GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / edac / amd64_edac.c
blob61d1a98efc2c37b8c3d84f65e24ad7a69b00d993
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
27 static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
37 static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
49 static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
58 static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
69 struct scrubrate scrubrates[] = {
70 { 0x01, 1600000000UL},
71 { 0x02, 800000000UL},
72 { 0x03, 400000000UL},
73 { 0x04, 200000000UL},
74 { 0x05, 100000000UL},
75 { 0x06, 50000000UL},
76 { 0x07, 25000000UL},
77 { 0x08, 12284069UL},
78 { 0x09, 6274509UL},
79 { 0x0A, 3121951UL},
80 { 0x0B, 1560975UL},
81 { 0x0C, 781440UL},
82 { 0x0D, 390720UL},
83 { 0x0E, 195300UL},
84 { 0x0F, 97650UL},
85 { 0x10, 48854UL},
86 { 0x11, 24427UL},
87 { 0x12, 12213UL},
88 { 0x13, 6101UL},
89 { 0x14, 3051UL},
90 { 0x15, 1523UL},
91 { 0x16, 761UL},
92 { 0x00, 0UL}, /* scrubbing off */
96 * Memory scrubber control interface. For K8, memory scrubbing is handled by
97 * hardware and can involve L2 cache, dcache as well as the main memory. With
98 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
99 * functionality.
101 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
102 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
103 * bytes/sec for the setting.
105 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
106 * other archs, we might not have access to the caches directly.
110 * scan the scrub rate mapping table for a close or matching bandwidth value to
111 * issue. If requested is too big, then use last maximum value found.
113 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
114 u32 min_scrubrate)
116 u32 scrubval;
117 int i;
120 * map the configured rate (new_bw) to a value specific to the AMD64
121 * memory controller and apply to register. Search for the first
122 * bandwidth entry that is greater or equal than the setting requested
123 * and program that. If at last entry, turn off DRAM scrubbing.
125 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
127 * skip scrub rates which aren't recommended
128 * (see F10 BKDG, F3x58)
130 if (scrubrates[i].scrubval < min_scrubrate)
131 continue;
133 if (scrubrates[i].bandwidth <= new_bw)
134 break;
137 * if no suitable bandwidth found, turn off DRAM scrubbing
138 * entirely by falling back to the last element in the
139 * scrubrates array.
143 scrubval = scrubrates[i].scrubval;
144 if (scrubval)
145 edac_printk(KERN_DEBUG, EDAC_MC,
146 "Setting scrub rate bandwidth: %u\n",
147 scrubrates[i].bandwidth);
148 else
149 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
151 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
153 return 0;
156 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
158 struct amd64_pvt *pvt = mci->pvt_info;
159 u32 min_scrubrate = 0x0;
161 switch (boot_cpu_data.x86) {
162 case 0xf:
163 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
164 break;
165 case 0x10:
166 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
167 break;
168 case 0x11:
169 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
170 break;
172 default:
173 amd64_printk(KERN_ERR, "Unsupported family!\n");
174 return -EINVAL;
176 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
177 min_scrubrate);
180 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
182 struct amd64_pvt *pvt = mci->pvt_info;
183 u32 scrubval = 0;
184 int status = -1, i;
186 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
188 scrubval = scrubval & 0x001F;
190 edac_printk(KERN_DEBUG, EDAC_MC,
191 "pci-read, sdram scrub control value: %d \n", scrubval);
193 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
194 if (scrubrates[i].scrubval == scrubval) {
195 *bw = scrubrates[i].bandwidth;
196 status = 0;
197 break;
201 return status;
204 /* Map from a CSROW entry to the mask entry that operates on it */
205 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
207 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
208 return csrow;
209 else
210 return csrow >> 1;
213 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
214 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
216 if (dct == 0)
217 return pvt->dcsb0[csrow];
218 else
219 return pvt->dcsb1[csrow];
223 * Return the 'mask' address the i'th CS entry. This function is needed because
224 * there number of DCSM registers on Rev E and prior vs Rev F and later is
225 * different.
227 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
229 if (dct == 0)
230 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
231 else
232 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
237 * In *base and *limit, pass back the full 40-bit base and limit physical
238 * addresses for the node given by node_id. This information is obtained from
239 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
240 * base and limit addresses are of type SysAddr, as defined at the start of
241 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
242 * in the address range they represent.
244 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
245 u64 *base, u64 *limit)
247 *base = pvt->dram_base[node_id];
248 *limit = pvt->dram_limit[node_id];
252 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
253 * with node_id
255 static int amd64_base_limit_match(struct amd64_pvt *pvt,
256 u64 sys_addr, int node_id)
258 u64 base, limit, addr;
260 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
262 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
263 * all ones if the most significant implemented address bit is 1.
264 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
265 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
266 * Application Programming.
268 addr = sys_addr & 0x000000ffffffffffull;
270 return (addr >= base) && (addr <= limit);
274 * Attempt to map a SysAddr to a node. On success, return a pointer to the
275 * mem_ctl_info structure for the node that the SysAddr maps to.
277 * On failure, return NULL.
279 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
280 u64 sys_addr)
282 struct amd64_pvt *pvt;
283 int node_id;
284 u32 intlv_en, bits;
287 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
288 * 3.4.4.2) registers to map the SysAddr to a node ID.
290 pvt = mci->pvt_info;
293 * The value of this field should be the same for all DRAM Base
294 * registers. Therefore we arbitrarily choose to read it from the
295 * register for node 0.
297 intlv_en = pvt->dram_IntlvEn[0];
299 if (intlv_en == 0) {
300 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
301 if (amd64_base_limit_match(pvt, sys_addr, node_id))
302 goto found;
304 goto err_no_match;
307 if (unlikely((intlv_en != 0x01) &&
308 (intlv_en != 0x03) &&
309 (intlv_en != 0x07))) {
310 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
311 "IntlvEn field of DRAM Base Register for node 0: "
312 "this probably indicates a BIOS bug.\n", intlv_en);
313 return NULL;
316 bits = (((u32) sys_addr) >> 12) & intlv_en;
318 for (node_id = 0; ; ) {
319 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
320 break; /* intlv_sel field matches */
322 if (++node_id >= DRAM_REG_COUNT)
323 goto err_no_match;
326 /* sanity test for sys_addr */
327 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
328 amd64_printk(KERN_WARNING,
329 "%s(): sys_addr 0x%llx falls outside base/limit "
330 "address range for node %d with node interleaving "
331 "enabled.\n",
332 __func__, sys_addr, node_id);
333 return NULL;
336 found:
337 return edac_mc_find(node_id);
339 err_no_match:
340 debugf2("sys_addr 0x%lx doesn't match any node\n",
341 (unsigned long)sys_addr);
343 return NULL;
347 * Extract the DRAM CS base address from selected csrow register.
349 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
351 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
352 pvt->dcs_shift;
356 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
358 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
360 u64 dcsm_bits, other_bits;
361 u64 mask;
363 /* Extract bits from DRAM CS Mask. */
364 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
366 other_bits = pvt->dcsm_mask;
367 other_bits = ~(other_bits << pvt->dcs_shift);
370 * The extracted bits from DCSM belong in the spaces represented by
371 * the cleared bits in other_bits.
373 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
375 return mask;
379 * @input_addr is an InputAddr associated with the node given by mci. Return the
380 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
382 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
384 struct amd64_pvt *pvt;
385 int csrow;
386 u64 base, mask;
388 pvt = mci->pvt_info;
391 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
392 * base/mask register pair, test the condition shown near the start of
393 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
395 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
397 /* This DRAM chip select is disabled on this node */
398 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
399 continue;
401 base = base_from_dct_base(pvt, csrow);
402 mask = ~mask_from_dct_mask(pvt, csrow);
404 if ((input_addr & mask) == (base & mask)) {
405 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
406 (unsigned long)input_addr, csrow,
407 pvt->mc_node_id);
409 return csrow;
413 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
414 (unsigned long)input_addr, pvt->mc_node_id);
416 return -1;
420 * Return the base value defined by the DRAM Base register for the node
421 * represented by mci. This function returns the full 40-bit value despite the
422 * fact that the register only stores bits 39-24 of the value. See section
423 * 3.4.4.1 (BKDG #26094, K8, revA-E)
425 static inline u64 get_dram_base(struct mem_ctl_info *mci)
427 struct amd64_pvt *pvt = mci->pvt_info;
429 return pvt->dram_base[pvt->mc_node_id];
433 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
434 * for the node represented by mci. Info is passed back in *hole_base,
435 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
436 * info is invalid. Info may be invalid for either of the following reasons:
438 * - The revision of the node is not E or greater. In this case, the DRAM Hole
439 * Address Register does not exist.
