GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / chelsio / sge.c
blobdb655dd144c669cdccd9df7724a70ca81083603e
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
58 #include "cpl5_cmd.h"
59 #include "sge.h"
60 #include "regs.h"
61 #include "espi.h"
63 /* This belongs in if_ether.h */
64 #define ETH_P_CPL5 0xf
66 #define SGE_CMDQ_N 2
67 #define SGE_FREELQ_N 2
68 #define SGE_CMDQ0_E_N 1024
69 #define SGE_CMDQ1_E_N 128
70 #define SGE_FREEL_SIZE 4096
71 #define SGE_JUMBO_FREEL_SIZE 512
72 #define SGE_FREEL_REFILL_THRESH 16
73 #define SGE_RESPQ_E_N 1024
74 #define SGE_INTRTIMER_NRES 1000
75 #define SGE_RX_SM_BUF_SIZE 1536
76 #define SGE_TX_DESC_MAX_PLEN 16384
78 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81 * Period of the TX buffer reclaim timer. This timer does not need to run
82 * frequently as TX buffers are usually reclaimed by new TX packets.
84 #define TX_RECLAIM_PERIOD (HZ / 4)
86 #define M_CMD_LEN 0x7fffffff
87 #define V_CMD_LEN(v) (v)
88 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
89 #define V_CMD_GEN1(v) ((v) << 31)
90 #define V_CMD_GEN2(v) (v)
91 #define F_CMD_DATAVALID (1 << 1)
92 #define F_CMD_SOP (1 << 2)
93 #define V_CMD_EOP(v) ((v) << 3)
96 * Command queue, receive buffer list, and response queue descriptors.
98 #if defined(__BIG_ENDIAN_BITFIELD)
99 struct cmdQ_e {
100 u32 addr_lo;
101 u32 len_gen;
102 u32 flags;
103 u32 addr_hi;
106 struct freelQ_e {
107 u32 addr_lo;
108 u32 len_gen;
109 u32 gen2;
110 u32 addr_hi;
113 struct respQ_e {
114 u32 Qsleeping : 4;
115 u32 Cmdq1CreditReturn : 5;
116 u32 Cmdq1DmaComplete : 5;
117 u32 Cmdq0CreditReturn : 5;
118 u32 Cmdq0DmaComplete : 5;
119 u32 FreelistQid : 2;
120 u32 CreditValid : 1;
121 u32 DataValid : 1;
122 u32 Offload : 1;
123 u32 Eop : 1;
124 u32 Sop : 1;
125 u32 GenerationBit : 1;
126 u32 BufferLength;
128 #elif defined(__LITTLE_ENDIAN_BITFIELD)
129 struct cmdQ_e {
130 u32 len_gen;
131 u32 addr_lo;
132 u32 addr_hi;
133 u32 flags;
136 struct freelQ_e {
137 u32 len_gen;
138 u32 addr_lo;
139 u32 addr_hi;
140 u32 gen2;
143 struct respQ_e {
144 u32 BufferLength;
145 u32 GenerationBit : 1;
146 u32 Sop : 1;
147 u32 Eop : 1;
148 u32 Offload : 1;
149 u32 DataValid : 1;
150 u32 CreditValid : 1;
151 u32 FreelistQid : 2;
152 u32 Cmdq0DmaComplete : 5;
153 u32 Cmdq0CreditReturn : 5;
154 u32 Cmdq1DmaComplete : 5;
155 u32 Cmdq1CreditReturn : 5;
156 u32 Qsleeping : 4;
158 #endif
161 * SW Context Command and Freelist Queue Descriptors
163 struct cmdQ_ce {
164 struct sk_buff *skb;
165 DEFINE_DMA_UNMAP_ADDR(dma_addr);
166 DEFINE_DMA_UNMAP_LEN(dma_len);
169 struct freelQ_ce {
170 struct sk_buff *skb;
171 DEFINE_DMA_UNMAP_ADDR(dma_addr);
172 DEFINE_DMA_UNMAP_LEN(dma_len);
176 * SW command, freelist and response rings
178 struct cmdQ {
179 unsigned long status; /* HW DMA fetch status */
180 unsigned int in_use; /* # of in-use command descriptors */
181 unsigned int size; /* # of descriptors */
182 unsigned int processed; /* total # of descs HW has processed */
183 unsigned int cleaned; /* total # of descs SW has reclaimed */
184 unsigned int stop_thres; /* SW TX queue suspend threshold */
185 u16 pidx; /* producer index (SW) */
186 u16 cidx; /* consumer index (HW) */
187 u8 genbit; /* current generation (=valid) bit */
188 u8 sop; /* is next entry start of packet? */
189 struct cmdQ_e *entries; /* HW command descriptor Q */
190 struct cmdQ_ce *centries; /* SW command context descriptor Q */
191 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
192 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
195 struct freelQ {
196 unsigned int credits; /* # of available RX buffers */
197 unsigned int size; /* free list capacity */
198 u16 pidx; /* producer index (SW) */
199 u16 cidx; /* consumer index (HW) */
200 u16 rx_buffer_size; /* Buffer size on this free list */
201 u16 dma_offset; /* DMA offset to align IP headers */
202 u16 recycleq_idx; /* skb recycle q to use */
203 u8 genbit; /* current generation (=valid) bit */
204 struct freelQ_e *entries; /* HW freelist descriptor Q */
205 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
206 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
209 struct respQ {
210 unsigned int credits; /* credits to be returned to SGE */
211 unsigned int size; /* # of response Q descriptors */
212 u16 cidx; /* consumer index (SW) */
213 u8 genbit; /* current generation(=valid) bit */
214 struct respQ_e *entries; /* HW response descriptor Q */
215 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
218 /* Bit flags for cmdQ.status */
219 enum {
220 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
221 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
224 /* T204 TX SW scheduler */
226 /* Per T204 TX port */
227 struct sched_port {
228 unsigned int avail; /* available bits - quota */
229 unsigned int drain_bits_per_1024ns; /* drain rate */
230 unsigned int speed; /* drain rate, mbps */
231 unsigned int mtu; /* mtu size */
232 struct sk_buff_head skbq; /* pending skbs */
235 /* Per T204 device */
236 struct sched {
237 ktime_t last_updated; /* last time quotas were computed */
238 unsigned int max_avail; /* max bits to be sent to any port */
239 unsigned int port; /* port index (round robin ports) */
240 unsigned int num; /* num skbs in per port queues */
241 struct sched_port p[MAX_NPORTS];
242 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244 static void restart_sched(unsigned long);
248 * Main SGE data structure
250 * Interrupts are handled by a single CPU and it is likely that on a MP system
251 * the application is migrated to another CPU. In that scenario, we try to
252 * separate the RX(in irq context) and TX state in order to decrease memory
253 * contention.
