GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / 8139cp.c
blobaeebb8a7c109df7b45ca515ef894773d94ff8733
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/delay.h>
66 #include <linux/ethtool.h>
67 #include <linux/gfp.h>
68 #include <linux/mii.h>
69 #include <linux/if_vlan.h>
70 #include <linux/crc32.h>
71 #include <linux/in.h>
72 #include <linux/ip.h>
73 #include <linux/tcp.h>
74 #include <linux/udp.h>
75 #include <linux/cache.h>
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/uaccess.h>
80 /* VLAN tagging feature enable/disable */
81 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
82 #define CP_VLAN_TAG_USED 1
83 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
84 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
85 #else
86 #define CP_VLAN_TAG_USED 0
87 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
88 do { (tx_desc)->opts2 = 0; } while (0)
89 #endif
91 /* These identify the driver base version and may not be removed. */
92 static char version[] =
93 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
95 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
96 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
97 MODULE_VERSION(DRV_VERSION);
98 MODULE_LICENSE("GPL");
100 static int debug = -1;
101 module_param(debug, int, 0);
102 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
104 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
105 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
106 static int multicast_filter_limit = 32;
107 module_param(multicast_filter_limit, int, 0);
108 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
110 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
111 NETIF_MSG_PROBE | \
112 NETIF_MSG_LINK)
113 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
114 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
115 #define CP_REGS_SIZE (0xff + 1)
116 #define CP_REGS_VER 1 /* version 1 */
117 #define CP_RX_RING_SIZE 64
118 #define CP_TX_RING_SIZE 64
119 #define CP_RING_BYTES \
120 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
121 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
122 CP_STATS_SIZE)
123 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
124 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
125 #define TX_BUFFS_AVAIL(CP) \
126 (((CP)->tx_tail <= (CP)->tx_head) ? \
127 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
128 (CP)->tx_tail - (CP)->tx_head - 1)
130 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
131 #define CP_INTERNAL_PHY 32
133 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
134 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
135 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
136 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
137 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
139 /* Time in jiffies before concluding the transmitter is hung. */
140 #define TX_TIMEOUT (6*HZ)
142 /* hardware minimum and maximum for a single frame's data payload */
143 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
144 #define CP_MAX_MTU 4096
146 enum {
147 /* NIC register offsets */
148 MAC0 = 0x00, /* Ethernet hardware address. */
149 MAR0 = 0x08, /* Multicast filter. */
150 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
151 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
152 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
153 Cmd = 0x37, /* Command register */
154 IntrMask = 0x3C, /* Interrupt mask */
155 IntrStatus = 0x3E, /* Interrupt status */
156 TxConfig = 0x40, /* Tx configuration */
157 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
158 RxConfig = 0x44, /* Rx configuration */
159 RxMissed = 0x4C, /* 24 bits valid, write clears */
160 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
161 Config1 = 0x52, /* Config1 */
162 Config3 = 0x59, /* Config3 */
163 Config4 = 0x5A, /* Config4 */
164 MultiIntr = 0x5C, /* Multiple interrupt select */
165 BasicModeCtrl = 0x62, /* MII BMCR */
166 BasicModeStatus = 0x64, /* MII BMSR */
167 NWayAdvert = 0x66, /* MII ADVERTISE */
168 NWayLPAR = 0x68, /* MII LPA */
169 NWayExpansion = 0x6A, /* MII Expansion */
170 Config5 = 0xD8, /* Config5 */
171 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
172 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
173 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
174 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
175 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
176 TxThresh = 0xEC, /* Early Tx threshold */
177 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
178 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
180 /* Tx and Rx status descriptors */
181 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
182 RingEnd = (1 << 30), /* End of descriptor ring */
183 FirstFrag = (1 << 29), /* First segment of a packet */
184 LastFrag = (1 << 28), /* Final segment of a packet */
185 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
186 MSSShift = 16, /* MSS value position */
187 MSSMask = 0xfff, /* MSS value: 11 bits */
188 TxError = (1 << 23), /* Tx error summary */
189 RxError = (1 << 20), /* Rx error summary */
190 IPCS = (1 << 18), /* Calculate IP checksum */
191 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
192 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
193 TxVlanTag = (1 << 17), /* Add VLAN tag */
194 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
195 IPFail = (1 << 15), /* IP checksum failed */
196 UDPFail = (1 << 14), /* UDP/IP checksum failed */
197 TCPFail = (1 << 13), /* TCP/IP checksum failed */
198 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
199 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
200 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
201 RxProtoTCP = 1,
202 RxProtoUDP = 2,
203 RxProtoIP = 3,
204 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
205 TxOWC = (1 << 22), /* Tx Out-of-window collision */
206 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
207 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
208 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
209 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
210 RxErrFrame = (1 << 27), /* Rx frame alignment error */
211 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
212 RxErrCRC = (1 << 18), /* Rx CRC error */
213 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
214 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
215 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
217 /* StatsAddr register */
218 DumpStats = (1 << 3), /* Begin stats dump */
220 /* RxConfig register */
221 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
222 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
223 AcceptErr = 0x20, /* Accept packets with CRC errors */
224 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
225 AcceptBroadcast = 0x08, /* Accept broadcast packets */
226 AcceptMulticast = 0x04, /* Accept multicast packets */
227 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
228 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
230 /* IntrMask / IntrStatus registers */
231 PciErr = (1 << 15), /* System error on the PCI bus */
232 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
233 LenChg = (1 << 13), /* Cable length change */
234 SWInt = (1 << 8), /* Software-requested interrupt */
235 TxEmpty = (1 << 7), /* No Tx descriptors available */
236 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
237 LinkChg = (1 << 5), /* Packet underrun, or link change */
238 RxEmpty = (1 << 4), /* No Rx descriptors available */
239 TxErr = (1 << 3), /* Tx error */
240 TxOK = (1 << 2), /* Tx packet sent */
241 RxErr = (1 << 1), /* Rx error */
242 RxOK = (1 << 0), /* Rx packet received */