441 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
442 * indicating that its contents are not valid.
444 * The values passed back in *hole_base, *hole_offset, and *hole_size are
445 * complete 32-bit values despite the fact that the bitfields in the DHAR
446 * only represent bits 31-24 of the base and offset values.
448 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
449 u64 *hole_offset, u64 *hole_size)
451 struct amd64_pvt *pvt = mci->pvt_info;
452 u64 base;
454 /* only revE and later have the DRAM Hole Address Register */
455 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
456 debugf1(" revision %d for node %d does not support DHAR\n",
457 pvt->ext_model, pvt->mc_node_id);
458 return 1;
461 /* only valid for Fam10h */
462 if (boot_cpu_data.x86 == 0x10 &&
463 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
468 if ((pvt->dhar & DHAR_VALID) == 0) {
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
474 /* This node has Memory Hoisting */
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
492 base = dhar_base(pvt->dhar);
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
497 if (boot_cpu_data.x86 > 0xf)
498 *hole_offset = f10_dhar_offset(pvt->dhar);
499 else
500 *hole_offset = k8_dhar_offset(pvt->dhar);
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
506 return 0;
508 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
539 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
541 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
542 int ret = 0;
544 dram_base = get_dram_base(mci);
546 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
547 &hole_size);
548 if (!ret) {
549 if ((sys_addr >= (1ull << 32)) &&
550 (sys_addr < ((1ull << 32) + hole_size))) {
551 /* use DHAR to translate SysAddr to DramAddr */
552 dram_addr = sys_addr - hole_offset;
554 debugf2("using DHAR to translate SysAddr 0x%lx to "
555 "DramAddr 0x%lx\n",
556 (unsigned long)sys_addr,
557 (unsigned long)dram_addr);
559 return dram_addr;
564 * Translate the SysAddr to a DramAddr as shown near the start of
565 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
566 * only deals with 40-bit values. Therefore we discard bits 63-40 of
567 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
568 * discard are all 1s. Otherwise the bits we discard are all 0s. See
569 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
570 * Programmer's Manual Volume 1 Application Programming.
572 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
574 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
575 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
576 (unsigned long)dram_addr);
577 return dram_addr;
581 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
582 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
583 * for node interleaving.
585 static int num_node_interleave_bits(unsigned intlv_en)
587 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
588 int n;
590 BUG_ON(intlv_en > 7);
591 n = intlv_shift_table[intlv_en];
592 return n;
595 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
596 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
598 struct amd64_pvt *pvt;
599 int intlv_shift;
600 u64 input_addr;
602 pvt = mci->pvt_info;
605 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
606 * concerning translating a DramAddr to an InputAddr.
608 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
609 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
610 (dram_addr & 0xfff);
612 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
613 intlv_shift, (unsigned long)dram_addr,
614 (unsigned long)input_addr);
616 return input_addr;
620 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
621 * assumed that @sys_addr maps to the node given by mci.
623 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
625 u64 input_addr;
627 input_addr =
628 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
630 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
631 (unsigned long)sys_addr, (unsigned long)input_addr);
633 return input_addr;
638 * @input_addr is an InputAddr associated with the node represented by mci.
639 * Translate @input_addr to a DramAddr and return the result.
641 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
643 struct amd64_pvt *pvt;
644 int node_id, intlv_shift;
645 u64 bits, dram_addr;
646 u32 intlv_sel;
649 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
650 * shows how to translate a DramAddr to an InputAddr. Here we reverse
651 * this procedure. When translating from a DramAddr to an InputAddr, the
652 * bits used for node interleaving are discarded. Here we recover these
653 * bits from the IntlvSel field of the DRAM Limit register (section
654 * 3.4.4.2) for the node that input_addr is associated with.
656 pvt = mci->pvt_info;
657 node_id = pvt->mc_node_id;
658 BUG_ON((node_id < 0) || (node_id > 7));
660 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
662 if (intlv_shift == 0) {
663 debugf1(" InputAddr 0x%lx translates to DramAddr of "
664 "same value\n", (unsigned long)input_addr);
666 return input_addr;
669 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
670 (input_addr & 0xfff);
672 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
673 dram_addr = bits + (intlv_sel << 12);
675 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
676 "(%d node interleave bits)\n", (unsigned long)input_addr,
677 (unsigned long)dram_addr, intlv_shift);
679 return dram_addr;
683 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
684 * @dram_addr to a SysAddr.
686 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
688 struct amd64_pvt *pvt = mci->pvt_info;
689 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
690 int ret = 0;
692 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
693 &hole_size);
694 if (!ret) {
695 if ((dram_addr >= hole_base) &&
696 (dram_addr < (hole_base + hole_size))) {
697 sys_addr = dram_addr + hole_offset;
699 debugf1("using DHAR to translate DramAddr 0x%lx to "
700 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
701 (unsigned long)sys_addr);
703 return sys_addr;
707 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
708 sys_addr = dram_addr + base;
711 * The sys_addr we have computed up to this point is a 40-bit value
712 * because the k8 deals with 40-bit values. However, the value we are
713 * supposed to return is a full 64-bit physical address. The AMD
714 * x86-64 architecture specifies that the most significant implemented
715 * address bit through bit 63 of a physical address must be either all
716 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
717 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
718 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
719 * Programming.
721 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
723 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
724 pvt->mc_node_id, (unsigned long)dram_addr,
725 (unsigned long)sys_addr);
727 return sys_addr;
731 * @input_addr is an InputAddr associated with the node given by mci. Translate
732 * @input_addr to a SysAddr.
734 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
735 u64 input_addr)
737 return dram_addr_to_sys_addr(mci,
738 input_addr_to_dram_addr(mci, input_addr));
742 * Find the minimum and maximum InputAddr values that map to the given @csrow.
743 * Pass back these values in *input_addr_min and *input_addr_max.
745 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
746 u64 *input_addr_min, u64 *input_addr_max)
748 struct amd64_pvt *pvt;
749 u64 base, mask;
751 pvt = mci->pvt_info;
752 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
754 base = base_from_dct_base(pvt, csrow);
755 mask = mask_from_dct_mask(pvt, csrow);
757 *input_addr_min = base & ~mask;
758 *input_addr_max = base | mask | pvt->dcs_mask_notused;
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
777 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
779 int csrow;
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
783 if (csrow == -1)
784 amd64_mc_printk(mci, KERN_ERR,
785 "Failed to translate InputAddr to csrow for "
786 "address 0x%lx\n", (unsigned long)sys_addr);
787 return csrow;
790 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
792 static u16 extract_syndrome(struct err_regs *err)
794 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
797 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
799 if (boot_cpu_data.x86 == 0x11)
800 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
801 else if (boot_cpu_data.x86 == 0x10)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0xf)
804 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
805 (pvt->ext_model >= K8_REV_F) ?
806 "Rev F or later" : "Rev E or earlier");
807 else
808 /* we'll hardly ever ever get here */
809 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
813 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
814 * are ECC capable.
816 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
818 int bit;
819 enum dev_type edac_cap = EDAC_FLAG_NONE;
821 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
822 ? 19
823 : 17;
825 if (pvt->dclr0 & BIT(bit))
826 edac_cap = EDAC_FLAG_SECDED;
828 return edac_cap;
832 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
834 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
836 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
838 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
839 (dclr & BIT(16)) ? "un" : "",
840 (dclr & BIT(19)) ? "yes" : "no");
842 debugf1(" PAR/ERR parity: %s\n",
843 (dclr & BIT(8)) ? "enabled" : "disabled");
845 debugf1(" DCT 128bit mode width: %s\n",
846 (dclr & BIT(11)) ? "128b" : "64b");
848 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
849 (dclr & BIT(12)) ? "yes" : "no",
850 (dclr & BIT(13)) ? "yes" : "no",
851 (dclr & BIT(14)) ? "yes" : "no",
852 (dclr & BIT(15)) ? "yes" : "no");
855 /* Display and decode various NB registers for debug purposes. */
856 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
858 int ganged;
860 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
862 debugf1(" NB two channel DRAM capable: %s\n",
863 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
865 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
866 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
867 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
869 amd64_dump_dramcfg_low(pvt->dclr0, 0);
871 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
873 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
874 "offset: 0x%08x\n",
875 pvt->dhar,
876 dhar_base(pvt->dhar),
877 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
878 : f10_dhar_offset(pvt->dhar));
880 debugf1(" DramHoleValid: %s\n",
881 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
883 /* everything below this point is Fam10h and above */
884 if (boot_cpu_data.x86 == 0xf) {
885 amd64_debug_display_dimm_sizes(0, pvt);
886 return;
889 amd64_printk(KERN_INFO, "using %s syndromes.\n",
890 ((pvt->syn_type == 8) ? "x8" : "x4"));
892 /* Only if NOT ganged does dclr1 have valid info */
893 if (!dct_ganging_enabled(pvt))
894 amd64_dump_dramcfg_low(pvt->dclr1, 1);
897 * Determine if ganged and then dump memory sizes for first controller,
898 * and if NOT ganged dump info for 2nd controller.