255 struct sge {
256 struct adapter *adapter; /* adapter backpointer */
257 struct net_device *netdev; /* netdevice backpointer */
258 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
259 struct respQ respQ; /* response Q */
260 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
261 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
262 unsigned int jumbo_fl; /* jumbo freelist Q index */
263 unsigned int intrtimer_nres; /* no-resource interrupt timer */
264 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
265 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
266 struct timer_list espibug_timer;
267 unsigned long espibug_timeout;
268 struct sk_buff *espibug_skb[MAX_NPORTS];
269 u32 sge_control; /* shadow value of sge control reg */
270 struct sge_intr_counts stats;
271 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
272 struct sched *tx_sched;
273 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
277 * stop tasklet and free all pending skb's
279 static void tx_sched_stop(struct sge *sge)
281 struct sched *s = sge->tx_sched;
282 int i;
284 tasklet_kill(&s->sched_tsk);
286 for (i = 0; i < MAX_NPORTS; i++)
287 __skb_queue_purge(&s->p[s->port].skbq);
291 * t1_sched_update_parms() is called when the MTU or link speed changes. It
292 * re-computes scheduler parameters to scope with the change.
294 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
295 unsigned int mtu, unsigned int speed)
297 struct sched *s = sge->tx_sched;
298 struct sched_port *p = &s->p[port];
299 unsigned int max_avail_segs;
301 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
302 if (speed)
303 p->speed = speed;
304 if (mtu)
305 p->mtu = mtu;
307 if (speed || mtu) {
308 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
309 do_div(drain, (p->mtu + 50) * 1000);
310 p->drain_bits_per_1024ns = (unsigned int) drain;
312 if (p->speed < 1000)
313 p->drain_bits_per_1024ns =
314 90 * p->drain_bits_per_1024ns / 100;
317 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
318 p->drain_bits_per_1024ns -= 16;
319 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
320 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
321 } else {
322 s->max_avail = 16384;
323 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
326 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
327 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
328 p->speed, s->max_avail, max_avail_segs,
329 p->drain_bits_per_1024ns);
331 return max_avail_segs * (p->mtu - 40);
337 * get_clock() implements a ns clock (see ktime_get)
339 static inline ktime_t get_clock(void)
341 struct timespec ts;
343 ktime_get_ts(&ts);
344 return timespec_to_ktime(ts);
348 * tx_sched_init() allocates resources and does basic initialization.
350 static int tx_sched_init(struct sge *sge)
352 struct sched *s;
353 int i;
355 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
356 if (!s)
357 return -ENOMEM;
359 pr_debug("tx_sched_init\n");
360 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
361 sge->tx_sched = s;
363 for (i = 0; i < MAX_NPORTS; i++) {
364 skb_queue_head_init(&s->p[i].skbq);
365 t1_sched_update_parms(sge, i, 1500, 1000);
368 return 0;
372 * sched_update_avail() computes the delta since the last time it was called
373 * and updates the per port quota (number of bits that can be sent to the any
374 * port).
376 static inline int sched_update_avail(struct sge *sge)
378 struct sched *s = sge->tx_sched;
379 ktime_t now = get_clock();
380 unsigned int i;
381 long long delta_time_ns;
383 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
385 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
386 if (delta_time_ns < 15000)
387 return 0;
389 for (i = 0; i < MAX_NPORTS; i++) {
390 struct sched_port *p = &s->p[i];
391 unsigned int delta_avail;
393 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
394 p->avail = min(p->avail + delta_avail, s->max_avail);
397 s->last_updated = now;
399 return 1;
403 * sched_skb() is called from two different places. In the tx path, any
404 * packet generating load on an output port will call sched_skb()
405 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
406 * context (skb == NULL).
407 * The scheduler only returns a skb (which will then be sent) if the
408 * length of the skb is <= the current quota of the output port.
410 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
411 unsigned int credits)
413 struct sched *s = sge->tx_sched;
414 struct sk_buff_head *skbq;
415 unsigned int i, len, update = 1;
417 pr_debug("sched_skb %p\n", skb);
418 if (!skb) {
419 if (!s->num)
420 return NULL;
421 } else {
422 skbq = &s->p[skb->dev->if_port].skbq;
423 __skb_queue_tail(skbq, skb);
424 s->num++;
425 skb = NULL;
428 if (credits < MAX_SKB_FRAGS + 1)
429 goto out;
431 again:
432 for (i = 0; i < MAX_NPORTS; i++) {
433 s->port = (s->port + 1) & (MAX_NPORTS - 1);
434 skbq = &s->p[s->port].skbq;
436 skb = skb_peek(skbq);
438 if (!skb)
439 continue;
441 len = skb->len;
442 if (len <= s->p[s->port].avail) {
443 s->p[s->port].avail -= len;
444 s->num--;
445 __skb_unlink(skb, skbq);
446 goto out;
448 skb = NULL;
451 if (update-- && sched_update_avail(sge))
452 goto again;
454 out:
455 /* If there are more pending skbs, we use the hardware to schedule us
456 * again.
458 if (s->num && !skb) {
459 struct cmdQ *q = &sge->cmdQ[0];
460 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
461 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
462 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
463 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
466 pr_debug("sched_skb ret %p\n", skb);
468 return skb;
472 * PIO to indicate that memory mapped Q contains valid descriptor(s).
474 static inline void doorbell_pio(struct adapter *adapter, u32 val)
476 wmb();
477 writel(val, adapter->regs + A_SG_DOORBELL);
481 * Frees all RX buffers on the freelist Q. The caller must make sure that
482 * the SGE is turned off before calling this function.
484 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
486 unsigned int cidx = q->cidx;
488 while (q->credits--) {
489 struct freelQ_ce *ce = &q->centries[cidx];
491 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
492 dma_unmap_len(ce, dma_len),
493 PCI_DMA_FROMDEVICE);
494 dev_kfree_skb(ce->skb);
495 ce->skb = NULL;
496 if (++cidx == q->size)
497 cidx = 0;
502 * Free RX free list and response queue resources.
504 static void free_rx_resources(struct sge *sge)
506 struct pci_dev *pdev = sge->adapter->pdev;
507 unsigned int size, i;
509 if (sge->respQ.entries) {
510 size = sizeof(struct respQ_e) * sge->respQ.size;
511 pci_free_consistent(pdev, size, sge->respQ.entries,
512 sge->respQ.dma_addr);
515 for (i = 0; i < SGE_FREELQ_N; i++) {
516 struct freelQ *q = &sge->freelQ[i];
518 if (q->centries) {
519 free_freelQ_buffers(pdev, q);
520 kfree(q->centries);
522 if (q->entries) {
523 size = sizeof(struct freelQ_e) * q->size;
524 pci_free_consistent(pdev, size, q->entries,
525 q->dma_addr);
531 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
532 * response queue.
534 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
536 struct pci_dev *pdev = sge->adapter->pdev;
537 unsigned int size, i;
539 for (i = 0; i < SGE_FREELQ_N; i++) {
540 struct freelQ *q = &sge->freelQ[i];
542 q->genbit = 1;
543 q->size = p->freelQ_size[i];
544 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
545 size = sizeof(struct freelQ_e) * q->size;
546 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
547 if (!q->entries)
548 goto err_no_mem;
550 size = sizeof(struct freelQ_ce) * q->size;
551 q->centries = kzalloc(size, GFP_KERNEL);
552 if (!q->centries)
553 goto err_no_mem;
557 * Calculate the buffer sizes for the two free lists. FL0 accommodates
558 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
559 * including all the sk_buff overhead.