243 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
244 but hardware likes to raise it */
246 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
247 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
248 RxErr | RxOK | IntrResvd,
250 /* C mode command register */
251 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
252 RxOn = (1 << 3), /* Rx mode enable */
253 TxOn = (1 << 2), /* Tx mode enable */
255 /* C+ mode command register */
256 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
257 RxChkSum = (1 << 5), /* Rx checksum offload enable */
258 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
259 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
260 CpRxOn = (1 << 1), /* Rx mode enable */
261 CpTxOn = (1 << 0), /* Tx mode enable */
263 /* Cfg9436 EEPROM control register */
264 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
265 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
267 /* TxConfig register */
268 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
269 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
271 /* Early Tx Threshold register */
272 TxThreshMask = 0x3f, /* Mask bits 5-0 */
273 TxThreshMax = 2048, /* Max early Tx threshold */
275 /* Config1 register */
276 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
277 LWACT = (1 << 4), /* LWAKE active mode */
278 PMEnable = (1 << 0), /* Enable various PM features of chip */
280 /* Config3 register */
281 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
282 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
283 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
285 /* Config4 register */
286 LWPTN = (1 << 1), /* LWAKE Pattern */
287 LWPME = (1 << 4), /* LANWAKE vs PMEB */
289 /* Config5 register */
290 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
291 MWF = (1 << 5), /* Accept Multicast wakeup frame */
292 UWF = (1 << 4), /* Accept Unicast wakeup frame */
293 LANWake = (1 << 1), /* Enable LANWake signal */
294 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
296 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
297 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
298 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
301 static const unsigned int cp_rx_config =
302 (RX_FIFO_THRESH << RxCfgFIFOShift) |
303 (RX_DMA_BURST << RxCfgDMAShift);
305 struct cp_desc {
306 __le32 opts1;
307 __le32 opts2;
308 __le64 addr;
311 struct cp_dma_stats {
312 __le64 tx_ok;
313 __le64 rx_ok;
314 __le64 tx_err;
315 __le32 rx_err;
316 __le16 rx_fifo;
317 __le16 frame_align;
318 __le32 tx_ok_1col;
319 __le32 tx_ok_mcol;
320 __le64 rx_ok_phys;
321 __le64 rx_ok_bcast;
322 __le32 rx_ok_mcast;
323 __le16 tx_abort;
324 __le16 tx_underrun;
325 } __packed;
327 struct cp_extra_stats {
328 unsigned long rx_frags;
331 struct cp_private {
332 void __iomem *regs;
333 struct net_device *dev;
334 spinlock_t lock;
335 u32 msg_enable;
337 struct napi_struct napi;
339 struct pci_dev *pdev;
340 u32 rx_config;
341 u16 cpcmd;
343 struct cp_extra_stats cp_stats;
345 unsigned rx_head ____cacheline_aligned;
346 unsigned rx_tail;
347 struct cp_desc *rx_ring;
348 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
350 unsigned tx_head ____cacheline_aligned;
351 unsigned tx_tail;
352 struct cp_desc *tx_ring;
353 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
355 unsigned rx_buf_sz;
356 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
358 #if CP_VLAN_TAG_USED
359 struct vlan_group *vlgrp;
360 #endif
361 dma_addr_t ring_dma;
363 struct mii_if_info mii_if;
366 #define cpr8(reg) readb(cp->regs + (reg))
367 #define cpr16(reg) readw(cp->regs + (reg))
368 #define cpr32(reg) readl(cp->regs + (reg))
369 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
370 #define cpw16(reg,val) writew((val), cp->regs + (reg))
371 #define cpw32(reg,val) writel((val), cp->regs + (reg))
372 #define cpw8_f(reg,val) do { \
373 writeb((val), cp->regs + (reg)); \
374 readb(cp->regs + (reg)); \
375 } while (0)
376 #define cpw16_f(reg,val) do { \
377 writew((val), cp->regs + (reg)); \
378 readw(cp->regs + (reg)); \
379 } while (0)
380 #define cpw32_f(reg,val) do { \
381 writel((val), cp->regs + (reg)); \
382 readl(cp->regs + (reg)); \
383 } while (0)
386 static void __cp_set_rx_mode (struct net_device *dev);
387 static void cp_tx (struct cp_private *cp);
388 static void cp_clean_rings (struct cp_private *cp);
389 #ifdef CONFIG_NET_POLL_CONTROLLER
390 static void cp_poll_controller(struct net_device *dev);
391 #endif
392 static int cp_get_eeprom_len(struct net_device *dev);
393 static int cp_get_eeprom(struct net_device *dev,
394 struct ethtool_eeprom *eeprom, u8 *data);
395 static int cp_set_eeprom(struct net_device *dev,
396 struct ethtool_eeprom *eeprom, u8 *data);
398 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
399 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
400 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
401 { },
403 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
405 static struct {
406 const char str[ETH_GSTRING_LEN];
407 } ethtool_stats_keys[] = {
408 { "tx_ok" },
409 { "rx_ok" },
410 { "tx_err" },
411 { "rx_err" },
412 { "rx_fifo" },
413 { "frame_align" },
414 { "tx_ok_1col" },
415 { "tx_ok_mcol" },
416 { "rx_ok_phys" },
417 { "rx_ok_bcast" },
418 { "rx_ok_mcast" },
419 { "tx_abort" },
420 { "tx_underrun" },
421 { "rx_frags" },
425 #if CP_VLAN_TAG_USED
426 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
428 struct cp_private *cp = netdev_priv(dev);
429 unsigned long flags;
431 spin_lock_irqsave(&cp->lock, flags);
432 cp->vlgrp = grp;
433 if (grp)
434 cp->cpcmd |= RxVlanOn;
435 else
436 cp->cpcmd &= ~RxVlanOn;
438 cpw16(CpCmd, cp->cpcmd);
439 spin_unlock_irqrestore(&cp->lock, flags);
441 #endif /* CP_VLAN_TAG_USED */
443 static inline void cp_set_rxbufsize (struct cp_private *cp)
445 unsigned int mtu = cp->dev->mtu;
447 if (mtu > ETH_DATA_LEN)
448 /* MTU + ethernet header + FCS + optional VLAN tag */
449 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
450 else
451 cp->rx_buf_sz = PKT_BUF_SZ;
454 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
455 struct cp_desc *desc)
457 skb->protocol = eth_type_trans (skb, cp->dev);
459 cp->dev->stats.rx_packets++;
460 cp->dev->stats.rx_bytes += skb->len;
462 #if CP_VLAN_TAG_USED
463 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
464 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
465 swab16(le32_to_cpu(desc->opts2) & 0xffff));
466 } else
467 #endif
468 netif_receive_skb(skb);
471 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
472 u32 status, u32 len)
474 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
475 rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
489 static inline unsigned int cp_rx_csum_ok (u32 status)
491 unsigned int protocol = (status >> 16) & 0x3;
493 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
494 ((protocol == RxProtoUDP) && !(status & UDPFail)))
495 return 1;
496 else
497 return 0;
500 static int cp_rx_poll(struct napi_struct *napi, int budget)
502 struct cp_private *cp = container_of(napi, struct cp_private, napi);
503 struct net_device *dev = cp->dev;
504 unsigned int rx_tail = cp->rx_tail;
505 int rx;
507 rx_status_loop:
508 rx = 0;
509 cpw16(IntrStatus, cp_rx_intr_mask);
511 while (1) {
512 u32 status, len;
513 dma_addr_t mapping;
514 struct sk_buff *skb, *new_skb;
515 struct cp_desc *desc;
516 const unsigned buflen = cp->rx_buf_sz;
518 skb = cp->rx_skb[rx_tail];
519 BUG_ON(!skb);
521 desc = &cp->rx_ring[rx_tail];
522 status = le32_to_cpu(desc->opts1);
523 if (status & DescOwn)
524 break;
526 len = (status & 0x1fff) - 4;
527 mapping = le64_to_cpu(desc->addr);
529 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
530 /* we don't support incoming fragmented frames.
