GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / cxgb4vf / cxgb4vf_main.c
blob2cdbd6a84d12c85c797165cb69424e17880c690c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #include <linux/version.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/debugfs.h>
45 #include <linux/ethtool.h>
47 #include "t4vf_common.h"
48 #include "t4vf_defs.h"
50 #include "../cxgb4/t4_regs.h"
51 #include "../cxgb4/t4_msg.h"
54 * Generic information about the driver.
56 #define DRV_VERSION "1.0.0"
57 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
60 * Module Parameters.
61 * ==================
65 * Default ethtool "message level" for adapters.
67 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73 module_param(dflt_msg_enable, int, 0644);
74 MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
89 #define MSI_MSIX 2
90 #define MSI_MSI 1
91 #define MSI_DEFAULT MSI_MSIX
93 static int msi = MSI_DEFAULT;
95 module_param(msi, int, 0644);
96 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
99 * Fundamental constants.
100 * ======================
103 enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
128 * Global driver state.
129 * ====================
132 static struct dentry *cxgb4vf_debugfs_root;
135 * OS "Callback" functions.
136 * ========================
140 * The link status has changed on the indicated "port" (Virtual Interface).
142 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 struct net_device *dev = adapter->port[pidx];
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
162 netif_carrier_on(dev);
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
173 case SPEED_100:
174 s = "100Mbps";
175 break;
177 default:
178 s = "unknown";
179 break;
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
187 case PAUSE_TX:
188 fc = "TX";
189 break;
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
195 default:
196 fc = "no";
197 break;
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
209 * Net device operations.
210 * ======================
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
217 static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
220 struct port_info *pi = netdev_priv(dev);
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
230 static int link_start(struct net_device *dev)
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
261 * Name the MSI-X interrupts.
263 static void name_msix_vecs(struct adapter *adapter)
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
269 * Firmware events.
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
276 * Ethernet queues.
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
294 * Request all of our MSI-X resources.
296 static int request_msix_queue_irqs(struct adapter *adapter)
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
302 * Firmware events.
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
310 * Ethernet queues.
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
322 return 0;
324 err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
332 * Free our MSI-X resources.
334 static void free_msix_queue_irqs(struct adapter *adapter)
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
347 * Turn on NAPI and start up interrupts on a response queue.
349 static void qenable(struct sge_rspq *rspq)
351 napi_enable(&rspq->napi);
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
366 static void enable_rx(struct adapter *adapter)
368 int rxq;
369 struct sge *s = &adapter->sge;
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
388 * Wait until all NAPI handlers are descheduled.
390 static void quiesce_rx(struct adapter *adapter)
392 struct sge *s = &adapter->sge;
393 int rxq;
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
401 * Response queue handler for the firmware event queue.
403 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
407 * Extract response opcode and get pointer to CPL message body.
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
413 switch (opcode) {
414 case CPL_FW6_MSG: {
416 * We've received an asynchronous message from the firmware.
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
424 case CPL_SGE_EGR_UPDATE: {
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
482 return 0;
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
490 static int setup_sge_queues(struct adapter *adapter)
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
517 * Allocate our ingress queue for asynchronous firmware messages.
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
536 int qs;
538 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
539 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
540 dev, msix++,
541 &rxq->fl, t4vf_ethrx_handler);
542 if (err)
543 goto err_free_queues;
545 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
546 netdev_get_tx_queue(dev, qs),
547 s->fw_evtq.cntxt_id);
548 if (err)
549 goto err_free_queues;
551 rxq->rspq.idx = qs;
552 memset(&rxq->stats, 0, sizeof(rxq->stats));
557 * Create the reverse mappings for the queues.
559 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
560 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
561 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
562 for_each_port(adapter, pidx) {
563 struct net_device *dev = adapter->port[pidx];
564 struct port_info *pi = netdev_priv(dev);
565 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
566 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
567 int qs;
569 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
570 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
571 EQ_MAP(s, txq->q.abs_id) = &txq->q;
574 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
575 * for Free Lists but since all of the Egress Queues
576 * (including Free Lists) have Relative Queue IDs
577 * which are computed as Absolute - Base Queue ID, we
578 * can synthesize the Absolute Queue IDs for the Free
579 * Lists. This is useful for debugging purposes when
580 * we want to dump Queue Contexts via the PF Driver.
582 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
583 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
586 return 0;
588 err_free_queues:
589 t4vf_free_sge_resources(adapter);
590 return err;
594 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
595 * queues. We configure the RSS CPU lookup table to distribute to the number
596 * of HW receive queues, and the response queue lookup table to narrow that
597 * down to the response queues actually configured for each "port" (Virtual
598 * Interface). We always configure the RSS mapping for all ports since the
599 * mapping table has plenty of entries.
601 static int setup_rss(struct adapter *adapter)
603 int pidx;
605 for_each_port(adapter, pidx) {
606 struct port_info *pi = adap2pinfo(adapter, pidx);
607 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
608 u16 rss[MAX_PORT_QSETS];
609 int qs, err;
611 for (qs = 0; qs < pi->nqsets; qs++)
612 rss[qs] = rxq[qs].rspq.abs_id;
614 err = t4vf_config_rss_range(adapter, pi->viid,
615 0, pi->rss_size, rss, pi->nqsets);
616 if (err)
617 return err;
620 * Perform Global RSS Mode-specific initialization.
622 switch (adapter->params.rss.mode) {
623 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
625 * If Tunnel All Lookup isn't specified in the global
626 * RSS Configuration, then we need to specify a
627 * default Ingress Queue for any ingress packets which
628 * aren't hashed. We'll use our first ingress queue
629 * ...
631 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
632 union rss_vi_config config;
633 err = t4vf_read_rss_vi_config(adapter,
634 pi->viid,
635 &config);
636 if (err)
637 return err;
638 config.basicvirtual.defaultq =
639 rxq[0].rspq.abs_id;
640 err = t4vf_write_rss_vi_config(adapter,
641 pi->viid,
642 &config);
643 if (err)
644 return err;
646 break;
650 return 0;
654 * Bring the adapter up. Called whenever we go from no "ports" open to having
655 * one open. This function performs the actions necessary to make an adapter
656 * operational, such as completing the initialization of HW modules, and
657 * enabling interrupts. Must be called with the rtnl lock held. (Note that
658 * this is called "cxgb_up" in the PF Driver.)
660 static int adapter_up(struct adapter *adapter)
662 int err;
665 * If this is the first time we've been called, perform basic
666 * adapter setup. Once we've done this, many of our adapter
667 * parameters can no longer be changed ...
669 if ((adapter->flags & FULL_INIT_DONE) == 0) {
670 err = setup_sge_queues(adapter);
671 if (err)
672 return err;
673 err = setup_rss(adapter);
674 if (err) {
675 t4vf_free_sge_resources(adapter);
676 return err;
679 if (adapter->flags & USING_MSIX)
680 name_msix_vecs(adapter);
681 adapter->flags |= FULL_INIT_DONE;
685 * Acquire our interrupt resources. We only support MSI-X and MSI.
687 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
688 if (adapter->flags & USING_MSIX)
689 err = request_msix_queue_irqs(adapter);
690 else
691 err = request_irq(adapter->pdev->irq,
692 t4vf_intr_handler(adapter), 0,
693 adapter->name, adapter);
694 if (err) {
695 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
696 err);
697 return err;
701 * Enable NAPI ingress processing and return success.
703 enable_rx(adapter);
704 t4vf_sge_start(adapter);
705 return 0;
709 * Bring the adapter down. Called whenever the last "port" (Virtual
710 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
711 * Driver.)
713 static void adapter_down(struct adapter *adapter)
716 * Free interrupt resources.
718 if (adapter->flags & USING_MSIX)
719 free_msix_queue_irqs(adapter);
720 else
721 free_irq(adapter->pdev->irq, adapter);
724 * Wait for NAPI handlers to finish.
726 quiesce_rx(adapter);
730 * Start up a net device.
732 static int cxgb4vf_open(struct net_device *dev)
734 int err;
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adapter = pi->adapter;
739 * If this is the first interface that we're opening on the "adapter",
740 * bring the "adapter" up now.
