GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / mtd / lpddr / lpddr_cmds.c
blob04fdfcca93f72b2db3c2b24ba41ddc913813fe98
1 /*
2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for intial enabling
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 * TODO:
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
31 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
32 size_t *retlen, u_char *buf);
33 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
34 size_t len, size_t *retlen, const u_char *buf);
35 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
36 unsigned long count, loff_t to, size_t *retlen);
37 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
38 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
39 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
41 size_t *retlen, void **mtdbuf, resource_size_t *phys);
42 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
43 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
44 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
45 static void put_chip(struct map_info *map, struct flchip *chip);
47 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 struct lpddr_private *lpddr = map->fldrv_priv;
50 struct flchip_shared *shared;
51 struct flchip *chip;
52 struct mtd_info *mtd;
53 int numchips;
54 int i, j;
56 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
57 if (!mtd) {
58 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
59 return NULL;
61 mtd->priv = map;
62 mtd->type = MTD_NORFLASH;
64 /* Fill in the default mtd operations */
65 mtd->read = lpddr_read;
66 mtd->type = MTD_NORFLASH;
67 mtd->flags = MTD_CAP_NORFLASH;
68 mtd->flags &= ~MTD_BIT_WRITEABLE;
69 mtd->erase = lpddr_erase;
70 mtd->write = lpddr_write_buffers;
71 mtd->writev = lpddr_writev;
72 mtd->read_oob = NULL;
73 mtd->write_oob = NULL;
74 mtd->sync = NULL;
75 mtd->lock = lpddr_lock;
76 mtd->unlock = lpddr_unlock;
77 mtd->suspend = NULL;
78 mtd->resume = NULL;
79 if (map_is_linear(map)) {
80 mtd->point = lpddr_point;
81 mtd->unpoint = lpddr_unpoint;
83 mtd->block_isbad = NULL;
84 mtd->block_markbad = NULL;
85 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
86 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
87 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
89 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
90 GFP_KERNEL);
91 if (!shared) {
92 kfree(lpddr);
93 kfree(mtd);
94 return NULL;
97 chip = &lpddr->chips[0];
98 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
99 for (i = 0; i < numchips; i++) {
100 shared[i].writing = shared[i].erasing = NULL;
101 mutex_init(&shared[i].lock);
102 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103 *chip = lpddr->chips[i];
104 chip->start += j << lpddr->chipshift;
105 chip->oldstate = chip->state = FL_READY;
106 chip->priv = &shared[i];
107 /* those should be reset too since
108 they create memory references. */
109 init_waitqueue_head(&chip->wq);
110 mutex_init(&chip->mutex);
111 chip++;
115 return mtd;
117 EXPORT_SYMBOL(lpddr_cmdset);
119 static int wait_for_ready(struct map_info *map, struct flchip *chip,
120 unsigned int chip_op_time)
122 unsigned int timeo, reset_timeo, sleep_time;
123 unsigned int dsr;
124 flstate_t chip_state = chip->state;
125 int ret = 0;
127 /* set our timeout to 8 times the expected delay */
128 timeo = chip_op_time * 8;
129 if (!timeo)
130 timeo = 500000;
131 reset_timeo = timeo;
132 sleep_time = chip_op_time / 2;
134 for (;;) {
135 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136 if (dsr & DSR_READY_STATUS)
137 break;
138 if (!timeo) {
139 printk(KERN_ERR "%s: Flash timeout error state %d \n",
140 map->name, chip_state);
141 ret = -ETIME;
142 break;
145 /* OK Still waiting. Drop the lock, wait a while and retry. */
146 mutex_unlock(&chip->mutex);
147 if (sleep_time >= 1000000/HZ) {
149 * Half of the normal delay still remaining
150 * can be performed with a sleeping delay instead
151 * of busy waiting.