561 * Note: For T2 FL0 and FL1 are reversed.
563 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
564 sizeof(struct cpl_rx_data) +
565 sge->freelQ[!sge->jumbo_fl].dma_offset;
567 size = (16 * 1024) -
568 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
570 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
573 * Setup which skb recycle Q should be used when recycling buffers from
574 * each free list.
576 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
577 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
579 sge->respQ.genbit = 1;
580 sge->respQ.size = SGE_RESPQ_E_N;
581 sge->respQ.credits = 0;
582 size = sizeof(struct respQ_e) * sge->respQ.size;
583 sge->respQ.entries =
584 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
585 if (!sge->respQ.entries)
586 goto err_no_mem;
587 return 0;
589 err_no_mem:
590 free_rx_resources(sge);
591 return -ENOMEM;
595 * Reclaims n TX descriptors and frees the buffers associated with them.
597 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
599 struct cmdQ_ce *ce;
600 struct pci_dev *pdev = sge->adapter->pdev;
601 unsigned int cidx = q->cidx;
603 q->in_use -= n;
604 ce = &q->centries[cidx];
605 while (n--) {
606 if (likely(dma_unmap_len(ce, dma_len))) {
607 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
608 dma_unmap_len(ce, dma_len),
609 PCI_DMA_TODEVICE);
610 if (q->sop)
611 q->sop = 0;
613 if (ce->skb) {
614 dev_kfree_skb_any(ce->skb);
615 q->sop = 1;
617 ce++;
618 if (++cidx == q->size) {
619 cidx = 0;
620 ce = q->centries;
623 q->cidx = cidx;
627 * Free TX resources.
629 * Assumes that SGE is stopped and all interrupts are disabled.
631 static void free_tx_resources(struct sge *sge)
633 struct pci_dev *pdev = sge->adapter->pdev;
634 unsigned int size, i;
636 for (i = 0; i < SGE_CMDQ_N; i++) {
637 struct cmdQ *q = &sge->cmdQ[i];
639 if (q->centries) {
640 if (q->in_use)
641 free_cmdQ_buffers(sge, q, q->in_use);
642 kfree(q->centries);
644 if (q->entries) {
645 size = sizeof(struct cmdQ_e) * q->size;
646 pci_free_consistent(pdev, size, q->entries,
647 q->dma_addr);
653 * Allocates basic TX resources, consisting of memory mapped command Qs.
655 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
657 struct pci_dev *pdev = sge->adapter->pdev;
658 unsigned int size, i;
660 for (i = 0; i < SGE_CMDQ_N; i++) {
661 struct cmdQ *q = &sge->cmdQ[i];
663 q->genbit = 1;
664 q->sop = 1;
665 q->size = p->cmdQ_size[i];
666 q->in_use = 0;
667 q->status = 0;
668 q->processed = q->cleaned = 0;
669 q->stop_thres = 0;
670 spin_lock_init(&q->lock);
671 size = sizeof(struct cmdQ_e) * q->size;
672 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
673 if (!q->entries)
674 goto err_no_mem;
676 size = sizeof(struct cmdQ_ce) * q->size;
677 q->centries = kzalloc(size, GFP_KERNEL);
678 if (!q->centries)
679 goto err_no_mem;
683 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
684 * only. For queue 0 set the stop threshold so we can handle one more
685 * packet from each port, plus reserve an additional 24 entries for
686 * Ethernet packets only. Queue 1 never suspends nor do we reserve
687 * space for Ethernet packets.
689 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
690 (MAX_SKB_FRAGS + 1);
691 return 0;
693 err_no_mem:
694 free_tx_resources(sge);
695 return -ENOMEM;
698 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
699 u32 size, int base_reg_lo,
700 int base_reg_hi, int size_reg)
702 writel((u32)addr, adapter->regs + base_reg_lo);
703 writel(addr >> 32, adapter->regs + base_reg_hi);
704 writel(size, adapter->regs + size_reg);
708 * Enable/disable VLAN acceleration.
710 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
712 struct sge *sge = adapter->sge;
714 sge->sge_control &= ~F_VLAN_XTRACT;
715 if (on_off)
716 sge->sge_control |= F_VLAN_XTRACT;
717 if (adapter->open_device_map) {
718 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
719 readl(adapter->regs + A_SG_CONTROL); /* flush */
724 * Programs the various SGE registers. However, the engine is not yet enabled,
725 * but sge->sge_control is setup and ready to go.
727 static void configure_sge(struct sge *sge, struct sge_params *p)
729 struct adapter *ap = sge->adapter;
731 writel(0, ap->regs + A_SG_CONTROL);
732 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
733 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
734 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
735 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
736 setup_ring_params(ap, sge->freelQ[0].dma_addr,
737 sge->freelQ[0].size, A_SG_FL0BASELWR,
738 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
739 setup_ring_params(ap, sge->freelQ[1].dma_addr,
740 sge->freelQ[1].size, A_SG_FL1BASELWR,
741 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
743 /* The threshold comparison uses <. */
744 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
746 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
747 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
748 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
750 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
751 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
752 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
753 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
755 #if defined(__BIG_ENDIAN_BITFIELD)
756 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
757 #endif
759 /* Initialize no-resource timer */
760 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
762 t1_sge_set_coalesce_params(sge, p);
766 * Return the payload capacity of the jumbo free-list buffers.
768 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
770 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
771 sge->freelQ[sge->jumbo_fl].dma_offset -
772 sizeof(struct cpl_rx_data);
776 * Frees all SGE related resources and the sge structure itself
778 void t1_sge_destroy(struct sge *sge)
780 int i;
782 for_each_port(sge->adapter, i)
783 free_percpu(sge->port_stats[i]);
785 kfree(sge->tx_sched);
786 free_tx_resources(sge);
787 free_rx_resources(sge);
788 kfree(sge);
792 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
793 * context Q) until the Q is full or alloc_skb fails.
795 * It is possible that the generation bits already match, indicating that the
796 * buffer is already valid and nothing needs to be done. This happens when we
797 * copied a received buffer into a new sk_buff during the interrupt processing.
799 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
800 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
801 * aligned.