742 if (adapter->open_device_map == 0) {
743 err = adapter_up(adapter);
744 if (err)
745 return err;
749 * Note that this interface is up and start everything up ...
751 dev->real_num_tx_queues = pi->nqsets;
752 set_bit(pi->port_id, &adapter->open_device_map);
753 link_start(dev);
754 netif_tx_start_all_queues(dev);
755 return 0;
759 * Shut down a net device. This routine is called "cxgb_close" in the PF
760 * Driver ...
762 static int cxgb4vf_stop(struct net_device *dev)
764 int ret;
765 struct port_info *pi = netdev_priv(dev);
766 struct adapter *adapter = pi->adapter;
768 netif_tx_stop_all_queues(dev);
769 netif_carrier_off(dev);
770 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
771 pi->link_cfg.link_ok = 0;
773 clear_bit(pi->port_id, &adapter->open_device_map);
774 if (adapter->open_device_map == 0)
775 adapter_down(adapter);
776 return 0;
780 * Translate our basic statistics into the standard "ifconfig" statistics.
782 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
784 struct t4vf_port_stats stats;
785 struct port_info *pi = netdev2pinfo(dev);
786 struct adapter *adapter = pi->adapter;
787 struct net_device_stats *ns = &dev->stats;
788 int err;
790 spin_lock(&adapter->stats_lock);
791 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
792 spin_unlock(&adapter->stats_lock);
794 memset(ns, 0, sizeof(*ns));
795 if (err)
796 return ns;
798 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
799 stats.tx_ucast_bytes + stats.tx_offload_bytes);
800 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
801 stats.tx_ucast_frames + stats.tx_offload_frames);
802 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
803 stats.rx_ucast_bytes);
804 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
805 stats.rx_ucast_frames);
806 ns->multicast = stats.rx_mcast_frames;
807 ns->tx_errors = stats.tx_drop_frames;
808 ns->rx_errors = stats.rx_err_frames;
810 return ns;
814 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
815 * array of addrss pointers and return the number collected.
817 static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
818 const u8 **addr,
819 unsigned int maxaddrs)
821 unsigned int naddr = 0;
822 const struct netdev_hw_addr *ha;
824 for_each_dev_addr(dev, ha) {
825 addr[naddr++] = ha->addr;
826 if (naddr >= maxaddrs)
827 break;
829 return naddr;
833 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
834 * array of addrss pointers and return the number collected.
836 static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
837 const u8 **addr,
838 unsigned int maxaddrs)
840 unsigned int naddr = 0;
841 const struct netdev_hw_addr *ha;
843 netdev_for_each_mc_addr(ha, dev) {
844 addr[naddr++] = ha->addr;
845 if (naddr >= maxaddrs)
846 break;
848 return naddr;
852 * Configure the exact and hash address filters to handle a port's multicast
853 * and secondary unicast MAC addresses.
855 static int set_addr_filters(const struct net_device *dev, bool sleep)
857 u64 mhash = 0;
858 u64 uhash = 0;
859 bool free = true;
860 u16 filt_idx[7];
861 const u8 *addr[7];
862 int ret, naddr = 0;
863 const struct port_info *pi = netdev_priv(dev);
865 /* first do the secondary unicast addresses */
866 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
867 if (naddr > 0) {
868 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
869 naddr, addr, filt_idx, &uhash, sleep);
870 if (ret < 0)
871 return ret;
873 free = false;
876 /* next set up the multicast addresses */
877 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
878 if (naddr > 0) {
879 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
880 naddr, addr, filt_idx, &mhash, sleep);
881 if (ret < 0)
882 return ret;
885 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
886 uhash | mhash, sleep);
890 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
891 * If @mtu is -1 it is left unchanged.
893 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
895 int ret;
896 struct port_info *pi = netdev_priv(dev);
898 ret = set_addr_filters(dev, sleep_ok);
899 if (ret == 0)
900 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
901 (dev->flags & IFF_PROMISC) != 0,
902 (dev->flags & IFF_ALLMULTI) != 0,
903 1, -1, sleep_ok);
904 return ret;
908 * Set the current receive modes on the device.
910 static void cxgb4vf_set_rxmode(struct net_device *dev)
912 /* unfortunately we can't return errors to the stack */
913 set_rxmode(dev, -1, false);
917 * Find the entry in the interrupt holdoff timer value array which comes
918 * closest to the specified interrupt holdoff value.
920 static int closest_timer(const struct sge *s, int us)
922 int i, timer_idx = 0, min_delta = INT_MAX;
924 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
925 int delta = us - s->timer_val[i];
926 if (delta < 0)
927 delta = -delta;
928 if (delta < min_delta) {
929 min_delta = delta;
930 timer_idx = i;
933 return timer_idx;
936 static int closest_thres(const struct sge *s, int thres)
938 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
940 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
941 delta = thres - s->counter_val[i];
942 if (delta < 0)
943 delta = -delta;
944 if (delta < min_delta) {
945 min_delta = delta;
946 pktcnt_idx = i;
949 return pktcnt_idx;
953 * Return a queue's interrupt hold-off time in us. 0 means no timer.
955 static unsigned int qtimer_val(const struct adapter *adapter,
956 const struct sge_rspq *rspq)
958 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
960 return timer_idx < SGE_NTIMERS
961 ? adapter->sge.timer_val[timer_idx]
962 : 0;
966 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
967 * @adapter: the adapter
968 * @rspq: the RX response queue
969 * @us: the hold-off time in us, or 0 to disable timer
970 * @cnt: the hold-off packet count, or 0 to disable counter
972 * Sets an RX response queue's interrupt hold-off time and packet count.
973 * At least one of the two needs to be enabled for the queue to generate
974 * interrupts.
976 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
977 unsigned int us, unsigned int cnt)
979 unsigned int timer_idx;
982 * If both the interrupt holdoff timer and count are specified as
983 * zero, default to a holdoff count of 1 ...
985 if ((us | cnt) == 0)
986 cnt = 1;
989 * If an interrupt holdoff count has been specified, then find the
990 * closest configured holdoff count and use that. If the response
991 * queue has already been created, then update its queue context
992 * parameters ...
994 if (cnt) {
995 int err;
996 u32 v, pktcnt_idx;
998 pktcnt_idx = closest_thres(&adapter->sge, cnt);
999 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1000 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1001 FW_PARAMS_PARAM_X(
1002 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1003 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1004 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1005 if (err)
1006 return err;
1008 rspq->pktcnt_idx = pktcnt_idx;
1012 * Compute the closest holdoff timer index from the supplied holdoff
1013 * timer value.
1015 timer_idx = (us == 0
1016 ? SGE_TIMER_RSTRT_CNTR
1017 : closest_timer(&adapter->sge, us));
1020 * Update the response queue's interrupt coalescing parameters and
1021 * return success.
1023 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1024 (cnt > 0 ? QINTR_CNT_EN : 0));
1025 return 0;
1029 * Return a version number to identify the type of adapter. The scheme is:
1030 * - bits 0..9: chip version
1031 * - bits 10..15: chip revision
1033 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1036 * Chip version 4, revision 0x3f (cxgb4vf).
1038 return 4 | (0x3f << 10);
1042 * Execute the specified ioctl command.
1044 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1046 int ret = 0;
1048 switch (cmd) {
1050 * The VF Driver doesn't have access to any of the other
1051 * common Ethernet device ioctl()'s (like reading/writing
1052 * PHY registers, etc.
1055 default:
1056 ret = -EOPNOTSUPP;
1057 break;
1059 return ret;
1063 * Change the device's MTU.
1065 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1067 int ret;
1068 struct port_info *pi = netdev_priv(dev);
1070 /* accommodate SACK */
1071 if (new_mtu < 81)
1072 return -EINVAL;
1074 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1075 -1, -1, -1, -1, true);
1076 if (!ret)
1077 dev->mtu = new_mtu;
1078 return ret;
1082 * Change the devices MAC address.
1084 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1086 int ret;
1087 struct sockaddr *addr = _addr;
1088 struct port_info *pi = netdev_priv(dev);
1090 if (!is_valid_ether_addr(addr->sa_data))
1091 return -EINVAL;
1093 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1094 addr->sa_data, true);
1095 if (ret < 0)
1096 return ret;
1098 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1099 pi->xact_addr_filt = ret;
1100 return 0;
1104 * Return a TX Queue on which to send the specified skb.
