960 e_err(rx_err, "skb align check failed: %u bytes at "
3961 "%p\n", bufsz, skb->data);
3962 /* Try again, without freeing the previous */
3963 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3964 /* Failed allocation, critical failure */
3965 if (!skb) {
3966 dev_kfree_skb(oldskb);
3967 adapter->alloc_rx_buff_failed++;
3968 break;
3971 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3972 /* give up */
3973 dev_kfree_skb(skb);
3974 dev_kfree_skb(oldskb);
3975 break; /* while (cleaned_count--) */
3978 /* Use new allocation */
3979 dev_kfree_skb(oldskb);
3981 buffer_info->skb = skb;
3982 buffer_info->length = adapter->rx_buffer_len;
3983 check_page:
3984 /* allocate a new page if necessary */
3985 if (!buffer_info->page) {
3986 buffer_info->page = alloc_page(GFP_ATOMIC);
3987 if (unlikely(!buffer_info->page)) {
3988 adapter->alloc_rx_buff_failed++;
3989 break;
3993 if (!buffer_info->dma) {
3994 buffer_info->dma = dma_map_page(&pdev->dev,
3995 buffer_info->page, 0,
3996 buffer_info->length,
3997 DMA_FROM_DEVICE);
3998 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
3999 put_page(buffer_info->page);
4000 dev_kfree_skb(skb);
4001 buffer_info->page = NULL;
4002 buffer_info->skb = NULL;
4003 buffer_info->dma = 0;
4004 adapter->alloc_rx_buff_failed++;
4005 break; /* while !buffer_info->skb */
4009 rx_desc = E1000_RX_DESC(*rx_ring, i);
4010 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4012 if (unlikely(++i == rx_ring->count))
4013 i = 0;
4014 buffer_info = &rx_ring->buffer_info[i];
4017 if (likely(rx_ring->next_to_use != i)) {
4018 rx_ring->next_to_use = i;
4019 if (unlikely(i-- == 0))
4020 i = (rx_ring->count - 1);
4022 /* Force memory writes to complete before letting h/w
4023 * know there are new descriptors to fetch. (Only
4024 * applicable for weak-ordered memory model archs,
4025 * such as IA-64). */
4026 wmb();
4027 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4032 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4033 * @adapter: address of board private structure
4036 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4037 struct e1000_rx_ring *rx_ring,
4038 int cleaned_count)
4040 struct e1000_hw *hw = &adapter->hw;
4041 struct net_device *netdev = adapter->netdev;
4042 struct pci_dev *pdev = adapter->pdev;
4043 struct e1000_rx_desc *rx_desc;
4044 struct e1000_buffer *buffer_info;
4045 struct sk_buff *skb;
4046 unsigned int i;
4047 unsigned int bufsz = adapter->rx_buffer_len;
4049 i = rx_ring->next_to_use;
4050 buffer_info = &rx_ring->buffer_info[i];
4052 while (cleaned_count--) {
4053 skb = buffer_info->skb;
4054 if (skb) {
4055 skb_trim(skb, 0);
4056 goto map_skb;
4059 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4060 if (unlikely(!skb)) {
4061 /* Better luck next round */
4062 adapter->alloc_rx_buff_failed++;
4063 break;
4066 /* Fix for errata 23, can't cross 64kB boundary */
4067 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4068 struct sk_buff *oldskb = skb;
4069 e_err(rx_err, "skb align check failed: %u bytes at "
4070 "%p\n", bufsz, skb->data);
4071 /* Try again, without freeing the previous */
4072 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4073 /* Failed allocation, critical failure */
4074 if (!skb) {
4075 dev_kfree_skb(oldskb);
4076 adapter->alloc_rx_buff_failed++;
4077 break;
4080 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4081 /* give up */
4082 dev_kfree_skb(skb);
4083 dev_kfree_skb(oldskb);
4084 adapter->alloc_rx_buff_failed++;
4085 break; /* while !buffer_info->skb */
4088 /* Use new allocation */
4089 dev_kfree_skb(oldskb);