900 ganged = dct_ganging_enabled(pvt);
902 amd64_debug_display_dimm_sizes(0, pvt);
904 if (!ganged)
905 amd64_debug_display_dimm_sizes(1, pvt);
908 /* Read in both of DBAM registers */
909 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
911 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
913 if (boot_cpu_data.x86 >= 0x10)
914 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
918 * NOTE: CPU Revision Dependent code: Rev E and Rev F
920 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
921 * set the shift factor for the DCSB and DCSM values.
923 * ->dcs_mask_notused, RevE:
925 * To find the max InputAddr for the csrow, start with the base address and set
926 * all bits that are "don't care" bits in the test at the start of section
927 * 3.5.4 (p. 84).
929 * The "don't care" bits are all set bits in the mask and all bits in the gaps
930 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
931 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
932 * gaps.
934 * ->dcs_mask_notused, RevF and later:
936 * To find the max InputAddr for the csrow, start with the base address and set
937 * all bits that are "don't care" bits in the test at the start of NPT section
938 * 4.5.4 (p. 87).
940 * The "don't care" bits are all set bits in the mask and all bits in the gaps
941 * between bit ranges [36:27] and [21:13].
943 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
944 * which are all bits in the above-mentioned gaps.
946 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
949 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
950 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
951 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
952 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
953 pvt->dcs_shift = REV_E_DCS_SHIFT;
954 pvt->cs_count = 8;
955 pvt->num_dcsm = 8;
956 } else {
957 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
958 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
959 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
960 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
962 if (boot_cpu_data.x86 == 0x11) {
963 pvt->cs_count = 4;
964 pvt->num_dcsm = 2;
965 } else {
966 pvt->cs_count = 8;
967 pvt->num_dcsm = 4;
973 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
975 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
977 int cs, reg;
979 amd64_set_dct_base_and_mask(pvt);
981 for (cs = 0; cs < pvt->cs_count; cs++) {
982 reg = K8_DCSB0 + (cs * 4);
983 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
984 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
985 cs, pvt->dcsb0[cs], reg);
987 /* If DCT are NOT ganged, then read in DCT1's base */
988 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
989 reg = F10_DCSB1 + (cs * 4);
990 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
991 &pvt->dcsb1[cs]))
992 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
993 cs, pvt->dcsb1[cs], reg);
994 } else {
995 pvt->dcsb1[cs] = 0;
999 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1000 reg = K8_DCSM0 + (cs * 4);
1001 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1002 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1003 cs, pvt->dcsm0[cs], reg);
1005 /* If DCT are NOT ganged, then read in DCT1's mask */
1006 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1007 reg = F10_DCSM1 + (cs * 4);
1008 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1009 &pvt->dcsm1[cs]))
1010 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1011 cs, pvt->dcsm1[cs], reg);
1012 } else {
1013 pvt->dcsm1[cs] = 0;
1018 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1020 enum mem_type type;
1022 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1023 if (pvt->dchr0 & DDR3_MODE)
1024 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1025 else
1026 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1027 } else {
1028 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1031 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
1033 return type;
1037 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1038 * and the later RevF memory controllers (DDR vs DDR2)
1040 * Return:
1041 * number of memory channels in operation
1042 * Pass back:
1043 * contents of the DCL0_LOW register
1045 static int k8_early_channel_count(struct amd64_pvt *pvt)
1047 int flag, err = 0;
1049 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1050 if (err)
1051 return err;
1053 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1054 /* RevF (NPT) and later */
1055 flag = pvt->dclr0 & F10_WIDTH_128;
1056 } else {
1057 /* RevE and earlier */
1058 flag = pvt->dclr0 & REVE_WIDTH_128;
1061 /* not used */
1062 pvt->dclr1 = 0;
1064 return (flag) ? 2 : 1;
1067 /* extract the ERROR ADDRESS for the K8 CPUs */
1068 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1069 struct err_regs *info)
1071 return (((u64) (info->nbeah & 0xff)) << 32) +
1072 (info->nbeal & ~0x03);
1076 * Read the Base and Limit registers for K8 based Memory controllers; extract
1077 * fields from the 'raw' reg into separate data fields
1079 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1081 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1083 u32 low;
1084 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1086 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1088 /* Extract parts into separate data entries */
1089 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1090 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1091 pvt->dram_rw_en[dram] = (low & 0x3);
1093 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1096 * Extract parts into separate data entries. Limit is the HIGHEST memory
1097 * location of the region, so lower 24 bits need to be all ones
1099 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1100 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1101 pvt->dram_DstNode[dram] = (low & 0x7);
1104 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1105 struct err_regs *err_info, u64 sys_addr)
1107 struct mem_ctl_info *src_mci;
1108 int channel, csrow;
1109 u32 page, offset;
1110 u16 syndrome;
1112 syndrome = extract_syndrome(err_info);
1114 /* CHIPKILL enabled */
1115 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1116 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1117 if (channel < 0) {
1119 * Syndrome didn't map, so we don't know which of the
1120 * 2 DIMMs is in error. So we need to ID 'both' of them
1121 * as suspect.
1123 amd64_mc_printk(mci, KERN_WARNING,
1124 "unknown syndrome 0x%04x - possible "
1125 "error reporting race\n", syndrome);
1126 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1127 return;
1129 } else {
1131 * non-chipkill ecc mode
1133 * The k8 documentation is unclear about how to determine the
1134 * channel number when using non-chipkill memory. This method
1135 * was obtained from email communication with someone at AMD.
1136 * (Wish the email was placed in this comment - norsk)
1138 channel = ((sys_addr & BIT(3)) != 0);
1142 * Find out which node the error address belongs to. This may be
1143 * different from the node that detected the error.
1145 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1146 if (!src_mci) {
1147 amd64_mc_printk(mci, KERN_ERR,
1148 "failed to map error address 0x%lx to a node\n",
1149 (unsigned long)sys_addr);
1150 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1151 return;
1154 /* Now map the sys_addr to a CSROW */
1155 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1156 if (csrow < 0) {
1157 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1158 } else {
1159 error_address_to_page_and_offset(sys_addr, &page, &offset);
1161 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1162 channel, EDAC_MOD_STR);
1166 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1168 int *dbam_map;
1170 if (pvt->ext_model >= K8_REV_F)
1171 dbam_map = ddr2_dbam;
1172 else if (pvt->ext_model >= K8_REV_D)
1173 dbam_map = ddr2_dbam_revD;
1174 else
1175 dbam_map = ddr2_dbam_revCG;
1177 return dbam_map[cs_mode];
1181 * Get the number of DCT channels in use.
1183 * Return:
1184 * number of Memory Channels in operation
1185 * Pass back:
1186 * contents of the DCL0_LOW register
1188 static int f10_early_channel_count(struct amd64_pvt *pvt)
1190 int dbams[] = { DBAM0, DBAM1 };
1191 int i, j, channels = 0;
1192 u32 dbam;
1194 /* If we are in 128 bit mode, then we are using 2 channels */
1195 if (pvt->dclr0 & F10_WIDTH_128) {
1196 channels = 2;
1197 return channels;
1201 * Need to check if in unganged mode: In such, there are 2 channels,
1202 * but they are not in 128 bit mode and thus the above 'dclr0' status
1203 * bit will be OFF.
1205 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1206 * their CSEnable bit on. If so, then SINGLE DIMM case.
1208 debugf0("Data width is not 128 bits - need more decoding\n");
1211 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1212 * is more than just one DIMM present in unganged mode. Need to check
1213 * both controllers since DIMMs can be placed in either one.
