GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / gpu / drm / drm_modes.c
blob0c92e68cf99873a552bdce8c789329887bcb4dcb
1 /*
2 * Copyright © 1997-2003 by The XFree86 Project, Inc.
3 * Copyright © 2007 Dave Airlie
4 * Copyright © 2007-2008 Intel Corporation
5 * Jesse Barnes <jesse.barnes@intel.com>
6 * Copyright 2005-2006 Luc Verhaegen
7 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25 * OTHER DEALINGS IN THE SOFTWARE.
27 * Except as contained in this notice, the name of the copyright holder(s)
28 * and author(s) shall not be used in advertising or otherwise to promote
29 * the sale, use or other dealings in this Software without prior written
30 * authorization from the copyright holder(s) and author(s).
33 #include <linux/list.h>
34 #include <linux/list_sort.h>
35 #include "drmP.h"
36 #include "drm.h"
37 #include "drm_crtc.h"
39 /**
40 * drm_mode_debug_printmodeline - debug print a mode
41 * @dev: DRM device
42 * @mode: mode to print
44 * LOCKING:
45 * None.
47 * Describe @mode using DRM_DEBUG.
49 void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
51 DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
52 "0x%x 0x%x\n",
53 mode->base.id, mode->name, mode->vrefresh, mode->clock,
54 mode->hdisplay, mode->hsync_start,
55 mode->hsync_end, mode->htotal,
56 mode->vdisplay, mode->vsync_start,
57 mode->vsync_end, mode->vtotal, mode->type, mode->flags);
59 EXPORT_SYMBOL(drm_mode_debug_printmodeline);
61 /**
62 * drm_cvt_mode -create a modeline based on CVT algorithm
63 * @dev: DRM device
64 * @hdisplay: hdisplay size
65 * @vdisplay: vdisplay size
66 * @vrefresh : vrefresh rate
67 * @reduced : Whether the GTF calculation is simplified
68 * @interlaced:Whether the interlace is supported
70 * LOCKING:
71 * none.
73 * return the modeline based on CVT algorithm
75 * This function is called to generate the modeline based on CVT algorithm
76 * according to the hdisplay, vdisplay, vrefresh.
77 * It is based from the VESA(TM) Coordinated Video Timing Generator by
78 * Graham Loveridge April 9, 2003 available at
79 * http://www.vesa.org/public/CVT/CVTd6r1.xls
81 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82 * What I have done is to translate it by using integer calculation.
84 #define HV_FACTOR 1000
85 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86 int vdisplay, int vrefresh,
87 bool reduced, bool interlaced, bool margins)
89 /* 1) top/bottom margin size (% of height) - default: 1.8, */
90 #define CVT_MARGIN_PERCENTAGE 18
91 /* 2) character cell horizontal granularity (pixels) - default 8 */
92 #define CVT_H_GRANULARITY 8
93 /* 3) Minimum vertical porch (lines) - default 3 */
94 #define CVT_MIN_V_PORCH 3
95 /* 4) Minimum number of vertical back porch lines - default 6 */
96 #define CVT_MIN_V_BPORCH 6
97 /* Pixel Clock step (kHz) */
98 #define CVT_CLOCK_STEP 250
99 struct drm_display_mode *drm_mode;
100 unsigned int vfieldrate, hperiod;
101 int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102 int interlace;
104 /* allocate the drm_display_mode structure. If failure, we will
105 * return directly
107 drm_mode = drm_mode_create(dev);
108 if (!drm_mode)
109 return NULL;
111 /* the CVT default refresh rate is 60Hz */
112 if (!vrefresh)
113 vrefresh = 60;
115 /* the required field fresh rate */
116 if (interlaced)
117 vfieldrate = vrefresh * 2;
118 else
119 vfieldrate = vrefresh;
121 /* horizontal pixels */
122 hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
124 /* determine the left&right borders */
125 hmargin = 0;
126 if (margins) {
127 hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128 hmargin -= hmargin % CVT_H_GRANULARITY;
130 /* find the total active pixels */
131 drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
133 /* find the number of lines per field */
134 if (interlaced)
135 vdisplay_rnd = vdisplay / 2;
136 else
137 vdisplay_rnd = vdisplay;
139 /* find the top & bottom borders */
140 vmargin = 0;
141 if (margins)
142 vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
144 drm_mode->vdisplay = vdisplay + 2 * vmargin;
146 /* Interlaced */
147 if (interlaced)
148 interlace = 1;
149 else
150 interlace = 0;
152 /* Determine VSync Width from aspect ratio */
153 if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154 vsync = 4;
155 else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156 vsync = 5;
157 else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158 vsync = 6;
159 else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160 vsync = 7;
161 else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162 vsync = 7;
163 else /* custom */
164 vsync = 10;
166 if (!reduced) {
167 /* simplify the GTF calculation */
168 /* 4) Minimum time of vertical sync + back porch interval (µs)
169 * default 550.0