153 msleep(sleep_time/1000);
154 timeo -= sleep_time;
155 sleep_time = 1000000/HZ;
156 } else {
157 udelay(1);
158 cond_resched();
159 timeo--;
161 mutex_lock(&chip->mutex);
163 while (chip->state != chip_state) {
164 /* Someone's suspended the operation: sleep */
165 DECLARE_WAITQUEUE(wait, current);
166 set_current_state(TASK_UNINTERRUPTIBLE);
167 add_wait_queue(&chip->wq, &wait);
168 mutex_unlock(&chip->mutex);
169 schedule();
170 remove_wait_queue(&chip->wq, &wait);
171 mutex_lock(&chip->mutex);
173 if (chip->erase_suspended || chip->write_suspended) {
174 /* Suspend has occured while sleep: reset timeout */
175 timeo = reset_timeo;
176 chip->erase_suspended = chip->write_suspended = 0;
179 /* check status for errors */
180 if (dsr & DSR_ERR) {
181 /* Clear DSR*/
182 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184 map->name, dsr);
185 print_drs_error(dsr);
186 ret = -EIO;
188 chip->state = FL_READY;
189 return ret;
192 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
194 int ret;
195 DECLARE_WAITQUEUE(wait, current);
197 retry:
198 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199 && chip->state != FL_SYNCING) {
201 * OK. We have possibility for contension on the write/erase
202 * operations which are global to the real chip and not per
203 * partition. So let's fight it over in the partition which
204 * currently has authority on the operation.
206 * The rules are as follows:
208 * - any write operation must own shared->writing.
210 * - any erase operation must own _both_ shared->writing and
211 * shared->erasing.
213 * - contension arbitration is handled in the owner's context.
215 * The 'shared' struct can be read and/or written only when
216 * its lock is taken.
218 struct flchip_shared *shared = chip->priv;
219 struct flchip *contender;
220 mutex_lock(&shared->lock);
221 contender = shared->writing;
222 if (contender && contender != chip) {
224 * The engine to perform desired operation on this
225 * partition is already in use by someone else.
226 * Let's fight over it in the context of the chip
227 * currently using it. If it is possible to suspend,
228 * that other partition will do just that, otherwise
229 * it'll happily send us to sleep. In any case, when
230 * get_chip returns success we're clear to go ahead.
232 ret = mutex_trylock(&contender->mutex);
233 mutex_unlock(&shared->lock);
234 if (!ret)
235 goto retry;
236 mutex_unlock(&chip->mutex);
237 ret = chip_ready(map, contender, mode);
238 mutex_lock(&chip->mutex);
240 if (ret == -EAGAIN) {
241 mutex_unlock(&contender->mutex);
242 goto retry;
244 if (ret) {
245 mutex_unlock(&contender->mutex);
246 return ret;
248 mutex_lock(&shared->lock);
250 /* We should not own chip if it is already in FL_SYNCING
251 * state. Put contender and retry. */
252 if (chip->state == FL_SYNCING) {
253 put_chip(map, contender);
254 mutex_unlock(&contender->mutex);
255 goto retry;
257 mutex_unlock(&contender->mutex);
260 /* Check if we have suspended erase on this chip.
261 Must sleep in such a case. */
262 if (mode == FL_ERASING && shared->erasing
263 && shared->erasing->oldstate == FL_ERASING) {
264 mutex_unlock(&shared->lock);
265 set_current_state(TASK_UNINTERRUPTIBLE);
266 add_wait_queue(&chip->wq, &wait);
267 mutex_unlock(&chip->mutex);
268 schedule();
269 remove_wait_queue(&chip->wq, &wait);
270 mutex_lock(&chip->mutex);
271 goto retry;
274 /* We now own it */
275 shared->writing = chip;
276 if (mode == FL_ERASING)
277 shared->erasing = chip;
278 mutex_unlock(&shared->lock);
281 ret = chip_ready(map, chip, mode);
282 if (ret == -EAGAIN)
283 goto retry;
285 return ret;
288 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
290 struct lpddr_private *lpddr = map->fldrv_priv;
291 int ret = 0;
292 DECLARE_WAITQUEUE(wait, current);
294 /* Prevent setting state FL_SYNCING for chip in suspended state. */
295 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296 goto sleep;
298 switch (chip->state) {
299 case FL_READY:
300 case FL_JEDEC_QUERY:
301 return 0;
303 case FL_ERASING:
304 if (!lpddr->qinfo->SuspEraseSupp ||
305 !(mode == FL_READY || mode == FL_POINT))
306 goto sleep;
308 map_write(map, CMD(LPDDR_SUSPEND),
309 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310 chip->oldstate = FL_ERASING;
311 chip->state = FL_ERASE_SUSPENDING;
312 ret = wait_for_ready(map, chip, 0);
313 if (ret) {
314 /* Oops. something got wrong. */
315 /* Resume and pretend we weren't here. */
316 map_write(map, CMD(LPDDR_RESUME),
317 map->pfow_base + PFOW_COMMAND_CODE);
318 map_write(map, CMD(LPDDR_START_EXECUTION),
319 map->pfow_base + PFOW_COMMAND_EXECUTE);
320 chip->state = FL_ERASING;
321 chip->oldstate = FL_READY;
322 printk(KERN_ERR "%s: suspend operation failed."