1215 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1216 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1217 goto err_reg;
1219 for (j = 0; j < 4; j++) {
1220 if (DBAM_DIMM(j, dbam) > 0) {
1221 channels++;
1222 break;
1227 if (channels > 2)
1228 channels = 2;
1230 debugf0("MCT channel count: %d\n", channels);
1232 return channels;
1234 err_reg:
1235 return -1;
1239 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1241 int *dbam_map;
1243 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1244 dbam_map = ddr3_dbam;
1245 else
1246 dbam_map = ddr2_dbam;
1248 return dbam_map[cs_mode];
1251 /* Enable extended configuration access via 0xCF8 feature */
1252 static void amd64_setup(struct amd64_pvt *pvt)
1254 u32 reg;
1256 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1258 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1259 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1260 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1263 /* Restore the extended configuration access via 0xCF8 feature */
1264 static void amd64_teardown(struct amd64_pvt *pvt)
1266 u32 reg;
1268 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1270 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1271 if (pvt->flags.cf8_extcfg)
1272 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1276 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1277 struct err_regs *info)
1279 return (((u64) (info->nbeah & 0xffff)) << 32) +
1280 (info->nbeal & ~0x01);
1284 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1285 * fields from the 'raw' reg into separate data fields.
1287 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1289 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1291 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1293 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1294 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1296 /* read the 'raw' DRAM BASE Address register */
1297 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1299 /* Read from the ECS data register */
1300 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1302 /* Extract parts into separate data entries */
1303 pvt->dram_rw_en[dram] = (low_base & 0x3);
1305 if (pvt->dram_rw_en[dram] == 0)
1306 return;
1308 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1310 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1311 (((u64)low_base & 0xFFFF0000) << 8);
1313 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1314 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1316 /* read the 'raw' LIMIT registers */
1317 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1319 /* Read from the ECS data register for the HIGH portion */
1320 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1322 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1323 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1326 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1327 * memory location of the region, so low 24 bits need to be all ones.
1329 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1330 (((u64) low_limit & 0xFFFF0000) << 8) |
1331 0x00FFFFFF;
1334 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1337 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1338 &pvt->dram_ctl_select_low)) {
1339 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1340 "High range addresses at: 0x%x\n",
1341 pvt->dram_ctl_select_low,
1342 dct_sel_baseaddr(pvt));
1344 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1345 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1346 (dct_dram_enabled(pvt) ? "yes" : "no"));
1348 if (!dct_ganging_enabled(pvt))
1349 debugf0(" Address range split per DCT: %s\n",
1350 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1352 debugf0(" DCT data interleave for ECC: %s, "
1353 "DRAM cleared since last warm reset: %s\n",
1354 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1355 (dct_memory_cleared(pvt) ? "yes" : "no"));
1357 debugf0(" DCT channel interleave: %s, "
1358 "DCT interleave bits selector: 0x%x\n",
1359 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1360 dct_sel_interleave_addr(pvt));
1363 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1364 &pvt->dram_ctl_select_high);
1368 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1369 * Interleaving Modes.
1371 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1372 int hi_range_sel, u32 intlv_en)
1374 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1376 if (dct_ganging_enabled(pvt))
1377 cs = 0;
1378 else if (hi_range_sel)
1379 cs = dct_sel_high;
1380 else if (dct_interleave_enabled(pvt)) {
1382 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1384 if (dct_sel_interleave_addr(pvt) == 0)
1385 cs = sys_addr >> 6 & 1;
1386 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1387 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1389 if (dct_sel_interleave_addr(pvt) & 1)
1390 cs = (sys_addr >> 9 & 1) ^ temp;
1391 else
1392 cs = (sys_addr >> 6 & 1) ^ temp;
1393 } else if (intlv_en & 4)
1394 cs = sys_addr >> 15 & 1;
1395 else if (intlv_en & 2)
1396 cs = sys_addr >> 14 & 1;
1397 else if (intlv_en & 1)
1398 cs = sys_addr >> 13 & 1;
1399 else
1400 cs = sys_addr >> 12 & 1;
1401 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1402 cs = ~dct_sel_high & 1;
1403 else
1404 cs = 0;
1406 return cs;
1409 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1411 if (intlv_en == 1)
1412 return 1;
1413 else if (intlv_en == 3)
1414 return 2;
1415 else if (intlv_en == 7)
1416 return 3;
1418 return 0;
1421 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1422 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1423 u32 dct_sel_base_addr,
1424 u64 dct_sel_base_off,
1425 u32 hole_valid, u32 hole_off,
1426 u64 dram_base)
1428 u64 chan_off;
1430 if (hi_range_sel) {
1431 if (!(dct_sel_base_addr & 0xFFFF0000) &&
1432 hole_valid && (sys_addr >= 0x100000000ULL))
1433 chan_off = hole_off << 16;
1434 else
1435 chan_off = dct_sel_base_off;
1436 } else {
1437 if (hole_valid && (sys_addr >= 0x100000000ULL))
1438 chan_off = hole_off << 16;
1439 else
1440 chan_off = dram_base & 0xFFFFF8000000ULL;
1443 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1444 (chan_off & 0x0000FFFFFF800000ULL);
1447 /* Hack for the time being - Can we get this from BIOS?? */
1448 #define CH0SPARE_RANK 0
1449 #define CH1SPARE_RANK 1
1452 * checks if the csrow passed in is marked as SPARED, if so returns the new
1453 * spare row
1455 static inline int f10_process_possible_spare(int csrow,
1456 u32 cs, struct amd64_pvt *pvt)
1458 u32 swap_done;
1459 u32 bad_dram_cs;
1461 /* Depending on channel, isolate respective SPARING info */
1462 if (cs) {
1463 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1464 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1465 if (swap_done && (csrow == bad_dram_cs))
1466 csrow = CH1SPARE_RANK;
1467 } else {
1468 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1469 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1470 if (swap_done && (csrow == bad_dram_cs))
1471 csrow = CH0SPARE_RANK;
1473 return csrow;
1477 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1478 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1480 * Return:
1481 * -EINVAL: NOT FOUND
1482 * 0..csrow = Chip-Select Row
1484 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1486 struct mem_ctl_info *mci;
1487 struct amd64_pvt *pvt;
1488 u32 cs_base, cs_mask;
1489 int cs_found = -EINVAL;
1490 int csrow;
1492 mci = mci_lookup[nid];
1493 if (!mci)
1494 return cs_found;
1496 pvt = mci->pvt_info;
1498 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1500 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1502 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1503 if (!(cs_base & K8_DCSB_CS_ENABLE))
1504 continue;
1507 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1508 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1509 * of the actual address.
1511 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1514 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1515 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1517 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1519 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1520 csrow, cs_base, cs_mask);
1522 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1524 debugf1(" Final CSMask=0x%x\n", cs_mask);
1525 debugf1(" (InputAddr & ~CSMask)=0x%x "
1526 "(CSBase & ~CSMask)=0x%x\n",
1527 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1529 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1530 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1532 debugf1(" MATCH csrow=%d\n", cs_found);
1533 break;
1536 return cs_found;
1539 /* For a given @dram_range, check if @sys_addr falls within it. */
1540 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1541 u64 sys_addr, int *nid, int *chan_sel)
1543 int node_id, cs_found = -EINVAL, high_range = 0;
1544 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1545 u32 hole_valid, tmp, dct_sel_base, channel;
1546 u64 dram_base, chan_addr, dct_sel_base_off;
1548 dram_base = pvt->dram_base[dram_range];
1549 intlv_en = pvt->dram_IntlvEn[dram_range];
1551 node_id = pvt->dram_DstNode[dram_range];
1552 intlv_sel = pvt->dram_IntlvSel[dram_range];
1554 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1555 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1558 * This assumes that one node's DHAR is the same as all the other
1559 * nodes' DHAR.
1561 hole_off = (pvt->dhar & 0x0000FF80);
1562 hole_valid = (pvt->dhar & 0x1);
1563 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1565 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1566 hole_off, hole_valid, intlv_sel);
1568 if (intlv_en &&
1569 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1570 return -EINVAL;
1572 dct_sel_base = dct_sel_baseaddr(pvt);
1575 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1576 * select between DCT0 and DCT1.