171 int tmp1, tmp2;
172 #define CVT_MIN_VSYNC_BP 550
173 /* 3) Nominal HSync width (% of line period) - default 8 */
174 #define CVT_HSYNC_PERCENTAGE 8
175 unsigned int hblank_percentage;
176 int vsyncandback_porch, vback_porch, hblank;
178 /* estimated the horizontal period */
179 tmp1 = HV_FACTOR * 1000000 -
180 CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181 tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182 interlace;
183 hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
185 tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186 /* 9. Find number of lines in sync + backporch */
187 if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188 vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189 else
190 vsyncandback_porch = tmp1;
191 /* 10. Find number of lines in back porch */
192 vback_porch = vsyncandback_porch - vsync;
193 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
194 vsyncandback_porch + CVT_MIN_V_PORCH;
195 /* 5) Definition of Horizontal blanking time limitation */
196 /* Gradient (%/kHz) - default 600 */
197 #define CVT_M_FACTOR 600
198 /* Offset (%) - default 40 */
199 #define CVT_C_FACTOR 40
200 /* Blanking time scaling factor - default 128 */
201 #define CVT_K_FACTOR 128
202 /* Scaling factor weighting - default 20 */
203 #define CVT_J_FACTOR 20
204 #define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256)
205 #define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
206 CVT_J_FACTOR)
207 /* 12. Find ideal blanking duty cycle from formula */
208 hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
209 hperiod / 1000;
210 /* 13. Blanking time */
211 if (hblank_percentage < 20 * HV_FACTOR)
212 hblank_percentage = 20 * HV_FACTOR;
213 hblank = drm_mode->hdisplay * hblank_percentage /
214 (100 * HV_FACTOR - hblank_percentage);
215 hblank -= hblank % (2 * CVT_H_GRANULARITY);
216 /* 14. find the total pixes per line */
217 drm_mode->htotal = drm_mode->hdisplay + hblank;
218 drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
219 drm_mode->hsync_start = drm_mode->hsync_end -
220 (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
221 drm_mode->hsync_start += CVT_H_GRANULARITY -
222 drm_mode->hsync_start % CVT_H_GRANULARITY;
223 /* fill the Vsync values */
224 drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
225 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
226 } else {
227 /* Reduced blanking */
228 /* Minimum vertical blanking interval time (µs)- default 460 */
229 #define CVT_RB_MIN_VBLANK 460
230 /* Fixed number of clocks for horizontal sync */
231 #define CVT_RB_H_SYNC 32
232 /* Fixed number of clocks for horizontal blanking */
233 #define CVT_RB_H_BLANK 160
234 /* Fixed number of lines for vertical front porch - default 3*/
235 #define CVT_RB_VFPORCH 3
236 int vbilines;
237 int tmp1, tmp2;
238 /* 8. Estimate Horizontal period. */
239 tmp1 = HV_FACTOR * 1000000 -
240 CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
241 tmp2 = vdisplay_rnd + 2 * vmargin;
242 hperiod = tmp1 / (tmp2 * vfieldrate);
243 /* 9. Find number of lines in vertical blanking */
244 vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
245 /* 10. Check if vertical blanking is sufficient */
246 if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
247 vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
248 /* 11. Find total number of lines in vertical field */
249 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
250 /* 12. Find total number of pixels in a line */
251 drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
252 /* Fill in HSync values */
253 drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
254 drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
255 /* Fill in VSync values */
256 drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
257 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
259 /* 15/13. Find pixel clock frequency (kHz for xf86) */
260 drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
261 drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
262 /* 18/16. Find actual vertical frame frequency */
263 /* ignore - just set the mode flag for interlaced */
264 if (interlaced) {
265 drm_mode->vtotal *= 2;
266 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
268 /* Fill the mode line name */
269 drm_mode_set_name(drm_mode);
270 if (reduced)
271 drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
272 DRM_MODE_FLAG_NVSYNC);
273 else
274 drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
275 DRM_MODE_FLAG_NHSYNC);
277 return drm_mode;
279 EXPORT_SYMBOL(drm_cvt_mode);
282 * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
284 * @dev :drm device
285 * @hdisplay :hdisplay size
286 * @vdisplay :vdisplay size
287 * @vrefresh :vrefresh rate.