803 static void refill_free_list(struct sge *sge, struct freelQ *q)
805 struct pci_dev *pdev = sge->adapter->pdev;
806 struct freelQ_ce *ce = &q->centries[q->pidx];
807 struct freelQ_e *e = &q->entries[q->pidx];
808 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
810 while (q->credits < q->size) {
811 struct sk_buff *skb;
812 dma_addr_t mapping;
814 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
815 if (!skb)
816 break;
818 skb_reserve(skb, q->dma_offset);
819 mapping = pci_map_single(pdev, skb->data, dma_len,
820 PCI_DMA_FROMDEVICE);
821 skb_reserve(skb, sge->rx_pkt_pad);
823 ce->skb = skb;
824 dma_unmap_addr_set(ce, dma_addr, mapping);
825 dma_unmap_len_set(ce, dma_len, dma_len);
826 e->addr_lo = (u32)mapping;
827 e->addr_hi = (u64)mapping >> 32;
828 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
829 wmb();
830 e->gen2 = V_CMD_GEN2(q->genbit);
832 e++;
833 ce++;
834 if (++q->pidx == q->size) {
835 q->pidx = 0;
836 q->genbit ^= 1;
837 ce = q->centries;
838 e = q->entries;
840 q->credits++;
845 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
846 * of both rings, we go into 'few interrupt mode' in order to give the system
847 * time to free up resources.
849 static void freelQs_empty(struct sge *sge)
851 struct adapter *adapter = sge->adapter;
852 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
853 u32 irqholdoff_reg;
855 refill_free_list(sge, &sge->freelQ[0]);
856 refill_free_list(sge, &sge->freelQ[1]);
858 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
859 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
860 irq_reg |= F_FL_EXHAUSTED;
861 irqholdoff_reg = sge->fixed_intrtimer;
862 } else {
863 /* Clear the F_FL_EXHAUSTED interrupts for now */
864 irq_reg &= ~F_FL_EXHAUSTED;
865 irqholdoff_reg = sge->intrtimer_nres;
867 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
868 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
870 /* We reenable the Qs to force a freelist GTS interrupt later */
871 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
874 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
875 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
876 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
877 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
880 * Disable SGE Interrupts
882 void t1_sge_intr_disable(struct sge *sge)
884 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
886 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
887 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
891 * Enable SGE interrupts.
893 void t1_sge_intr_enable(struct sge *sge)
895 u32 en = SGE_INT_ENABLE;
896 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
898 if (sge->adapter->flags & TSO_CAPABLE)
899 en &= ~F_PACKET_TOO_BIG;
900 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
901 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
905 * Clear SGE interrupts.
907 void t1_sge_intr_clear(struct sge *sge)
909 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
910 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
914 * SGE 'Error' interrupt handler
916 int t1_sge_intr_error_handler(struct sge *sge)
918 struct adapter *adapter = sge->adapter;
919 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
921 if (adapter->flags & TSO_CAPABLE)
922 cause &= ~F_PACKET_TOO_BIG;
923 if (cause & F_RESPQ_EXHAUSTED)
924 sge->stats.respQ_empty++;
925 if (cause & F_RESPQ_OVERFLOW) {
926 sge->stats.respQ_overflow++;
927 pr_alert("%s: SGE response queue overflow\n",
928 adapter->name);
930 if (cause & F_FL_EXHAUSTED) {
931 sge->stats.freelistQ_empty++;
932 freelQs_empty(sge);
934 if (cause & F_PACKET_TOO_BIG) {
935 sge->stats.pkt_too_big++;
936 pr_alert("%s: SGE max packet size exceeded\n",
937 adapter->name);
939 if (cause & F_PACKET_MISMATCH) {
940 sge->stats.pkt_mismatch++;
941 pr_alert("%s: SGE packet mismatch\n", adapter->name);
943 if (cause & SGE_INT_FATAL)
944 t1_fatal_err(adapter);
946 writel(cause, adapter->regs + A_SG_INT_CAUSE);
947 return 0;
950 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
952 return &sge->stats;
955 void t1_sge_get_port_stats(const struct sge *sge, int port,
956 struct sge_port_stats *ss)
958 int cpu;
960 memset(ss, 0, sizeof(*ss));
961 for_each_possible_cpu(cpu) {
962 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
964 ss->rx_cso_good += st->rx_cso_good;
965 ss->tx_cso += st->tx_cso;
966 ss->tx_tso += st->tx_tso;
967 ss->tx_need_hdrroom += st->tx_need_hdrroom;
968 ss->vlan_xtract += st->vlan_xtract;
969 ss->vlan_insert += st->vlan_insert;
974 * recycle_fl_buf - recycle a free list buffer
975 * @fl: the free list
976 * @idx: index of buffer to recycle
978 * Recycles the specified buffer on the given free list by adding it at
979 * the next available slot on the list.
981 static void recycle_fl_buf(struct freelQ *fl, int idx)
983 struct freelQ_e *from = &fl->entries[idx];
984 struct freelQ_e *to = &fl->entries[fl->pidx];
986 fl->centries[fl->pidx] = fl->centries[idx];
987 to->addr_lo = from->addr_lo;
988 to->addr_hi = from->addr_hi;
989 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
990 wmb();
991 to->gen2 = V_CMD_GEN2(fl->genbit);
992 fl->credits++;
994 if (++fl->pidx == fl->size) {
995 fl->pidx = 0;
996 fl->genbit ^= 1;
1000 static int copybreak __read_mostly = 256;
1001 module_param(copybreak, int, 0);
1002 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1005 * get_packet - return the next ingress packet buffer
1006 * @pdev: the PCI device that received the packet
1007 * @fl: the SGE free list holding the packet
1008 * @len: the actual packet length, excluding any SGE padding
1010 * Get the next packet from a free list and complete setup of the
1011 * sk_buff. If the packet is small we make a copy and recycle the
1012 * original buffer, otherwise we use the original buffer itself. If a
1013 * positive drop threshold is supplied packets are dropped and their
1014 * buffers recycled if (a) the number of remaining buffers is under the
1015 * threshold and the packet is too big to copy, or (b) the packet should
1016 * be copied but there is no memory for the copy.
1018 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1019 struct freelQ *fl, unsigned int len)
1021 struct sk_buff *skb;
1022 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1024 if (len < copybreak) {
1025 skb = alloc_skb(len + 2, GFP_ATOMIC);
1026 if (!skb)
1027 goto use_orig_buf;
1029 skb_reserve(skb, 2); /* align IP header */
1030 skb_put(skb, len);
1031 pci_dma_sync_single_for_cpu(pdev,
1032 dma_unmap_addr(ce, dma_addr),
1033 dma_unmap_len(ce, dma_len),
1034 PCI_DMA_FROMDEVICE);
1035 skb_copy_from_linear_data(ce->skb, skb->data, len);
1036 pci_dma_sync_single_for_device(pdev,
1037 dma_unmap_addr(ce, dma_addr),
1038 dma_unmap_len(ce, dma_len),
1039 PCI_DMA_FROMDEVICE);
1040 recycle_fl_buf(fl, fl->cidx);
1041 return skb;
1044 use_orig_buf:
1045 if (fl->credits < 2) {
1046 recycle_fl_buf(fl, fl->cidx);
1047 return NULL;
1050 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1051 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1052 skb = ce->skb;
1053 prefetch(skb->data);
1055 skb_put(skb, len);
1056 return skb;
1060 * unexpected_offload - handle an unexpected offload packet
1061 * @adapter: the adapter
1062 * @fl: the free list that received the packet
1064 * Called when we receive an unexpected offload packet (e.g., the TOE
1065 * function is disabled or the card is a NIC). Prints a message and
1066 * recycles the buffer.