1578 if (dct_high_range_enabled(pvt) &&
1579 !dct_ganging_enabled(pvt) &&
1580 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1581 high_range = 1;
1583 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1585 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1586 dct_sel_base_off, hole_valid,
1587 hole_off, dram_base);
1589 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1591 /* remove Node ID (in case of memory interleaving) */
1592 tmp = chan_addr & 0xFC0;
1594 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1596 /* remove channel interleave and hash */
1597 if (dct_interleave_enabled(pvt) &&
1598 !dct_high_range_enabled(pvt) &&
1599 !dct_ganging_enabled(pvt)) {
1600 if (dct_sel_interleave_addr(pvt) != 1)
1601 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1602 else {
1603 tmp = chan_addr & 0xFC0;
1604 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1605 | tmp;
1609 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1610 chan_addr, (u32)(chan_addr >> 8));
1612 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1614 if (cs_found >= 0) {
1615 *nid = node_id;
1616 *chan_sel = channel;
1618 return cs_found;
1621 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1622 int *node, int *chan_sel)
1624 int dram_range, cs_found = -EINVAL;
1625 u64 dram_base, dram_limit;
1627 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1629 if (!pvt->dram_rw_en[dram_range])
1630 continue;
1632 dram_base = pvt->dram_base[dram_range];
1633 dram_limit = pvt->dram_limit[dram_range];
1635 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1637 cs_found = f10_match_to_this_node(pvt, dram_range,
1638 sys_addr, node,
1639 chan_sel);
1640 if (cs_found >= 0)
1641 break;
1644 return cs_found;
1648 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1649 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1651 * The @sys_addr is usually an error address received from the hardware
1652 * (MCX_ADDR).
1654 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1655 struct err_regs *err_info,
1656 u64 sys_addr)
1658 struct amd64_pvt *pvt = mci->pvt_info;
1659 u32 page, offset;
1660 int nid, csrow, chan = 0;
1661 u16 syndrome;
1663 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1665 if (csrow < 0) {
1666 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1667 return;
1670 error_address_to_page_and_offset(sys_addr, &page, &offset);
1672 syndrome = extract_syndrome(err_info);
1675 * We need the syndromes for channel detection only when we're
1676 * ganged. Otherwise @chan should already contain the channel at
1677 * this point.
1679 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1680 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1682 if (chan >= 0)
1683 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1684 EDAC_MOD_STR);
1685 else
1687 * Channel unknown, report all channels on this CSROW as failed.
1689 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1690 edac_mc_handle_ce(mci, page, offset, syndrome,
1691 csrow, chan, EDAC_MOD_STR);
1695 * debug routine to display the memory sizes of all logical DIMMs and its
1696 * CSROWs as well
1698 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1700 int dimm, size0, size1, factor = 0;
1701 u32 dbam;
1702 u32 *dcsb;
1704 if (boot_cpu_data.x86 == 0xf) {
1705 if (pvt->dclr0 & F10_WIDTH_128)
1706 factor = 1;
1708 /* K8 families < revF not supported yet */
1709 if (pvt->ext_model < K8_REV_F)
1710 return;
1711 else
1712 WARN_ON(ctrl != 0);
1715 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1716 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1718 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1719 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1721 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1723 /* Dump memory sizes for DIMM and its CSROWs */
1724 for (dimm = 0; dimm < 4; dimm++) {
1726 size0 = 0;
1727 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1728 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1730 size1 = 0;
1731 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1732 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1734 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1735 dimm * 2, size0 << factor,
1736 dimm * 2 + 1, size1 << factor);
1741 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1742 * (as per PCI DEVICE_IDs):
1744 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1745 * DEVICE ID, even though there is differences between the different Revisions
1746 * (CG,D,E,F).
1748 * Family F10h and F11h.
1751 static struct amd64_family_type amd64_family_types[] = {
1752 [K8_CPUS] = {
1753 .ctl_name = "RevF",
1754 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1755 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1756 .ops = {
1757 .early_channel_count = k8_early_channel_count,
1758 .get_error_address = k8_get_error_address,
1759 .read_dram_base_limit = k8_read_dram_base_limit,
1760 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1761 .dbam_to_cs = k8_dbam_to_chip_select,
1764 [F10_CPUS] = {
1765 .ctl_name = "Family 10h",
1766 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1767 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1768 .ops = {
1769 .early_channel_count = f10_early_channel_count,
1770 .get_error_address = f10_get_error_address,
1771 .read_dram_base_limit = f10_read_dram_base_limit,
1772 .read_dram_ctl_register = f10_read_dram_ctl_register,
1773 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1774 .dbam_to_cs = f10_dbam_to_chip_select,
1777 [F11_CPUS] = {
1778 .ctl_name = "Family 11h",
1779 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1780 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1781 .ops = {
1782 .early_channel_count = f10_early_channel_count,
1783 .get_error_address = f10_get_error_address,
1784 .read_dram_base_limit = f10_read_dram_base_limit,
1785 .read_dram_ctl_register = f10_read_dram_ctl_register,
1786 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1787 .dbam_to_cs = f10_dbam_to_chip_select,
1792 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1793 unsigned int device,
1794 struct pci_dev *related)
1796 struct pci_dev *dev = NULL;
1798 dev = pci_get_device(vendor, device, dev);
1799 while (dev) {
1800 if ((dev->bus->number == related->bus->number) &&
1801 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1802 break;
1803 dev = pci_get_device(vendor, device, dev);
1806 return dev;
1810 * These are tables of eigenvectors (one per line) which can be used for the
1811 * construction of the syndrome tables. The modified syndrome search algorithm
1812 * uses those to find the symbol in error and thus the DIMM.
1814 * Algorithm courtesy of Ross LaFetra from AMD.
1816 static u16 x4_vectors[] = {
1817 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1818 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1819 0x0001, 0x0002, 0x0004, 0x0008,
1820 0x1013, 0x3032, 0x4044, 0x8088,
1821 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1822 0x4857, 0xc4fe, 0x13cc, 0x3288,
1823 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1824 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1825 0x15c1, 0x2a42, 0x89ac, 0x4758,
1826 0x2b03, 0x1602, 0x4f0c, 0xca08,
1827 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1828 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1829 0x2b87, 0x164e, 0x642c, 0xdc18,
1830 0x40b9, 0x80de, 0x1094, 0x20e8,
1831 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1832 0x11c1, 0x2242, 0x84ac, 0x4c58,
1833 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1834 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1835 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1836 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1837 0x16b3, 0x3d62, 0x4f34, 0x8518,
1838 0x1e2f, 0x391a, 0x5cac, 0xf858,
1839 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1840 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1841 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1842 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1843 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1844 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1845 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1846 0x185d, 0x2ca6, 0x7914, 0x9e28,
1847 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1848 0x4199, 0x82ee, 0x19f4, 0x2e58,
1849 0x4807, 0xc40e, 0x130c, 0x3208,
1850 0x1905, 0x2e0a, 0x5804, 0xac08,
1851 0x213f, 0x132a, 0xadfc, 0x5ba8,
1852 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1855 static u16 x8_vectors[] = {
1856 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1857 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1858 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1859 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1860 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1861 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1862 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1863 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1864 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1865 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1866 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1867 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1868 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1869 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1870 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1871 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1872 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1873 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1874 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1877 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1878 int v_dim)
1880 unsigned int i, err_sym;
1882 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1883 u16 s = syndrome;
1884 int v_idx = err_sym * v_dim;
1885 int v_end = (err_sym + 1) * v_dim;
1887 /* walk over all 16 bits of the syndrome */
1888 for (i = 1; i < (1U << 16); i <<= 1) {
1890 /* if bit is set in that eigenvector... */
1891 if (v_idx < v_end && vectors[v_idx] & i) {
1892 u16 ev_comp = vectors[v_idx++];
1894 /* ... and bit set in the modified syndrome, */
1895 if (s & i) {
1896 /* remove it. */
1897 s ^= ev_comp;
1899 if (!s)
1900 return err_sym;
1903 } else if (s & i)
1904 /* can't get to zero, move to next symbol */
1905 break;
1909 debugf0("syndrome(%x) not found\n", syndrome);
1910 return -1;
1913 static int map_err_sym_to_channel(int err_sym, int sym_size)
1915 if (sym_size == 4)
1916 switch (err_sym) {
1917 case 0x20:
1918 case 0x21:
1919 return 0;
1920 break;
1921 case 0x22:
1922 case 0x23:
1923 return 1;
1924 break;
1925 default:
1926 return err_sym >> 4;
1927 break;
1929 /* x8 symbols */
1930 else
1931 switch (err_sym) {
1932 /* imaginary bits not in a DIMM */
1933 case 0x10:
1934 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1935 err_sym);
1936 return -1;
1937 break;
1939 case 0x11:
1940 return 0;
1941 break;
1942 case 0x12:
1943 return 1;
1944 break;
1945 default:
1946 return err_sym >> 3;
1947 break;
1949 return -1;
1952 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1954 struct amd64_pvt *pvt = mci->pvt_info;
1955 int err_sym = -1;
1957 if (pvt->syn_type == 8)
1958 err_sym = decode_syndrome(syndrome, x8_vectors,
1959 ARRAY_SIZE(x8_vectors),
1960 pvt->syn_type);
1961 else if (pvt->syn_type == 4)
1962 err_sym = decode_syndrome(syndrome, x4_vectors,
1963 ARRAY_SIZE(x4_vectors),
1964 pvt->syn_type);
1965 else {
1966 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1967 __func__, pvt->syn_type);
1968 return err_sym;
1971 return map_err_sym_to_channel(err_sym, pvt->syn_type);
1975 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1976 * ADDRESS and process.