1106 static u16 cxgb4vf_select_queue(struct net_device *dev, struct sk_buff *skb)
1108 return skb_tx_hash(dev, skb);
1111 #ifdef CONFIG_NET_POLL_CONTROLLER
1113 * Poll all of our receive queues. This is called outside of normal interrupt
1114 * context.
1116 static void cxgb4vf_poll_controller(struct net_device *dev)
1118 struct port_info *pi = netdev_priv(dev);
1119 struct adapter *adapter = pi->adapter;
1121 if (adapter->flags & USING_MSIX) {
1122 struct sge_eth_rxq *rxq;
1123 int nqsets;
1125 rxq = &adapter->sge.ethrxq[pi->first_qset];
1126 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1127 t4vf_sge_intr_msix(0, &rxq->rspq);
1128 rxq++;
1130 } else
1131 t4vf_intr_handler(adapter)(0, adapter);
1133 #endif
1136 * Ethtool operations.
1137 * ===================
1139 * Note that we don't support any ethtool operations which change the physical
1140 * state of the port to which we're linked.
1144 * Return current port link settings.
1146 static int cxgb4vf_get_settings(struct net_device *dev,
1147 struct ethtool_cmd *cmd)
1149 const struct port_info *pi = netdev_priv(dev);
1151 cmd->supported = pi->link_cfg.supported;
1152 cmd->advertising = pi->link_cfg.advertising;
1153 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1154 cmd->duplex = DUPLEX_FULL;
1156 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1157 cmd->phy_address = pi->port_id;
1158 cmd->transceiver = XCVR_EXTERNAL;
1159 cmd->autoneg = pi->link_cfg.autoneg;
1160 cmd->maxtxpkt = 0;
1161 cmd->maxrxpkt = 0;
1162 return 0;
1166 * Return our driver information.
1168 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1169 struct ethtool_drvinfo *drvinfo)
1171 struct adapter *adapter = netdev2adap(dev);
1173 strcpy(drvinfo->driver, KBUILD_MODNAME);
1174 strcpy(drvinfo->version, DRV_VERSION);
1175 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1176 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1177 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1178 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1179 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1180 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1181 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1182 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1183 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1184 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1185 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1189 * Return current adapter message level.
1191 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1193 return netdev2adap(dev)->msg_enable;
1197 * Set current adapter message level.
1199 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1201 netdev2adap(dev)->msg_enable = msglevel;
1205 * Return the device's current Queue Set ring size parameters along with the
1206 * allowed maximum values. Since ethtool doesn't understand the concept of
1207 * multi-queue devices, we just return the current values associated with the
1208 * first Queue Set.
1210 static void cxgb4vf_get_ringparam(struct net_device *dev,
1211 struct ethtool_ringparam *rp)
1213 const struct port_info *pi = netdev_priv(dev);
1214 const struct sge *s = &pi->adapter->sge;
1216 rp->rx_max_pending = MAX_RX_BUFFERS;
1217 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1218 rp->rx_jumbo_max_pending = 0;
1219 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1221 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1222 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1223 rp->rx_jumbo_pending = 0;
1224 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1228 * Set the Queue Set ring size parameters for the device. Again, since
1229 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1230 * apply these new values across all of the Queue Sets associated with the
1231 * device -- after vetting them of course!
1233 static int cxgb4vf_set_ringparam(struct net_device *dev,
1234 struct ethtool_ringparam *rp)
1236 const struct port_info *pi = netdev_priv(dev);
1237 struct adapter *adapter = pi->adapter;
1238 struct sge *s = &adapter->sge;
1239 int qs;
1241 if (rp->rx_pending > MAX_RX_BUFFERS ||
1242 rp->rx_jumbo_pending ||
1243 rp->tx_pending > MAX_TXQ_ENTRIES ||
1244 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1245 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1246 rp->rx_pending < MIN_FL_ENTRIES ||
1247 rp->tx_pending < MIN_TXQ_ENTRIES)
1248 return -EINVAL;
1250 if (adapter->flags & FULL_INIT_DONE)
1251 return -EBUSY;
1253 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1254 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1255 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1256 s->ethtxq[qs].q.size = rp->tx_pending;
1258 return 0;
1262 * Return the interrupt holdoff timer and count for the first Queue Set on the
1263 * device. Our extension ioctl() (the cxgbtool interface) allows the
1264 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1266 static int cxgb4vf_get_coalesce(struct net_device *dev,
1267 struct ethtool_coalesce *coalesce)
1269 const struct port_info *pi = netdev_priv(dev);
1270 const struct adapter *adapter = pi->adapter;
1271 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1273 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1274 coalesce->rx_max_coalesced_frames =
1275 ((rspq->intr_params & QINTR_CNT_EN)
1276 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1277 : 0);
1278 return 0;
1282 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1283 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1284 * the interrupt holdoff timer on any of the device's Queue Sets.
1286 static int cxgb4vf_set_coalesce(struct net_device *dev,
1287 struct ethtool_coalesce *coalesce)
1289 const struct port_info *pi = netdev_priv(dev);
1290 struct adapter *adapter = pi->adapter;
1292 return set_rxq_intr_params(adapter,
1293 &adapter->sge.ethrxq[pi->first_qset].rspq,
1294 coalesce->rx_coalesce_usecs,
1295 coalesce->rx_max_coalesced_frames);
1299 * Report current port link pause parameter settings.
1301 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1302 struct ethtool_pauseparam *pauseparam)
1304 struct port_info *pi = netdev_priv(dev);
1306 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1307 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1308 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1312 * Return whether RX Checksum Offloading is currently enabled for the device.
1314 static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1316 struct port_info *pi = netdev_priv(dev);
1318 return (pi->rx_offload & RX_CSO) != 0;
1322 * Turn RX Checksum Offloading on or off for the device.
1324 static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1326 struct port_info *pi = netdev_priv(dev);
1328 if (csum)
1329 pi->rx_offload |= RX_CSO;
1330 else
1331 pi->rx_offload &= ~RX_CSO;
1332 return 0;
1336 * Identify the port by blinking the port's LED.
1338 static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1340 struct port_info *pi = netdev_priv(dev);
1342 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1346 * Port stats maintained per queue of the port.
1348 struct queue_port_stats {
1349 u64 tso;
1350 u64 tx_csum;
1351 u64 rx_csum;
1352 u64 vlan_ex;
1353 u64 vlan_ins;
1357 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1358 * these need to match the order of statistics returned by
1359 * t4vf_get_port_stats().
1361 static const char stats_strings[][ETH_GSTRING_LEN] = {
1363 * These must match the layout of the t4vf_port_stats structure.
1365 "TxBroadcastBytes ",
1366 "TxBroadcastFrames ",
1367 "TxMulticastBytes ",
1368 "TxMulticastFrames ",
1369 "TxUnicastBytes ",
1370 "TxUnicastFrames ",
1371 "TxDroppedFrames ",
1372 "TxOffloadBytes ",
1373 "TxOffloadFrames ",
1374 "RxBroadcastBytes ",
1375 "RxBroadcastFrames ",
1376 "RxMulticastBytes ",
1377 "RxMulticastFrames ",
1378 "RxUnicastBytes ",
1379 "RxUnicastFrames ",
1380 "RxErrorFrames ",
1383 * These are accumulated per-queue statistics and must match the
1384 * order of the fields in the queue_port_stats structure.
1386 "TSO ",
1387 "TxCsumOffload ",
1388 "RxCsumGood ",
1389 "VLANextractions ",
1390 "VLANinsertions ",
1394 * Return the number of statistics in the specified statistics set.
1396 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1398 switch (sset) {
1399 case ETH_SS_STATS:
1400 return ARRAY_SIZE(stats_strings);
1401 default:
1402 return -EOPNOTSUPP;
1404 /*NOTREACHED*/
1408 * Return the strings for the specified statistics set.
1410 static void cxgb4vf_get_strings(struct net_device *dev,
1411 u32 sset,
1412 u8 *data)
1414 switch (sset) {
1415 case ETH_SS_STATS:
1416 memcpy(data, stats_strings, sizeof(stats_strings));
1417 break;
1422 * Small utility routine to accumulate queue statistics across the queues of
1423 * a "port".