288 * @interlaced :whether the interlace is supported
289 * @margins :desired margin size
290 * @GTF_[MCKJ] :extended GTF formula parameters
292 * LOCKING.
293 * none.
295 * return the modeline based on full GTF algorithm.
297 * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
298 * in here multiplied by two. For a C of 40, pass in 80.
300 struct drm_display_mode *
301 drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
302 int vrefresh, bool interlaced, int margins,
303 int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
304 { /* 1) top/bottom margin size (% of height) - default: 1.8, */
305 #define GTF_MARGIN_PERCENTAGE 18
306 /* 2) character cell horizontal granularity (pixels) - default 8 */
307 #define GTF_CELL_GRAN 8
308 /* 3) Minimum vertical porch (lines) - default 3 */
309 #define GTF_MIN_V_PORCH 1
310 /* width of vsync in lines */
311 #define V_SYNC_RQD 3
312 /* width of hsync as % of total line */
313 #define H_SYNC_PERCENT 8
314 /* min time of vsync + back porch (microsec) */
315 #define MIN_VSYNC_PLUS_BP 550
316 /* C' and M' are part of the Blanking Duty Cycle computation */
317 #define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
318 #define GTF_M_PRIME (GTF_K * GTF_M / 256)
319 struct drm_display_mode *drm_mode;
320 unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
321 int top_margin, bottom_margin;
322 int interlace;
323 unsigned int hfreq_est;
324 int vsync_plus_bp, vback_porch;
325 unsigned int vtotal_lines, vfieldrate_est, hperiod;
326 unsigned int vfield_rate, vframe_rate;
327 int left_margin, right_margin;
328 unsigned int total_active_pixels, ideal_duty_cycle;
329 unsigned int hblank, total_pixels, pixel_freq;
330 int hsync, hfront_porch, vodd_front_porch_lines;
331 unsigned int tmp1, tmp2;
333 drm_mode = drm_mode_create(dev);
334 if (!drm_mode)
335 return NULL;
337 /* 1. In order to give correct results, the number of horizontal
338 * pixels requested is first processed to ensure that it is divisible
339 * by the character size, by rounding it to the nearest character
340 * cell boundary:
342 hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
343 hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
345 /* 2. If interlace is requested, the number of vertical lines assumed
346 * by the calculation must be halved, as the computation calculates
347 * the number of vertical lines per field.