1068 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1070 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1071 struct sk_buff *skb = ce->skb;
1073 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1074 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1075 pr_err("%s: unexpected offload packet, cmd %u\n",
1076 adapter->name, *skb->data);
1077 recycle_fl_buf(fl, fl->cidx);
1081 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1082 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1083 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1084 * Note that the *_large_page_tx_descs stuff will be optimized out when
1085 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1087 * compute_large_page_descs() computes how many additional descriptors are
1088 * required to break down the stack's request.
1090 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1092 unsigned int count = 0;
1094 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1095 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1096 unsigned int i, len = skb_headlen(skb);
1097 while (len > SGE_TX_DESC_MAX_PLEN) {
1098 count++;
1099 len -= SGE_TX_DESC_MAX_PLEN;
1101 for (i = 0; nfrags--; i++) {
1102 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1103 len = frag->size;
1104 while (len > SGE_TX_DESC_MAX_PLEN) {
1105 count++;
1106 len -= SGE_TX_DESC_MAX_PLEN;
1110 return count;
1114 * Write a cmdQ entry.
1116 * Since this function writes the 'flags' field, it must not be used to
1117 * write the first cmdQ entry.
1119 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1120 unsigned int len, unsigned int gen,
1121 unsigned int eop)
1123 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1125 e->addr_lo = (u32)mapping;
1126 e->addr_hi = (u64)mapping >> 32;
1127 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1128 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1132 * See comment for previous function.
1134 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1135 * *desc_len exceeds HW's capability.
1137 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1138 struct cmdQ_e **e,
1139 struct cmdQ_ce **ce,
1140 unsigned int *gen,
1141 dma_addr_t *desc_mapping,
1142 unsigned int *desc_len,
1143 unsigned int nfrags,
1144 struct cmdQ *q)
1146 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1147 struct cmdQ_e *e1 = *e;
1148 struct cmdQ_ce *ce1 = *ce;
1150 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1151 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1152 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1153 *gen, nfrags == 0 && *desc_len == 0);
1154 ce1->skb = NULL;
1155 dma_unmap_len_set(ce1, dma_len, 0);
1156 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1157 if (*desc_len) {
1158 ce1++;
1159 e1++;
1160 if (++pidx == q->size) {
1161 pidx = 0;
1162 *gen ^= 1;
1163 ce1 = q->centries;
1164 e1 = q->entries;
1168 *e = e1;
1169 *ce = ce1;
1171 return pidx;
1175 * Write the command descriptors to transmit the given skb starting at
1176 * descriptor pidx with the given generation.
1178 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1179 unsigned int pidx, unsigned int gen,
1180 struct cmdQ *q)
1182 dma_addr_t mapping, desc_mapping;
1183 struct cmdQ_e *e, *e1;
1184 struct cmdQ_ce *ce;
1185 unsigned int i, flags, first_desc_len, desc_len,
1186 nfrags = skb_shinfo(skb)->nr_frags;
1188 e = e1 = &q->entries[pidx];
1189 ce = &q->centries[pidx];
1191 mapping = pci_map_single(adapter->pdev, skb->data,
1192 skb_headlen(skb), PCI_DMA_TODEVICE);
1194 desc_mapping = mapping;
1195 desc_len = skb_headlen(skb);
1197 flags = F_CMD_DATAVALID | F_CMD_SOP |
1198 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1199 V_CMD_GEN2(gen);
1200 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1201 desc_len : SGE_TX_DESC_MAX_PLEN;
1202 e->addr_lo = (u32)desc_mapping;
1203 e->addr_hi = (u64)desc_mapping >> 32;
1204 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1205 ce->skb = NULL;
1206 dma_unmap_len_set(ce, dma_len, 0);
1208 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1209 desc_len > SGE_TX_DESC_MAX_PLEN) {
1210 desc_mapping += first_desc_len;
1211 desc_len -= first_desc_len;
1212 e1++;
1213 ce++;
1214 if (++pidx == q->size) {
1215 pidx = 0;
1216 gen ^= 1;
1217 e1 = q->entries;
1218 ce = q->centries;
1220 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1221 &desc_mapping, &desc_len,
1222 nfrags, q);
1224 if (likely(desc_len))
1225 write_tx_desc(e1, desc_mapping, desc_len, gen,
1226 nfrags == 0);
1229 ce->skb = NULL;
1230 dma_unmap_addr_set(ce, dma_addr, mapping);
1231 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1233 for (i = 0; nfrags--; i++) {
1234 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1235 e1++;
1236 ce++;
1237 if (++pidx == q->size) {
1238 pidx = 0;
1239 gen ^= 1;
1240 e1 = q->entries;
1241 ce = q->centries;
1244 mapping = pci_map_page(adapter->pdev, frag->page,
1245 frag->page_offset, frag->size,
1246 PCI_DMA_TODEVICE);
1247 desc_mapping = mapping;
1248 desc_len = frag->size;
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1253 if (likely(desc_len))
1254 write_tx_desc(e1, desc_mapping, desc_len, gen,
1255 nfrags == 0);
1256 ce->skb = NULL;
1257 dma_unmap_addr_set(ce, dma_addr, mapping);
1258 dma_unmap_len_set(ce, dma_len, frag->size);
1260 ce->skb = skb;
1261 wmb();
1262 e->flags = flags;
1266 * Clean up completed Tx buffers.
1268 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1270 unsigned int reclaim = q->processed - q->cleaned;
1272 if (reclaim) {
1273 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1274 q->processed, q->cleaned);
1275 free_cmdQ_buffers(sge, q, reclaim);
1276 q->cleaned += reclaim;
1281 * Called from tasklet. Checks the scheduler for any
1282 * pending skbs that can be sent.
1284 static void restart_sched(unsigned long arg)
1286 struct sge *sge = (struct sge *) arg;
1287 struct adapter *adapter = sge->adapter;
1288 struct cmdQ *q = &sge->cmdQ[0];
1289 struct sk_buff *skb;
1290 unsigned int credits, queued_skb = 0;
1292 spin_lock(&q->lock);
1293 reclaim_completed_tx(sge, q);
1295 credits = q->size - q->in_use;
1296 pr_debug("restart_sched credits=%d\n", credits);
1297 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1298 unsigned int genbit, pidx, count;
1299 count = 1 + skb_shinfo(skb)->nr_frags;
1300 count += compute_large_page_tx_descs(skb);
1301 q->in_use += count;
1302 genbit = q->genbit;
1303 pidx = q->pidx;
1304 q->pidx += count;
1305 if (q->pidx >= q->size) {
1306 q->pidx -= q->size;
1307 q->genbit ^= 1;
1309 write_tx_descs(adapter, skb, pidx, genbit, q);
1310 credits = q->size - q->in_use;
1311 queued_skb = 1;
1314 if (queued_skb) {
1315 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1316 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1317 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1318 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1321 spin_unlock(&q->lock);
1325 * sge_rx - process an ingress ethernet packet
1326 * @sge: the sge structure
1327 * @fl: the free list that contains the packet buffer
1328 * @len: the packet length
1330 * Process an ingress ethernet pakcet and deliver it to the stack.