1425 static void collect_sge_port_stats(const struct adapter *adapter,
1426 const struct port_info *pi,
1427 struct queue_port_stats *stats)
1429 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1430 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1431 int qs;
1433 memset(stats, 0, sizeof(*stats));
1434 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1435 stats->tso += txq->tso;
1436 stats->tx_csum += txq->tx_cso;
1437 stats->rx_csum += rxq->stats.rx_cso;
1438 stats->vlan_ex += rxq->stats.vlan_ex;
1439 stats->vlan_ins += txq->vlan_ins;
1444 * Return the ETH_SS_STATS statistics set.
1446 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1447 struct ethtool_stats *stats,
1448 u64 *data)
1450 struct port_info *pi = netdev2pinfo(dev);
1451 struct adapter *adapter = pi->adapter;
1452 int err = t4vf_get_port_stats(adapter, pi->pidx,
1453 (struct t4vf_port_stats *)data);
1454 if (err)
1455 memset(data, 0, sizeof(struct t4vf_port_stats));
1457 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1458 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1462 * Return the size of our register map.
1464 static int cxgb4vf_get_regs_len(struct net_device *dev)
1466 return T4VF_REGMAP_SIZE;
1470 * Dump a block of registers, start to end inclusive, into a buffer.
1472 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1473 unsigned int start, unsigned int end)
1475 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1477 for ( ; start <= end; start += sizeof(u32)) {
1479 * Avoid reading the Mailbox Control register since that
1480 * can trigger a Mailbox Ownership Arbitration cycle and
1481 * interfere with communication with the firmware.
1483 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1484 *bp++ = 0xffff;
1485 else
1486 *bp++ = t4_read_reg(adapter, start);
1491 * Copy our entire register map into the provided buffer.
1493 static void cxgb4vf_get_regs(struct net_device *dev,
1494 struct ethtool_regs *regs,
1495 void *regbuf)
1497 struct adapter *adapter = netdev2adap(dev);
1499 regs->version = mk_adap_vers(adapter);
1502 * Fill in register buffer with our register map.
1504 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1506 reg_block_dump(adapter, regbuf,
1507 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1508 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1509 reg_block_dump(adapter, regbuf,
1510 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1511 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1512 reg_block_dump(adapter, regbuf,
1513 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1514 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1515 reg_block_dump(adapter, regbuf,
1516 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1517 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1519 reg_block_dump(adapter, regbuf,
1520 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1521 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1525 * Report current Wake On LAN settings.
1527 static void cxgb4vf_get_wol(struct net_device *dev,
1528 struct ethtool_wolinfo *wol)
1530 wol->supported = 0;
1531 wol->wolopts = 0;
1532 memset(&wol->sopass, 0, sizeof(wol->sopass));
1536 * Set TCP Segmentation Offloading feature capabilities.
1538 static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1540 if (tso)
1541 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1542 else
1543 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1544 return 0;
1547 static struct ethtool_ops cxgb4vf_ethtool_ops = {
1548 .get_settings = cxgb4vf_get_settings,
1549 .get_drvinfo = cxgb4vf_get_drvinfo,
1550 .get_msglevel = cxgb4vf_get_msglevel,
1551 .set_msglevel = cxgb4vf_set_msglevel,
1552 .get_ringparam = cxgb4vf_get_ringparam,
1553 .set_ringparam = cxgb4vf_set_ringparam,
1554 .get_coalesce = cxgb4vf_get_coalesce,
1555 .set_coalesce = cxgb4vf_set_coalesce,
1556 .get_pauseparam = cxgb4vf_get_pauseparam,
1557 .get_rx_csum = cxgb4vf_get_rx_csum,
1558 .set_rx_csum = cxgb4vf_set_rx_csum,
1559 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1560 .set_sg = ethtool_op_set_sg,
1561 .get_link = ethtool_op_get_link,
1562 .get_strings = cxgb4vf_get_strings,
1563 .phys_id = cxgb4vf_phys_id,
1564 .get_sset_count = cxgb4vf_get_sset_count,
1565 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1566 .get_regs_len = cxgb4vf_get_regs_len,
1567 .get_regs = cxgb4vf_get_regs,
1568 .get_wol = cxgb4vf_get_wol,
1569 .set_tso = cxgb4vf_set_tso,
1573 * /sys/kernel/debug/cxgb4vf support code and data.
1574 * ================================================
1578 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1580 #define QPL 4
1582 static int sge_qinfo_show(struct seq_file *seq, void *v)
1584 struct adapter *adapter = seq->private;
1585 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1586 int qs, r = (uintptr_t)v - 1;
1588 if (r)
1589 seq_putc(seq, '\n');
1591 #define S3(fmt_spec, s, v) \
1592 do {\
1593 seq_printf(seq, "%-12s", s); \
1594 for (qs = 0; qs < n; ++qs) \
1595 seq_printf(seq, " %16" fmt_spec, v); \
1596 seq_putc(seq, '\n'); \
1597 } while (0)
1598 #define S(s, v) S3("s", s, v)
1599 #define T(s, v) S3("u", s, txq[qs].v)
1600 #define R(s, v) S3("u", s, rxq[qs].v)
1602 if (r < eth_entries) {
1603 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1604 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1605 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1607 S("QType:", "Ethernet");
1608 S("Interface:",
1609 (rxq[qs].rspq.netdev
1610 ? rxq[qs].rspq.netdev->name
1611 : "N/A"));
1612 S3("d", "Port:",
1613 (rxq[qs].rspq.netdev
1614 ? ((struct port_info *)
1615 netdev_priv(rxq[qs].rspq.netdev))->port_id
1616 : -1));
1617 T("TxQ ID:", q.abs_id);
1618 T("TxQ size:", q.size);
1619 T("TxQ inuse:", q.in_use);
1620 T("TxQ PIdx:", q.pidx);
1621 T("TxQ CIdx:", q.cidx);
1622 R("RspQ ID:", rspq.abs_id);
1623 R("RspQ size:", rspq.size);
1624 R("RspQE size:", rspq.iqe_len);
1625 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1626 S3("u", "Intr pktcnt:",
1627 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1628 R("RspQ CIdx:", rspq.cidx);
1629 R("RspQ Gen:", rspq.gen);
1630 R("FL ID:", fl.abs_id);
1631 R("FL size:", fl.size - MIN_FL_RESID);
1632 R("FL avail:", fl.avail);
1633 R("FL PIdx:", fl.pidx);
1634 R("FL CIdx:", fl.cidx);
1635 return 0;
1638 r -= eth_entries;
1639 if (r == 0) {
1640 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1642 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1643 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1644 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1645 qtimer_val(adapter, evtq));
1646 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1647 adapter->sge.counter_val[evtq->pktcnt_idx]);
1648 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1649 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1650 } else if (r == 1) {
1651 const struct sge_rspq *intrq = &adapter->sge.intrq;
1653 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1654 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1655 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1656 qtimer_val(adapter, intrq));
1657 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1658 adapter->sge.counter_val[intrq->pktcnt_idx]);
1659 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1660 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1663 #undef R
1664 #undef T
1665 #undef S
1666 #undef S3
1668 return 0;
1672 * Return the number of "entries" in our "file". We group the multi-Queue
1673 * sections with QPL Queue Sets per "entry". The sections of the output are:
1675 * Ethernet RX/TX Queue Sets
1676 * Firmware Event Queue
1677 * Forwarded Interrupt Queue (if in MSI mode)
1679 static int sge_queue_entries(const struct adapter *adapter)
1681 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1682 ((adapter->flags & USING_MSI) != 0);
1685 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1687 int entries = sge_queue_entries(seq->private);
1689 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1692 static void sge_queue_stop(struct seq_file *seq, void *v)
1696 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1698 int entries = sge_queue_entries(seq->private);
1700 ++*pos;
1701 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1704 static const struct seq_operations sge_qinfo_seq_ops = {
1705 .start = sge_queue_start,
1706 .next = sge_queue_next,
1707 .stop = sge_queue_stop,