1978 static void amd64_handle_ce(struct mem_ctl_info *mci,
1979 struct err_regs *info)
1981 struct amd64_pvt *pvt = mci->pvt_info;
1982 u64 sys_addr;
1984 /* Ensure that the Error Address is VALID */
1985 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1986 amd64_mc_printk(mci, KERN_ERR,
1987 "HW has no ERROR_ADDRESS available\n");
1988 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1989 return;
1992 sys_addr = pvt->ops->get_error_address(mci, info);
1994 amd64_mc_printk(mci, KERN_ERR,
1995 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1997 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2000 /* Handle any Un-correctable Errors (UEs) */
2001 static void amd64_handle_ue(struct mem_ctl_info *mci,
2002 struct err_regs *info)
2004 struct amd64_pvt *pvt = mci->pvt_info;
2005 struct mem_ctl_info *log_mci, *src_mci = NULL;
2006 int csrow;
2007 u64 sys_addr;
2008 u32 page, offset;
2010 log_mci = mci;
2012 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2013 amd64_mc_printk(mci, KERN_CRIT,
2014 "HW has no ERROR_ADDRESS available\n");
2015 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2016 return;
2019 sys_addr = pvt->ops->get_error_address(mci, info);
2022 * Find out which node the error address belongs to. This may be
2023 * different from the node that detected the error.
2025 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2026 if (!src_mci) {
2027 amd64_mc_printk(mci, KERN_CRIT,
2028 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2029 (unsigned long)sys_addr);
2030 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2031 return;
2034 log_mci = src_mci;
2036 csrow = sys_addr_to_csrow(log_mci, sys_addr);
2037 if (csrow < 0) {
2038 amd64_mc_printk(mci, KERN_CRIT,
2039 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2040 (unsigned long)sys_addr);
2041 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2042 } else {
2043 error_address_to_page_and_offset(sys_addr, &page, &offset);
2044 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2048 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2049 struct err_regs *info)
2051 u32 ec = ERROR_CODE(info->nbsl);
2052 u32 xec = EXT_ERROR_CODE(info->nbsl);
2053 int ecc_type = (info->nbsh >> 13) & 0x3;
2055 /* Bail early out if this was an 'observed' error */
2056 if (PP(ec) == K8_NBSL_PP_OBS)
2057 return;
2059 /* Do only ECC errors */
2060 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2061 return;
2063 if (ecc_type == 2)
2064 amd64_handle_ce(mci, info);
2065 else if (ecc_type == 1)
2066 amd64_handle_ue(mci, info);
2069 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2071 struct mem_ctl_info *mci = mci_lookup[node_id];
2073 __amd64_decode_bus_error(mci, regs);
2075 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2076 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2081 * Input:
2082 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2083 * 2) AMD Family index value
2085 * Ouput:
2086 * Upon return of 0, the following filled in:
2088 * struct pvt->addr_f1_ctl
2089 * struct pvt->misc_f3_ctl
2091 * Filled in with related device funcitions of 'dram_f2_ctl'
2092 * These devices are "reserved" via the pci_get_device()
2094 * Upon return of 1 (error status):
2096 * Nothing reserved
2098 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2100 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2102 /* Reserve the ADDRESS MAP Device */
2103 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2104 amd64_dev->addr_f1_ctl,
2105 pvt->dram_f2_ctl);
2107 if (!pvt->addr_f1_ctl) {
2108 amd64_printk(KERN_ERR, "error address map device not found: "
2109 "vendor %x device 0x%x (broken BIOS?)\n",
2110 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2111 return 1;
2114 /* Reserve the MISC Device */
2115 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2116 amd64_dev->misc_f3_ctl,
2117 pvt->dram_f2_ctl);
2119 if (!pvt->misc_f3_ctl) {
2120 pci_dev_put(pvt->addr_f1_ctl);
2121 pvt->addr_f1_ctl = NULL;
2123 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2124 "vendor %x device 0x%x (broken BIOS?)\n",
2125 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2126 return 1;
2129 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2130 pci_name(pvt->addr_f1_ctl));
2131 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2132 pci_name(pvt->dram_f2_ctl));
2133 debugf1(" Misc device PCI Bus ID:\t%s\n",
2134 pci_name(pvt->misc_f3_ctl));
2136 return 0;
2139 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2141 pci_dev_put(pvt->addr_f1_ctl);
2142 pci_dev_put(pvt->misc_f3_ctl);
2146 * Retrieve the hardware registers of the memory controller (this includes the
2147 * 'Address Map' and 'Misc' device regs)
2149 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2151 u64 msr_val;
2152 u32 tmp;
2153 int dram;
2156 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2157 * those are Read-As-Zero
2159 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2160 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2162 /* check first whether TOP_MEM2 is enabled */
2163 rdmsrl(MSR_K8_SYSCFG, msr_val);
2164 if (msr_val & (1U << 21)) {
2165 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2166 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2167 } else
2168 debugf0(" TOP_MEM2 disabled.\n");
2170 amd64_cpu_display_info(pvt);
2172 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2174 if (pvt->ops->read_dram_ctl_register)
2175 pvt->ops->read_dram_ctl_register(pvt);
2177 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2179 * Call CPU specific READ function to get the DRAM Base and
2180 * Limit values from the DCT.
2182 pvt->ops->read_dram_base_limit(pvt, dram);
2185 * Only print out debug info on rows with both R and W Enabled.
2186 * Normal processing, compiler should optimize this whole 'if'
2187 * debug output block away.
2189 if (pvt->dram_rw_en[dram] != 0) {
2190 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2191 "DRAM-LIMIT: 0x%016llx\n",
2192 dram,
2193 pvt->dram_base[dram],
2194 pvt->dram_limit[dram]);
2196 debugf1(" IntlvEn=%s %s %s "
2197 "IntlvSel=%d DstNode=%d\n",
2198 pvt->dram_IntlvEn[dram] ?
2199 "Enabled" : "Disabled",
2200 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2201 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2202 pvt->dram_IntlvSel[dram],
2203 pvt->dram_DstNode[dram]);
2207 amd64_read_dct_base_mask(pvt);
2209 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2210 amd64_read_dbam_reg(pvt);
2212 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2213 F10_ONLINE_SPARE, &pvt->online_spare);
2215 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2216 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2218 if (boot_cpu_data.x86 >= 0x10) {
2219 if (!dct_ganging_enabled(pvt)) {
2220 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2221 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2223 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
2226 if (boot_cpu_data.x86 == 0x10 &&
2227 boot_cpu_data.x86_model > 7 &&
2228 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2229 tmp & BIT(25))
2230 pvt->syn_type = 8;
2231 else
2232 pvt->syn_type = 4;
2234 amd64_dump_misc_regs(pvt);
2238 * NOTE: CPU Revision Dependent code
2240 * Input:
2241 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2242 * k8 private pointer to -->
2243 * DRAM Bank Address mapping register
2244 * node_id
2245 * DCL register where dual_channel_active is
2247 * The DBAM register consists of 4 sets of 4 bits each definitions:
2249 * Bits: CSROWs
2250 * 0-3 CSROWs 0 and 1
2251 * 4-7 CSROWs 2 and 3
2252 * 8-11 CSROWs 4 and 5
2253 * 12-15 CSROWs 6 and 7
2255 * Values range from: 0 to 15
2256 * The meaning of the values depends on CPU revision and dual-channel state,
2257 * see relevant BKDG more info.