1332 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1334 struct sk_buff *skb;
1335 const struct cpl_rx_pkt *p;
1336 struct adapter *adapter = sge->adapter;
1337 struct sge_port_stats *st;
1339 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1340 if (unlikely(!skb)) {
1341 sge->stats.rx_drops++;
1342 return;
1345 p = (const struct cpl_rx_pkt *) skb->data;
1346 if (p->iff >= adapter->params.nports) {
1347 kfree_skb(skb);
1348 return;
1350 __skb_pull(skb, sizeof(*p));
1352 st = this_cpu_ptr(sge->port_stats[p->iff]);
1354 skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1355 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1356 skb->protocol == htons(ETH_P_IP) &&
1357 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1358 ++st->rx_cso_good;
1359 skb->ip_summed = CHECKSUM_UNNECESSARY;
1360 } else
1361 skb->ip_summed = CHECKSUM_NONE;
1363 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1364 st->vlan_xtract++;
1365 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1366 ntohs(p->vlan));
1367 } else
1368 netif_receive_skb(skb);
1372 * Returns true if a command queue has enough available descriptors that
1373 * we can resume Tx operation after temporarily disabling its packet queue.
1375 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1377 unsigned int r = q->processed - q->cleaned;
1379 return q->in_use - r < (q->size >> 1);
1383 * Called when sufficient space has become available in the SGE command queues
1384 * after the Tx packet schedulers have been suspended to restart the Tx path.
1386 static void restart_tx_queues(struct sge *sge)
1388 struct adapter *adap = sge->adapter;
1389 int i;
1391 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1392 return;
1394 for_each_port(adap, i) {
1395 struct net_device *nd = adap->port[i].dev;
1397 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1398 netif_running(nd)) {
1399 sge->stats.cmdQ_restarted[2]++;
1400 netif_wake_queue(nd);
1406 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1407 * information.
1409 static unsigned int update_tx_info(struct adapter *adapter,
1410 unsigned int flags,
1411 unsigned int pr0)
1413 struct sge *sge = adapter->sge;
1414 struct cmdQ *cmdq = &sge->cmdQ[0];
1416 cmdq->processed += pr0;
1417 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1418 freelQs_empty(sge);
1419 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1421 if (flags & F_CMDQ0_ENABLE) {
1422 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1424 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1425 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1426 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1427 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1429 if (sge->tx_sched)
1430 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1432 flags &= ~F_CMDQ0_ENABLE;
1435 if (unlikely(sge->stopped_tx_queues != 0))
1436 restart_tx_queues(sge);
1438 return flags;
1442 * Process SGE responses, up to the supplied budget. Returns the number of
1443 * responses processed. A negative budget is effectively unlimited.
1445 static int process_responses(struct adapter *adapter, int budget)
1447 struct sge *sge = adapter->sge;
1448 struct respQ *q = &sge->respQ;
1449 struct respQ_e *e = &q->entries[q->cidx];
1450 int done = 0;
1451 unsigned int flags = 0;
1452 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1454 while (done < budget && e->GenerationBit == q->genbit) {
1455 flags |= e->Qsleeping;
1457 cmdq_processed[0] += e->Cmdq0CreditReturn;
1458 cmdq_processed[1] += e->Cmdq1CreditReturn;
1460 /* We batch updates to the TX side to avoid cacheline
1461 * ping-pong of TX state information on MP where the sender
1462 * might run on a different CPU than this function...
1464 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1465 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1466 cmdq_processed[0] = 0;
1469 if (unlikely(cmdq_processed[1] > 16)) {
1470 sge->cmdQ[1].processed += cmdq_processed[1];
1471 cmdq_processed[1] = 0;
1474 if (likely(e->DataValid)) {
1475 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1477 BUG_ON(!e->Sop || !e->Eop);
1478 if (unlikely(e->Offload))
1479 unexpected_offload(adapter, fl);
1480 else
1481 sge_rx(sge, fl, e->BufferLength);
1483 ++done;
1486 * Note: this depends on each packet consuming a
1487 * single free-list buffer; cf. the BUG above.
1489 if (++fl->cidx == fl->size)
1490 fl->cidx = 0;
1491 prefetch(fl->centries[fl->cidx].skb);
1493 if (unlikely(--fl->credits <
1494 fl->size - SGE_FREEL_REFILL_THRESH))
1495 refill_free_list(sge, fl);
1496 } else
1497 sge->stats.pure_rsps++;
1499 e++;
1500 if (unlikely(++q->cidx == q->size)) {
1501 q->cidx = 0;
1502 q->genbit ^= 1;
1503 e = q->entries;
1505 prefetch(e);
1507 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1508 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1509 q->credits = 0;
1513 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1514 sge->cmdQ[1].processed += cmdq_processed[1];
1516 return done;
1519 static inline int responses_pending(const struct adapter *adapter)
1521 const struct respQ *Q = &adapter->sge->respQ;
1522 const struct respQ_e *e = &Q->entries[Q->cidx];
1524 return (e->GenerationBit == Q->genbit);
1528 * A simpler version of process_responses() that handles only pure (i.e.,
1529 * non data-carrying) responses. Such respones are too light-weight to justify
1530 * calling a softirq when using NAPI, so we handle them specially in hard
1531 * interrupt context. The function is called with a pointer to a response,
1532 * which the caller must ensure is a valid pure response. Returns 1 if it
1533 * encounters a valid data-carrying response, 0 otherwise.
1535 static int process_pure_responses(struct adapter *adapter)
1537 struct sge *sge = adapter->sge;
1538 struct respQ *q = &sge->respQ;
1539 struct respQ_e *e = &q->entries[q->cidx];
1540 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1541 unsigned int flags = 0;
1542 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1544 prefetch(fl->centries[fl->cidx].skb);
1545 if (e->DataValid)
1546 return 1;
1548 do {
1549 flags |= e->Qsleeping;
1551 cmdq_processed[0] += e->Cmdq0CreditReturn;
1552 cmdq_processed[1] += e->Cmdq1CreditReturn;
1554 e++;
1555 if (unlikely(++q->cidx == q->size)) {
1556 q->cidx = 0;
1557 q->genbit ^= 1;
1558 e = q->entries;
1560 prefetch(e);
1562 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1563 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1564 q->credits = 0;
1566 sge->stats.pure_rsps++;
1567 } while (e->GenerationBit == q->genbit && !e->DataValid);
1569 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1570 sge->cmdQ[1].processed += cmdq_processed[1];
1572 return e->GenerationBit == q->genbit;
1576 * Handler for new data events when using NAPI. This does not need any locking
1577 * or protection from interrupts as data interrupts are off at this point and
1578 * other adapter interrupts do not interfere.