531 * instead, we attempt to ensure that the
532 * pre-allocated RX skbs are properly sized such
533 * that RX fragments are never encountered
535 cp_rx_err_acct(cp, rx_tail, status, len);
536 dev->stats.rx_dropped++;
537 cp->cp_stats.rx_frags++;
538 goto rx_next;
541 if (status & (RxError | RxErrFIFO)) {
542 cp_rx_err_acct(cp, rx_tail, status, len);
543 goto rx_next;
546 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
547 rx_tail, status, len);
549 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
550 if (!new_skb) {
551 dev->stats.rx_dropped++;
552 goto rx_next;
555 dma_unmap_single(&cp->pdev->dev, mapping,
556 buflen, PCI_DMA_FROMDEVICE);
558 /* Handle checksum offloading for incoming packets. */
559 if (cp_rx_csum_ok(status))
560 skb->ip_summed = CHECKSUM_UNNECESSARY;
561 else
562 skb->ip_summed = CHECKSUM_NONE;
564 skb_put(skb, len);
566 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
567 PCI_DMA_FROMDEVICE);
568 cp->rx_skb[rx_tail] = new_skb;
570 cp_rx_skb(cp, skb, desc);
571 rx++;
573 rx_next:
574 cp->rx_ring[rx_tail].opts2 = 0;
575 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
576 if (rx_tail == (CP_RX_RING_SIZE - 1))
577 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
578 cp->rx_buf_sz);
579 else
580 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
581 rx_tail = NEXT_RX(rx_tail);
583 if (rx >= budget)
584 break;
587 cp->rx_tail = rx_tail;
589 /* if we did not reach work limit, then we're done with
590 * this round of polling
592 if (rx < budget) {
593 unsigned long flags;
595 if (cpr16(IntrStatus) & cp_rx_intr_mask)
596 goto rx_status_loop;
598 spin_lock_irqsave(&cp->lock, flags);
599 __napi_complete(napi);
600 cpw16_f(IntrMask, cp_intr_mask);
601 spin_unlock_irqrestore(&cp->lock, flags);
604 return rx;
607 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
609 struct net_device *dev = dev_instance;
610 struct cp_private *cp;
611 u16 status;
613 if (unlikely(dev == NULL))
614 return IRQ_NONE;
615 cp = netdev_priv(dev);
617 status = cpr16(IntrStatus);
618 if (!status || (status == 0xFFFF))
619 return IRQ_NONE;
621 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
622 status, cpr8(Cmd), cpr16(CpCmd));
624 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
626 spin_lock(&cp->lock);
628 /* close possible race's with dev_close */
629 if (unlikely(!netif_running(dev))) {
630 cpw16(IntrMask, 0);
631 spin_unlock(&cp->lock);
632 return IRQ_HANDLED;
635 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
636 if (napi_schedule_prep(&cp->napi)) {
637 cpw16_f(IntrMask, cp_norx_intr_mask);
638 __napi_schedule(&cp->napi);
641 if (status & (TxOK | TxErr | TxEmpty | SWInt))
642 cp_tx(cp);
643 if (status & LinkChg)
644 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
646 spin_unlock(&cp->lock);
648 if (status & PciErr) {
649 u16 pci_status;
651 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
652 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
653 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
654 status, pci_status);
656 /* TODO: reset hardware */
659 return IRQ_HANDLED;
662 #ifdef CONFIG_NET_POLL_CONTROLLER
664 * Polling receive - used by netconsole and other diagnostic tools
665 * to allow network i/o with interrupts disabled.
667 static void cp_poll_controller(struct net_device *dev)
669 disable_irq(dev->irq);
670 cp_interrupt(dev->irq, dev);
671 enable_irq(dev->irq);
673 #endif
675 static void cp_tx (struct cp_private *cp)
677 unsigned tx_head = cp->tx_head;
678 unsigned tx_tail = cp->tx_tail;
680 while (tx_tail != tx_head) {
681 struct cp_desc *txd = cp->tx_ring + tx_tail;
682 struct sk_buff *skb;
683 u32 status;
685 rmb();
686 status = le32_to_cpu(txd->opts1);
687 if (status & DescOwn)
688 break;
690 skb = cp->tx_skb[tx_tail];
691 BUG_ON(!skb);
693 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
694 le32_to_cpu(txd->opts1) & 0xffff,
695 PCI_DMA_TODEVICE);
697 if (status & LastFrag) {
698 if (status & (TxError | TxFIFOUnder)) {
699 netif_dbg(cp, tx_err, cp->dev,
700 "tx err, status 0x%x\n", status);
701 cp->dev->stats.tx_errors++;
702 if (status & TxOWC)
703 cp->dev->stats.tx_window_errors++;
704 if (status & TxMaxCol)
705 cp->dev->stats.tx_aborted_errors++;
706 if (status & TxLinkFail)
707 cp->dev->stats.tx_carrier_errors++;
708 if (status & TxFIFOUnder)
709 cp->dev->stats.tx_fifo_errors++;
710 } else {
711 cp->dev->stats.collisions +=
712 ((status >> TxColCntShift) & TxColCntMask);
713 cp->dev->stats.tx_packets++;
714 cp->dev->stats.tx_bytes += skb->len;
715 netif_dbg(cp, tx_done, cp->dev,
716 "tx done, slot %d\n", tx_tail);
718 dev_kfree_skb_irq(skb);
721 cp->tx_skb[tx_tail] = NULL;
723 tx_tail = NEXT_TX(tx_tail);
726 cp->tx_tail = tx_tail;
728 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
729 netif_wake_queue(cp->dev);
732 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
733 struct net_device *dev)
735 struct cp_private *cp = netdev_priv(dev);
736 unsigned entry;
737 u32 eor, flags;
738 unsigned long intr_flags;
739 #if CP_VLAN_TAG_USED
740 u32 vlan_tag = 0;
741 #endif
742 int mss = 0;
744 spin_lock_irqsave(&cp->lock, intr_flags);
746 /* This is a hard error, log it. */
747 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
748 netif_stop_queue(dev);
749 spin_unlock_irqrestore(&cp->lock, intr_flags);
750 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
751 return NETDEV_TX_BUSY;
754 #if CP_VLAN_TAG_USED
755 if (cp->vlgrp && vlan_tx_tag_present(skb))
756 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
757 #endif
759 entry = cp->tx_head;
760 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
761 if (dev->features & NETIF_F_TSO)
762 mss = skb_shinfo(skb)->gso_size;
764 if (skb_shinfo(skb)->nr_frags == 0) {
765 struct cp_desc *txd = &cp->tx_ring[entry];
766 u32 len;
767 dma_addr_t mapping;
769 len = skb->len;
770 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
771 CP_VLAN_TX_TAG(txd, vlan_tag);
772 txd->addr = cpu_to_le64(mapping);
773 wmb();
775 flags = eor | len | DescOwn | FirstFrag | LastFrag;
777 if (mss)
778 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
779 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
780 const struct iphdr *ip = ip_hdr(skb);
781 if (ip->protocol == IPPROTO_TCP)
782 flags |= IPCS | TCPCS;
783 else if (ip->protocol == IPPROTO_UDP)
784 flags |= IPCS | UDPCS;
785 else
786 WARN_ON(1); /* we need a WARN() */
789 txd->opts1 = cpu_to_le32(flags);
790 wmb();
792 cp->tx_skb[entry] = skb;
793 entry = NEXT_TX(entry);
794 } else {
795 struct cp_desc *txd;
796 u32 first_len, first_eor;
797 dma_addr_t first_mapping;
798 int frag, first_entry = entry;
799 const struct iphdr *ip = ip_hdr(skb);
801 /* We must give this initial chunk to the device last.