4091 buffer_info->skb = skb;
4092 buffer_info->length = adapter->rx_buffer_len;
4093 map_skb:
4094 buffer_info->dma = dma_map_single(&pdev->dev,
4095 skb->data,
4096 buffer_info->length,
4097 DMA_FROM_DEVICE);
4098 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4099 dev_kfree_skb(skb);
4100 buffer_info->skb = NULL;
4101 buffer_info->dma = 0;
4102 adapter->alloc_rx_buff_failed++;
4103 break; /* while !buffer_info->skb */
4107 /* Fix for errata 23, can't cross 64kB boundary */
4108 if (!e1000_check_64k_bound(adapter,
4109 (void *)(unsigned long)buffer_info->dma,
4110 adapter->rx_buffer_len)) {
4111 e_err(rx_err, "dma align check failed: %u bytes at "
4112 "%p\n", adapter->rx_buffer_len,
4113 (void *)(unsigned long)buffer_info->dma);
4114 dev_kfree_skb(skb);
4115 buffer_info->skb = NULL;
4117 dma_unmap_single(&pdev->dev, buffer_info->dma,
4118 adapter->rx_buffer_len,
4119 DMA_FROM_DEVICE);
4120 buffer_info->dma = 0;
4122 adapter->alloc_rx_buff_failed++;
4123 break; /* while !buffer_info->skb */
4125 rx_desc = E1000_RX_DESC(*rx_ring, i);
4126 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4128 if (unlikely(++i == rx_ring->count))
4129 i = 0;
4130 buffer_info = &rx_ring->buffer_info[i];
4133 if (likely(rx_ring->next_to_use != i)) {
4134 rx_ring->next_to_use = i;
4135 if (unlikely(i-- == 0))
4136 i = (rx_ring->count - 1);
4138 /* Force memory writes to complete before letting h/w
4139 * know there are new descriptors to fetch. (Only
4140 * applicable for weak-ordered memory model archs,
4141 * such as IA-64). */
4142 wmb();
4143 writel(i, hw->hw_addr + rx_ring->rdt);
4148 static void e1000_smartspeed(struct e1000_adapter *adapter)
4150 struct e1000_hw *hw = &adapter->hw;
4151 u16 phy_status;
4152 u16 phy_ctrl;
4154 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4155 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4156 return;
4158 if (adapter->smartspeed == 0) {
4159 /* If Master/Slave config fault is asserted twice,
4160 * we assume back-to-back */
4161 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4162 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4163 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4164 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4165 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4166 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4167 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4168 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4169 phy_ctrl);
4170 adapter->smartspeed++;
4171 if (!e1000_phy_setup_autoneg(hw) &&
4172 !e1000_read_phy_reg(hw, PHY_CTRL,
4173 &phy_ctrl)) {
4174 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4175 MII_CR_RESTART_AUTO_NEG);
4176 e1000_write_phy_reg(hw, PHY_CTRL,
4177 phy_ctrl);
4180 return;
4181 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4182 /* If still no link, perhaps using 2/3 pair cable */
4183 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4184 phy_ctrl |= CR_1000T_MS_ENABLE;
4185 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4186 if (!e1000_phy_setup_autoneg(hw) &&
4187 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4188 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4189 MII_CR_RESTART_AUTO_NEG);
4190 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4193 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4194 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4195 adapter->smartspeed = 0;
4199 * e1000_ioctl -
4200 * @netdev:
4201 * @ifreq:
4202 * @cmd:
4205 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4207 switch (cmd) {