2259 * The memory controller provides for total of only 8 CSROWs in its current
2260 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2261 * single channel or two (2) DIMMs in dual channel mode.
2263 * The following code logic collapses the various tables for CSROW based on CPU
2264 * revision.
2266 * Returns:
2267 * The number of PAGE_SIZE pages on the specified CSROW number it
2268 * encompasses
2271 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2273 u32 cs_mode, nr_pages;
2276 * The math on this doesn't look right on the surface because x/2*4 can
2277 * be simplified to x*2 but this expression makes use of the fact that
2278 * it is integral math where 1/2=0. This intermediate value becomes the
2279 * number of bits to shift the DBAM register to extract the proper CSROW
2280 * field.
2282 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2284 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2287 * If dual channel then double the memory size of single channel.
2288 * Channel count is 1 or 2
2290 nr_pages <<= (pvt->channel_count - 1);
2292 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2293 debugf0(" nr_pages= %u channel-count = %d\n",
2294 nr_pages, pvt->channel_count);
2296 return nr_pages;
2300 * Initialize the array of csrow attribute instances, based on the values
2301 * from pci config hardware registers.
2303 static int amd64_init_csrows(struct mem_ctl_info *mci)
2305 struct csrow_info *csrow;
2306 struct amd64_pvt *pvt;
2307 u64 input_addr_min, input_addr_max, sys_addr;
2308 int i, empty = 1;
2310 pvt = mci->pvt_info;
2312 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2314 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2315 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2316 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2319 for (i = 0; i < pvt->cs_count; i++) {
2320 csrow = &mci->csrows[i];
2322 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2323 debugf1("----CSROW %d EMPTY for node %d\n", i,
2324 pvt->mc_node_id);
2325 continue;
2328 debugf1("----CSROW %d VALID for MC node %d\n",
2329 i, pvt->mc_node_id);
2331 empty = 0;
2332 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2333 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2334 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2335 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2336 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2337 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2338 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2339 /* 8 bytes of resolution */
2341 csrow->mtype = amd64_determine_memory_type(pvt);
2343 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2344 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2345 (unsigned long)input_addr_min,
2346 (unsigned long)input_addr_max);
2347 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2348 (unsigned long)sys_addr, csrow->page_mask);
2349 debugf1(" nr_pages: %u first_page: 0x%lx "
2350 "last_page: 0x%lx\n",
2351 (unsigned)csrow->nr_pages,
2352 csrow->first_page, csrow->last_page);
2355 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2357 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2358 csrow->edac_mode =
2359 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2360 EDAC_S4ECD4ED : EDAC_SECDED;
2361 else
2362 csrow->edac_mode = EDAC_NONE;
2365 return empty;
2368 /* get all cores on this DCT */
2369 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2371 int cpu;
2373 for_each_online_cpu(cpu)
2374 if (amd_get_nb_id(cpu) == nid)
2375 cpumask_set_cpu(cpu, mask);
2378 /* check MCG_CTL on all the cpus on this node */
2379 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2381 cpumask_var_t mask;
2382 int cpu, nbe;
2383 bool ret = false;
2385 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2386 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2387 __func__);
2388 return false;
2391 get_cpus_on_this_dct_cpumask(mask, nid);
2393 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2395 for_each_cpu(cpu, mask) {
2396 struct msr *reg = per_cpu_ptr(msrs, cpu);
2397 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2399 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2400 cpu, reg->q,
2401 (nbe ? "enabled" : "disabled"));
2403 if (!nbe)
2404 goto out;
2406 ret = true;
2408 out:
2409 free_cpumask_var(mask);
2410 return ret;
2413 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2415 cpumask_var_t cmask;
2416 int cpu;
2418 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2419 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2420 __func__);
2421 return false;
2424 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2426 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2428 for_each_cpu(cpu, cmask) {
2430 struct msr *reg = per_cpu_ptr(msrs, cpu);
2432 if (on) {
2433 if (reg->l & K8_MSR_MCGCTL_NBE)
2434 pvt->flags.nb_mce_enable = 1;
2436 reg->l |= K8_MSR_MCGCTL_NBE;
2437 } else {
2439 * Turn off NB MCE reporting only when it was off before
2441 if (!pvt->flags.nb_mce_enable)
2442 reg->l &= ~K8_MSR_MCGCTL_NBE;
2445 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2447 free_cpumask_var(cmask);
2449 return 0;
2452 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2454 struct amd64_pvt *pvt = mci->pvt_info;
2455 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2457 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2459 /* turn on UECCn and CECCEn bits */
2460 pvt->old_nbctl = value & mask;
2461 pvt->nbctl_mcgctl_saved = 1;
2463 value |= mask;
2464 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2466 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2467 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2468 "MCGCTL!\n");
2470 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2472 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2473 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2474 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2476 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2477 amd64_printk(KERN_WARNING,
2478 "This node reports that DRAM ECC is "
2479 "currently Disabled; ENABLING now\n");
2481 pvt->flags.nb_ecc_prev = 0;
2483 /* Attempt to turn on DRAM ECC Enable */
2484 value |= K8_NBCFG_ECC_ENABLE;
2485 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2487 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2489 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2490 amd64_printk(KERN_WARNING,
2491 "Hardware rejects Enabling DRAM ECC checking\n"
2492 "Check memory DIMM configuration\n");
2493 } else {
2494 amd64_printk(KERN_DEBUG,
2495 "Hardware accepted DRAM ECC Enable\n");
2497 } else {
2498 pvt->flags.nb_ecc_prev = 1;
2501 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2502 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2503 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2505 pvt->ctl_error_info.nbcfg = value;
2508 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2510 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2512 if (!pvt->nbctl_mcgctl_saved)
2513 return;
2515 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2516 value &= ~mask;
2517 value |= pvt->old_nbctl;
2519 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2521 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2522 if (!pvt->flags.nb_ecc_prev) {
2523 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2524 value &= ~K8_NBCFG_ECC_ENABLE;
2525 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2528 /* restore the NB Enable MCGCTL bit */
2529 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2530 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2534 * EDAC requires that the BIOS have ECC enabled before taking over the
2535 * processing of ECC errors. This is because the BIOS can properly initialize
2536 * the memory system completely. A command line option allows to force-enable
2537 * hardware ECC later in amd64_enable_ecc_error_reporting().
2539 static const char *ecc_msg =
2540 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2541 " Either enable ECC checking or force module loading by setting "
2542 "'ecc_enable_override'.\n"
2543 " (Note that use of the override may cause unknown side effects.)\n";
2545 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2547 u32 value;
2548 u8 ecc_enabled = 0;
2549 bool nb_mce_en = false;
2551 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2553 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2554 if (!ecc_enabled)
2555 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2556 "is currently disabled, set F3x%x[22] (%s).\n",
2557 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2558 else
2559 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2561 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2562 if (!nb_mce_en)
2563 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2564 "0x%08x[4] on node %d to enable.\n",
2565 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2567 if (!ecc_enabled || !nb_mce_en) {
2568 if (!ecc_enable_override) {
2569 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2570 return -ENODEV;
2571 } else {
2572 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2576 return 0;
2579 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2580 ARRAY_SIZE(amd64_inj_attrs) +
2583 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2585 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2587 unsigned int i = 0, j = 0;
2589 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2590 sysfs_attrs[i] = amd64_dbg_attrs[i];
2592 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2593 sysfs_attrs[i] = amd64_inj_attrs[j];
2595 sysfs_attrs[i] = terminator;
2597 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2600 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2602 struct amd64_pvt *pvt = mci->pvt_info;
2604 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2605 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2607 if (pvt->nbcap & K8_NBCAP_SECDED)
2608 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2610 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2611 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2613 mci->edac_cap = amd64_determine_edac_cap(pvt);
2614 mci->mod_name = EDAC_MOD_STR;
2615 mci->mod_ver = EDAC_AMD64_VERSION;
2616 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2617 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2618 mci->ctl_page_to_phys = NULL;
2620 /* memory scrubber interface */
2621 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2622 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2626 * Init stuff for this DRAM Controller device.
2628 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2629 * Space feature MUST be enabled on ALL Processors prior to actually reading
2630 * from the ECS registers. Since the loading of the module can occur on any
2631 * 'core', and cores don't 'see' all the other processors ECS data when the
2632 * others are NOT enabled. Our solution is to first enable ECS access in this
2633 * routine on all processors, gather some data in a amd64_pvt structure and
2634 * later come back in a finish-setup function to perform that final
2635 * initialization. See also amd64_init_2nd_stage() for that.