802 * Otherwise we could race with the device.
804 first_eor = eor;
805 first_len = skb_headlen(skb);
806 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
807 first_len, PCI_DMA_TODEVICE);
808 cp->tx_skb[entry] = skb;
809 entry = NEXT_TX(entry);
811 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
812 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
813 u32 len;
814 u32 ctrl;
815 dma_addr_t mapping;
817 len = this_frag->size;
818 mapping = dma_map_single(&cp->pdev->dev,
819 ((void *) page_address(this_frag->page) +
820 this_frag->page_offset),
821 len, PCI_DMA_TODEVICE);
822 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
824 ctrl = eor | len | DescOwn;
826 if (mss)
827 ctrl |= LargeSend |
828 ((mss & MSSMask) << MSSShift);
829 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
830 if (ip->protocol == IPPROTO_TCP)
831 ctrl |= IPCS | TCPCS;
832 else if (ip->protocol == IPPROTO_UDP)
833 ctrl |= IPCS | UDPCS;
834 else
835 BUG();
838 if (frag == skb_shinfo(skb)->nr_frags - 1)
839 ctrl |= LastFrag;
841 txd = &cp->tx_ring[entry];
842 CP_VLAN_TX_TAG(txd, vlan_tag);
843 txd->addr = cpu_to_le64(mapping);
844 wmb();
846 txd->opts1 = cpu_to_le32(ctrl);
847 wmb();
849 cp->tx_skb[entry] = skb;
850 entry = NEXT_TX(entry);
853 txd = &cp->tx_ring[first_entry];
854 CP_VLAN_TX_TAG(txd, vlan_tag);
855 txd->addr = cpu_to_le64(first_mapping);
856 wmb();
858 if (skb->ip_summed == CHECKSUM_PARTIAL) {
859 if (ip->protocol == IPPROTO_TCP)
860 txd->opts1 = cpu_to_le32(first_eor | first_len |
861 FirstFrag | DescOwn |
862 IPCS | TCPCS);
863 else if (ip->protocol == IPPROTO_UDP)
864 txd->opts1 = cpu_to_le32(first_eor | first_len |
865 FirstFrag | DescOwn |
866 IPCS | UDPCS);
867 else
868 BUG();
869 } else
870 txd->opts1 = cpu_to_le32(first_eor | first_len |
871 FirstFrag | DescOwn);
872 wmb();
874 cp->tx_head = entry;
875 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
876 entry, skb->len);
877 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
878 netif_stop_queue(dev);
880 spin_unlock_irqrestore(&cp->lock, intr_flags);
882 cpw8(TxPoll, NormalTxPoll);
884 return NETDEV_TX_OK;
887 /* Set or clear the multicast filter for this adaptor.
888 This routine is not state sensitive and need not be SMP locked. */
890 static void __cp_set_rx_mode (struct net_device *dev)
892 struct cp_private *cp = netdev_priv(dev);
893 u32 mc_filter[2]; /* Multicast hash filter */
894 int rx_mode;
895 u32 tmp;
897 /* Note: do not reorder, GCC is clever about common statements. */
898 if (dev->flags & IFF_PROMISC) {
899 /* Unconditionally log net taps. */
900 rx_mode =
901 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
902 AcceptAllPhys;
903 mc_filter[1] = mc_filter[0] = 0xffffffff;
904 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
905 (dev->flags & IFF_ALLMULTI)) {
906 /* Too many to filter perfectly -- accept all multicasts. */
907 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
908 mc_filter[1] = mc_filter[0] = 0xffffffff;
909 } else {
910 struct netdev_hw_addr *ha;
911 rx_mode = AcceptBroadcast | AcceptMyPhys;
912 mc_filter[1] = mc_filter[0] = 0;
913 netdev_for_each_mc_addr(ha, dev) {
914 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
916 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
917 rx_mode |= AcceptMulticast;
921 /* We can safely update without stopping the chip. */
922 tmp = cp_rx_config | rx_mode;
923 if (cp->rx_config != tmp) {
924 cpw32_f (RxConfig, tmp);
925 cp->rx_config = tmp;
927 cpw32_f (MAR0 + 0, mc_filter[0]);
928 cpw32_f (MAR0 + 4, mc_filter[1]);
931 static void cp_set_rx_mode (struct net_device *dev)
933 unsigned long flags;
934 struct cp_private *cp = netdev_priv(dev);
936 spin_lock_irqsave (&cp->lock, flags);
937 __cp_set_rx_mode(dev);
938 spin_unlock_irqrestore (&cp->lock, flags);
941 static void __cp_get_stats(struct cp_private *cp)
943 /* only lower 24 bits valid; write any value to clear */
944 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
945 cpw32 (RxMissed, 0);
948 static struct net_device_stats *cp_get_stats(struct net_device *dev)
950 struct cp_private *cp = netdev_priv(dev);
951 unsigned long flags;
953 /* The chip only need report frame silently dropped. */
954 spin_lock_irqsave(&cp->lock, flags);
955 if (netif_running(dev) && netif_device_present(dev))
956 __cp_get_stats(cp);
957 spin_unlock_irqrestore(&cp->lock, flags);
959 return &dev->stats;
962 static void cp_stop_hw (struct cp_private *cp)
964 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
965 cpw16_f(IntrMask, 0);
966 cpw8(Cmd, 0);
967 cpw16_f(CpCmd, 0);
968 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
970 cp->rx_tail = 0;
971 cp->tx_head = cp->tx_tail = 0;
974 static void cp_reset_hw (struct cp_private *cp)
976 unsigned work = 1000;
978 cpw8(Cmd, CmdReset);
980 while (work--) {
981 if (!(cpr8(Cmd) & CmdReset))
982 return;
984 schedule_timeout_uninterruptible(10);
987 netdev_err(cp->dev, "hardware reset timeout\n");
990 static inline void cp_start_hw (struct cp_private *cp)
992 cpw16(CpCmd, cp->cpcmd);
993 cpw8(Cmd, RxOn | TxOn);
996 static void cp_init_hw (struct cp_private *cp)
998 struct net_device *dev = cp->dev;
999 dma_addr_t ring_dma;
1001 cp_reset_hw(cp);
1003 cpw8_f (Cfg9346, Cfg9346_Unlock);
1005 /* Restore our idea of the MAC address. */
1006 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1007 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1009 cp_start_hw(cp);
1010 cpw8(TxThresh, 0x06);
1012 __cp_set_rx_mode(dev);
1013 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1015 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1016 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1017 cpw8(Config3, PARMEnable);
1018 cp->wol_enabled = 0;
1020 cpw8(Config5, cpr8(Config5) & PMEStatus);
1022 cpw32_f(HiTxRingAddr, 0);
1023 cpw32_f(HiTxRingAddr + 4, 0);