323 "State may be wrong \n", map->name);
324 return -EIO;
326 chip->erase_suspended = 1;
327 chip->state = FL_READY;
328 return 0;
329 /* Erase suspend */
330 case FL_POINT:
331 /* Only if there's no operation suspended... */
332 if (mode == FL_READY && chip->oldstate == FL_READY)
333 return 0;
335 default:
336 sleep:
337 set_current_state(TASK_UNINTERRUPTIBLE);
338 add_wait_queue(&chip->wq, &wait);
339 mutex_unlock(&chip->mutex);
340 schedule();
341 remove_wait_queue(&chip->wq, &wait);
342 mutex_lock(&chip->mutex);
343 return -EAGAIN;
347 static void put_chip(struct map_info *map, struct flchip *chip)
349 if (chip->priv) {
350 struct flchip_shared *shared = chip->priv;
351 mutex_lock(&shared->lock);
352 if (shared->writing == chip && chip->oldstate == FL_READY) {
353 /* We own the ability to write, but we're done */
354 shared->writing = shared->erasing;
355 if (shared->writing && shared->writing != chip) {
356 /* give back the ownership */
357 struct flchip *loaner = shared->writing;
358 mutex_lock(&loaner->mutex);
359 mutex_unlock(&shared->lock);
360 mutex_unlock(&chip->mutex);
361 put_chip(map, loaner);
362 mutex_lock(&chip->mutex);
363 mutex_unlock(&loaner->mutex);
364 wake_up(&chip->wq);
365 return;
367 shared->erasing = NULL;
368 shared->writing = NULL;
369 } else if (shared->erasing == chip && shared->writing != chip) {
371 * We own the ability to erase without the ability
372 * to write, which means the erase was suspended
373 * and some other partition is currently writing.
374 * Don't let the switch below mess things up since
375 * we don't have ownership to resume anything.
377 mutex_unlock(&shared->lock);
378 wake_up(&chip->wq);
379 return;
381 mutex_unlock(&shared->lock);
384 switch (chip->oldstate) {
385 case FL_ERASING:
386 chip->state = chip->oldstate;
387 map_write(map, CMD(LPDDR_RESUME),
388 map->pfow_base + PFOW_COMMAND_CODE);
389 map_write(map, CMD(LPDDR_START_EXECUTION),
390 map->pfow_base + PFOW_COMMAND_EXECUTE);
391 chip->oldstate = FL_READY;
392 chip->state = FL_ERASING;
393 break;
394 case FL_READY:
395 break;
396 default:
397 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
398 map->name, chip->oldstate);
400 wake_up(&chip->wq);
403 int do_write_buffer(struct map_info *map, struct flchip *chip,
404 unsigned long adr, const struct kvec **pvec,
405 unsigned long *pvec_seek, int len)
407 struct lpddr_private *lpddr = map->fldrv_priv;
408 map_word datum;
409 int ret, wbufsize, word_gap, words;
410 const struct kvec *vec;
411 unsigned long vec_seek;
412 unsigned long prog_buf_ofs;
414 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
416 mutex_lock(&chip->mutex);
417 ret = get_chip(map, chip, FL_WRITING);
418 if (ret) {
419 mutex_unlock(&chip->mutex);
420 return ret;
422 /* Figure out the number of words to write */
423 word_gap = (-adr & (map_bankwidth(map)-1));
424 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
425 if (!word_gap) {
426 words--;
427 } else {
428 word_gap = map_bankwidth(map) - word_gap;
429 adr -= word_gap;
430 datum = map_word_ff(map);
432 /* Write data */
433 /* Get the program buffer offset from PFOW register data first*/
434 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
435 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
436 vec = *pvec;
437 vec_seek = *pvec_seek;
438 do {
439 int n = map_bankwidth(map) - word_gap;
441 if (n > vec->iov_len - vec_seek)
442 n = vec->iov_len - vec_seek;
443 if (n > len)
444 n = len;
446 if (!word_gap && (len < map_bankwidth(map)))
447 datum = map_word_ff(map);
449 datum = map_word_load_partial(map, datum,
450 vec->iov_base + vec_seek, word_gap, n);
452 len -= n;
453 word_gap += n;
454 if (!len || word_gap == map_bankwidth(map)) {
455 map_write(map, datum, prog_buf_ofs);
456 prog_buf_ofs += map_bankwidth(map);
457 word_gap = 0;
460 vec_seek += n;
461 if (vec_seek == vec->iov_len) {
462 vec++;
463 vec_seek = 0;
465 } while (len);