349 if (interlaced)
350 vdisplay_rnd = vdisplay / 2;
351 else
352 vdisplay_rnd = vdisplay;
354 /* 3. Find the frame rate required: */
355 if (interlaced)
356 vfieldrate_rqd = vrefresh * 2;
357 else
358 vfieldrate_rqd = vrefresh;
360 /* 4. Find number of lines in Top margin: */
361 top_margin = 0;
362 if (margins)
363 top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
364 1000;
365 /* 5. Find number of lines in bottom margin: */
366 bottom_margin = top_margin;
368 /* 6. If interlace is required, then set variable interlace: */
369 if (interlaced)
370 interlace = 1;
371 else
372 interlace = 0;
374 /* 7. Estimate the Horizontal frequency */
376 tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
377 tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
378 2 + interlace;
379 hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
382 /* 8. Find the number of lines in V sync + back porch */
383 /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
384 vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
385 vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
386 /* 9. Find the number of lines in V back porch alone: */
387 vback_porch = vsync_plus_bp - V_SYNC_RQD;
388 /* 10. Find the total number of lines in Vertical field period: */
389 vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
390 vsync_plus_bp + GTF_MIN_V_PORCH;
391 /* 11. Estimate the Vertical field frequency: */
392 vfieldrate_est = hfreq_est / vtotal_lines;
393 /* 12. Find the actual horizontal period: */
394 hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
396 /* 13. Find the actual Vertical field frequency: */
397 vfield_rate = hfreq_est / vtotal_lines;
398 /* 14. Find the Vertical frame frequency: */
399 if (interlaced)
400 vframe_rate = vfield_rate / 2;
401 else
402 vframe_rate = vfield_rate;
403 /* 15. Find number of pixels in left margin: */
404 if (margins)
405 left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
406 1000;
407 else
408 left_margin = 0;
410 /* 16.Find number of pixels in right margin: */
411 right_margin = left_margin;
412 /* 17.Find total number of active pixels in image and left and right */
413 total_active_pixels = hdisplay_rnd + left_margin + right_margin;
414 /* 18.Find the ideal blanking duty cycle from blanking duty cycle */
415 ideal_duty_cycle = GTF_C_PRIME * 1000 -
416 (GTF_M_PRIME * 1000000 / hfreq_est);
417 /* 19.Find the number of pixels in the blanking time to the nearest
418 * double character cell: */
419 hblank = total_active_pixels * ideal_duty_cycle /
420 (100000 - ideal_duty_cycle);
421 hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
422 hblank = hblank * 2 * GTF_CELL_GRAN;
423 /* 20.Find total number of pixels: */
424 total_pixels = total_active_pixels + hblank;
425 /* 21.Find pixel clock frequency: */
426 pixel_freq = total_pixels * hfreq_est / 1000;
427 /* Stage 1 computations are now complete; I should really pass
428 * the results to another function and do the Stage 2 computations,
429 * but I only need a few more values so I'll just append the
430 * computations here for now */
431 /* 17. Find the number of pixels in the horizontal sync period: */
432 hsync = H_SYNC_PERCENT * total_pixels / 100;
433 hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
434 hsync = hsync * GTF_CELL_GRAN;
435 /* 18. Find the number of pixels in horizontal front porch period */
436 hfront_porch = hblank / 2 - hsync;
437 /* 36. Find the number of lines in the odd front porch period: */
438 vodd_front_porch_lines = GTF_MIN_V_PORCH ;
440 /* finally, pack the results in the mode struct */
441 drm_mode->hdisplay = hdisplay_rnd;
442 drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
443 drm_mode->hsync_end = drm_mode->hsync_start + hsync;
444 drm_mode->htotal = total_pixels;
445 drm_mode->vdisplay = vdisplay_rnd;
446 drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
447 drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
448 drm_mode->vtotal = vtotal_lines;
450 drm_mode->clock = pixel_freq;
452 if (interlaced) {
453 drm_mode->vtotal *= 2;
454 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
457 drm_mode_set_name(drm_mode);
458 if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
459 drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
460 else
461 drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
463 return drm_mode;
465 EXPORT_SYMBOL(drm_gtf_mode_complex);
468 * drm_gtf_mode - create the modeline based on GTF algorithm
470 * @dev :drm device
471 * @hdisplay :hdisplay size
472 * @vdisplay :vdisplay size
473 * @vrefresh :vrefresh rate.
474 * @interlaced :whether the interlace is supported
475 * @margins :whether the margin is supported
477 * LOCKING.
478 * none.
480 * return the modeline based on GTF algorithm
482 * This function is to create the modeline based on the GTF algorithm.
483 * Generalized Timing Formula is derived from:
484 * GTF Spreadsheet by Andy Morrish (1/5/97)
485 * available at http://www.vesa.org
487 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
488 * What I have done is to translate it by using integer calculation.