1025 ring_dma = cp->ring_dma;
1026 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1027 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1029 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1030 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1031 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1033 cpw16(MultiIntr, 0);
1035 cpw16_f(IntrMask, cp_intr_mask);
1037 cpw8_f(Cfg9346, Cfg9346_Lock);
1040 static int cp_refill_rx(struct cp_private *cp)
1042 struct net_device *dev = cp->dev;
1043 unsigned i;
1045 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1046 struct sk_buff *skb;
1047 dma_addr_t mapping;
1049 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1050 if (!skb)
1051 goto err_out;
1053 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1054 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1055 cp->rx_skb[i] = skb;
1057 cp->rx_ring[i].opts2 = 0;
1058 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1059 if (i == (CP_RX_RING_SIZE - 1))
1060 cp->rx_ring[i].opts1 =
1061 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1062 else
1063 cp->rx_ring[i].opts1 =
1064 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1067 return 0;
1069 err_out:
1070 cp_clean_rings(cp);
1071 return -ENOMEM;
1074 static void cp_init_rings_index (struct cp_private *cp)
1076 cp->rx_tail = 0;
1077 cp->tx_head = cp->tx_tail = 0;
1080 static int cp_init_rings (struct cp_private *cp)
1082 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1083 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1085 cp_init_rings_index(cp);
1087 return cp_refill_rx (cp);
1090 static int cp_alloc_rings (struct cp_private *cp)
1092 void *mem;
1094 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1095 &cp->ring_dma, GFP_KERNEL);
1096 if (!mem)
1097 return -ENOMEM;
1099 cp->rx_ring = mem;
1100 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1102 return cp_init_rings(cp);
1105 static void cp_clean_rings (struct cp_private *cp)
1107 struct cp_desc *desc;
1108 unsigned i;
1110 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1111 if (cp->rx_skb[i]) {
1112 desc = cp->rx_ring + i;
1113 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1114 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1115 dev_kfree_skb(cp->rx_skb[i]);
1119 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1120 if (cp->tx_skb[i]) {
1121 struct sk_buff *skb = cp->tx_skb[i];
1123 desc = cp->tx_ring + i;
1124 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1125 le32_to_cpu(desc->opts1) & 0xffff,
1126 PCI_DMA_TODEVICE);
1127 if (le32_to_cpu(desc->opts1) & LastFrag)
1128 dev_kfree_skb(skb);
1129 cp->dev->stats.tx_dropped++;
1133 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1134 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1136 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1137 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1140 static void cp_free_rings (struct cp_private *cp)
1142 cp_clean_rings(cp);
1143 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1144 cp->ring_dma);
1145 cp->rx_ring = NULL;
1146 cp->tx_ring = NULL;
1149 static int cp_open (struct net_device *dev)
1151 struct cp_private *cp = netdev_priv(dev);
1152 int rc;
1154 netif_dbg(cp, ifup, dev, "enabling interface\n");
1156 rc = cp_alloc_rings(cp);
1157 if (rc)
1158 return rc;
1160 napi_enable(&cp->napi);
1162 cp_init_hw(cp);
1164 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1165 if (rc)
1166 goto err_out_hw;
1168 netif_carrier_off(dev);
1169 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1170 netif_start_queue(dev);
1172 return 0;
1174 err_out_hw:
1175 napi_disable(&cp->napi);
1176 cp_stop_hw(cp);
1177 cp_free_rings(cp);
1178 return rc;
1181 static int cp_close (struct net_device *dev)
1183 struct cp_private *cp = netdev_priv(dev);
1184 unsigned long flags;
1186 napi_disable(&cp->napi);
1188 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1190 spin_lock_irqsave(&cp->lock, flags);
1192 netif_stop_queue(dev);
1193 netif_carrier_off(dev);
1195 cp_stop_hw(cp);
1197 spin_unlock_irqrestore(&cp->lock, flags);
1199 free_irq(dev->irq, dev);
1201 cp_free_rings(cp);
1202 return 0;
1205 static void cp_tx_timeout(struct net_device *dev)
1207 struct cp_private *cp = netdev_priv(dev);
1208 unsigned long flags;
1209 int rc;
1211 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1212 cpr8(Cmd), cpr16(CpCmd),
1213 cpr16(IntrStatus), cpr16(IntrMask));
1215 spin_lock_irqsave(&cp->lock, flags);
1217 cp_stop_hw(cp);
1218 cp_clean_rings(cp);
1219 rc = cp_init_rings(cp);
1220 cp_start_hw(cp);
1222 netif_wake_queue(dev);
1224 spin_unlock_irqrestore(&cp->lock, flags);
1227 #ifdef BROKEN
1228 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1230 struct cp_private *cp = netdev_priv(dev);
1231 int rc;
1232 unsigned long flags;
1234 /* check for invalid MTU, according to hardware limits */
1235 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1236 return -EINVAL;
1238 /* if network interface not up, no need for complexity */
1239 if (!netif_running(dev)) {
1240 dev->mtu = new_mtu;
1241 cp_set_rxbufsize(cp); /* set new rx buf size */
1242 return 0;
1245 spin_lock_irqsave(&cp->lock, flags);
1247 cp_stop_hw(cp); /* stop h/w and free rings */
1248 cp_clean_rings(cp);
1250 dev->mtu = new_mtu;
1251 cp_set_rxbufsize(cp); /* set new rx buf size */
1253 rc = cp_init_rings(cp); /* realloc and restart h/w */
1254 cp_start_hw(cp);
1256 spin_unlock_irqrestore(&cp->lock, flags);
1258 return rc;
1260 #endif /* BROKEN */
1262 static const char mii_2_8139_map[8] = {
1263 BasicModeCtrl,
1264 BasicModeStatus,
1267 NWayAdvert,
1268 NWayLPAR,
1269 NWayExpansion,
1273 static int mdio_read(struct net_device *dev, int phy_id, int location)
1275 struct cp_private *cp = netdev_priv(dev);
1277 return location < 8 && mii_2_8139_map[location] ?