466 *pvec = vec;
467 *pvec_seek = vec_seek;
469 /* GO GO GO */
470 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
471 chip->state = FL_WRITING;
472 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
473 if (ret) {
474 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
475 map->name, ret, adr);
476 goto out;
479 out: put_chip(map, chip);
480 mutex_unlock(&chip->mutex);
481 return ret;
484 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
486 struct map_info *map = mtd->priv;
487 struct lpddr_private *lpddr = map->fldrv_priv;
488 int chipnum = adr >> lpddr->chipshift;
489 struct flchip *chip = &lpddr->chips[chipnum];
490 int ret;
492 mutex_lock(&chip->mutex);
493 ret = get_chip(map, chip, FL_ERASING);
494 if (ret) {
495 mutex_unlock(&chip->mutex);
496 return ret;
498 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
499 chip->state = FL_ERASING;
500 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
501 if (ret) {
502 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
503 map->name, ret, adr);
504 goto out;
506 out: put_chip(map, chip);
507 mutex_unlock(&chip->mutex);
508 return ret;
511 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
512 size_t *retlen, u_char *buf)
514 struct map_info *map = mtd->priv;
515 struct lpddr_private *lpddr = map->fldrv_priv;
516 int chipnum = adr >> lpddr->chipshift;
517 struct flchip *chip = &lpddr->chips[chipnum];
518 int ret = 0;
520 mutex_lock(&chip->mutex);
521 ret = get_chip(map, chip, FL_READY);
522 if (ret) {
523 mutex_unlock(&chip->mutex);
524 return ret;
527 map_copy_from(map, buf, adr, len);
528 *retlen = len;
530 put_chip(map, chip);
531 mutex_unlock(&chip->mutex);
532 return ret;
535 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
536 size_t *retlen, void **mtdbuf, resource_size_t *phys)
538 struct map_info *map = mtd->priv;
539 struct lpddr_private *lpddr = map->fldrv_priv;
540 int chipnum = adr >> lpddr->chipshift;
541 unsigned long ofs, last_end = 0;
542 struct flchip *chip = &lpddr->chips[chipnum];
543 int ret = 0;
545 if (!map->virt || (adr + len > mtd->size))
546 return -EINVAL;
548 /* ofs: offset within the first chip that the first read should start */
549 ofs = adr - (chipnum << lpddr->chipshift);
551 *mtdbuf = (void *)map->virt + chip->start + ofs;
552 *retlen = 0;
554 while (len) {
555 unsigned long thislen;
557 if (chipnum >= lpddr->numchips)
558 break;
560 /* We cannot point across chips that are virtually disjoint */
561 if (!last_end)
562 last_end = chip->start;
563 else if (chip->start != last_end)
564 break;
566 if ((len + ofs - 1) >> lpddr->chipshift)
567 thislen = (1<<lpddr->chipshift) - ofs;
568 else
569 thislen = len;
570 /* get the chip */
571 mutex_lock(&chip->mutex);
572 ret = get_chip(map, chip, FL_POINT);
573 mutex_unlock(&chip->mutex);
574 if (ret)
575 break;
577 chip->state = FL_POINT;
578 chip->ref_point_counter++;
579 *retlen += thislen;
580 len -= thislen;
582 ofs = 0;
583 last_end += 1 << lpddr->chipshift;
584 chipnum++;
585 chip = &lpddr->chips[chipnum];
587 return 0;
590 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
592 struct map_info *map = mtd->priv;
593 struct lpddr_private *lpddr = map->fldrv_priv;
594 int chipnum = adr >> lpddr->chipshift;
595 unsigned long ofs;
597 /* ofs: offset within the first chip that the first read should start */
598 ofs = adr - (chipnum << lpddr->chipshift);
600 while (len) {
601 unsigned long thislen;
602 struct flchip *chip;
604 chip = &lpddr->chips[chipnum];
605 if (chipnum >= lpddr->numchips)
606 break;
608 if ((len + ofs - 1) >> lpddr->chipshift)
609 thislen = (1<<lpddr->chipshift) - ofs;
610 else
611 thislen = len;
613 mutex_lock(&chip->mutex);
614 if (chip->state == FL_POINT) {
615 chip->ref_point_counter--;
616 if (chip->ref_point_counter == 0)
617 chip->state = FL_READY;
618 } else
619 printk(KERN_WARNING "%s: Warning: unpoint called on non"