489 * I also refer to the function of fb_get_mode in the file of
490 * drivers/video/fbmon.c
492 * Standard GTF parameters:
493 * M = 600
494 * C = 40
495 * K = 128
496 * J = 20
498 struct drm_display_mode *
499 drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
500 bool lace, int margins)
502 return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
503 margins, 600, 40 * 2, 128, 20 * 2);
505 EXPORT_SYMBOL(drm_gtf_mode);
508 * drm_mode_set_name - set the name on a mode
509 * @mode: name will be set in this mode
511 * LOCKING:
512 * None.
514 * Set the name of @mode to a standard format.
516 void drm_mode_set_name(struct drm_display_mode *mode)
518 bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
520 snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
521 mode->hdisplay, mode->vdisplay,
522 interlaced ? "i" : "");
524 EXPORT_SYMBOL(drm_mode_set_name);
527 * drm_mode_list_concat - move modes from one list to another
528 * @head: source list
529 * @new: dst list
531 * LOCKING:
532 * Caller must ensure both lists are locked.
534 * Move all the modes from @head to @new.
536 void drm_mode_list_concat(struct list_head *head, struct list_head *new)
539 struct list_head *entry, *tmp;
541 list_for_each_safe(entry, tmp, head) {
542 list_move_tail(entry, new);
545 EXPORT_SYMBOL(drm_mode_list_concat);
547 int drm_mode_width(struct drm_display_mode *mode)
549 return mode->hdisplay;
552 EXPORT_SYMBOL(drm_mode_width);
554 int drm_mode_height(struct drm_display_mode *mode)
556 return mode->vdisplay;
558 EXPORT_SYMBOL(drm_mode_height);
560 /** drm_mode_hsync - get the hsync of a mode
561 * @mode: mode
563 * LOCKING:
564 * None.
566 * Return @modes's hsync rate in kHz, rounded to the nearest int.
568 int drm_mode_hsync(struct drm_display_mode *mode)
570 unsigned int calc_val;
572 if (mode->hsync)
573 return mode->hsync;
575 if (mode->htotal < 0)
576 return 0;
578 calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
579 calc_val += 500; /* round to 1000Hz */
580 calc_val /= 1000; /* truncate to kHz */
582 return calc_val;
584 EXPORT_SYMBOL(drm_mode_hsync);
586 int drm_mode_vrefresh(struct drm_display_mode *mode)
588 int refresh = 0;
589 unsigned int calc_val;
591 if (mode->vrefresh > 0)
592 refresh = mode->vrefresh;
593 else if (mode->htotal > 0 && mode->vtotal > 0) {
594 int vtotal;
595 vtotal = mode->vtotal;
596 /* work out vrefresh the value will be x1000 */
597 calc_val = (mode->clock * 1000);
598 calc_val /= mode->htotal;
599 refresh = (calc_val + vtotal / 2) / vtotal;
601 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602 refresh *= 2;
603 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
604 refresh /= 2;
605 if (mode->vscan > 1)
606 refresh /= mode->vscan;
608 return refresh;
610 EXPORT_SYMBOL(drm_mode_vrefresh);
612 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
614 if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
615 return;
617 p->crtc_hdisplay = p->hdisplay;
618 p->crtc_hsync_start = p->hsync_start;
619 p->crtc_hsync_end = p->hsync_end;
620 p->crtc_htotal = p->htotal;
621 p->crtc_hskew = p->hskew;
622 p->crtc_vdisplay = p->vdisplay;
623 p->crtc_vsync_start = p->vsync_start;
624 p->crtc_vsync_end = p->vsync_end;
625 p->crtc_vtotal = p->vtotal;
627 if (p->flags & DRM_MODE_FLAG_INTERLACE) {
628 if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
629 p->crtc_vdisplay /= 2;
630 p->crtc_vsync_start /= 2;
631 p->crtc_vsync_end /= 2;
632 p->crtc_vtotal /= 2;
635 p->crtc_vtotal |= 1;
638 if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
639 p->crtc_vdisplay *= 2;
640 p->crtc_vsync_start *= 2;
641 p->crtc_vsync_end *= 2;
642 p->crtc_vtotal *= 2;
645 if (p->vscan > 1) {
646 p->crtc_vdisplay *= p->vscan;
647 p->crtc_vsync_start *= p->vscan;
648 p->crtc_vsync_end *= p->vscan;
649 p->crtc_vtotal *= p->vscan;
652 p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
653 p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
654 p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
655 p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
657 p->crtc_hadjusted = false;
658 p->crtc_vadjusted = false;
660 EXPORT_SYMBOL(drm_mode_set_crtcinfo);
664 * drm_mode_duplicate - allocate and duplicate an existing mode
665 * @m: mode to duplicate
667 * LOCKING:
668 * None.