1708 .show = sge_qinfo_show
1711 static int sge_qinfo_open(struct inode *inode, struct file *file)
1713 int res = seq_open(file, &sge_qinfo_seq_ops);
1715 if (!res) {
1716 struct seq_file *seq = file->private_data;
1717 seq->private = inode->i_private;
1719 return res;
1722 static const struct file_operations sge_qinfo_debugfs_fops = {
1723 .owner = THIS_MODULE,
1724 .open = sge_qinfo_open,
1725 .read = seq_read,
1726 .llseek = seq_lseek,
1727 .release = seq_release,
1731 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1733 #define QPL 4
1735 static int sge_qstats_show(struct seq_file *seq, void *v)
1737 struct adapter *adapter = seq->private;
1738 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1739 int qs, r = (uintptr_t)v - 1;
1741 if (r)
1742 seq_putc(seq, '\n');
1744 #define S3(fmt, s, v) \
1745 do { \
1746 seq_printf(seq, "%-16s", s); \
1747 for (qs = 0; qs < n; ++qs) \
1748 seq_printf(seq, " %8" fmt, v); \
1749 seq_putc(seq, '\n'); \
1750 } while (0)
1751 #define S(s, v) S3("s", s, v)
1753 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1754 #define T(s, v) T3("lu", s, v)
1756 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1757 #define R(s, v) R3("lu", s, v)
1759 if (r < eth_entries) {
1760 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1761 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1762 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1764 S("QType:", "Ethernet");
1765 S("Interface:",
1766 (rxq[qs].rspq.netdev
1767 ? rxq[qs].rspq.netdev->name
1768 : "N/A"));
1769 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1770 R("RxPackets:", stats.pkts);
1771 R("RxCSO:", stats.rx_cso);
1772 R("VLANxtract:", stats.vlan_ex);
1773 R("LROmerged:", stats.lro_merged);
1774 R("LROpackets:", stats.lro_pkts);
1775 R("RxDrops:", stats.rx_drops);
1776 T("TSO:", tso);
1777 T("TxCSO:", tx_cso);
1778 T("VLANins:", vlan_ins);
1779 T("TxQFull:", q.stops);
1780 T("TxQRestarts:", q.restarts);
1781 T("TxMapErr:", mapping_err);
1782 R("FLAllocErr:", fl.alloc_failed);
1783 R("FLLrgAlcErr:", fl.large_alloc_failed);
1784 R("FLStarving:", fl.starving);
1785 return 0;
1788 r -= eth_entries;
1789 if (r == 0) {
1790 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1792 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1793 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1794 evtq->unhandled_irqs);
1795 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1796 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1797 } else if (r == 1) {
1798 const struct sge_rspq *intrq = &adapter->sge.intrq;
1800 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1801 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1802 intrq->unhandled_irqs);
1803 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1804 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1807 #undef R
1808 #undef T
1809 #undef S
1810 #undef R3
1811 #undef T3
1812 #undef S3
1814 return 0;
1818 * Return the number of "entries" in our "file". We group the multi-Queue
1819 * sections with QPL Queue Sets per "entry". The sections of the output are:
1821 * Ethernet RX/TX Queue Sets
1822 * Firmware Event Queue
1823 * Forwarded Interrupt Queue (if in MSI mode)
1825 static int sge_qstats_entries(const struct adapter *adapter)
1827 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1828 ((adapter->flags & USING_MSI) != 0);
1831 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1833 int entries = sge_qstats_entries(seq->private);
1835 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1838 static void sge_qstats_stop(struct seq_file *seq, void *v)
1842 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1844 int entries = sge_qstats_entries(seq->private);
1846 (*pos)++;
1847 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1850 static const struct seq_operations sge_qstats_seq_ops = {
1851 .start = sge_qstats_start,
1852 .next = sge_qstats_next,
1853 .stop = sge_qstats_stop,
1854 .show = sge_qstats_show
1857 static int sge_qstats_open(struct inode *inode, struct file *file)
1859 int res = seq_open(file, &sge_qstats_seq_ops);
1861 if (res == 0) {
1862 struct seq_file *seq = file->private_data;
1863 seq->private = inode->i_private;
1865 return res;
1868 static const struct file_operations sge_qstats_proc_fops = {
1869 .owner = THIS_MODULE,
1870 .open = sge_qstats_open,
1871 .read = seq_read,
1872 .llseek = seq_lseek,
1873 .release = seq_release,
1877 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1879 static int resources_show(struct seq_file *seq, void *v)
1881 struct adapter *adapter = seq->private;
1882 struct vf_resources *vfres = &adapter->params.vfres;
1884 #define S(desc, fmt, var) \
1885 seq_printf(seq, "%-60s " fmt "\n", \
1886 desc " (" #var "):", vfres->var)
1888 S("Virtual Interfaces", "%d", nvi);
1889 S("Egress Queues", "%d", neq);
1890 S("Ethernet Control", "%d", nethctrl);
1891 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1892 S("Ingress Queues", "%d", niq);
1893 S("Traffic Class", "%d", tc);
1894 S("Port Access Rights Mask", "%#x", pmask);
1895 S("MAC Address Filters", "%d", nexactf);
1896 S("Firmware Command Read Capabilities", "%#x", r_caps);
1897 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1899 #undef S
1901 return 0;
1904 static int resources_open(struct inode *inode, struct file *file)
1906 return single_open(file, resources_show, inode->i_private);
1909 static const struct file_operations resources_proc_fops = {
1910 .owner = THIS_MODULE,
1911 .open = resources_open,
1912 .read = seq_read,
1913 .llseek = seq_lseek,
1914 .release = single_release,
1918 * Show Virtual Interfaces.
1920 static int interfaces_show(struct seq_file *seq, void *v)
1922 if (v == SEQ_START_TOKEN) {
1923 seq_puts(seq, "Interface Port VIID\n");
1924 } else {
1925 struct adapter *adapter = seq->private;
1926 int pidx = (uintptr_t)v - 2;
1927 struct net_device *dev = adapter->port[pidx];
1928 struct port_info *pi = netdev_priv(dev);
1930 seq_printf(seq, "%9s %4d %#5x\n",
1931 dev->name, pi->port_id, pi->viid);
1933 return 0;
1936 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1938 return pos <= adapter->params.nports
1939 ? (void *)(uintptr_t)(pos + 1)
1940 : NULL;
1943 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1945 return *pos
1946 ? interfaces_get_idx(seq->private, *pos)
1947 : SEQ_START_TOKEN;
1950 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1952 (*pos)++;
1953 return interfaces_get_idx(seq->private, *pos);
1956 static void interfaces_stop(struct seq_file *seq, void *v)
1960 static const struct seq_operations interfaces_seq_ops = {
1961 .start = interfaces_start,
1962 .next = interfaces_next,
1963 .stop = interfaces_stop,
1964 .show = interfaces_show
1967 static int interfaces_open(struct inode *inode, struct file *file)
1969 int res = seq_open(file, &interfaces_seq_ops);
1971 if (res == 0) {
1972 struct seq_file *seq = file->private_data;
1973 seq->private = inode->i_private;
1975 return res;
1978 static const struct file_operations interfaces_proc_fops = {
1979 .owner = THIS_MODULE,
1980 .open = interfaces_open,
1981 .read = seq_read,
1982 .llseek = seq_lseek,
1983 .release = seq_release,
1987 * /sys/kernel/debugfs/cxgb4vf/ files list.
1989 struct cxgb4vf_debugfs_entry {
1990 const char *name; /* name of debugfs node */
1991 mode_t mode; /* file system mode */
1992 const struct file_operations *fops;
1995 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1996 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1997 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1998 { "resources", S_IRUGO, &resources_proc_fops },
1999 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2003 * Module and device initialization and cleanup code.
2004 * ==================================================
2008 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2009 * directory (debugfs_root) has already been set up.
2011 static int __devinit setup_debugfs(struct adapter *adapter)
2013 int i;
2015 BUG_ON(adapter->debugfs_root == NULL);
2018 * Debugfs support is best effort.
2020 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2021 (void)debugfs_create_file(debugfs_files[i].name,
2022 debugfs_files[i].mode,
2023 adapter->debugfs_root,
2024 (void *)adapter,
2025 debugfs_files[i].fops);
2027 return 0;
2031 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2032 * it to our caller to tear down the directory (debugfs_root).