4208 case SIOCGMIIPHY:
4209 case SIOCGMIIREG:
4210 case SIOCSMIIREG:
4211 return e1000_mii_ioctl(netdev, ifr, cmd);
4212 default:
4213 return -EOPNOTSUPP;
4218 * e1000_mii_ioctl -
4219 * @netdev:
4220 * @ifreq:
4221 * @cmd:
4224 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4225 int cmd)
4227 struct e1000_adapter *adapter = netdev_priv(netdev);
4228 struct e1000_hw *hw = &adapter->hw;
4229 struct mii_ioctl_data *data = if_mii(ifr);
4230 int retval;
4231 u16 mii_reg;
4232 u16 spddplx;
4233 unsigned long flags;
4235 if (hw->media_type != e1000_media_type_copper)
4236 return -EOPNOTSUPP;
4238 switch (cmd) {
4239 case SIOCGMIIPHY:
4240 data->phy_id = hw->phy_addr;
4241 break;
4242 case SIOCGMIIREG:
4243 spin_lock_irqsave(&adapter->stats_lock, flags);
4244 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4245 &data->val_out)) {
4246 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4247 return -EIO;
4249 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4250 break;
4251 case SIOCSMIIREG:
4252 if (data->reg_num & ~(0x1F))
4253 return -EFAULT;
4254 mii_reg = data->val_in;
4255 spin_lock_irqsave(&adapter->stats_lock, flags);
4256 if (e1000_write_phy_reg(hw, data->reg_num,
4257 mii_reg)) {
4258 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4259 return -EIO;
4261 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4262 if (hw->media_type == e1000_media_type_copper) {
4263 switch (data->reg_num) {
4264 case PHY_CTRL:
4265 if (mii_reg & MII_CR_POWER_DOWN)
4266 break;
4267 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4268 hw->autoneg = 1;
4269 hw->autoneg_advertised = 0x2F;
4270 } else {
4271 if (mii_reg & 0x40)
4272 spddplx = SPEED_1000;
4273 else if (mii_reg & 0x2000)
4274 spddplx = SPEED_100;
4275 else
4276 spddplx = SPEED_10;
4277 spddplx += (mii_reg & 0x100)
4278 ? DUPLEX_FULL :
4279 DUPLEX_HALF;
4280 retval = e1000_set_spd_dplx(adapter,
4281 spddplx);
4282 if (retval)
4283 return retval;
4285 if (netif_running(adapter->netdev))
4286 e1000_reinit_locked(adapter);
4287 else
4288 e1000_reset(adapter);
4289 break;
4290 case M88E1000_PHY_SPEC_CTRL:
4291 case M88E1000_EXT_PHY_SPEC_CTRL:
4292 if (e1000_phy_reset(hw))
4293 return -EIO;
4294 break;
4296 } else {
4297 switch (data->reg_num) {
4298 case PHY_CTRL:
4299 if (mii_reg & MII_CR_POWER_DOWN)
4300 break;
4301 if (netif_running(adapter->netdev))
4302 e1000_reinit_locked(adapter);
4303 else
4304 e1000_reset(adapter);
4305 break;
4308 break;
4309 default:
4310 return -EOPNOTSUPP;
4312 return E1000_SUCCESS;
4315 void e1000_pci_set_mwi(struct e1000_hw *hw)
4317 struct e1000_adapter *adapter = hw->back;
4318 int ret_val = pci_set_mwi(adapter->pdev);
4320 if (ret_val)
4321 e_err(probe, "Error in setting MWI\n");
4324 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4326 struct e1000_adapter *adapter = hw->back;
4328 pci_clear_mwi(adapter->pdev);
4331 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4333 struct e1000_adapter *adapter = hw->back;
4334 return pcix_get_mmrbc(adapter->pdev);
4337 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4339 struct e1000_adapter *adapter = hw->back;
4340 pcix_set_mmrbc(adapter->pdev, mmrbc);
4343 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4345 outl(value, port);
4348 static void e1000_vlan_rx_register(struct net_device *netdev,
4349 struct vlan_group *grp)
4351 struct e1000_adapter *adapter = netdev_priv(netdev);
4352 struct e1000_hw *hw = &adapter->hw;
4353 u32 ctrl, rctl;
4355 if (!test_bit(__E1000_DOWN, &adapter->flags))
4356 e1000_irq_disable(adapter);
4357 adapter->vlgrp = grp;