670 * Just allocate a new mode, copy the existing mode into it, and return
671 * a pointer to it. Used to create new instances of established modes.
673 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
674 struct drm_display_mode *mode)
676 struct drm_display_mode *nmode;
677 int new_id;
679 nmode = drm_mode_create(dev);
680 if (!nmode)
681 return NULL;
683 new_id = nmode->base.id;
684 *nmode = *mode;
685 nmode->base.id = new_id;
686 INIT_LIST_HEAD(&nmode->head);
687 return nmode;
689 EXPORT_SYMBOL(drm_mode_duplicate);
692 * drm_mode_equal - test modes for equality
693 * @mode1: first mode
694 * @mode2: second mode
696 * LOCKING:
697 * None.
699 * Check to see if @mode1 and @mode2 are equivalent.
701 * RETURNS:
702 * True if the modes are equal, false otherwise.
704 bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
706 /* do clock check convert to PICOS so fb modes get matched
707 * the same */
708 if (mode1->clock && mode2->clock) {
709 if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
710 return false;
711 } else if (mode1->clock != mode2->clock)
712 return false;
714 if (mode1->hdisplay == mode2->hdisplay &&
715 mode1->hsync_start == mode2->hsync_start &&
716 mode1->hsync_end == mode2->hsync_end &&
717 mode1->htotal == mode2->htotal &&
718 mode1->hskew == mode2->hskew &&
719 mode1->vdisplay == mode2->vdisplay &&
720 mode1->vsync_start == mode2->vsync_start &&
721 mode1->vsync_end == mode2->vsync_end &&
722 mode1->vtotal == mode2->vtotal &&
723 mode1->vscan == mode2->vscan &&
724 mode1->flags == mode2->flags)
725 return true;
727 return false;
729 EXPORT_SYMBOL(drm_mode_equal);
732 * drm_mode_validate_size - make sure modes adhere to size constraints
733 * @dev: DRM device
734 * @mode_list: list of modes to check
735 * @maxX: maximum width
736 * @maxY: maximum height
737 * @maxPitch: max pitch
739 * LOCKING:
740 * Caller must hold a lock protecting @mode_list.
742 * The DRM device (@dev) has size and pitch limits. Here we validate the
743 * modes we probed for @dev against those limits and set their status as
744 * necessary.
746 void drm_mode_validate_size(struct drm_device *dev,
747 struct list_head *mode_list,
748 int maxX, int maxY, int maxPitch)
750 struct drm_display_mode *mode;
752 list_for_each_entry(mode, mode_list, head) {
753 if (maxPitch > 0 && mode->hdisplay > maxPitch)
754 mode->status = MODE_BAD_WIDTH;
756 if (maxX > 0 && mode->hdisplay > maxX)
757 mode->status = MODE_VIRTUAL_X;
759 if (maxY > 0 && mode->vdisplay > maxY)
760 mode->status = MODE_VIRTUAL_Y;
763 EXPORT_SYMBOL(drm_mode_validate_size);
766 * drm_mode_validate_clocks - validate modes against clock limits
767 * @dev: DRM device
768 * @mode_list: list of modes to check
769 * @min: minimum clock rate array
770 * @max: maximum clock rate array
771 * @n_ranges: number of clock ranges (size of arrays)
773 * LOCKING:
774 * Caller must hold a lock protecting @mode_list.