1580 int t1_poll(struct napi_struct *napi, int budget)
1582 struct adapter *adapter = container_of(napi, struct adapter, napi);
1583 int work_done = process_responses(adapter, budget);
1585 if (likely(work_done < budget)) {
1586 napi_complete(napi);
1587 writel(adapter->sge->respQ.cidx,
1588 adapter->regs + A_SG_SLEEPING);
1590 return work_done;
1593 irqreturn_t t1_interrupt(int irq, void *data)
1595 struct adapter *adapter = data;
1596 struct sge *sge = adapter->sge;
1597 int handled;
1599 if (likely(responses_pending(adapter))) {
1600 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1602 if (napi_schedule_prep(&adapter->napi)) {
1603 if (process_pure_responses(adapter))
1604 __napi_schedule(&adapter->napi);
1605 else {
1606 /* no data, no NAPI needed */
1607 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1608 /* undo schedule_prep */
1609 napi_enable(&adapter->napi);
1612 return IRQ_HANDLED;
1615 spin_lock(&adapter->async_lock);
1616 handled = t1_slow_intr_handler(adapter);
1617 spin_unlock(&adapter->async_lock);
1619 if (!handled)
1620 sge->stats.unhandled_irqs++;
1622 return IRQ_RETVAL(handled != 0);
1626 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1628 * The code figures out how many entries the sk_buff will require in the
1629 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1630 * has complete. Then, it doesn't access the global structure anymore, but
1631 * uses the corresponding fields on the stack. In conjuction with a spinlock
1632 * around that code, we can make the function reentrant without holding the
1633 * lock when we actually enqueue (which might be expensive, especially on
1634 * architectures with IO MMUs).
1636 * This runs with softirqs disabled.
1638 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1639 unsigned int qid, struct net_device *dev)
1641 struct sge *sge = adapter->sge;
1642 struct cmdQ *q = &sge->cmdQ[qid];
1643 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1645 if (!spin_trylock(&q->lock))
1646 return NETDEV_TX_LOCKED;
1648 reclaim_completed_tx(sge, q);
1650 pidx = q->pidx;
1651 credits = q->size - q->in_use;
1652 count = 1 + skb_shinfo(skb)->nr_frags;
1653 count += compute_large_page_tx_descs(skb);
1655 /* Ethernet packet */
1656 if (unlikely(credits < count)) {
1657 if (!netif_queue_stopped(dev)) {
1658 netif_stop_queue(dev);
1659 set_bit(dev->if_port, &sge->stopped_tx_queues);
1660 sge->stats.cmdQ_full[2]++;
1661 pr_err("%s: Tx ring full while queue awake!\n",
1662 adapter->name);
1664 spin_unlock(&q->lock);
1665 return NETDEV_TX_BUSY;
1668 if (unlikely(credits - count < q->stop_thres)) {
1669 netif_stop_queue(dev);
1670 set_bit(dev->if_port, &sge->stopped_tx_queues);
1671 sge->stats.cmdQ_full[2]++;
1674 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1675 * through the scheduler.
1677 if (sge->tx_sched && !qid && skb->dev) {
1678 use_sched:
1679 use_sched_skb = 1;
1680 /* Note that the scheduler might return a different skb than
1681 * the one passed in.
1683 skb = sched_skb(sge, skb, credits);
1684 if (!skb) {
1685 spin_unlock(&q->lock);
1686 return NETDEV_TX_OK;
1688 pidx = q->pidx;
1689 count = 1 + skb_shinfo(skb)->nr_frags;
1690 count += compute_large_page_tx_descs(skb);
1693 q->in_use += count;
1694 genbit = q->genbit;
1695 pidx = q->pidx;
1696 q->pidx += count;
1697 if (q->pidx >= q->size) {
1698 q->pidx -= q->size;
1699 q->genbit ^= 1;
1701 spin_unlock(&q->lock);
1703 write_tx_descs(adapter, skb, pidx, genbit, q);
1706 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1707 * the doorbell if the Q is asleep. There is a natural race, where
1708 * the hardware is going to sleep just after we checked, however,
1709 * then the interrupt handler will detect the outstanding TX packet
1710 * and ring the doorbell for us.
1712 if (qid)
1713 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1714 else {
1715 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1716 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1717 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1718 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1722 if (use_sched_skb) {
1723 if (spin_trylock(&q->lock)) {
1724 credits = q->size - q->in_use;
1725 skb = NULL;
1726 goto use_sched;
1729 return NETDEV_TX_OK;
1732 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1735 * eth_hdr_len - return the length of an Ethernet header
1736 * @data: pointer to the start of the Ethernet header
1738 * Returns the length of an Ethernet header, including optional VLAN tag.
1740 static inline int eth_hdr_len(const void *data)
1742 const struct ethhdr *e = data;
1744 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1748 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1750 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1752 struct adapter *adapter = dev->ml_priv;
1753 struct sge *sge = adapter->sge;
1754 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1755 struct cpl_tx_pkt *cpl;
1756 struct sk_buff *orig_skb = skb;
1757 int ret;
1759 if (skb->protocol == htons(ETH_P_CPL5))
1760 goto send;
1763 * We are using a non-standard hard_header_len.
1764 * Allocate more header room in the rare cases it is not big enough.
1766 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1767 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1768 ++st->tx_need_hdrroom;
1769 dev_kfree_skb_any(orig_skb);
1770 if (!skb)
1771 return NETDEV_TX_OK;
1774 if (skb_shinfo(skb)->gso_size) {
1775 int eth_type;
1776 struct cpl_tx_pkt_lso *hdr;
1778 ++st->tx_tso;
1780 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1781 CPL_ETH_II : CPL_ETH_II_VLAN;
1783 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1784 hdr->opcode = CPL_TX_PKT_LSO;
1785 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1786 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1787 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1788 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1789 skb_shinfo(skb)->gso_size));
1790 hdr->len = htonl(skb->len - sizeof(*hdr));
1791 cpl = (struct cpl_tx_pkt *)hdr;
1792 } else {
1794 * Packets shorter than ETH_HLEN can break the MAC, drop them
1795 * early. Also, we may get oversized packets because some
1796 * parts of the kernel don't handle our unusual hard_header_len
1797 * right, drop those too.
1799 if (unlikely(skb->len < ETH_HLEN ||
1800 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1801 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1802 skb->len, eth_hdr_len(skb->data), dev->mtu);
1803 dev_kfree_skb_any(skb);
1804 return NETDEV_TX_OK;
1807 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1808 skb->ip_summed == CHECKSUM_PARTIAL &&
1809 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1810 if (unlikely(skb_checksum_help(skb))) {
1811 pr_debug("%s: unable to do udp checksum\n", dev->name);
1812 dev_kfree_skb_any(skb);
1813 return NETDEV_TX_OK;
1817 /* Hmmm, assuming to catch the gratious arp... and we'll use
1818 * it to flush out stuck espi packets...
1820 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1821 if (skb->protocol == htons(ETH_P_ARP) &&
1822 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1823 adapter->sge->espibug_skb[dev->if_port] = skb;
1824 /* We want to re-use this skb later. We
1825 * simply bump the reference count and it
1826 * will not be freed...