1278 readw(cp->regs + mii_2_8139_map[location]) : 0;
1282 static void mdio_write(struct net_device *dev, int phy_id, int location,
1283 int value)
1285 struct cp_private *cp = netdev_priv(dev);
1287 if (location == 0) {
1288 cpw8(Cfg9346, Cfg9346_Unlock);
1289 cpw16(BasicModeCtrl, value);
1290 cpw8(Cfg9346, Cfg9346_Lock);
1291 } else if (location < 8 && mii_2_8139_map[location])
1292 cpw16(mii_2_8139_map[location], value);
1295 /* Set the ethtool Wake-on-LAN settings */
1296 static int netdev_set_wol (struct cp_private *cp,
1297 const struct ethtool_wolinfo *wol)
1299 u8 options;
1301 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1302 /* If WOL is being disabled, no need for complexity */
1303 if (wol->wolopts) {
1304 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1305 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1308 cpw8 (Cfg9346, Cfg9346_Unlock);
1309 cpw8 (Config3, options);
1310 cpw8 (Cfg9346, Cfg9346_Lock);
1312 options = 0; /* Paranoia setting */
1313 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1314 /* If WOL is being disabled, no need for complexity */
1315 if (wol->wolopts) {
1316 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1317 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1318 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1321 cpw8 (Config5, options);
1323 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1325 return 0;
1328 /* Get the ethtool Wake-on-LAN settings */
1329 static void netdev_get_wol (struct cp_private *cp,
1330 struct ethtool_wolinfo *wol)
1332 u8 options;
1334 wol->wolopts = 0; /* Start from scratch */
1335 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1336 WAKE_MCAST | WAKE_UCAST;
1337 /* We don't need to go on if WOL is disabled */
1338 if (!cp->wol_enabled) return;
1340 options = cpr8 (Config3);
1341 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1342 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1344 options = 0; /* Paranoia setting */
1345 options = cpr8 (Config5);
1346 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1347 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1348 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1351 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1353 struct cp_private *cp = netdev_priv(dev);
1355 strcpy (info->driver, DRV_NAME);
1356 strcpy (info->version, DRV_VERSION);
1357 strcpy (info->bus_info, pci_name(cp->pdev));
1360 static int cp_get_regs_len(struct net_device *dev)
1362 return CP_REGS_SIZE;
1365 static int cp_get_sset_count (struct net_device *dev, int sset)
1367 switch (sset) {
1368 case ETH_SS_STATS:
1369 return CP_NUM_STATS;
1370 default:
1371 return -EOPNOTSUPP;
1375 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1377 struct cp_private *cp = netdev_priv(dev);
1378 int rc;
1379 unsigned long flags;
1381 spin_lock_irqsave(&cp->lock, flags);
1382 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1383 spin_unlock_irqrestore(&cp->lock, flags);
1385 return rc;
1388 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1390 struct cp_private *cp = netdev_priv(dev);
1391 int rc;
1392 unsigned long flags;
1394 spin_lock_irqsave(&cp->lock, flags);
1395 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1396 spin_unlock_irqrestore(&cp->lock, flags);
1398 return rc;
1401 static int cp_nway_reset(struct net_device *dev)
1403 struct cp_private *cp = netdev_priv(dev);
1404 return mii_nway_restart(&cp->mii_if);
1407 static u32 cp_get_msglevel(struct net_device *dev)
1409 struct cp_private *cp = netdev_priv(dev);
1410 return cp->msg_enable;
1413 static void cp_set_msglevel(struct net_device *dev, u32 value)
1415 struct cp_private *cp = netdev_priv(dev);
1416 cp->msg_enable = value;
1419 static u32 cp_get_rx_csum(struct net_device *dev)
1421 struct cp_private *cp = netdev_priv(dev);
1422 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1425 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1427 struct cp_private *cp = netdev_priv(dev);
1428 u16 cmd = cp->cpcmd, newcmd;
1430 newcmd = cmd;
1432 if (data)
1433 newcmd |= RxChkSum;
1434 else
1435 newcmd &= ~RxChkSum;
1437 if (newcmd != cmd) {
1438 unsigned long flags;
1440 spin_lock_irqsave(&cp->lock, flags);
1441 cp->cpcmd = newcmd;
1442 cpw16_f(CpCmd, newcmd);
1443 spin_unlock_irqrestore(&cp->lock, flags);
1446 return 0;
1449 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1450 void *p)
1452 struct cp_private *cp = netdev_priv(dev);
1453 unsigned long flags;
1455 if (regs->len < CP_REGS_SIZE)
1456 return /* -EINVAL */;
1458 regs->version = CP_REGS_VER;
1460 spin_lock_irqsave(&cp->lock, flags);
1461 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1462 spin_unlock_irqrestore(&cp->lock, flags);
1465 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1467 struct cp_private *cp = netdev_priv(dev);
1468 unsigned long flags;
1470 spin_lock_irqsave (&cp->lock, flags);
1471 netdev_get_wol (cp, wol);
1472 spin_unlock_irqrestore (&cp->lock, flags);
1475 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1477 struct cp_private *cp = netdev_priv(dev);
1478 unsigned long flags;
1479 int rc;
1481 spin_lock_irqsave (&cp->lock, flags);
1482 rc = netdev_set_wol (cp, wol);
1483 spin_unlock_irqrestore (&cp->lock, flags);
1485 return rc;
1488 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1490 switch (stringset) {
1491 case ETH_SS_STATS:
1492 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1493 break;
1494 default:
1495 BUG();
1496 break;
1500 static void cp_get_ethtool_stats (struct net_device *dev,
1501 struct ethtool_stats *estats, u64 *tmp_stats)
1503 struct cp_private *cp = netdev_priv(dev);
1504 struct cp_dma_stats *nic_stats;
1505 dma_addr_t dma;
1506 int i;
1508 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1509 &dma, GFP_KERNEL);
1510 if (!nic_stats)
1511 return;
1513 /* begin NIC statistics dump */
1514 cpw32(StatsAddr + 4, (u64)dma >> 32);
1515 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1516 cpr32(StatsAddr);
1518 for (i = 0; i < 1000; i++) {
1519 if ((cpr32(StatsAddr) & DumpStats) == 0)
1520 break;
1521 udelay(10);
1523 cpw32(StatsAddr, 0);
1524 cpw32(StatsAddr + 4, 0);
1525 cpr32(StatsAddr);
1527 i = 0;
1528 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1529 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1530 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1531 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1532 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1533 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1534 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1535 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1536 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1537 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1538 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1539 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1540 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1541 tmp_stats[i++] = cp->cp_stats.rx_frags;
1542 BUG_ON(i != CP_NUM_STATS);
1544 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1547 static const struct ethtool_ops cp_ethtool_ops = {
1548 .get_drvinfo = cp_get_drvinfo,
1549 .get_regs_len = cp_get_regs_len,
1550 .get_sset_count = cp_get_sset_count,
1551 .get_settings = cp_get_settings,
1552 .set_settings = cp_set_settings,
1553 .nway_reset = cp_nway_reset,
1554 .get_link = ethtool_op_get_link,
1555 .get_msglevel = cp_get_msglevel,
1556 .set_msglevel = cp_set_msglevel,
1557 .get_rx_csum = cp_get_rx_csum,
1558 .set_rx_csum = cp_set_rx_csum,
1559 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1560 .set_sg = ethtool_op_set_sg,
1561 .set_tso = ethtool_op_set_tso,
1562 .get_regs = cp_get_regs,
1563 .get_wol = cp_get_wol,
1564 .set_wol = cp_set_wol,
1565 .get_strings = cp_get_strings,
1566 .get_ethtool_stats = cp_get_ethtool_stats,
1567 .get_eeprom_len = cp_get_eeprom_len,
1568 .get_eeprom = cp_get_eeprom,
1569 .set_eeprom = cp_set_eeprom,
1572 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1574 struct cp_private *cp = netdev_priv(dev);
1575 int rc;
1576 unsigned long flags;
1578 if (!netif_running(dev))
1579 return -EINVAL;
1581 spin_lock_irqsave(&cp->lock, flags);
1582 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1583 spin_unlock_irqrestore(&cp->lock, flags);
1584 return rc;
1587 static int cp_set_mac_address(struct net_device *dev, void *p)
1589 struct cp_private *cp = netdev_priv(dev);
1590 struct sockaddr *addr = p;
1592 if (!is_valid_ether_addr(addr->sa_data))
1593 return -EADDRNOTAVAIL;
1595 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1597 spin_lock_irq(&cp->lock);
1599 cpw8_f(Cfg9346, Cfg9346_Unlock);
1600 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1601 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1602 cpw8_f(Cfg9346, Cfg9346_Lock);
1604 spin_unlock_irq(&cp->lock);
1606 return 0;
1609 /* Serial EEPROM section. */
1611 /* EEPROM_Ctrl bits. */
1612 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1613 #define EE_CS 0x08 /* EEPROM chip select. */
1614 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1615 #define EE_WRITE_0 0x00
1616 #define EE_WRITE_1 0x02
1617 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1618 #define EE_ENB (0x80 | EE_CS)
1620 /* Delay between EEPROM clock transitions.