776 * Some code may need to check a mode list against the clock limits of the
777 * device in question. This function walks the mode list, testing to make
778 * sure each mode falls within a given range (defined by @min and @max
779 * arrays) and sets @mode->status as needed.
781 void drm_mode_validate_clocks(struct drm_device *dev,
782 struct list_head *mode_list,
783 int *min, int *max, int n_ranges)
785 struct drm_display_mode *mode;
786 int i;
788 list_for_each_entry(mode, mode_list, head) {
789 bool good = false;
790 for (i = 0; i < n_ranges; i++) {
791 if (mode->clock >= min[i] && mode->clock <= max[i]) {
792 good = true;
793 break;
796 if (!good)
797 mode->status = MODE_CLOCK_RANGE;
800 EXPORT_SYMBOL(drm_mode_validate_clocks);
803 * drm_mode_prune_invalid - remove invalid modes from mode list
804 * @dev: DRM device
805 * @mode_list: list of modes to check
806 * @verbose: be verbose about it
808 * LOCKING:
809 * Caller must hold a lock protecting @mode_list.
811 * Once mode list generation is complete, a caller can use this routine to
812 * remove invalid modes from a mode list. If any of the modes have a
813 * status other than %MODE_OK, they are removed from @mode_list and freed.
815 void drm_mode_prune_invalid(struct drm_device *dev,
816 struct list_head *mode_list, bool verbose)
818 struct drm_display_mode *mode, *t;
820 list_for_each_entry_safe(mode, t, mode_list, head) {
821 if (mode->status != MODE_OK) {
822 list_del(&mode->head);
823 if (verbose) {
824 drm_mode_debug_printmodeline(mode);
825 DRM_DEBUG_KMS("Not using %s mode %d\n",
826 mode->name, mode->status);
828 drm_mode_destroy(dev, mode);
832 EXPORT_SYMBOL(drm_mode_prune_invalid);
835 * drm_mode_compare - compare modes for favorability
836 * @priv: unused
837 * @lh_a: list_head for first mode
838 * @lh_b: list_head for second mode
840 * LOCKING:
841 * None.
843 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
844 * which is better.
846 * RETURNS:
847 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
848 * positive if @lh_b is better than @lh_a.
850 static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
852 struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
853 struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
854 int diff;
856 diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
857 ((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
858 if (diff)
859 return diff;
860 diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
861 if (diff)
862 return diff;
863 diff = b->clock - a->clock;
864 return diff;
868 * drm_mode_sort - sort mode list
869 * @mode_list: list to sort
871 * LOCKING:
872 * Caller must hold a lock protecting @mode_list.
874 * Sort @mode_list by favorability, putting good modes first.
876 void drm_mode_sort(struct list_head *mode_list)
878 list_sort(NULL, mode_list, drm_mode_compare);
880 EXPORT_SYMBOL(drm_mode_sort);
883 * drm_mode_connector_list_update - update the mode list for the connector
884 * @connector: the connector to update
886 * LOCKING:
887 * Caller must hold a lock protecting @mode_list.
889 * This moves the modes from the @connector probed_modes list
890 * to the actual mode list. It compares the probed mode against the current
891 * list and only adds different modes. All modes unverified after this point
892 * will be removed by the prune invalid modes.
894 void drm_mode_connector_list_update(struct drm_connector *connector)
896 struct drm_display_mode *mode;
897 struct drm_display_mode *pmode, *pt;
898 int found_it;
900 list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
901 head) {
902 found_it = 0;
903 /* go through current modes checking for the new probed mode */
904 list_for_each_entry(mode, &connector->modes, head) {
905 if (drm_mode_equal(pmode, mode)) {
906 found_it = 1;
907 /* if equal delete the probed mode */
908 mode->status = pmode->status;
909 /* Merge type bits together */
910 mode->type |= pmode->type;
911 list_del(&pmode->head);
912 drm_mode_destroy(connector->dev, pmode);
913 break;
917 if (!found_it) {
918 list_move_tail(&pmode->head, &connector->modes);
922 EXPORT_SYMBOL(drm_mode_connector_list_update);