2034 static void __devexit cleanup_debugfs(struct adapter *adapter)
2036 BUG_ON(adapter->debugfs_root == NULL);
2039 * Unlike our sister routine cleanup_proc(), we don't need to remove
2040 * individual entries because a call will be made to
2041 * debugfs_remove_recursive(). We just need to clean up any ancillary
2042 * persistent state.
2044 /* nothing to do */
2048 * Perform early "adapter" initialization. This is where we discover what
2049 * adapter parameters we're going to be using and initialize basic adapter
2050 * hardware support.
2052 static int adap_init0(struct adapter *adapter)
2054 struct vf_resources *vfres = &adapter->params.vfres;
2055 struct sge_params *sge_params = &adapter->params.sge;
2056 struct sge *s = &adapter->sge;
2057 unsigned int ethqsets;
2058 int err;
2061 * Wait for the device to become ready before proceeding ...
2063 err = t4vf_wait_dev_ready(adapter);
2064 if (err) {
2065 dev_err(adapter->pdev_dev, "device didn't become ready:"
2066 " err=%d\n", err);
2067 return err;
2071 * Grab basic operational parameters. These will predominantly have
2072 * been set up by the Physical Function Driver or will be hard coded
2073 * into the adapter. We just have to live with them ... Note that
2074 * we _must_ get our VPD parameters before our SGE parameters because
2075 * we need to know the adapter's core clock from the VPD in order to
2076 * properly decode the SGE Timer Values.
2078 err = t4vf_get_dev_params(adapter);
2079 if (err) {
2080 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2081 " device parameters: err=%d\n", err);
2082 return err;
2084 err = t4vf_get_vpd_params(adapter);
2085 if (err) {
2086 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2087 " VPD parameters: err=%d\n", err);
2088 return err;
2090 err = t4vf_get_sge_params(adapter);
2091 if (err) {
2092 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2093 " SGE parameters: err=%d\n", err);
2094 return err;
2096 err = t4vf_get_rss_glb_config(adapter);
2097 if (err) {
2098 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2099 " RSS parameters: err=%d\n", err);
2100 return err;
2102 if (adapter->params.rss.mode !=
2103 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2104 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2105 " mode %d\n", adapter->params.rss.mode);
2106 return -EINVAL;
2108 err = t4vf_sge_init(adapter);
2109 if (err) {
2110 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2111 " err=%d\n", err);
2112 return err;
2116 * Retrieve our RX interrupt holdoff timer values and counter
2117 * threshold values from the SGE parameters.
2119 s->timer_val[0] = core_ticks_to_us(adapter,
2120 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2121 s->timer_val[1] = core_ticks_to_us(adapter,
2122 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2123 s->timer_val[2] = core_ticks_to_us(adapter,
2124 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2125 s->timer_val[3] = core_ticks_to_us(adapter,
2126 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2127 s->timer_val[4] = core_ticks_to_us(adapter,
2128 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2129 s->timer_val[5] = core_ticks_to_us(adapter,
2130 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2132 s->counter_val[0] =
2133 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2134 s->counter_val[1] =
2135 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2136 s->counter_val[2] =
2137 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2138 s->counter_val[3] =
2139 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2142 * Grab our Virtual Interface resource allocation, extract the
2143 * features that we're interested in and do a bit of sanity testing on
2144 * what we discover.
2146 err = t4vf_get_vfres(adapter);
2147 if (err) {
2148 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2149 " resources: err=%d\n", err);
2150 return err;
2154 * The number of "ports" which we support is equal to the number of
2155 * Virtual Interfaces with which we've been provisioned.
2157 adapter->params.nports = vfres->nvi;
2158 if (adapter->params.nports > MAX_NPORTS) {
2159 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2160 " virtual interfaces\n", MAX_NPORTS,
2161 adapter->params.nports);
2162 adapter->params.nports = MAX_NPORTS;
2166 * We need to reserve a number of the ingress queues with Free List
2167 * and Interrupt capabilities for special interrupt purposes (like
2168 * asynchronous firmware messages, or forwarded interrupts if we're
2169 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2170 * matched up one-for-one with Ethernet/Control egress queues in order
2171 * to form "Queue Sets" which will be aportioned between the "ports".
2172 * For each Queue Set, we'll need the ability to allocate two Egress
2173 * Contexts -- one for the Ingress Queue Free List and one for the TX
2174 * Ethernet Queue.
2176 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2177 if (vfres->nethctrl != ethqsets) {
2178 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2179 " ingress/egress queues (%d/%d); using minimum for"
2180 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2181 ethqsets = min(vfres->nethctrl, ethqsets);
2183 if (vfres->neq < ethqsets*2) {
2184 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2185 " to support Queue Sets (%d); reducing allowed Queue"
2186 " Sets\n", vfres->neq, ethqsets);
2187 ethqsets = vfres->neq/2;
2189 if (ethqsets > MAX_ETH_QSETS) {
2190 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2191 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2192 ethqsets = MAX_ETH_QSETS;
2194 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2195 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2196 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2198 adapter->sge.max_ethqsets = ethqsets;
2201 * Check for various parameter sanity issues. Most checks simply
2202 * result in us using fewer resources than our provissioning but we
2203 * do need at least one "port" with which to work ...
2205 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2206 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2207 " virtual interfaces (too few Queue Sets)\n",
2208 adapter->sge.max_ethqsets, adapter->params.nports);
2209 adapter->params.nports = adapter->sge.max_ethqsets;
2211 if (adapter->params.nports == 0) {
2212 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2213 "usable!\n");
2214 return -EINVAL;
2216 return 0;
2219 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2220 u8 pkt_cnt_idx, unsigned int size,
2221 unsigned int iqe_size)
2223 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2224 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2225 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2226 ? pkt_cnt_idx
2227 : 0);
2228 rspq->iqe_len = iqe_size;
2229 rspq->size = size;
2233 * Perform default configuration of DMA queues depending on the number and
2234 * type of ports we found and the number of available CPUs. Most settings can
2235 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2236 * being brought up for the first time.
2238 static void __devinit cfg_queues(struct adapter *adapter)
2240 struct sge *s = &adapter->sge;
2241 int q10g, n10g, qidx, pidx, qs;
2244 * We should not be called till we know how many Queue Sets we can
2245 * support. In particular, this means that we need to know what kind
2246 * of interrupts we'll be using ...
2248 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2251 * Count the number of 10GbE Virtual Interfaces that we have.
2253 n10g = 0;
2254 for_each_port(adapter, pidx)
2255 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2258 * We default to 1 queue per non-10G port and up to # of cores queues
2259 * per 10G port.
2261 if (n10g == 0)
2262 q10g = 0;
2263 else {
2264 int n1g = (adapter->params.nports - n10g);
2265 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2266 if (q10g > num_online_cpus())
2267 q10g = num_online_cpus();
2271 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2272 * The layout will be established in setup_sge_queues() when the
2273 * adapter is brough up for the first time.
2275 qidx = 0;
2276 for_each_port(adapter, pidx) {
2277 struct port_info *pi = adap2pinfo(adapter, pidx);
2279 pi->first_qset = qidx;
2280 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2281 qidx += pi->nqsets;
2283 s->ethqsets = qidx;
2286 * Set up default Queue Set parameters ... Start off with the
2287 * shortest interrupt holdoff timer.
2289 for (qs = 0; qs < s->max_ethqsets; qs++) {
2290 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2291 struct sge_eth_txq *txq = &s->ethtxq[qs];
2293 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2294 rxq->fl.size = 72;
2295 txq->q.size = 1024;
2299 * The firmware event queue is used for link state changes and
2300 * notifications of TX DMA completions.
2302 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2303 L1_CACHE_BYTES);
2306 * The forwarded interrupt queue is used when we're in MSI interrupt
2307 * mode. In this mode all interrupts associated with RX queues will
2308 * be forwarded to a single queue which we'll associate with our MSI
2309 * interrupt vector. The messages dropped in the forwarded interrupt
2310 * queue will indicate which ingress queue needs servicing ... This
2311 * queue needs to be large enough to accommodate all of the ingress
2312 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2313 * from equalling the CIDX if every ingress queue has an outstanding
2314 * interrupt). The queue doesn't need to be any larger because no
2315 * ingress queue will ever have more than one outstanding interrupt at
2316 * any time ...