620 "pointed region\n", map->name);
622 put_chip(map, chip);
623 mutex_unlock(&chip->mutex);
625 len -= thislen;
626 ofs = 0;
627 chipnum++;
631 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
632 size_t *retlen, const u_char *buf)
634 struct kvec vec;
636 vec.iov_base = (void *) buf;
637 vec.iov_len = len;
639 return lpddr_writev(mtd, &vec, 1, to, retlen);
643 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
644 unsigned long count, loff_t to, size_t *retlen)
646 struct map_info *map = mtd->priv;
647 struct lpddr_private *lpddr = map->fldrv_priv;
648 int ret = 0;
649 int chipnum;
650 unsigned long ofs, vec_seek, i;
651 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
653 size_t len = 0;
655 for (i = 0; i < count; i++)
656 len += vecs[i].iov_len;
658 *retlen = 0;
659 if (!len)
660 return 0;
662 chipnum = to >> lpddr->chipshift;
664 ofs = to;
665 vec_seek = 0;
667 do {
668 /* We must not cross write block boundaries */
669 int size = wbufsize - (ofs & (wbufsize-1));
671 if (size > len)
672 size = len;
674 ret = do_write_buffer(map, &lpddr->chips[chipnum],
675 ofs, &vecs, &vec_seek, size);
676 if (ret)
677 return ret;
679 ofs += size;
680 (*retlen) += size;
681 len -= size;
683 /* Be nice and reschedule with the chip in a usable
684 * state for other processes */
685 cond_resched();
687 } while (len);
689 return 0;
692 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
694 unsigned long ofs, len;
695 int ret;
696 struct map_info *map = mtd->priv;
697 struct lpddr_private *lpddr = map->fldrv_priv;
698 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
700 ofs = instr->addr;
701 len = instr->len;
703 if (ofs > mtd->size || (len + ofs) > mtd->size)
704 return -EINVAL;
706 while (len > 0) {
707 ret = do_erase_oneblock(mtd, ofs);
708 if (ret)
709 return ret;
710 ofs += size;
711 len -= size;
713 instr->state = MTD_ERASE_DONE;
714 mtd_erase_callback(instr);
716 return 0;
719 #define DO_XXLOCK_LOCK 1
720 #define DO_XXLOCK_UNLOCK 2
721 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
723 int ret = 0;
724 struct map_info *map = mtd->priv;
725 struct lpddr_private *lpddr = map->fldrv_priv;
726 int chipnum = adr >> lpddr->chipshift;
727 struct flchip *chip = &lpddr->chips[chipnum];
729 mutex_lock(&chip->mutex);
730 ret = get_chip(map, chip, FL_LOCKING);
731 if (ret) {
732 mutex_unlock(&chip->mutex);
733 return ret;
736 if (thunk == DO_XXLOCK_LOCK) {
737 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
738 chip->state = FL_LOCKING;
739 } else if (thunk == DO_XXLOCK_UNLOCK) {
740 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
741 chip->state = FL_UNLOCKING;
742 } else
743 BUG();
745 ret = wait_for_ready(map, chip, 1);
746 if (ret) {
747 printk(KERN_ERR "%s: block unlock error status %d \n",
748 map->name, ret);
749 goto out;
751 out: put_chip(map, chip);
752 mutex_unlock(&chip->mutex);
753 return ret;
756 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
758 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
761 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
763 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
766 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
768 int ret;
769 struct lpddr_private *lpddr = map->fldrv_priv;
770 int chipnum = adr >> lpddr->chipshift;
771 struct flchip *chip = &lpddr->chips[chipnum];
773 mutex_lock(&chip->mutex);
774 ret = get_chip(map, chip, FL_WRITING);
775 if (ret) {
776 mutex_unlock(&chip->mutex);
777 return ret;
780 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
782 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
783 if (ret) {
784 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
785 map->name, adr, curval);
786 goto out;
789 out: put_chip(map, chip);
790 mutex_unlock(&chip->mutex);
791 return ret;
794 MODULE_LICENSE("GPL");
795 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
796 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");