1828 skb = skb_get(skb);
1832 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1833 cpl->opcode = CPL_TX_PKT;
1834 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1835 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1836 /* the length field isn't used so don't bother setting it */
1838 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1840 cpl->iff = dev->if_port;
1842 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1843 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1844 cpl->vlan_valid = 1;
1845 cpl->vlan = htons(vlan_tx_tag_get(skb));
1846 st->vlan_insert++;
1847 } else
1848 #endif
1849 cpl->vlan_valid = 0;
1851 send:
1852 ret = t1_sge_tx(skb, adapter, 0, dev);
1854 /* If transmit busy, and we reallocated skb's due to headroom limit,
1855 * then silently discard to avoid leak.
1857 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1858 dev_kfree_skb_any(skb);
1859 ret = NETDEV_TX_OK;
1861 return ret;
1865 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1867 static void sge_tx_reclaim_cb(unsigned long data)
1869 int i;
1870 struct sge *sge = (struct sge *)data;
1872 for (i = 0; i < SGE_CMDQ_N; ++i) {
1873 struct cmdQ *q = &sge->cmdQ[i];
1875 if (!spin_trylock(&q->lock))
1876 continue;
1878 reclaim_completed_tx(sge, q);
1879 if (i == 0 && q->in_use) { /* flush pending credits */
1880 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1882 spin_unlock(&q->lock);
1884 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1888 * Propagate changes of the SGE coalescing parameters to the HW.
1890 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1892 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1893 core_ticks_per_usec(sge->adapter);
1894 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1895 return 0;
1899 * Allocates both RX and TX resources and configures the SGE. However,
1900 * the hardware is not enabled yet.
1902 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1904 if (alloc_rx_resources(sge, p))
1905 return -ENOMEM;
1906 if (alloc_tx_resources(sge, p)) {
1907 free_rx_resources(sge);
1908 return -ENOMEM;
1910 configure_sge(sge, p);
1913 * Now that we have sized the free lists calculate the payload
1914 * capacity of the large buffers. Other parts of the driver use
1915 * this to set the max offload coalescing size so that RX packets
1916 * do not overflow our large buffers.
1918 p->large_buf_capacity = jumbo_payload_capacity(sge);
1919 return 0;
1923 * Disables the DMA engine.
1925 void t1_sge_stop(struct sge *sge)
1927 int i;
1928 writel(0, sge->adapter->regs + A_SG_CONTROL);
1929 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1931 if (is_T2(sge->adapter))
1932 del_timer_sync(&sge->espibug_timer);
1934 del_timer_sync(&sge->tx_reclaim_timer);
1935 if (sge->tx_sched)
1936 tx_sched_stop(sge);
1938 for (i = 0; i < MAX_NPORTS; i++)
1939 kfree_skb(sge->espibug_skb[i]);
1943 * Enables the DMA engine.
1945 void t1_sge_start(struct sge *sge)
1947 refill_free_list(sge, &sge->freelQ[0]);
1948 refill_free_list(sge, &sge->freelQ[1]);
1950 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1951 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1952 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1954 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1956 if (is_T2(sge->adapter))
1957 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1961 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1963 static void espibug_workaround_t204(unsigned long data)
1965 struct adapter *adapter = (struct adapter *)data;
1966 struct sge *sge = adapter->sge;
1967 unsigned int nports = adapter->params.nports;
1968 u32 seop[MAX_NPORTS];
1970 if (adapter->open_device_map & PORT_MASK) {
1971 int i;
1973 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1974 return;
1976 for (i = 0; i < nports; i++) {
1977 struct sk_buff *skb = sge->espibug_skb[i];
1979 if (!netif_running(adapter->port[i].dev) ||
1980 netif_queue_stopped(adapter->port[i].dev) ||
1981 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
1982 continue;
1984 if (!skb->cb[0]) {
1985 u8 ch_mac_addr[ETH_ALEN] = {
1986 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
1989 skb_copy_to_linear_data_offset(skb,
1990 sizeof(struct cpl_tx_pkt),
1991 ch_mac_addr,
1992 ETH_ALEN);
1993 skb_copy_to_linear_data_offset(skb,
1994 skb->len - 10,
1995 ch_mac_addr,
1996 ETH_ALEN);
1997 skb->cb[0] = 0xff;
2000 /* bump the reference count to avoid freeing of
2001 * the skb once the DMA has completed.
2003 skb = skb_get(skb);
2004 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2007 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2010 static void espibug_workaround(unsigned long data)
2012 struct adapter *adapter = (struct adapter *)data;
2013 struct sge *sge = adapter->sge;
2015 if (netif_running(adapter->port[0].dev)) {
2016 struct sk_buff *skb = sge->espibug_skb[0];
2017 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2019 if ((seop & 0xfff0fff) == 0xfff && skb) {
2020 if (!skb->cb[0]) {
2021 u8 ch_mac_addr[ETH_ALEN] =
2022 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2023 skb_copy_to_linear_data_offset(skb,
2024 sizeof(struct cpl_tx_pkt),
2025 ch_mac_addr,
2026 ETH_ALEN);
2027 skb_copy_to_linear_data_offset(skb,
2028 skb->len - 10,
2029 ch_mac_addr,
2030 ETH_ALEN);
2031 skb->cb[0] = 0xff;
2034 /* bump the reference count to avoid freeing of the
2035 * skb once the DMA has completed.
2037 skb = skb_get(skb);
2038 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2041 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2045 * Creates a t1_sge structure and returns suggested resource parameters.
2047 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2048 struct sge_params *p)
2050 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2051 int i;
2053 if (!sge)
2054 return NULL;
2056 sge->adapter = adapter;
2057 sge->netdev = adapter->port[0].dev;
2058 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2059 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2061 for_each_port(adapter, i) {
2062 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2063 if (!sge->port_stats[i])
2064 goto nomem_port;
2067 init_timer(&sge->tx_reclaim_timer);
2068 sge->tx_reclaim_timer.data = (unsigned long)sge;
2069 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2071 if (is_T2(sge->adapter)) {
2072 init_timer(&sge->espibug_timer);
2074 if (adapter->params.nports > 1) {
2075 tx_sched_init(sge);
2076 sge->espibug_timer.function = espibug_workaround_t204;
2077 } else
2078 sge->espibug_timer.function = espibug_workaround;
2079 sge->espibug_timer.data = (unsigned long)sge->adapter;
2081 sge->espibug_timeout = 1;
2082 /* for T204, every 10ms */
2083 if (adapter->params.nports > 1)
2084 sge->espibug_timeout = HZ/100;
2088 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2089 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2090 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2091 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2092 if (sge->tx_sched) {
2093 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2094 p->rx_coalesce_usecs = 15;
2095 else
2096 p->rx_coalesce_usecs = 50;
2097 } else
2098 p->rx_coalesce_usecs = 50;
2100 p->coalesce_enable = 0;
2101 p->sample_interval_usecs = 0;
2103 return sge;
2104 nomem_port:
2105 while (i >= 0) {
2106 free_percpu(sge->port_stats[i]);
2107 --i;
2109 kfree(sge);
2110 return NULL;