2318 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2319 L1_CACHE_BYTES);
2323 * Reduce the number of Ethernet queues across all ports to at most n.
2324 * n provides at least one queue per port.
2326 static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2328 int i;
2329 struct port_info *pi;
2332 * While we have too many active Ether Queue Sets, interate across the
2333 * "ports" and reduce their individual Queue Set allocations.
2335 BUG_ON(n < adapter->params.nports);
2336 while (n < adapter->sge.ethqsets)
2337 for_each_port(adapter, i) {
2338 pi = adap2pinfo(adapter, i);
2339 if (pi->nqsets > 1) {
2340 pi->nqsets--;
2341 adapter->sge.ethqsets--;
2342 if (adapter->sge.ethqsets <= n)
2343 break;
2348 * Reassign the starting Queue Sets for each of the "ports" ...
2350 n = 0;
2351 for_each_port(adapter, i) {
2352 pi = adap2pinfo(adapter, i);
2353 pi->first_qset = n;
2354 n += pi->nqsets;
2359 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2360 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2361 * need. Minimally we need one for every Virtual Interface plus those needed
2362 * for our "extras". Note that this process may lower the maximum number of
2363 * allowed Queue Sets ...
2365 static int __devinit enable_msix(struct adapter *adapter)
2367 int i, err, want, need;
2368 struct msix_entry entries[MSIX_ENTRIES];
2369 struct sge *s = &adapter->sge;
2371 for (i = 0; i < MSIX_ENTRIES; ++i)
2372 entries[i].entry = i;
2375 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2376 * plus those needed for our "extras" (for example, the firmware
2377 * message queue). We _need_ at least one "Queue Set" per Virtual
2378 * Interface plus those needed for our "extras". So now we get to see
2379 * if the song is right ...
2381 want = s->max_ethqsets + MSIX_EXTRAS;
2382 need = adapter->params.nports + MSIX_EXTRAS;
2383 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2384 want = err;
2386 if (err == 0) {
2387 int nqsets = want - MSIX_EXTRAS;
2388 if (nqsets < s->max_ethqsets) {
2389 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2390 " for %d Queue Sets\n", nqsets);
2391 s->max_ethqsets = nqsets;
2392 if (nqsets < s->ethqsets)
2393 reduce_ethqs(adapter, nqsets);
2395 for (i = 0; i < want; ++i)
2396 adapter->msix_info[i].vec = entries[i].vector;
2397 } else if (err > 0) {
2398 pci_disable_msix(adapter->pdev);
2399 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2400 " not using MSI-X\n", err);
2402 return err;
2405 #ifdef HAVE_NET_DEVICE_OPS
2406 static const struct net_device_ops cxgb4vf_netdev_ops = {
2407 .ndo_open = cxgb4vf_open,
2408 .ndo_stop = cxgb4vf_stop,
2409 .ndo_start_xmit = t4vf_eth_xmit,
2410 .ndo_get_stats = cxgb4vf_get_stats,
2411 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2412 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2413 .ndo_select_queue = cxgb4vf_select_queue,
2414 .ndo_validate_addr = eth_validate_addr,
2415 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2416 .ndo_change_mtu = cxgb4vf_change_mtu,
2417 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2418 #ifdef CONFIG_NET_POLL_CONTROLLER
2419 .ndo_poll_controller = cxgb4vf_poll_controller,
2420 #endif
2422 #endif
2425 * "Probe" a device: initialize a device and construct all kernel and driver
2426 * state needed to manage the device. This routine is called "init_one" in
2427 * the PF Driver ...
2429 static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2430 const struct pci_device_id *ent)
2432 static int version_printed;
2434 int pci_using_dac;
2435 int err, pidx;
2436 unsigned int pmask;
2437 struct adapter *adapter;
2438 struct port_info *pi;
2439 struct net_device *netdev;
2442 * Vet our module parameters.
2444 if (msi != MSI_MSIX && msi != MSI_MSI) {
2445 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2446 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2447 MSI_MSI);
2448 err = -EINVAL;
2449 goto err_out;
2453 * Print our driver banner the first time we're called to initialize a
2454 * device.
2456 if (version_printed == 0) {
2457 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2458 version_printed = 1;
2463 * Initialize generic PCI device state.
2465 err = pci_enable_device(pdev);
2466 if (err) {
2467 dev_err(&pdev->dev, "cannot enable PCI device\n");
2468 return err;
2472 * Reserve PCI resources for the device. If we can't get them some
2473 * other driver may have already claimed the device ...
2475 err = pci_request_regions(pdev, KBUILD_MODNAME);
2476 if (err) {
2477 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2478 goto err_disable_device;
2482 * Set up our DMA mask: try for 64-bit address masking first and
2483 * fall back to 32-bit if we can't get 64 bits ...
2485 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2486 if (err == 0) {
2487 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2488 if (err) {
2489 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2490 " coherent allocations\n");
2491 goto err_release_regions;
2493 pci_using_dac = 1;
2494 } else {
2495 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2496 if (err != 0) {
2497 dev_err(&pdev->dev, "no usable DMA configuration\n");
2498 goto err_release_regions;
2500 pci_using_dac = 0;
2504 * Enable bus mastering for the device ...
2506 pci_set_master(pdev);
2509 * Allocate our adapter data structure and attach it to the device.
2511 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2512 if (!adapter) {
2513 err = -ENOMEM;
2514 goto err_release_regions;
2516 pci_set_drvdata(pdev, adapter);
2517 adapter->pdev = pdev;
2518 adapter->pdev_dev = &pdev->dev;
2521 * Initialize SMP data synchronization resources.
2523 spin_lock_init(&adapter->stats_lock);
2526 * Map our I/O registers in BAR0.
2528 adapter->regs = pci_ioremap_bar(pdev, 0);
2529 if (!adapter->regs) {
2530 dev_err(&pdev->dev, "cannot map device registers\n");
2531 err = -ENOMEM;
2532 goto err_free_adapter;
2536 * Initialize adapter level features.
2538 adapter->name = pci_name(pdev);
2539 adapter->msg_enable = dflt_msg_enable;
2540 err = adap_init0(adapter);
2541 if (err)
2542 goto err_unmap_bar;
2545 * Allocate our "adapter ports" and stitch everything together.
2547 pmask = adapter->params.vfres.pmask;
2548 for_each_port(adapter, pidx) {
2549 int port_id, viid;
2552 * We simplistically allocate our virtual interfaces
2553 * sequentially across the port numbers to which we have
2554 * access rights. This should be configurable in some manner
2555 * ...
2557 if (pmask == 0)
2558 break;
2559 port_id = ffs(pmask) - 1;
2560 pmask &= ~(1 << port_id);
2561 viid = t4vf_alloc_vi(adapter, port_id);
2562 if (viid < 0) {
2563 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2564 " err=%d\n", port_id, viid);
2565 err = viid;
2566 goto err_free_dev;
2570 * Allocate our network device and stitch things together.
2572 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2573 MAX_PORT_QSETS);
2574 if (netdev == NULL) {
2575 dev_err(&pdev->dev, "cannot allocate netdev for"
2576 " port %d\n", port_id);
2577 t4vf_free_vi(adapter, viid);
2578 err = -ENOMEM;
2579 goto err_free_dev;
2581 adapter->port[pidx] = netdev;
2582 SET_NETDEV_DEV(netdev, &pdev->dev);
2583 pi = netdev_priv(netdev);
2584 pi->adapter = adapter;
2585 pi->pidx = pidx;
2586 pi->port_id = port_id;
2587 pi->viid = viid;
2590 * Initialize the starting state of our "port" and register
2591 * it.