1621 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1624 #define eeprom_delay() readl(ee_addr)
1626 /* The EEPROM commands include the alway-set leading bit. */
1627 #define EE_EXTEND_CMD (4)
1628 #define EE_WRITE_CMD (5)
1629 #define EE_READ_CMD (6)
1630 #define EE_ERASE_CMD (7)
1632 #define EE_EWDS_ADDR (0)
1633 #define EE_WRAL_ADDR (1)
1634 #define EE_ERAL_ADDR (2)
1635 #define EE_EWEN_ADDR (3)
1637 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1639 static void eeprom_cmd_start(void __iomem *ee_addr)
1641 writeb (EE_ENB & ~EE_CS, ee_addr);
1642 writeb (EE_ENB, ee_addr);
1643 eeprom_delay ();
1646 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1648 int i;
1650 /* Shift the command bits out. */
1651 for (i = cmd_len - 1; i >= 0; i--) {
1652 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1653 writeb (EE_ENB | dataval, ee_addr);
1654 eeprom_delay ();
1655 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1656 eeprom_delay ();
1658 writeb (EE_ENB, ee_addr);
1659 eeprom_delay ();
1662 static void eeprom_cmd_end(void __iomem *ee_addr)
1664 writeb (~EE_CS, ee_addr);
1665 eeprom_delay ();
1668 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1669 int addr_len)
1671 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1673 eeprom_cmd_start(ee_addr);
1674 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1675 eeprom_cmd_end(ee_addr);
1678 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1680 int i;
1681 u16 retval = 0;
1682 void __iomem *ee_addr = ioaddr + Cfg9346;
1683 int read_cmd = location | (EE_READ_CMD << addr_len);
1685 eeprom_cmd_start(ee_addr);
1686 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1688 for (i = 16; i > 0; i--) {
1689 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1690 eeprom_delay ();
1691 retval =
1692 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1694 writeb (EE_ENB, ee_addr);
1695 eeprom_delay ();
1698 eeprom_cmd_end(ee_addr);
1700 return retval;
1703 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1704 int addr_len)
1706 int i;
1707 void __iomem *ee_addr = ioaddr + Cfg9346;
1708 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1710 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1712 eeprom_cmd_start(ee_addr);
1713 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1714 eeprom_cmd(ee_addr, val, 16);
1715 eeprom_cmd_end(ee_addr);
1717 eeprom_cmd_start(ee_addr);
1718 for (i = 0; i < 20000; i++)
1719 if (readb(ee_addr) & EE_DATA_READ)
1720 break;
1721 eeprom_cmd_end(ee_addr);
1723 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1726 static int cp_get_eeprom_len(struct net_device *dev)
1728 struct cp_private *cp = netdev_priv(dev);
1729 int size;
1731 spin_lock_irq(&cp->lock);
1732 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1733 spin_unlock_irq(&cp->lock);
1735 return size;
1738 static int cp_get_eeprom(struct net_device *dev,
1739 struct ethtool_eeprom *eeprom, u8 *data)
1741 struct cp_private *cp = netdev_priv(dev);
1742 unsigned int addr_len;
1743 u16 val;
1744 u32 offset = eeprom->offset >> 1;
1745 u32 len = eeprom->len;
1746 u32 i = 0;
1748 eeprom->magic = CP_EEPROM_MAGIC;
1750 spin_lock_irq(&cp->lock);
1752 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1754 if (eeprom->offset & 1) {
1755 val = read_eeprom(cp->regs, offset, addr_len);
1756 data[i++] = (u8)(val >> 8);
1757 offset++;
1760 while (i < len - 1) {
1761 val = read_eeprom(cp->regs, offset, addr_len);
1762 data[i++] = (u8)val;
1763 data[i++] = (u8)(val >> 8);
1764 offset++;
1767 if (i < len) {
1768 val = read_eeprom(cp->regs, offset, addr_len);
1769 data[i] = (u8)val;
1772 spin_unlock_irq(&cp->lock);
1773 return 0;
1776 static int cp_set_eeprom(struct net_device *dev,
1777 struct ethtool_eeprom *eeprom, u8 *data)
1779 struct cp_private *cp = netdev_priv(dev);
1780 unsigned int addr_len;
1781 u16 val;
1782 u32 offset = eeprom->offset >> 1;
1783 u32 len = eeprom->len;
1784 u32 i = 0;
1786 if (eeprom->magic != CP_EEPROM_MAGIC)
1787 return -EINVAL;
1789 spin_lock_irq(&cp->lock);
1791 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1793 if (eeprom->offset & 1) {
1794 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1795 val |= (u16)data[i++] << 8;
1796 write_eeprom(cp->regs, offset, val, addr_len);
1797 offset++;
1800 while (i < len - 1) {
1801 val = (u16)data[i++];
1802 val |= (u16)data[i++] << 8;
1803 write_eeprom(cp->regs, offset, val, addr_len);
1804 offset++;
1807 if (i < len) {
1808 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1809 val |= (u16)data[i];
1810 write_eeprom(cp->regs, offset, val, addr_len);
1813 spin_unlock_irq(&cp->lock);
1814 return 0;
1817 /* Put the board into D3cold state and wait for WakeUp signal */
1818 static void cp_set_d3_state (struct cp_private *cp)
1820 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1821 pci_set_power_state (cp->pdev, PCI_D3hot);
1824 static const struct net_device_ops cp_netdev_ops = {
1825 .ndo_open = cp_open,
1826 .ndo_stop = cp_close,
1827 .ndo_validate_addr = eth_validate_addr,
1828 .ndo_set_mac_address = cp_set_mac_address,
1829 .ndo_set_multicast_list = cp_set_rx_mode,
1830 .ndo_get_stats = cp_get_stats,
1831 .ndo_do_ioctl = cp_ioctl,
1832 .ndo_start_xmit = cp_start_xmit,
1833 .ndo_tx_timeout = cp_tx_timeout,
1834 #if CP_VLAN_TAG_USED
1835 .ndo_vlan_rx_register = cp_vlan_rx_register,
1836 #endif
1837 #ifdef BROKEN
1838 .ndo_change_mtu = cp_change_mtu,
1839 #endif
1841 #ifdef CONFIG_NET_POLL_CONTROLLER
1842 .ndo_poll_controller = cp_poll_controller,
1843 #endif
1846 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1848 struct net_device *dev;
1849 struct cp_private *cp;
1850 int rc;
1851 void __iomem *regs;
1852 resource_size_t pciaddr;
1853 unsigned int addr_len, i, pci_using_dac;
1855 #ifndef MODULE
1856 static int version_printed;
1857 if (version_printed++ == 0)
1858 pr_info("%s", version);
1859 #endif