4359 if (grp) {
4360 /* enable VLAN tag insert/strip */
4361 ctrl = er32(CTRL);
4362 ctrl |= E1000_CTRL_VME;
4363 ew32(CTRL, ctrl);
4365 /* enable VLAN receive filtering */
4366 rctl = er32(RCTL);
4367 rctl &= ~E1000_RCTL_CFIEN;
4368 if (!(netdev->flags & IFF_PROMISC))
4369 rctl |= E1000_RCTL_VFE;
4370 ew32(RCTL, rctl);
4371 e1000_update_mng_vlan(adapter);
4372 } else {
4373 /* disable VLAN tag insert/strip */
4374 ctrl = er32(CTRL);
4375 ctrl &= ~E1000_CTRL_VME;
4376 ew32(CTRL, ctrl);
4378 /* disable VLAN receive filtering */
4379 rctl = er32(RCTL);
4380 rctl &= ~E1000_RCTL_VFE;
4381 ew32(RCTL, rctl);
4383 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4384 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4385 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4389 if (!test_bit(__E1000_DOWN, &adapter->flags))
4390 e1000_irq_enable(adapter);
4393 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4395 struct e1000_adapter *adapter = netdev_priv(netdev);
4396 struct e1000_hw *hw = &adapter->hw;
4397 u32 vfta, index;
4399 if ((hw->mng_cookie.status &
4400 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4401 (vid == adapter->mng_vlan_id))
4402 return;
4403 /* add VID to filter table */
4404 index = (vid >> 5) & 0x7F;
4405 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4406 vfta |= (1 << (vid & 0x1F));
4407 e1000_write_vfta(hw, index, vfta);
4410 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4412 struct e1000_adapter *adapter = netdev_priv(netdev);
4413 struct e1000_hw *hw = &adapter->hw;
4414 u32 vfta, index;
4416 if (!test_bit(__E1000_DOWN, &adapter->flags))
4417 e1000_irq_disable(adapter);
4418 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4419 if (!test_bit(__E1000_DOWN, &adapter->flags))
4420 e1000_irq_enable(adapter);
4422 /* remove VID from filter table */
4423 index = (vid >> 5) & 0x7F;
4424 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4425 vfta &= ~(1 << (vid & 0x1F));
4426 e1000_write_vfta(hw, index, vfta);
4429 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4431 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4433 if (adapter->vlgrp) {
4434 u16 vid;
4435 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4436 if (!vlan_group_get_device(adapter->vlgrp, vid))
4437 continue;
4438 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4443 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4445 struct e1000_hw *hw = &adapter->hw;
4447 hw->autoneg = 0;
4449 /* Fiber NICs only allow 1000 gbps Full duplex */
4450 if ((hw->media_type == e1000_media_type_fiber) &&
4451 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4452 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4453 return -EINVAL;
4456 switch (spddplx) {
4457 case SPEED_10 + DUPLEX_HALF:
4458 hw->forced_speed_duplex = e1000_10_half;
4459 break;
4460 case SPEED_10 + DUPLEX_FULL:
4461 hw->forced_speed_duplex = e1000_10_full;
4462 break;
4463 case SPEED_100 + DUPLEX_HALF:
4464 hw->forced_speed_duplex = e1000_100_half;
4465 break;
4466 case SPEED_100 + DUPLEX_FULL:
4467 hw->forced_speed_duplex = e1000_100_full;
4468 break;
4469 case SPEED_1000 + DUPLEX_FULL:
4470 hw->autoneg = 1;
4471 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4472 break;
4473 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4474 default:
4475 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4476 return -EINVAL;
4478 return 0;
4481 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4483 struct net_device *netdev = pci_get_drvdata(pdev);
4484 struct e1000_adapter *adapter = netdev_priv(netdev);