2593 pi->xact_addr_filt = -1;
2594 pi->rx_offload = RX_CSO;
2595 netif_carrier_off(netdev);
2596 netif_tx_stop_all_queues(netdev);
2597 netdev->irq = pdev->irq;
2599 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2600 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2601 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2602 NETIF_F_GRO);
2603 if (pci_using_dac)
2604 netdev->features |= NETIF_F_HIGHDMA;
2605 netdev->vlan_features =
2606 (netdev->features &
2607 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2609 #ifdef HAVE_NET_DEVICE_OPS
2610 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2611 #else
2612 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2613 netdev->open = cxgb4vf_open;
2614 netdev->stop = cxgb4vf_stop;
2615 netdev->hard_start_xmit = t4vf_eth_xmit;
2616 netdev->get_stats = cxgb4vf_get_stats;
2617 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2618 netdev->do_ioctl = cxgb4vf_do_ioctl;
2619 netdev->change_mtu = cxgb4vf_change_mtu;
2620 netdev->set_mac_address = cxgb4vf_set_mac_addr;
2621 netdev->select_queue = cxgb4vf_select_queue;
2622 #ifdef CONFIG_NET_POLL_CONTROLLER
2623 netdev->poll_controller = cxgb4vf_poll_controller;
2624 #endif
2625 #endif
2626 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2629 * Initialize the hardware/software state for the port.
2631 err = t4vf_port_init(adapter, pidx);
2632 if (err) {
2633 dev_err(&pdev->dev, "cannot initialize port %d\n",
2634 pidx);
2635 goto err_free_dev;
2640 * The "card" is now ready to go. If any errors occur during device
2641 * registration we do not fail the whole "card" but rather proceed
2642 * only with the ports we manage to register successfully. However we
2643 * must register at least one net device.
2645 for_each_port(adapter, pidx) {
2646 netdev = adapter->port[pidx];
2647 if (netdev == NULL)
2648 continue;
2650 err = register_netdev(netdev);
2651 if (err) {
2652 dev_warn(&pdev->dev, "cannot register net device %s,"
2653 " skipping\n", netdev->name);
2654 continue;
2657 set_bit(pidx, &adapter->registered_device_map);
2659 if (adapter->registered_device_map == 0) {
2660 dev_err(&pdev->dev, "could not register any net devices\n");
2661 goto err_free_dev;
2665 * Set up our debugfs entries.
2667 if (cxgb4vf_debugfs_root) {
2668 adapter->debugfs_root =
2669 debugfs_create_dir(pci_name(pdev),
2670 cxgb4vf_debugfs_root);
2671 if (adapter->debugfs_root == NULL)
2672 dev_warn(&pdev->dev, "could not create debugfs"
2673 " directory");
2674 else
2675 setup_debugfs(adapter);
2679 * See what interrupts we'll be using. If we've been configured to
2680 * use MSI-X interrupts, try to enable them but fall back to using
2681 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2682 * get MSI interrupts we bail with the error.
2684 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2685 adapter->flags |= USING_MSIX;
2686 else {
2687 err = pci_enable_msi(pdev);
2688 if (err) {
2689 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2690 " err=%d\n",
2691 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2692 goto err_free_debugfs;
2694 adapter->flags |= USING_MSI;
2698 * Now that we know how many "ports" we have and what their types are,
2699 * and how many Queue Sets we can support, we can configure our queue
2700 * resources.
2702 cfg_queues(adapter);
2705 * Print a short notice on the existance and configuration of the new
2706 * VF network device ...
2708 for_each_port(adapter, pidx) {
2709 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2710 adapter->port[pidx]->name,
2711 (adapter->flags & USING_MSIX) ? "MSI-X" :
2712 (adapter->flags & USING_MSI) ? "MSI" : "");
2716 * Return success!
2718 return 0;
2721 * Error recovery and exit code. Unwind state that's been created
2722 * so far and return the error.
2725 err_free_debugfs:
2726 if (adapter->debugfs_root) {
2727 cleanup_debugfs(adapter);
2728 debugfs_remove_recursive(adapter->debugfs_root);
2731 err_free_dev:
2732 for_each_port(adapter, pidx) {
2733 netdev = adapter->port[pidx];
2734 if (netdev == NULL)
2735 continue;
2736 pi = netdev_priv(netdev);
2737 t4vf_free_vi(adapter, pi->viid);
2738 if (test_bit(pidx, &adapter->registered_device_map))
2739 unregister_netdev(netdev);
2740 free_netdev(netdev);
2743 err_unmap_bar:
2744 iounmap(adapter->regs);
2746 err_free_adapter:
2747 kfree(adapter);
2748 pci_set_drvdata(pdev, NULL);
2750 err_release_regions:
2751 pci_release_regions(pdev);
2752 pci_set_drvdata(pdev, NULL);
2753 pci_clear_master(pdev);
2755 err_disable_device:
2756 pci_disable_device(pdev);
2758 err_out:
2759 return err;
2763 * "Remove" a device: tear down all kernel and driver state created in the
2764 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2765 * that this is called "remove_one" in the PF Driver.)
2767 static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2769 struct adapter *adapter = pci_get_drvdata(pdev);
2772 * Tear down driver state associated with device.
2774 if (adapter) {
2775 int pidx;
2778 * Stop all of our activity. Unregister network port,
2779 * disable interrupts, etc.
2781 for_each_port(adapter, pidx)
2782 if (test_bit(pidx, &adapter->registered_device_map))
2783 unregister_netdev(adapter->port[pidx]);
2784 t4vf_sge_stop(adapter);
2785 if (adapter->flags & USING_MSIX) {
2786 pci_disable_msix(adapter->pdev);
2787 adapter->flags &= ~USING_MSIX;
2788 } else if (adapter->flags & USING_MSI) {
2789 pci_disable_msi(adapter->pdev);
2790 adapter->flags &= ~USING_MSI;
2794 * Tear down our debugfs entries.
2796 if (adapter->debugfs_root) {
2797 cleanup_debugfs(adapter);
2798 debugfs_remove_recursive(adapter->debugfs_root);
2802 * Free all of the various resources which we've acquired ...
2804 t4vf_free_sge_resources(adapter);
2805 for_each_port(adapter, pidx) {
2806 struct net_device *netdev = adapter->port[pidx];
2807 struct port_info *pi;
2809 if (netdev == NULL)
2810 continue;
2812 pi = netdev_priv(netdev);
2813 t4vf_free_vi(adapter, pi->viid);
2814 free_netdev(netdev);
2816 iounmap(adapter->regs);
2817 kfree(adapter);
2818 pci_set_drvdata(pdev, NULL);
2822 * Disable the device and release its PCI resources.
2824 pci_disable_device(pdev);
2825 pci_clear_master(pdev);
2826 pci_release_regions(pdev);
2830 * PCI Device registration data structures.
2832 #define CH_DEVICE(devid, idx) \
2833 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2835 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2836 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2837 CH_DEVICE(0x4800, 0), /* T440-dbg */
2838 CH_DEVICE(0x4801, 0), /* T420-cr */
2839 CH_DEVICE(0x4802, 0), /* T422-cr */
2840 { 0, }
2843 MODULE_DESCRIPTION(DRV_DESC);
2844 MODULE_AUTHOR("Chelsio Communications");
2845 MODULE_LICENSE("Dual BSD/GPL");
2846 MODULE_VERSION(DRV_VERSION);
2847 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2849 static struct pci_driver cxgb4vf_driver = {
2850 .name = KBUILD_MODNAME,
2851 .id_table = cxgb4vf_pci_tbl,
2852 .probe = cxgb4vf_pci_probe,
2853 .remove = __devexit_p(cxgb4vf_pci_remove),
2857 * Initialize global driver state.
2859 static int __init cxgb4vf_module_init(void)
2861 int ret;
2863 /* Debugfs support is optional, just warn if this fails */
2864 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2865 if (!cxgb4vf_debugfs_root)
2866 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2867 " debugfs entry, continuing\n");
2869 ret = pci_register_driver(&cxgb4vf_driver);
2870 if (ret < 0)
2871 debugfs_remove(cxgb4vf_debugfs_root);
2872 return ret;
2876 * Tear down global driver state.
2878 static void __exit cxgb4vf_module_exit(void)
2880 pci_unregister_driver(&cxgb4vf_driver);
2881 debugfs_remove(cxgb4vf_debugfs_root);
2884 module_init(cxgb4vf_module_init);
2885 module_exit(cxgb4vf_module_exit);