1861 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1862 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1863 dev_info(&pdev->dev,
1864 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1865 pdev->vendor, pdev->device, pdev->revision);
1866 return -ENODEV;
1869 dev = alloc_etherdev(sizeof(struct cp_private));
1870 if (!dev)
1871 return -ENOMEM;
1872 SET_NETDEV_DEV(dev, &pdev->dev);
1874 cp = netdev_priv(dev);
1875 cp->pdev = pdev;
1876 cp->dev = dev;
1877 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1878 spin_lock_init (&cp->lock);
1879 cp->mii_if.dev = dev;
1880 cp->mii_if.mdio_read = mdio_read;
1881 cp->mii_if.mdio_write = mdio_write;
1882 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1883 cp->mii_if.phy_id_mask = 0x1f;
1884 cp->mii_if.reg_num_mask = 0x1f;
1885 cp_set_rxbufsize(cp);
1887 rc = pci_enable_device(pdev);
1888 if (rc)
1889 goto err_out_free;
1891 rc = pci_set_mwi(pdev);
1892 if (rc)
1893 goto err_out_disable;
1895 rc = pci_request_regions(pdev, DRV_NAME);
1896 if (rc)
1897 goto err_out_mwi;
1899 pciaddr = pci_resource_start(pdev, 1);
1900 if (!pciaddr) {
1901 rc = -EIO;
1902 dev_err(&pdev->dev, "no MMIO resource\n");
1903 goto err_out_res;
1905 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1906 rc = -EIO;
1907 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1908 (unsigned long long)pci_resource_len(pdev, 1));
1909 goto err_out_res;
1912 /* Configure DMA attributes. */
1913 if ((sizeof(dma_addr_t) > 4) &&
1914 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1915 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1916 pci_using_dac = 1;
1917 } else {
1918 pci_using_dac = 0;
1920 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1921 if (rc) {
1922 dev_err(&pdev->dev,
1923 "No usable DMA configuration, aborting\n");
1924 goto err_out_res;
1926 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1927 if (rc) {
1928 dev_err(&pdev->dev,
1929 "No usable consistent DMA configuration, aborting\n");
1930 goto err_out_res;
1934 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1935 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1937 regs = ioremap(pciaddr, CP_REGS_SIZE);
1938 if (!regs) {
1939 rc = -EIO;
1940 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1941 (unsigned long long)pci_resource_len(pdev, 1),
1942 (unsigned long long)pciaddr);
1943 goto err_out_res;
1945 dev->base_addr = (unsigned long) regs;
1946 cp->regs = regs;
1948 cp_stop_hw(cp);
1950 /* read MAC address from EEPROM */
1951 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1952 for (i = 0; i < 3; i++)
1953 ((__le16 *) (dev->dev_addr))[i] =
1954 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1955 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1957 dev->netdev_ops = &cp_netdev_ops;
1958 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1959 dev->ethtool_ops = &cp_ethtool_ops;
1960 dev->watchdog_timeo = TX_TIMEOUT;
1962 #if CP_VLAN_TAG_USED
1963 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1964 #endif
1966 if (pci_using_dac)
1967 dev->features |= NETIF_F_HIGHDMA;
1970 dev->irq = pdev->irq;
1972 rc = register_netdev(dev);
1973 if (rc)
1974 goto err_out_iomap;
1976 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1977 dev->base_addr, dev->dev_addr, dev->irq);
1979 pci_set_drvdata(pdev, dev);
1981 /* enable busmastering and memory-write-invalidate */
1982 pci_set_master(pdev);
1984 if (cp->wol_enabled)
1985 cp_set_d3_state (cp);
1987 return 0;
1989 err_out_iomap:
1990 iounmap(regs);
1991 err_out_res:
1992 pci_release_regions(pdev);
1993 err_out_mwi:
1994 pci_clear_mwi(pdev);
1995 err_out_disable:
1996 pci_disable_device(pdev);
1997 err_out_free:
1998 free_netdev(dev);
1999 return rc;
2002 static void cp_remove_one (struct pci_dev *pdev)
2004 struct net_device *dev = pci_get_drvdata(pdev);
2005 struct cp_private *cp = netdev_priv(dev);
2007 unregister_netdev(dev);
2008 iounmap(cp->regs);
2009 if (cp->wol_enabled)
2010 pci_set_power_state (pdev, PCI_D0);
2011 pci_release_regions(pdev);
2012 pci_clear_mwi(pdev);
2013 pci_disable_device(pdev);
2014 pci_set_drvdata(pdev, NULL);
2015 free_netdev(dev);
2018 #ifdef CONFIG_PM
2019 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct cp_private *cp = netdev_priv(dev);
2023 unsigned long flags;
2025 if (!netif_running(dev))
2026 return 0;
2028 netif_device_detach (dev);
2029 netif_stop_queue (dev);
2031 spin_lock_irqsave (&cp->lock, flags);
2033 /* Disable Rx and Tx */
2034 cpw16 (IntrMask, 0);
2035 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2037 spin_unlock_irqrestore (&cp->lock, flags);
2039 pci_save_state(pdev);
2040 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2041 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2043 return 0;
2046 static int cp_resume (struct pci_dev *pdev)
2048 struct net_device *dev = pci_get_drvdata (pdev);
2049 struct cp_private *cp = netdev_priv(dev);
2050 unsigned long flags;
2052 if (!netif_running(dev))
2053 return 0;
2055 netif_device_attach (dev);
2057 pci_set_power_state(pdev, PCI_D0);
2058 pci_restore_state(pdev);
2059 pci_enable_wake(pdev, PCI_D0, 0);
2061 cp_init_rings_index (cp);
2062 cp_init_hw (cp);
2063 netif_start_queue (dev);
2065 spin_lock_irqsave (&cp->lock, flags);
2067 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2069 spin_unlock_irqrestore (&cp->lock, flags);
2071 return 0;
2073 #endif /* CONFIG_PM */
2075 static struct pci_driver cp_driver = {
2076 .name = DRV_NAME,
2077 .id_table = cp_pci_tbl,
2078 .probe = cp_init_one,
2079 .remove = cp_remove_one,
2080 #ifdef CONFIG_PM
2081 .resume = cp_resume,
2082 .suspend = cp_suspend,
2083 #endif
2086 static int __init cp_init (void)
2088 #ifdef MODULE
2089 pr_info("%s", version);
2090 #endif
2091 return pci_register_driver(&cp_driver);
2094 static void __exit cp_exit (void)
2096 pci_unregister_driver (&cp_driver);
2099 module_init(cp_init);
2100 module_exit(cp_exit);