4485 struct e1000_hw *hw = &adapter->hw;
4486 u32 ctrl, ctrl_ext, rctl, status;
4487 u32 wufc = adapter->wol;
4488 #ifdef CONFIG_PM
4489 int retval = 0;
4490 #endif
4492 netif_device_detach(netdev);
4494 if (netif_running(netdev)) {
4495 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4496 e1000_down(adapter);
4499 #ifdef CONFIG_PM
4500 retval = pci_save_state(pdev);
4501 if (retval)
4502 return retval;
4503 #endif
4505 status = er32(STATUS);
4506 if (status & E1000_STATUS_LU)
4507 wufc &= ~E1000_WUFC_LNKC;
4509 if (wufc) {
4510 e1000_setup_rctl(adapter);
4511 e1000_set_rx_mode(netdev);
4513 /* turn on all-multi mode if wake on multicast is enabled */
4514 if (wufc & E1000_WUFC_MC) {
4515 rctl = er32(RCTL);
4516 rctl |= E1000_RCTL_MPE;
4517 ew32(RCTL, rctl);
4520 if (hw->mac_type >= e1000_82540) {
4521 ctrl = er32(CTRL);
4522 /* advertise wake from D3Cold */
4523 #define E1000_CTRL_ADVD3WUC 0x00100000
4524 /* phy power management enable */
4525 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4526 ctrl |= E1000_CTRL_ADVD3WUC |
4527 E1000_CTRL_EN_PHY_PWR_MGMT;
4528 ew32(CTRL, ctrl);
4531 if (hw->media_type == e1000_media_type_fiber ||
4532 hw->media_type == e1000_media_type_internal_serdes) {
4533 /* keep the laser running in D3 */
4534 ctrl_ext = er32(CTRL_EXT);
4535 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4536 ew32(CTRL_EXT, ctrl_ext);
4539 ew32(WUC, E1000_WUC_PME_EN);
4540 ew32(WUFC, wufc);
4541 } else {
4542 ew32(WUC, 0);
4543 ew32(WUFC, 0);
4546 e1000_release_manageability(adapter);
4548 *enable_wake = !!wufc;
4550 /* make sure adapter isn't asleep if manageability is enabled */
4551 if (adapter->en_mng_pt)
4552 *enable_wake = true;
4554 if (netif_running(netdev))
4555 e1000_free_irq(adapter);
4557 pci_disable_device(pdev);
4559 return 0;
4562 #ifdef CONFIG_PM
4563 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4565 int retval;
4566 bool wake;
4568 retval = __e1000_shutdown(pdev, &wake);
4569 if (retval)
4570 return retval;
4572 if (wake) {
4573 pci_prepare_to_sleep(pdev);
4574 } else {
4575 pci_wake_from_d3(pdev, false);
4576 pci_set_power_state(pdev, PCI_D3hot);
4579 return 0;
4582 static int e1000_resume(struct pci_dev *pdev)
4584 struct net_device *netdev = pci_get_drvdata(pdev);
4585 struct e1000_adapter *adapter = netdev_priv(netdev);
4586 struct e1000_hw *hw = &adapter->hw;
4587 u32 err;
4589 pci_set_power_state(pdev, PCI_D0);
4590 pci_restore_state(pdev);
4591 pci_save_state(pdev);
4593 if (adapter->need_ioport)
4594 err = pci_enable_device(pdev);
4595 else
4596 err = pci_enable_device_mem(pdev);
4597 if (err) {
4598 pr_err("Cannot enable PCI device from suspend\n");
4599 return err;
4601 pci_set_master(pdev);
4603 pci_enable_wake(pdev, PCI_D3hot, 0);
4604 pci_enable_wake(pdev, PCI_D3cold, 0);
4606 if (netif_running(netdev)) {
4607 err = e1000_request_irq(adapter);
4608 if (err)
4609 return err;
4612 e1000_power_up_phy(adapter);
4613 e1000_reset(adapter);
4614 ew32(WUS, ~0);
4616 e1000_init_manageability(adapter);
4618 if (netif_running(netdev))
4619 e1000_up(adapter);
4621 netif_device_attach(netdev);
4623 return 0;
4625 #endif
4627 static void e1000_shutdown(struct pci_dev *pdev)
4629 bool wake;
4631 __e1000_shutdown(pdev, &wake);
4633 if (system_state == SYSTEM_POWER_OFF) {
4634 pci_wake_from_d3(pdev, wake);
4635 pci_set_power_state(pdev, PCI_D3hot);
4639 #ifdef CONFIG_NET_POLL_CONTROLLER
4641 * Polling 'interrupt' - used by things like netconsole to send skbs
4642 * without having to re-enable interrupts. It's not called while
4643 * the interrupt routine is executing.