2637 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2638 int mc_type_index)
2640 struct amd64_pvt *pvt = NULL;
2641 int err = 0, ret;
2643 ret = -ENOMEM;
2644 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2645 if (!pvt)
2646 goto err_exit;
2648 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2650 pvt->dram_f2_ctl = dram_f2_ctl;
2651 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2652 pvt->mc_type_index = mc_type_index;
2653 pvt->ops = family_ops(mc_type_index);
2656 * We have the dram_f2_ctl device as an argument, now go reserve its
2657 * sibling devices from the PCI system.
2659 ret = -ENODEV;
2660 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2661 if (err)
2662 goto err_free;
2664 ret = -EINVAL;
2665 err = amd64_check_ecc_enabled(pvt);
2666 if (err)
2667 goto err_put;
2670 * Key operation here: setup of HW prior to performing ops on it. Some
2671 * setup is required to access ECS data. After this is performed, the
2672 * 'teardown' function must be called upon error and normal exit paths.
2674 if (boot_cpu_data.x86 >= 0x10)
2675 amd64_setup(pvt);
2678 * Save the pointer to the private data for use in 2nd initialization
2679 * stage
2681 pvt_lookup[pvt->mc_node_id] = pvt;
2683 return 0;
2685 err_put:
2686 amd64_free_mc_sibling_devices(pvt);
2688 err_free:
2689 kfree(pvt);
2691 err_exit:
2692 return ret;
2696 * This is the finishing stage of the init code. Needs to be performed after all
2697 * MCs' hardware have been prepped for accessing extended config space.
2699 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2701 int node_id = pvt->mc_node_id;
2702 struct mem_ctl_info *mci;
2703 int ret = -ENODEV;
2705 amd64_read_mc_registers(pvt);
2708 * We need to determine how many memory channels there are. Then use
2709 * that information for calculating the size of the dynamic instance
2710 * tables in the 'mci' structure
2712 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2713 if (pvt->channel_count < 0)
2714 goto err_exit;
2716 ret = -ENOMEM;
2717 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2718 if (!mci)
2719 goto err_exit;
2721 mci->pvt_info = pvt;
2723 mci->dev = &pvt->dram_f2_ctl->dev;
2724 amd64_setup_mci_misc_attributes(mci);
2726 if (amd64_init_csrows(mci))
2727 mci->edac_cap = EDAC_FLAG_NONE;
2729 amd64_enable_ecc_error_reporting(mci);
2730 amd64_set_mc_sysfs_attributes(mci);
2732 ret = -ENODEV;
2733 if (edac_mc_add_mc(mci)) {
2734 debugf1("failed edac_mc_add_mc()\n");
2735 goto err_add_mc;
2738 mci_lookup[node_id] = mci;
2739 pvt_lookup[node_id] = NULL;
2741 /* register stuff with EDAC MCE */
2742 if (report_gart_errors)
2743 amd_report_gart_errors(true);
2745 amd_register_ecc_decoder(amd64_decode_bus_error);
2747 return 0;
2749 err_add_mc:
2750 edac_mc_free(mci);
2752 err_exit:
2753 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2755 amd64_restore_ecc_error_reporting(pvt);
2757 if (boot_cpu_data.x86 > 0xf)
2758 amd64_teardown(pvt);
2760 amd64_free_mc_sibling_devices(pvt);
2762 kfree(pvt_lookup[pvt->mc_node_id]);
2763 pvt_lookup[node_id] = NULL;
2765 return ret;
2769 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2770 const struct pci_device_id *mc_type)
2772 int ret = 0;
2774 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2775 get_amd_family_name(mc_type->driver_data));
2777 ret = pci_enable_device(pdev);
2778 if (ret < 0)
2779 ret = -EIO;
2780 else
2781 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2783 if (ret < 0)
2784 debugf0("ret=%d\n", ret);
2786 return ret;
2789 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2791 struct mem_ctl_info *mci;
2792 struct amd64_pvt *pvt;
2794 /* Remove from EDAC CORE tracking list */
2795 mci = edac_mc_del_mc(&pdev->dev);
2796 if (!mci)
2797 return;
2799 pvt = mci->pvt_info;
2801 amd64_restore_ecc_error_reporting(pvt);
2803 if (boot_cpu_data.x86 > 0xf)
2804 amd64_teardown(pvt);
2806 amd64_free_mc_sibling_devices(pvt);
2808 /* unregister from EDAC MCE */
2809 amd_report_gart_errors(false);
2810 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2812 /* Free the EDAC CORE resources */
2813 mci->pvt_info = NULL;
2814 mci_lookup[pvt->mc_node_id] = NULL;
2816 kfree(pvt);
2817 edac_mc_free(mci);
2821 * This table is part of the interface for loading drivers for PCI devices. The
2822 * PCI core identifies what devices are on a system during boot, and then
2823 * inquiry this table to see if this driver is for a given device found.
2825 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2827 .vendor = PCI_VENDOR_ID_AMD,
2828 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2829 .subvendor = PCI_ANY_ID,
2830 .subdevice = PCI_ANY_ID,
2831 .class = 0,
2832 .class_mask = 0,
2833 .driver_data = K8_CPUS
2836 .vendor = PCI_VENDOR_ID_AMD,
2837 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2838 .subvendor = PCI_ANY_ID,
2839 .subdevice = PCI_ANY_ID,
2840 .class = 0,
2841 .class_mask = 0,
2842 .driver_data = F10_CPUS
2845 .vendor = PCI_VENDOR_ID_AMD,
2846 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2847 .subvendor = PCI_ANY_ID,
2848 .subdevice = PCI_ANY_ID,
2849 .class = 0,
2850 .class_mask = 0,
2851 .driver_data = F11_CPUS
2853 {0, }
2855 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2857 static struct pci_driver amd64_pci_driver = {
2858 .name = EDAC_MOD_STR,
2859 .probe = amd64_init_one_instance,
2860 .remove = __devexit_p(amd64_remove_one_instance),
2861 .id_table = amd64_pci_table,
2864 static void amd64_setup_pci_device(void)
2866 struct mem_ctl_info *mci;
2867 struct amd64_pvt *pvt;
2869 if (amd64_ctl_pci)
2870 return;
2872 mci = mci_lookup[0];
2873 if (mci) {
2875 pvt = mci->pvt_info;
2876 amd64_ctl_pci =
2877 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2878 EDAC_MOD_STR);
2880 if (!amd64_ctl_pci) {
2881 pr_warning("%s(): Unable to create PCI control\n",
2882 __func__);
2884 pr_warning("%s(): PCI error report via EDAC not set\n",
2885 __func__);
2890 static int __init amd64_edac_init(void)
2892 int nb, err = -ENODEV;
2893 bool load_ok = false;
2895 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2897 opstate_init();
2899 if (cache_k8_northbridges() < 0)
2900 goto err_ret;
2902 msrs = msrs_alloc();
2903 if (!msrs)
2904 goto err_ret;
2906 err = pci_register_driver(&amd64_pci_driver);
2907 if (err)
2908 goto err_pci;
2911 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2912 * amd64_pvt structs. These will be used in the 2nd stage init function
2913 * to finish initialization of the MC instances.
2915 err = -ENODEV;
2916 for (nb = 0; nb < num_k8_northbridges; nb++) {
2917 if (!pvt_lookup[nb])
2918 continue;
2920 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2921 if (err)
2922 goto err_2nd_stage;
2924 load_ok = true;
2927 if (load_ok) {
2928 amd64_setup_pci_device();
2929 return 0;
2932 err_2nd_stage:
2933 pci_unregister_driver(&amd64_pci_driver);
2934 err_pci:
2935 msrs_free(msrs);
2936 msrs = NULL;
2937 err_ret:
2938 return err;
2941 static void __exit amd64_edac_exit(void)
2943 if (amd64_ctl_pci)
2944 edac_pci_release_generic_ctl(amd64_ctl_pci);
2946 pci_unregister_driver(&amd64_pci_driver);
2948 msrs_free(msrs);
2949 msrs = NULL;
2952 module_init(amd64_edac_init);
2953 module_exit(amd64_edac_exit);
2955 MODULE_LICENSE("GPL");
2956 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2957 "Dave Peterson, Thayne Harbaugh");
2958 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2959 EDAC_AMD64_VERSION);
2961 module_param(edac_op_state, int, 0444);
2962 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");