4645 static void e1000_netpoll(struct net_device *netdev)
4647 struct e1000_adapter *adapter = netdev_priv(netdev);
4649 disable_irq(adapter->pdev->irq);
4650 e1000_intr(adapter->pdev->irq, netdev);
4651 enable_irq(adapter->pdev->irq);
4653 #endif
4656 * e1000_io_error_detected - called when PCI error is detected
4657 * @pdev: Pointer to PCI device
4658 * @state: The current pci connection state
4660 * This function is called after a PCI bus error affecting
4661 * this device has been detected.
4663 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4664 pci_channel_state_t state)
4666 struct net_device *netdev = pci_get_drvdata(pdev);
4667 struct e1000_adapter *adapter = netdev_priv(netdev);
4669 netif_device_detach(netdev);
4671 if (state == pci_channel_io_perm_failure)
4672 return PCI_ERS_RESULT_DISCONNECT;
4674 if (netif_running(netdev))
4675 e1000_down(adapter);
4676 pci_disable_device(pdev);
4678 /* Request a slot slot reset. */
4679 return PCI_ERS_RESULT_NEED_RESET;
4683 * e1000_io_slot_reset - called after the pci bus has been reset.
4684 * @pdev: Pointer to PCI device
4686 * Restart the card from scratch, as if from a cold-boot. Implementation
4687 * resembles the first-half of the e1000_resume routine.
4689 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4691 struct net_device *netdev = pci_get_drvdata(pdev);
4692 struct e1000_adapter *adapter = netdev_priv(netdev);
4693 struct e1000_hw *hw = &adapter->hw;
4694 int err;
4696 if (adapter->need_ioport)
4697 err = pci_enable_device(pdev);
4698 else
4699 err = pci_enable_device_mem(pdev);
4700 if (err) {
4701 pr_err("Cannot re-enable PCI device after reset.\n");
4702 return PCI_ERS_RESULT_DISCONNECT;
4704 pci_set_master(pdev);
4706 pci_enable_wake(pdev, PCI_D3hot, 0);
4707 pci_enable_wake(pdev, PCI_D3cold, 0);
4709 e1000_reset(adapter);
4710 ew32(WUS, ~0);
4712 return PCI_ERS_RESULT_RECOVERED;
4716 * e1000_io_resume - called when traffic can start flowing again.
4717 * @pdev: Pointer to PCI device
4719 * This callback is called when the error recovery driver tells us that
4720 * its OK to resume normal operation. Implementation resembles the
4721 * second-half of the e1000_resume routine.
4723 static void e1000_io_resume(struct pci_dev *pdev)
4725 struct net_device *netdev = pci_get_drvdata(pdev);
4726 struct e1000_adapter *adapter = netdev_priv(netdev);
4728 e1000_init_manageability(adapter);
4730 if (netif_running(netdev)) {
4731 if (e1000_up(adapter)) {
4732 pr_info("can't bring device back up after reset\n");
4733 return;
4737 netif_device_attach(netdev);
4740 /* e1000_main.c */